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Abstract 

Background  

Monitoring the transmission of coronavirus disease 2019 (COVID-19) requires accurate 

estimation of the effective reproduction number (��). However, existing methods for 

calculating �� may yield biased estimates if important real-world factors, such as delays in 

confirmation, pre-symptomatic transmissions, or imperfect data observation, are not 

considered. 

Method  

To include real-world factors, we expanded the susceptible-exposed-infectious-recovered 

(SEIR) model by incorporating pre-symptomatic (P) and asymptomatic (A) states, creating 

the SEPIAR model. By utilizing both stochastic and deterministic versions of the model, and 

incorporating predetermined time series of ��, we generated simulated datasets that simulate 

real-world challenges in estimating ��. We then compared the performance of our proposed 

particle filtering method for estimating �� with the existing EpiEstim approach based on 

renewal equations. 

 

Results 

The particle filtering method accurately estimated �� even in the presence of data with 

delays, pre-symptomatic transmission, and imperfect observation. When evaluating via the 

root mean square error (RMSE) metric, the performance of the particle filtering method was 

better in general and was comparable to the EpiEstim approach if perfectly deconvolved 

infection time series were provided, and substantially better when �� exhibited short-term 

fluctuations and the data was right truncated. 

 

Conclusions  
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The SEPIAR model, in conjunction with the particle filtering method, offers a reliable tool 

for predicting the transmission trend of COVID-19 and assessing the impact of intervention 

strategies. This approach enables enhanced monitoring of COVID-19 transmission and can 

inform public health policies aimed at controlling the spread of the disease. 

 

 

1. Introduction 

Since its first identification in Wuhan, China in December 2019 (Lu et al., 2020; Phelan et 

al., 2020), the coronavirus disease-19 (COVID-19) has spread worldwide, and the 

characteristics of disease dynamics have changed considerably over the two-year-long 

pandemic. To prevent further infections, many countries have implemented various 

interventions, such as social distancing, contact tracing, border closures, and vaccinations. 

These interventions have motivated the development of quantitative techniques that provide 

policymakers with the ability to monitor changes in disease transmission over time and 

evaluate the performance of intervention programs in near real-time. 

One of the key metrics used to monitor disease transmission is the effective reproduction 

number (��), which is the average number of new infections caused by an infectious 

individual in a population consisting of both susceptible and non-susceptible hosts. There are 

two main approaches for estimating �� from case incidence data. The first approach is to treat 

the cases occurring at time t as primary cases and calculate onward secondary transmissions 

from the primary cases. This approach, known as the case reproduction number, was first 

introduced in 2004 (Wallinga & Teunis, 2004). The second approach treats the cases 

occurring at time t as secondary cases reproduced by cases occurring prior to time t, with 

weights determined by the generation interval distribution. The estimates inferred from this 

latter approach are called instantaneous reproduction number ��  (Fraser, 2007) and have 
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become more widely adopted following a study in the field (Cori et al., 2013). The 

instantaneous reproduction number �� is considered a better indicator for ongoing dynamics 

of transmission (Gostic et al., 2020). 

Although calculating �� is straightforward (Cori et al., 2013; Cori, 2021), applying the 

method mechanically without considering the context of the data can lead to a biased estimate 

(Gostic et al., 2020). For example, one real-world context is delay from infection to symptom 

onset or confirmation. While ideally �� calculation needs to be based on the time series of 

infections to give timely estimates, most COVID-19 data are given as time series of case 

confirmation or death. If the method is simply applied to the dataset with delay (e.g., time 

series of case confirmation), the inferred �� will on average indicate the reproduction number 

of the past (e.g., t – average delay from infection to confirmation). The paper by Gostic et al. 

(Gostic et al., 2020) describes a way to overcome this challenge by deconvolving 

confirmation time series to infer infection time series and then applying the method to the 

inferred infection time series. There are other real-world contexts such as uncertainty in 

parameter estimates (e.g., generation interval), imperfect observation, or right truncation as 

described in the previous study. Another real-world context omitted in previous study (Gostic 

et al., 2020) is the generation interval of COVID-19, which is the interval between infection 

times of successive cases (Fine, 2003). Since COVID-19 can be transmitted during the 

incubation period before symptoms appear, the serial interval (i.e., the interval between 

symptom onsets of successive cases) (Porta, 2014) may not be a good substitute for the 

generation interval (Ganyani et al., 2020). 

To address this issue, we propose an estimation strategy for instantaneous �� using a 

particle filtering (also known as sequential Monte Carlo) method (Arulampalam et al., 2002).  

PF is a popular choice for calibrating nonlinear dynamical systems such as compartment 

models of infectious disease transmission in epidemiology (Yang et al., 2014; Dukic et al., 
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2012; Calvetti et al., 2021; Safarishahrbijari et al., 2021). We explored the potential to use a 

dynamic compartmental model of disease transmission (e.g., SEIR model) in which the 

transmission rate parameter is estimated using a PF method. By using a dynamic model, 

researchers can better address the previously mentioned issues (i.e., delay from infection to 

confirmation and the correct use of generation interval) and create a framework to test 

hypotheses or potential impact of intervention programs. While there are several successful 

data assimilation models (e.g., Kalman filter, particle filter, ensemble Kalman filter) to 

estimate latent variables or parameters and �� (Yang et al., 2014; Kucharski et al., 2020; 

Arroyo-Marioli et al., 2021), this work is the first to systematically investigate the PF using 

simulated data in the context of ��. 

 

2. Materials and Methods 

2.1. Compartment model (SEPIAR model) 

To capture realistic �� of COVID-19, we adapt the well-known SEIR modeling approach 

and introduce the SEPAIR model equations as follows: 
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Here, as depicted in Figure 1, the population is divided into 6 groups, including susceptible 

(�), exposed (E), pre-symptomatic infectious (�), symptomatic infectious (�), asymptomatic 

infectious (
), and removed (�) (i.e., isolated, recovered, or otherwise no longer infectious) 

so that the total population (N) remains constant for all times � (in days), i.e., � � � � � �
� � � � 
 � �. In addition, the SEPIAR model accounts for infections during latency and 

asymptomatic infections in the following sense: ���	 is the transmission rate at time � that 

susceptible hosts become exposed in contacts with the hosts in all three �, �, and 
 groups, 

where the scaling factors (
� and 
�), each ranging between 0 and 1, apply for the 

transmissibility whilst at the stages � and 
 respectively compared to the stage �. We took 


� � 
� � 1 for simplicity in this study as the primary scenario; the mean residence time in 

the stage � (1 �⁄ ) is fixed at 2.5 days, which is calculated as the difference between the mean 

incubation period (1 �⁄ �5 days) and the mean latent period (1 �⁄  = 2.5 days); � is the 

probability of entering the stage 
 on leaving the stage � and we set that � � 0.3 in this 

study; and finally the delay from onset to isolation (1 �⁄ ) is assumed to be 2.5 days. The 

values of the parameters are summarized in Table 1. 

2.1.1. Effective reproduction number 

We define the effective reproduction number, ����	, by the product of time-varying 

transmission rate and infectious period and, for the SEPAIR model, ����	 can be expressed 

as: 

 

����	 � 
����	
� � �
����	

� � �1 � �	���	
� .           �Eq. 1	 

 

 The above formulation of ����	 will be used for the rest of this paper.  
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Fig. 1. Compartmental Flow of the SEPIAR model. 

 

 

2.2. Data sets 

We use simulated data by the model in which we know the governing parameter values. 

The simulated data consists of the time series of daily infection, symptom onset, confirmation 

predicted by the SEPIAR model with a pre-determined  trajectory (Figure 2a and 2b). The 

pre-determined  trajectory was designed to be simple but still to capture the reality of 

SARS-CoV 2 transmission that  would hover around the threshold value of one because of 

human interventions such as social distancing or mask wearing (Figure 2a). We included 

various real-world aspects of data collection during a COVID epidemic by adding 

uncertainties to the model in a stepwise manner. As the results, we generated two sets of 

simulated data ( ) as below. 

i. The simulated data  is simply obtained by solving a deterministic model 

(SEPIAR equations) under the condition of perfect observation (i.e., asymptomatic 

as well as symptomatic cases are all confirmed). We track cumulative sum of the 

states (e.g., E, P, I) over the simulation period and then calculate increments for the 

daily size of infections, symptoms, and confirmations, respectively. Here, the daily 

infection time series represent the exact case counts at the time of infection, 

whereas the daily confirmation series act as the case counts with reporting delay. 

ii. The simulated data  is obtained by solving a stochastic model of SEPAIR by 

Gillespie’s direct method (Gillespie, 1976; Gillespie, 1977). The assumption of 
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perfect observation remains valid here. Averages of large samples would retrieve 

the cases of �� (Figure 2c). 

All the data generations were implemented in programming language R and the differential 

equations were solved using the deSolve package. The codes used to generate the simulated 

data sets and the analyses conducted in this paper are available on the GitHub page of the last 

author (https://github.com/kimfinale/pfilterCOVID).  

We also included a possibility of misspecification of serial interval when using the 

EpiEstim method to estimate �� for a COVID-19 outbreak. Serial interval is a critical input 

for the EpiEstim method as a proxy for the generation interval. For COVID-19, pre-

symptomatic transmissions may lead that the serial interval is a poor proxy for the generation 

interval. Estimated mean serial intervals based on the field data are approximately 5 days 

(Alene et al., 2021; Rai et al., 2021; Nishiura et al., 2020; Linton et al., 2020) which are close 

to or shorter than the incubation period (Linton et al., 2020). Our simulated data sets were 

generated under the assumption that the mean incubation period is 5 days and the mean 

generation time is 6.25 days. To evaluate the impact of misspecification of serial interval, we 

set the serial interval to be 5 days as an input to the EpiEstim method and examined how 

estimated ��’s are influenced by this misspecification.  

 

Fig. 2. Simulations of SEPAIR model. A. Time series of infection (red), symptom (green), 

and confirmation (blue) based on deterministic simulations of SEPIAR model. B. Pre-

determined daily effective reproduction number, ��. C. Time series of confirmation based on 

2,000 stochastic simulations of SEPIAR model (grey), deterministic simulation (red), and the 

mean of the stochastic simulations (dotted). 
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2.3. Model evaluation with simulated data 

How well the PF can recover the true value of  can be assessed by computing the root 

mean squared error (RMSE) defined as 

 

where  is a true (or observed) value and  is an estimate of  for a total estimation size of 

. The simulated datasets ( ) were used to test systematically the robustness of our 

model under various types of noises and delays. We first estimated  by using the time 

series of daily infection with perfect observation. This may represent an ideal data set which 

we would not be able to obtain in reality, but serves as the baseline on which our method 
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should work. Then, the estimation model is applied to the time series that contains delays 

(i.e., the daily confirmation) and stochasticity. We note that individual outputs from a 

stochastic model vary by simulation and therefore may be regarded as imperfect observation. 

These can be summarized as three tests as illustrated below in Table 1. We assume all 

infected people are detected (i.e., complete observation) in the simulated data sets as this 

assumption makes our analyses simple. However, the data set includes stochastic time series, 

which may account for varying probability detection of over the time series. 

We also use these tests to compare the performance of our model against the benchmarking 

method, EpiEstim (Cori, 2021) and deconvolution. To infer the time series of infection by 

deconvolving the time series of confirmation, we need information on the delay from 

infection to confirmation (i.e., from � to � state). As shown in Figure 1, it equals the sum of 

three independent exponential distributions, Exp�λ � 1/2.5	. According to Exp�λ	 � Γ�α �
1, β � λ	 and Γ�(�, β	 � Γ�(�, β	 � Γ�(� � (� , β	, the time distribution from infection to 

confirmation can be represented by the gamma distribution Γ�3, 1/2.5	. Then, to estimate �� 

using EpiEstim from the inferred time series of infection, the distribution of serial interval 

should be specified. The serial interval represents the time between the clinical onsets of 

successive cases (Fine, 2003) and it is naturally expressed as the sum of the incubation period 

and disease age at transmission (Nishiura, 2009). The distribution of serial interval satisfies 

the following convolution )��	 �  * +�� � ,	-�,	�,�

�
, where + is the distribution of disease 

age and - is the distribution of incubation period. As a result, the mean and standard 

deviation of the serial interval are 6.247 and 4.138, respectively. 

 

Table 1. Summary of Model Evaluation. 

 Types of uncertainty Data type Dataset 

Test 1 No delays; Deterministic model Daily infection �� 
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Test 2 Reporting delay; Deterministic model Daily confirmation �� 

Test 3 Reporting delay; Stochastic model Daily confirmation �� 

 

2.4. Particle Filtering Method 

The particle filtering method is employed to estimate the distribution of effective 

reproduction number �� by using the definition (Eq.1). Let us write .�:� � .�, … , .� and 

0�:� � 0� , … , 0�  to denote the vector of latent variables and observation up to time �, 

respectively. The choice of state vector and observation are as follows:  

.� � 1���	, ���	, ���	, ���	, 
��	, ���	, ���	2
� 

and 0�:� � times series of confirmation up to time �, respectively. The time-varying 

transmission rate ���	 was assumed to follow a geometric Brownian motion (GBM) 

(Pavliotis, 2014) satisfying the stochastic differential equation: � log ���	 � 6�7�, where 7� 

is a Brownian motion and 6 is a constant diffusion constant. Together with the SEPIAR 

equations above, it gives rise to a set of stochastic differential equations whose solutions is 

.�. The distribution of �� can be obtained directly from the definition (Eq.1) once the 

distribution of ���	 is inferred by particle filter. 

 

2.4.1. Ideas of Particle Filter 

Latent variables, 8.�9��
, are modeled as a Markov process with an initial distribution 

p�:�	 and transition probabilities ;�:�|:���	, � = 1. The observations, 80�9��
, are assumed 

to be conditionally independent of the process 8.�9���  and of the likelihood (marginal 

density) ;�0�|.�	. More precisely, the particle filtering algorithm estimates the posterior 

distribution ;�.�:�|0�:�	, or the filtering distribution ;�.�|0�:�	 recursively for a training 

period, � � 1, 2, … , ��, in the framework of Monte Carlo method, that is, for ��-number of 

approximating particles 8.�:�

���9
���

��  
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;�.�:�|0�:�	 > ? @�
��� A B

��:�
����.�:�	

��

���

, �PF1	 

and 

;�.�|0�:�	 > ? @�
��� A B

��
����.�	

��

���

, �PF2	 

where @�
��� are weight values corresponding to the Dirac measures B

��:�
����A	 and B

��
����A	. 

Notice that integrating the equation (PF1) with respect to  .�:��� yields the formulation 

(PF2).  

2.4.2. Bootstrap Filter with Backward Selection. 

We implemented a bootstrap particle filter followed by a backward sampling. The 

modelling assumptions of SEPIAR and GBM were used when sampling from prior 

distributions. 

i. Initialization (� � 0)  

• For E � 1, … , ��, sample .�

���~;�.�	. 

ii. Importance sampling step (� � 1 G ��) 

• For E � 1, … , ��, sample .H����~;�.�|0�:���	 and set .H�:���� � I.�:��� , .�
J���K. 

• For E � 1, … , ��, assign the importance weights proportional to the likelihood, 

i.e., 

@L�
��� M  ; I0�N.�

J���K 

and then normalize the weights. 

iii. Resampling step (� � 1 G ��) 
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• Resample with replacement 8.�

���9
���

��  from the set 8.H����9���
��  according to the 

normalized importance weights 8@L�
���9

���

�� , and save the resampling path as 
�, 

i.e., �O	��  component of 
� is the index P such that .�

��� � .H����. 

• Assign uniform weights to the resampled particles, i.e., @�

��� � �

��
, O � 1, … , ��. 

• Set � Q � � 1 and go back to step (2) unless � � ��. 

iv. Backward sampling step (� � �� G 1) 

• Sample a particle index E�� from the resampling path 
��
 according to the 

importance weights 8@L��

���9
���

�� . 

• For � � �� � 1, … , 1, choose indices E� as the component of 
��� at �E���	��  

place. 

• Select a trajectory of particles 8.�
�, … , .��

� 9 by .�
� � .�

�� for � � 1, … , ��. 

• Iterate the above steps ��-many times. 

The algorithm is formed of two parts: forward filtering (step (1) – step (3)), where prediction 

and updating of filtering distribution takes place; and backward sampling (step (4)), where a 

trajectory of particles is selected backward in time on a basis of best fitting particle at the end 

of training period. In this study, we used 10,000 particles and 1,000 backward iterations (i.e., 

�� � 10,000 and �� �1,000). 

 

3. Results 

3.1. Estimation of �� based on the particle filtering method 

3.1.1. Inferring �� using infection and confirmation times series based on a deterministic 

simulation model 
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Under the ideal scenario in which we have access to the time series of daily infected cases 

with complete observation, the particle filtering method should be able to retrieve the pre-

defined �� and other state variables. We first apply the PF method to the dataset (��) that 

was generated by a deterministic simulation of SEPAIR model. With a setting of 10,000 

particles and 1,000 backward sampling (i.e., �� � 10,000 and �� �1,000), the resulting 

posterior distribution of �� captures true �� very well (Fig 3A). Given a time series of daily 

confirmed cases, the deviation between the true and the inferred ��’s and the uncertainty 

around inferred �� is larger, especially in the last 8 days or so, which is similar to the delay 

from infection to confirmation (i.e., mean delay = 7.5 days). But the PF inferred �� still 

captures the overall shape and magnitude of the true �� (Fig 3B).  

 

Fig. 3. Daily reproduction number, ��, inferred by particle filtering applied on deterministic 

SEPAIR models with �� � 10,000 and �� �1,000. Pre-defined �� (black dashed), reference 

line (black dotted), median of estimated �� (dark blue), interquartile range of estimated �� 

(dark cyan shaded), and middle 95% of estimated �� (light cyan shaded).  A. Infection time 

series as observation. B. Confirmation time series as observation. 
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3.1.2. Inferring  using confirmation times series based on a stochastic simulation model 

The particle filtering method is also capable of recovering the pre-defined  even though 

observed confirmations contain uncertainties such as reporting delay. To reflect real-world 

observations, three time series of daily confirmed cases were chosen on the basis of low, 

medium, and high incidence from stochastic simulations of the SEPAIR model, i.e., dataset 

 (Fig 4A). Again, with a setting of 10,000 particles and 1,000 backward sampling, the 

resulting posterior distributions of  replicate true  quite closely regardless of the raw 

intensity of observations (Fig 4B, 4C, 4D). In addition, as in the case of deterministic 

simulation, the range of  estimates widens approximately in the last 8 days of the 

estimation. However, the estimations based on the greatest number of raw cases are less 

vulnerable to sudden changes of transmission patterns, for example the peaks on day 107 and 
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125 (Fig 4B), compared to over- or under-estimation of  (Fig 4C, 4D). Those peaks 

correspond to the beginning of a new phase of transmission, each leading to a surge in daily 

confirmed cases (Fig 4A). 

 

Fig. 4. Daily confirmation time series and daily reproduction number, , inferred by particle 

filtering applied on stochastic SEPAIR models with  and 1,000. Three 

samples are chosen on a basis of low, medium, and high incidence, all with initial infection 

size of 100 (i.e., ). A. Plots of daily confirmation time series for deterministic 

simulation (black); and stochastic simulation with low intensity (blue), medium intensity 

(green), and high intensity (red). B., C., D. Plots of  for low intensity (blue), medium 

intensity (green), and high intensity (red), respectively: Pre-defined  (black dashed), 

reference line (black dotted), median of estimated  (dark blue, green, red line resp.), 
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interquartile range of estimated �� (blue, green, red shaded resp.), and middle 95% of 

estimated �� (light blue, green, red shaded). 

 

3.2. Estimation of �� based on a renewal equation method 

3.2.1. Inferring �� using confirmation times series based on a stochastic simulation 

observation model  

Instantaneous �� based on a renewal equation implemented in EpiEstim also captures the 

true �� when the time series of infection was provided. However, the delay is observed when 

the time series of confirmation is directly used (see Fig 5), and this can be corrected with by 

using an appropriate information delay from infection to confirmation. Otherwise, the 

renewal equation-based strategy can capture overall shape of the pre-defined �� well. In our 

case, infection time series was estimated through deconvolution operations (Gostic et al., 

2020), which involves adjustment of time points by 4 days backward in time. Such an 

adjustment is based on provided information of delay distribution, but causes early 

termination of estimation procedure, e.g., no estimates are provided in the last 4 days (Fig 6, 

Fig 7). Then we employed EpiEstim method with a serial interval (mean = 6.25 days and 

standard deviation = 4.14578 days), and the three time series of confirmed cases used in the 

earlier PF estimation. Each time series was preprocessed to obtain a moving average with 

lookback days of 7 (i.e., a week). This step reduces unnecessary fluctuations but, together 

with deconvolution, results in over-smoothed �� curves (Fig 6). In particular, Fig 7 illustrates 

under-estimation of the peaks on days around 107 and 125 by significant amounts for all 

three estimations. Furthermore, we examined an effect of misspecification of serial interval 

by taking a smaller mean of 5 days. Such a reduction amplifies the under-estimation of �� 

curves around the peaks though little effects on the rests (Fig 7). The shorter serial interval 

perhaps makes estimation less adaptive to rapidly changing transmission patterns. 
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 Fig. 5. Daily reproduction number, ��, inferred by applying EpiEstim to the confirmation 

time series based on a deterministic model. Pre-defined �� (black dashed), reference line 

(black dotted), median of estimated �� (dark blue), interquartile range of estimated �� (dark 

cyan shaded), and middle 95% of estimated �� (light cyan shaded). 
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Fig. 6. Daily reproduction number, , inferred by deconvolution followed by EpiEstim 

based on stochastic SEPIAR models with perfect observation. Three samples are chosen on a 

basis of low, medium, and high incidence, all with initial infection size of 100 (i.e., 

). A., B., C. Plots of  for low intensity (blue), medium intensity (green), and high 

incidence (red), respectively: Pre-defined  (black dashed), reference line (red dotted), 

median of estimated  (dark blue, green, red line resp.), interquartile range of estimated  

(dark blue, green, red shaded resp.), and middle 95% of estimated  (light blue, green, red 

shaded resp.).  
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Fig. 7. Daily reproduction number, , inferred by deconvolution followed by EpiEstim 

based on stochastic SEPIAR models with perfect observation and a misspecification of serial 

interval (mean = 5 days). Three samples are chosen on a basis of low, medium, and high 

incidence, all with initial infection size of 100 (i.e., ). A., B., C. Plots of  for low 

intensity (blue), medium intensity (green), and high intensity (red), respectively: Pre-defined 

 (black dashed), reference line (red dotted), median of estimated  (dark blue, green, red 

line resp.), interquartile range of estimated  (dark blue, green, red shaded resp.), and middle 

95% of estimated  (light blue, green, red shaded resp.). 

 

3.3. Performance comparison of two  estimation methods 

We calculated the RMSE score (Eq. 2) to assess the performance of the proposed PF 

method and the renewal equation-based method. The median of  estimates based on the 
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confirmation time series from the dataset �� (the sample of medium incidence used in Sec 

3.2.) was compared against to the pre-defined �� for 5 different periods (the simulation 

period from day 80 to day 120, and 4 different parts of it by epidemic characteristics) as 

indicated in Fig 7 and Table 2. 

Both the methodologies showed similar performance for the general period of day 80 to 

day 200. The renewal equation-based strategy outperforms the PF slightly, when the true �� 

follows a steady progression (i.e., flat). It can be explained by the delay from infection to 

confirmation (i.e., mean delay = 7.5 days), which was addressed by deconvolution and 

moving average operations in prior to the EpiEstim operations. Another factor could be 

stochasticity contained in PF. Such an observation becomes clearer in the last 1 week of the 

simulation, where the RMSE of PF is noticeably greater than of the renewal equation (Table 

2). In contrast, the PF outperforms the renewal equation for dynamic periods of epidemic 

transmissions (i.e., cycles of massive infections). It can be explained by the adaptive feature 

of PF, and over-smoothing caused by deconvolutions and moving average operations. 

Particularly, the misspecification of a shorter serial interval led to worse performance. An 

additional simulation was conducted until the last day of the infection cycles (i.e., day 132) 

and the gap of RMSE scores amongst three experiments widened expectedly (Table 2, Figure 

9). Note that the renewal equation-based estimations (Figures 9B, 9C) ended 4 days earlier 

than the PF estimation (Figure 9A) as the results of deconvolution. 
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Fig. 8. The curve of the pre-defined daily reproduction number, ��, indicated by 4 different 

periods: flat period (in black), last 1 week of the flat period (black dotted line), fluctuation 

period (in red), and last 1 week of the fluctuation period (red dotted line).  
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Fig. 9. Plots of daily reproduction number, , based on stochastic SEPIAR models with 

perfect observation (the medium incidence with initial infection size of 100 as in Sec. 3). Pre-

defined  (black dashed), reference line (black dotted), median of estimated  (dark blue), 

interquartile range of estimated  (dark cyan shaded), and middle 95% of estimated  (light 

cyan shaded). A.  inferred by particle filtering with  and 1,000. B.  

inferred by deconvolution followed by EpiEstim. C.  inferred by deconvolution followed 

by EpiEstim, with a misspecification of serial interval (mean = 5 days). 

 

Table 2. RMSE Scores of  inferred by two different methods for different periods 

 Particle Filter Renewal Equation Renewal Equation  
(with misspecification effect) 

Period from day 80 
to day 200  

0.0983 0.0977 0.1211 
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Flat period 0.0512 0.0426 0.0396 

Last 1 week of flat 
period 

0.0119 0.0069 0.0098 

Fluctuation period 0.1779 0.2250 0.2751 

Last 1 week of 
fluctuation period* 

0.2495 0.4449 0.5130 

* NB. Simulation ended on the last day of the fluctuations (i.e., day = 132). The RMSE were 

calculated for every available value within an indicated period. 

 

4. Discussions 

In this study, we proposed a particle filtering (PF) algorithm to estimate the effective 

reproduction number (��) of an infectious disease using daily time series (e.g., of infection or 

confirmation) data. We compared the performance of the PF algorithm with a renewal 

equation-based �� estimation method, EpiEstim (Cori et al., 2013), and demonstrated the 

advantages in situations where transmission characteristics change rapidly or observation 

contains delays. We also introduced a framework of testing epidemic hypotheses and 

potential impact of intervention programs by constructing relevant scenarios based on an 

extended SEIR model (i.e., SEPIAR model). 

Our approach is similar to the work (Kucharski et al., 2020) and we provide systematic 

analyses of the approach using simulated data that may represent various real-world 

scenarios. As with the Kalman filter approach (Arroyo-Marioli et al., 2021), our method can 

be used to extract “filtered” or “smoothed” estimate. Some recent studies adopt a Kalman 

filter approach to estimate �� based on a structural relationship between �� and a 

compartment model as developed in this paper (see Eq. 1). This owes to the notion of 

effective reproduction number introduced by Cori et al. (Cori et al., 2013). Arroyo-Marioli et 

al. (Arroyo-Marioli et al., 2020) used a Kalman filter and SIR equations by assuming a linear 

relation between �� and the growth rate of susceptible state (i.e., S), whereas Hasan et al. 
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(Hasan et al., 2022) used an extended Kalman filter along with a SIRD model. The latter is 

seen as an improvement of the former as the nonlinear filter is employed and the underlying 

model is complicated with a notion of the case fatality rate. Our model takes the model of 

Hasan et al. further by addressing uncertainty in transmissions as pre-symptomatic and 

asymptomatic. We also used a nonlinear filter (i.e., particle filter) in view of that the more 

constituents in a compartment model would involve a greater degree of nonlinearity. Unlike 

the works above are validated by confirmation time series of different countries, our 

estimation model is evaluated by pre-determined scenarios of �� that capture realistic 

characteristics of epidemic transmissions. This provides a testing ground for both the 

estimation accuracy and misspecifications of the associated model. 

 

The performance of the PF method decreases when the stochastic time series are given but 

still performs better than the commonly used EpiEstim method (Cori et al., 2013). EpiEstim 

method based on the renewal equation appears to present significant challenges before it is 

correctly applied to the confirmation time series of COVID-19 pandemic. One issue is to 

reliably infer infection time series from confirmation time series. The other issue is to 

estimate serial interval reliably from contact and symptom onset data, which may not be 

straightforward because of the pre-symptomatic transmission. 

  Our study has limitations. The SEPIAR model employed in this study makes a simplifying 

assumption that all infected people are observed or at least the detection rate stays constant 

over the simulation period. In reality, only a fraction of the infected people would be detected 

with time-varying probability of detection. To mitigate this unrealistic assumption, we used 

the stochastic time series in which daily incidence is larger than, similar to, and lower than 

the predictions by the deterministic model. The use of these stochastic time series may 

account for imperfect observation as well as stochasticity of the transmission process. 
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Second, we assumed that the parameters for the underlying model (SEPIAR) and EpiEstim 

are known. Such parameter values may be estimated but only with uncertainties or potential 

biases. This implies we are likely to overestimate the performance of our methods and we 

conducted a further experiment on the misspecification of serial interval with two different 

lengths (mean = 6.25 or 5 days). The robustness of PF-based predictions was confirmed by 

consistent trends of ��-curves (see Fig 7, Fig 8). We believe that the superiority of the PF 

over the EpiEstim method would still be retained even if parameter values are unknown 

provided similar information. During the COVID-19 pandemic, we are confronted with 

confirmation time series which are based on limited testing of suspected cases, imperfect 

diagnosis, and significant delay from infection or symptom onset to confirmation. While our 

study accounts for several aspects of these realities such as delay from infection or symptom 

onset and partially imperfect diagnosis, additional aspects of realities need to be explored in 

developing a method to estimate ��.  

 

5. Conclusions 

Particle filtering method can be implemented in the context of an SEPIAR compartmental 

model and recover the true �� based on the simulated data, which mimic COVID-19 data. 

The model with filtered parameter values can serve as a framework to test hypotheses and 

explore potential impact of intervention programs during the COVID-19 pandemic.  
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