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Abstract  16 

 17 

The urgency of addressing common mental disorders (bipolar disorder, ADHD, and schizophrenia) 18 

arises from their significant societal impact. Developing strategies to support psychiatrists is crucial. 19 

Previous studies focused on the relationship between these disorders and changes in the resting-state 20 

functional connectome's modularity, often using static functional connectivity (sFC) estimation. 21 

However, understanding the dynamic reconfiguration of resting-state brain networks with rich 22 

temporal structure is essential for comprehending neural activity and addressing mental health 23 

disorders. This study proposes an unsupervised approach combining spatial and temporal 24 

characterization of brain networks to classify common mental disorders using fMRI timeseries data 25 

from two cohorts (N=408 participants). We employ the weighted stochastic block model to uncover 26 

mesoscale community architecture differences, providing insights into neural organization. Our 27 

approach overcomes sFC limitations and biases in community detection algorithms by modelling the 28 

functional connectome's temporal dynamics as a landscape, quantifying temporal stability at whole-29 

brain and network levels. Findings reveal individuals with schizophrenia exhibit less assortative 30 

community structure and participate in multiple motif classes, indicating less specialized neural 31 

organization. Patients with schizophrenia and ADHD demonstrate significantly reduced temporal 32 

stability compared to healthy controls. This study offers insights into functional connectivity (FC) 33 

patterns' spatiotemporal organization and their alterations in common mental disorders, highlighting 34 

the potential of temporal stability as a biomarker. 35 

 36 

 37 

 38 

 39 
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 41 

Glossary  42 

ADHD     Attention-Deficit Hyperactivity Disorder 43 

FC            Functional connectivity  44 

dFC          Dynamic functional connectivity  45 

WSBM     Weighted stochastic block model  46 

PCA          Principal component analysis  47 

SZ             Schizophrenia  48 

BP             Bipolar disorder 49 

EPI           Echo-planar imaging  50 

SCID        Structured Clinical interview used for DSM disorders 51 

BOLD      Blood oxygen level dependant  52 

TS             Temporal stability  53 

RSN          Resting state network 54 

  55 
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1. Introduction 56 

Common mental disorders, such as bipolar disorder, Attention-Deficit Hyperactivity Disorder 57 

(ADHD), and schizophrenia have a significant societal impact in terms of disability-adjusted life years 58 

(DALYs), years lived with disability (YLDs), and years of life lost (YLLs) (Alize J Ferrari, 2022). 59 

Developing prevention and intervention strategies to assist behavioural psychiatrists is crucial in 60 

addressing these disorders. Neuroimaging techniques like functional magnetic resonance imaging 61 

(fMRI) and brain connectivity analytics offer promising non-invasive tools for early detection and 62 

management of these disorders (Edgar Canario, 2021) (Miranda, Paul , Putz, Koutsouleris, & Muller-63 

Myhsok, 2021). The spontaneous resting state dynamics of the brain, which is believed to emerge from 64 

robust metabolic and neural information processing principles (Deco , Jirsa , & McIntosh, 2010) 65 

(Smith , et al., 2013) offers a practical framework for investigating biomarkers of these disorders. 66 

However, a systematic and comprehensive approach to pattern detection and biomarker identification 67 

is lacking. This study aims to establish a data-driven approach to identify biologically meaningful 68 

patterns that differentiate common mental disorders. 69 

Previous studies investigating alterations in resting-state brain dynamics in common mental disorders 70 

have largely focused on the strategies of functional connectome communities – the mesoscale 71 

organization of individual neural elements into motifs, circuits, or clusters (Betzel , Medgalia , & 72 

Bassett, 2018). These studies have reported changes in community organization such as decreased 73 

modularity of brain networks in schizophrenia and bipolar disorder  (Alexander-Bloch, et al., 2010) 74 

(Yu , et al., 2020) (Lerman-Sinkoff & Barch , 2016). Studies using multilayer community detection 75 

algorithms have reported higher flexibility in patients with schizophrenia (Gifford , et al., 2020) and 76 

ADHD (Ding , et al., 2022).  A major drawback of these studies, in addition to the methodological 77 

biases of the community detection algorithms (Betzel , Medgalia , & Bassett, 2018) is the utilization 78 

of static functional connectivity to detect functional connectome communities. However, recent 79 

research has shown that resting-state functional brain networks undergo spontaneous, time-varying, 80 
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and large-scale dynamic reconfiguration (Hutchison , et al., 2013) . This suggests that measures 81 

assuming stationarity for the entire duration of the scan are too simplistic to capture the full extent of 82 

resting brain dynamics (Preti, Bolton, & De ville, 2017). 83 

Dynamic functional connectivity (dFC) can exhibit non-random and non-trivial temporal structures 84 

(Lombardo, et al., 2020) and is associated with cognitive processing, learning, attention, and 85 

performance (Cohen , 2018), (Bassett, et al., 2011), (Kucyi, Hove , Esterman, Hutchison, & Valera, 86 

2017), (Jia , Hu, & Deshpande , 2014). The dysconnectivity observed in these disorders suggests the 87 

presence of complex spatiotemporal alterations in FC (Alexander-Bloch , et al., 2012), (Gifford , et al., 88 

2020).  This naturally raises the question: Are there alterations in dFC within the resting state functional 89 

connectome in common mental disorders and if so, can they be accurately captured and 90 

comprehensively studied? Moreover, can these patterns of dFC serve as characterization tools for 91 

common mental disorders? Stability in dFC patterns over time ensures consistent information 92 

representation in the neural connectome (Le , Lu , & Yan , 2020). While temporal stability of the brain's 93 

functional connectome has been studied extensively during resting state (Le , Lu , & Yan , 2020) 94 

(Sastry, Roy, & Banerjee, 2023), limited research has explored alterations in the temporal stability of 95 

the whole-brain dynamic functional connectome in common mental disorders.   96 

To estimate the temporal stability of dFC, researchers often employ methods like K-means clustering 97 

(Allen , et al., 2014) (Cabral , et al., 2017) or Hidden Markov models (Viduarre, Smith, & Woolrich , 98 

2017) (Surampudi, et al., 2018) to identify discrete brain states and measure the switching rate or 99 

flexibility between these states. Higher flexibility suggests more frequent transitions, which leads to 100 

reduced temporal stability (Long , Lu, & Liu, 2023). Graph theoretical studies use temporal correlation 101 

coefficient to assess dynamic brain network stability. However, these studies are limited in 102 

effectiveness due to the ad-hoc selection of the number of states in clustering algorithms 103 

(Rakthanmanon, Keogh, Lonardi, & Evans , 2011) (Allen , et al., 2014). An alternative perspective 104 

considers dFC as a continuous process, examining global and regional dynamics using techniques like 105 
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Pearson correlation, angular distance, or dFCSpeed (Zhang , et al., 2016) (Sastry, Roy, & Banerjee, 106 

2023) (Arbabyazd, et al., 2020). This approach captures the continuous fluctuations and patterns in 107 

dFC without relying on predefined states. 108 

Thus, the present study has two main objectives. Firstly, it aims to examine the potential of whole brain 109 

and sub-network level measures of dFC as characterizing tools for common mental disorders. This 110 

investigation is conducted using a large cohort (N=408) comprising healthy individuals as well as those 111 

diagnosed with schizophrenia, bipolar disorder, and ADHD. Secondly, the study aims to provide a 112 

comprehensive understanding of the impaired brain network mechanisms associated with these 113 

disorders by combining community-based detection and dynamics-driven characterization of the 114 

functional connectome.  115 
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2. Material and methods  116 

2.1  Participants and Image acquisition 117 

Overall, the study included two multicentre datasets involving 408 human participants.  118 

Dataset 1 119 

We downloaded resting state functional magnetic resonance imaging (fMRI) data from 285 120 

participants who participated in the University of California Los Angeles (UCLA) Consortium for 121 

Neuropsychiatric Phenomics LA5c study (Dataset 1) (Poldrack, et al., 2016) (Gorgolewski, Durnez , 122 

& Poldrack, 2017). The public database was obtained via openfMRI 123 

(https://openfmri.org/dataset/ds000030/) and includes 138 healthy controls (HC), 58 individuals 124 

diagnosed with schizophrenia (SZ), 40 with attention deficit hyperactivity disorder (ADHD) and 49 125 

with bipolar disorder (BP). Further details of the participants, image acquisition and preprocessing of 126 

the data are provided in the supplementary material. 127 

Dataset 2 128 

For the replication analysis, a publicly available dataset from the centre for Biomedical Research 129 

Excellence (COBRE) was obtained (Calhoun, et al., 2012) (Bellec, 2016). The neuroimaging dataset 130 

(Dataset 2) included resting state functional MRI scans from 72 participants with schizophrenia and 131 

74 healthy controls.  Additional details regarding participant characteristics, image acquisition, and 132 

data preprocessing can be found in the supplementary material 133 

 134 

2.2  Data preprocessing and parcellation 135 

The rs-fMRI images were pre-processed using the CONN toolbox (McGovern Institute for Brain 136 

Research, MIT, USA) in MATLAB (The MathWorks). The default CONN preprocessing pipeline 137 

(defaultMNI) was employed, consisting of functional realignment and unwarp, slice-time correction, 138 

outlier identification, direct segmentation and normalization, and functional smoothing. Further details 139 

are provided in the supplementary material.  The final datasets used in this analysis and their group 140 
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characteristics are described in Table S1. Resting state scans of each participant were parcellated using 141 

400 region Schaefer parcellation (Schaefer , et al., 2018). This atlas was chosen as it pre-allocates brain 142 

regions into resting state networks (RSNs). For each subject, mean BOLD time series (Figure 1A) were 143 

estimated for each region over all voxels belonging to that brain region.  144 

 145 

2.3  dominant dFC and temporal stability matrices  146 

 147 

       These methods have first been introduced in (Sastry, Roy, & Banerjee, 2023) in the context of 148 

healthy ageing. For each subject, we estimate time-resolved dFC using BOLD phase coherence (Figure 149 

1A) (Glerean , Salmi, Lahnakoski, Jaaskelainen, & Sams , 2012) (Cabral , et al., 2017), which resulted 150 

in a matrix with size N X N X T, where N = 400 is the number of brain regions, T is the total number 151 

of time points (T = 152 for Dataset 1, and T= 150 for Dataset 2). First, instantaneous phases θ (n, t) 152 

of the BOLD signals for all the brain regions was calculated using Hilbert transform. Given the phases 153 

of BOLD signals, phase coherence between brain areas n and p at each timepoint t, i.e., dFC (n, p, t) 154 

is computed as: 155 

 156 

                           𝑑𝑑𝑑𝑑𝑑𝑑 (𝑛𝑛, 𝑝𝑝, 𝑡𝑡) = cos  (𝜃𝜃 (𝑛𝑛, 𝑡𝑡) −  𝜃𝜃(𝑝𝑝, 𝑡𝑡))                                                         (1) 157 

 158 

To characterize the evolution of dFC over time, we extract dominant subspace of dFC patterns (Figure 159 

1B), by applying PCA (Friston, Frith, Liddle , & Frackowiak, 1993) (Sastry, Roy, & Banerjee, 2023).  160 

 Given a set of dominant dFC matrices (𝐷𝐷𝑡𝑡), we seek to characterize temporal stability using the 161 

similarity of dFC patterns across timepoints. We use angular distance (Figure 1C) to estimate the 162 

similarity between dominant dFC subspaces. A detailed overview of the methodology can be found in 163 

(Sastry, Roy, & Banerjee, 2023).                                                                 164 

 165 
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2.4  Measures of temporal stability  166 

             Constructing a time X time temporal stability matrix allows us to visualize the ‘temporal 167 

landscape’ (Figure 1D) for the entire duration of the scan. We introduce two distinct perspectives on 168 

measures of temporal stability – Firstly, we seek to quantify temporal stability over the entire temporal 169 

landscape across all timepoints. To achieve this, we evaluate the informational content of the stability 170 

matrices by calculating entropy (Sastry, Roy, & Banerjee, 2023). Entropy was used because it is a more 171 

direct measure of order and disorder in a dynamical system and provides us a measure of 172 

distinguishable temporal order that can be interpreted as the overall stability of the temporal landscape 173 

(Yang, et al., 2013). Entropy is defined by the following equation: 174 

 175 

                                                   𝐸𝐸 =  −∑𝑝𝑝 log (𝑝𝑝)                                                                            (2) 176 

 177 

Where p contains normalized histogram counts returned from “imhist.m” applied on temporal stability 178 

matrices, estimated using reduced 𝐷𝐷𝑡𝑡𝑥𝑥  𝑎𝑎𝑛𝑛𝑑𝑑  𝐷𝐷𝑡𝑡𝑦𝑦. “imhist.m” calculates the histogram of temporal 179 

stability matrices and returns the normalized counts. Overall temporal stability is estimated as follows  180 

 181 

                                     𝑇𝑇𝑇𝑇 = 1/𝐸𝐸                                                                                                       (3) 182 

 183 

Secondly, we seek to quantify temporal stability across successive time windows. To do this, we 184 

estimate the global temporal distance by taking the average of the off-diagonal elements of the 185 

temporal stability matrix. The off-diagonal elements are angular distances among dominant dFC 186 

subspaces at two successive time points, thus the term ‘global’ signifies that the measure captures a 187 

temporally averaged snapshot of the dFC evolution.  188 
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 189 

                          𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝐺𝐺 𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝐺𝐺𝑡𝑡𝑎𝑎𝐺𝐺 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑎𝑎𝑛𝑛𝑑𝑑𝑡𝑡 = 1
(𝑡𝑡−1)

 ∑ 𝜙𝜙(𝑡𝑡𝑖𝑖𝑇𝑇−1
𝑖𝑖,𝑗𝑗=𝑖𝑖+1,𝑖𝑖≠𝑗𝑗 , 𝑡𝑡𝑗𝑗)                                     (4) 190 

Where, 𝜙𝜙 (𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗) is the angular distance entry at ith row and jth column in the temporal stability matrix, 191 

T is the total number of timepoints.  Global temporal stability (TSglobal) is defined as the inverse of the 192 

global temporal distance: 193 

                                194 

                            𝑇𝑇𝑇𝑇 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 1
𝐺𝐺𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔𝑡𝑡𝑔𝑔𝑔𝑔 𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡𝑔𝑔𝑑𝑑𝑑𝑑𝑡𝑡

                                                                         (5) 195 

2.5 Model-based community detection using the weighted stochastic block model (WSBM) on 196 

static FC 197 

We estimate the sFC (Friston , 2011) between two brain areas, n, p by calculating the Pearson 198 

correlation between BOLD time series of brain areas n, p (Biswal, Yetkin, Haughton, & Hyde , 1995) 199 

(Figure 1E). The correlations were subsequently r-to-z transformed. The N X N FC matrix was 200 

represented as a network in which regions were represented by network nodes and FC between region 201 

n and p was represented by network edge between nodes n and p (Bassett, Zurn , & Gold , 2018). 202 

Thereafter, subject-wise undirected, signed, weighted adjacency matrix (A) was estimated for detection 203 

of community architecture. For each subject, for a given N x N adjacency matrix, we estimate WSBM 204 

and maximize the likelihood using variational bayes algorithm described by (Aicher , Jacobs , & 205 

Clauset, 2015). We select k=7 (number of communities) (Tooley , Bassett, & Mackey, 2022) (Allen , 206 

et al., 2014) and repeat the optimization procedure 30 times for each subject.  We implement the 207 

WSBM procedure in MATLAB using freely available code and estimate a WSBM for each subject 208 

(https://aaronclauset.github.io/wsbm/) (Tooley , Bassett, & Mackey, 2022). Additional details on 209 

WSBM can be found in supplementary material. 210 

 211 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2023. ; https://doi.org/10.1101/2023.07.14.23292699doi: medRxiv preprint 

https://aaronclauset.github.io/wsbm/
https://doi.org/10.1101/2023.07.14.23292699
http://creativecommons.org/licenses/by-nd/4.0/


11 
 

2.6 Measures for community architecture and interaction motifs  212 

WSBM assigns brain areas into communities (Figure 1F). We characterize the interaction between 213 

communities using interaction motifs described in (Betzel , Medgalia , & Bassett, 2018). One 214 

dimension on which we characterized the community interaction was the extent to which detected 215 

communities were assortative. The interaction between two communities, r, and s, can be characterized 216 

by the community densities:  217 

                                                            𝜔𝜔𝑡𝑡𝑡𝑡 =  1
𝑁𝑁𝑟𝑟𝑁𝑁𝑟𝑟

 ∑ 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡,𝑗𝑗∈𝑡𝑡                                                    (6)                                                                                 218 

                                                              𝜔𝜔𝑑𝑑𝑑𝑑 =  1
𝑁𝑁𝑠𝑠𝑁𝑁𝑠𝑠

 ∑ 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖𝑑𝑑,𝑗𝑗∈𝑑𝑑  219 

                                                              𝜔𝜔𝑡𝑡𝑑𝑑 =  1
𝑁𝑁𝑟𝑟𝑁𝑁𝑠𝑠

 ∑ 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖𝑑𝑑,𝑗𝑗∈𝑡𝑡  220 

Where 𝑁𝑁𝑡𝑡 and 𝑁𝑁𝑑𝑑 are the number of nodes assigned to communities r and s and A is the adjacency 221 

matrix. Given these community densities, we classify their interactions as follows: 222 

𝑀𝑀𝑡𝑡𝑑𝑑 =

⎩
⎨

⎧
    𝑀𝑀𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑡𝑡𝑡𝑡𝑔𝑔𝑡𝑡𝑖𝑖𝑎𝑎𝑡𝑡 ,           𝑑𝑑𝑖𝑖min(𝜔𝜔𝑡𝑡𝑡𝑡 ,𝜔𝜔𝑑𝑑𝑑𝑑) >  𝜔𝜔𝑡𝑡𝑑𝑑
  𝑀𝑀𝑑𝑑𝑔𝑔𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡ℎ𝑡𝑡𝑡𝑡𝑒𝑒 , 𝑑𝑑𝑖𝑖 𝜔𝜔𝑡𝑡𝑡𝑡 > 𝜔𝜔𝑡𝑡𝑑𝑑 > 𝜔𝜔𝑑𝑑𝑑𝑑 
𝑀𝑀𝑑𝑑𝑔𝑔𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡ℎ𝑡𝑡𝑡𝑡𝑒𝑒 ,        𝑑𝑑𝑖𝑖 𝜔𝜔𝑑𝑑𝑑𝑑 >  𝜔𝜔𝑡𝑡𝑑𝑑 > 𝜔𝜔𝑡𝑡𝑡𝑡

   𝑀𝑀𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑡𝑡𝑡𝑡𝑔𝑔𝑡𝑡𝑖𝑖𝑎𝑎𝑡𝑡 ,      𝑑𝑑𝑖𝑖 𝜔𝜔𝑡𝑡𝑑𝑑 > max( 𝜔𝜔𝑡𝑡𝑡𝑡 ,𝜔𝜔𝑑𝑑𝑑𝑑)⎭
⎬

⎫
 223 

Although interaction motifs are defined at the level of communities, the motifs can be mapped and an 224 

analogous score for individual brain regions can be calculated. Given a region i’s community 225 

assignment 𝑧𝑧𝑖𝑖 , its connection density to a community r is given by  226 

                                                        𝑎𝑎𝑖𝑖𝑡𝑡 =  1
𝑑𝑑𝑟𝑟
∑ 𝐴𝐴𝑖𝑖𝑗𝑗𝑗𝑗∈𝑡𝑡                                                                          (7) 227 

Then the regional assortativity score is given by: 228 

                                                        𝐴𝐴𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔 =  𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑎𝑎𝑚𝑚𝑡𝑡≠𝑖𝑖𝑖𝑖
𝑔𝑔𝑖𝑖𝑟𝑟                                                            (8) 229 

 230 
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While calculating both regional and community assortativity scores, singleton communities have been 231 

excluded (Betzel , Medgalia , & Bassett, 2018).  232 

2.7  Diversity Index  233 

In addition to studying interaction motif classes (assortative, core, periphery), for each motif class, we 234 

calculate how frequently it appears among community r’s interactions. For a k community partition, 235 

community r participates in k – 1 interaction. The frequencies of appearance can be expressed as 236 

probabilities, 𝑃𝑃𝑔𝑔, 𝑃𝑃𝑑𝑑 ,𝑃𝑃𝑡𝑡, and 𝑃𝑃𝑑𝑑 (“assortative”, “core”, “periphery”) and we can then calculate the 237 

entropy as: 238 

 239 

                  𝐻𝐻𝑡𝑡 =  −�𝑃𝑃𝑔𝑔 𝐺𝐺𝐺𝐺𝑙𝑙𝑃𝑃𝑔𝑔 +  𝑃𝑃𝑑𝑑𝐺𝐺𝐺𝐺𝑙𝑙𝑃𝑃𝑑𝑑 + 𝑃𝑃𝑡𝑡𝐺𝐺𝐺𝐺𝑙𝑙𝑃𝑃𝑡𝑡�                                                                     (9) 240 

The entropy or Diversity Index is 0 if the community (r) participates in only one class and is maximized 241 

if r participates in all classes equally (Betzel, Bertolero, & Bassett, 2018). The resulting score is then 242 

assigned to all the nodes 𝑑𝑑 ∈ 𝑡𝑡. We calculate this for all k communities and estimate mean diversity 243 

index by averaging across communities.  244 

2.8 Morphospace analysis 245 

We adopt this analysis from (Betzel , Medgalia , & Bassett, 2018). A morphospace is a hyperspace 246 

whose axes represent the features of the organism or a system. Network morphospace represents the 247 

topological properties of a network and helps visualize the richness of the topology (McGhee, 2006). 248 

In this study, we construct a community morphospace, whose axes are within-community (𝜔𝜔𝑡𝑡𝑡𝑡 ,𝜔𝜔𝑑𝑑𝑑𝑑) 249 

and between-community densities (𝜔𝜔𝑡𝑡𝑑𝑑). Each point in the morphospace represents a pair of 250 

communities, r, and s.   251 
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3. Results  252 

We report on how the community architecture and temporal characteristics of functionally connected 253 

brain networks can be used as a characterization tool for common mental disorders. The community 254 

architecture was assessed using the WSBM to uncover the meso-scale community structure from sFC 255 

(see methods section). We used three network topology measures that indicate each brain area's 256 

participation in assortative, core, or peripheral community interactions (Betzel, Bertolero, & Bassett, 257 

2018) and demonstrate their distinctness across common mental disorders. We examined temporal 258 

properties using the temporal stability of functionally relevant brain networks, employing established 259 

methods (Sastry, Roy, & Banerjee, 2023). This involved capturing temporal fluctuations in dFC, 260 

constructing a temporal landscape with temporal stability matrices. We computed entropy and global 261 

temporal distance metrics to quantify the informational content within these matrices, serving as 262 

defining characteristics for mental health disorders such as schizophrenia, ADHD, and bipolar 263 

disorder. Section 1 presents community architecture analysis results and Section 2 focuses on temporal 264 

stability analysis for dataset 1  (Poldrack, et al., 2016) in both diseased and healthy cohort. To ensure 265 

validity, we replicate the pipeline with dataset 2 (Bellec, 2016), specifically examining participants 266 

with schizophrenia in Section 3. 267 

 268 

3.1 Distribution of community architecture of brain networks across spectrum of common mental 269 

disorders  270 

In dataset 1, a WSBM (see Methods for details) was fitted on the adjacency matrix for each subject in 271 

the diseased and healthy cohorts. The number of communities was set at k=7 based on previous studies 272 

(Allen , et al., 2014) (Tooley , Bassett, & Mackey, 2022). Figure 2A shows the community partitions 273 

in FC for both diseased and healthy individuals, while Figure 2B presents a topographic representation 274 

of the communities detected with WSBM in individuals with schizophrenia, ADHD, bipolar disorder, 275 
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and healthy controls. Distinct assignments of brain areas to different communities were observed in 276 

diseased and healthy controls (Figure 2B). Community motifs reflect assortative, core, or peripheral 277 

interactions among pairs of communities.  In assortative communities, the internal density of 278 

connections within subnetworks exceeds their external density whereas core-periphery organization 279 

consists of a central core which is connected to the rest of the subnetworks and peripheral nodes 280 

connect to the core but not with each other (Betzel, Bertolero, & Bassett, 2018).   Here in the main 281 

manuscript, we report only significant group-level community interaction measures averaged across 282 

communities. Figure 2C reports significantly lower assortativity in schizophrenics (P=0.0121, 283 

t=2.5374) compared to healthy controls. The distributions were parametric and unpaired t-test was 284 

used to assess significance.  Rank sum test (the distribution was non-parametric) revealed a 285 

significantly higher coreness in schizophrenics (P=0.0188) compared to healthy counterparts. 286 

Additionally, the motif participation index and diversity index were computed for individual brain 287 

areas. Figure 2C reveals a significantly higher diversity index in schizophrenics (unpaired t-test, 288 

P=0.0354, t = -2.1207) indicating their communities, by and large, participate in more than one motif 289 

class. Although distinct modifications in community interaction motifs were observed for individuals 290 

with bipolar disorder and ADHD compared to healthy controls (see supplementary S 1) the results 291 

were non-significant. Next, a 3D community morphospace was constructed, where each point 292 

represents a pair of communities {r,s}, and the axes are defined by within-community and between-293 

community densities, 𝜔𝜔𝑡𝑡𝑡𝑡 , 𝜔𝜔𝑡𝑡𝑑𝑑 , 𝜔𝜔𝑑𝑑𝑑𝑑 . Morphospace analysis revealed that individuals with 294 

schizophrenia, ADHD, and bipolar disorder favoured fewer assortative and included more core-295 

periphery community interactions than healthy controls (Figure 2D). Overall, the community motifs 296 

and morphospace analysis indicate community structure in common mental disorders, especially in 297 

schizophrenics is less assortative.  298 

Next, to identify disease-specific changes in brain regions, an analogous assortativity score was 299 

calculated for each region in patients with schizophrenia, ADHD, and bipolar disorder from dataset 1 300 
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(see methods) (Betzel , Medgalia , & Bassett, 2018). Age-matched and sex-matched healthy controls 301 

were generated for each disease group. For each brain region, a t-test was performed between the 302 

assortativity scores of patients and matched healthy controls, with age and sex regressed out. In patients 303 

with schizophrenia, significant decreases in assortativity were observed in the peripheral visual, Dorsal 304 

attention, Ventral attention, and Temporal parietal networks  (Table S2) whereas for individuals with 305 

ADHD, significant decreases in assortativity were found in the central visual, limbic, dorsal attention, 306 

default, and control networks (Table S4). In individuals with bipolar disorder, significant reductions in 307 

assortativity were seen in the dorsal and ventral attention, limbic, and default networks (Table S3). 308 

Figure 3A-C shows brain-wide topography of significant assortativity scores between patients with 309 

ADHD, bipolar disorder, schizophrenia and healthy controls. 310 

 311 

3.2 Impaired and preserved patterns of temporal stability in common mental disorders: 312 

schizophrenia, ADHD and bipolar 313 

To compute the temporal stability of dFC, the first step involved estimating the similarity/differences 314 

between dominant dFC subspaces by calculating the angular distance between them (𝜙𝜙 �𝑡𝑡𝑥𝑥, 𝑡𝑡𝑒𝑒�). The 315 

resulting temporal stability matrix, spanning time X time, characterizes the collective temporal 316 

characteristics of dFC and aids in visualizing the temporal landscape. A low angular distance between 317 

subspaces indicates that the corresponding dFC patterns were similar in configuration, while a high 318 

angular distance suggests dissimilarity (Sastry, Roy, & Banerjee, 2023). In this section, we present the 319 

results of evaluating temporal stability changes between healthy controls and cohorts with common 320 

mental disorders (such as schizophrenia, ADHD, and bipolar disorder) in Dataset 1.  321 

Group-level averages of temporal stability, computed on resting-state fMRI BOLD time series from 322 

healthy controls and individuals with schizophrenia, are shown in Figure 4A. Schizophrenics exhibit 323 

shorter-lived, low angular distance (yellow hue) repeated patterns of stability, while healthy controls 324 

display a more evenly distributed pattern. Quantifying the differences, we calculated the entropy of 325 
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temporal stability matrices Figure 4B, revealing higher entropy in schizophrenics, indicating impaired 326 

temporal stability. The distributions were assessed parametrically using the Jarque-Bara test and 327 

D’Agostino-Pearson omnibus test. A two-sample t-test revealed significant differences in entropy 328 

values between healthy controls and individuals with schizophrenia (P=0.0475, t=-1.9963). Global 329 

temporal distance (see Methods for details) also suggests higher values in individuals with 330 

schizophrenia. Although the results (Figure 4C) were not statistically significant (Wilcoxon rank-sum 331 

test, P=0.8902), the violin plots suggest a trend: individuals with schizophrenia exhibit higher global 332 

temporal distance compared to healthy controls. Analysing the 8 resting-state networks (Schaefer , et 333 

al., 2018) using the same pipeline, we observed significantly higher global temporal distance (Figure 334 

4D) in the Dorsal attention network (P=0.0153, t=-2.4489) (The distributions were assessed 335 

parametrically using an unpaired two-sample t-test) and Somatomotor network (P=0.0109) (The 336 

distributions were non-Gaussian; hence, the Wilcoxon rank-sum test was used) , indicating 337 

significantly lower temporal stability in individuals with schizophrenia. Overall, these results indicate 338 

impaired temporal stability in individuals with schizophrenia, both at the whole-brain level and within 339 

specific networks.  340 

We further examined temporal stability in patients with other common mental disorders, namely 341 

ADHD, Bipolar disorder, and healthy controls from Dataset 1. Whole-brain temporal stability matrices 342 

were constructed for each participant, revealing minimal spread of low angular distant (yellow hue) 343 

repeated stability patterns in both ADHD and Bipolar disorder. Participants with ADHD showed 344 

significantly lower entropy (two-sample t-test, P=0.0162, t=-2.4293), and higher global temporal 345 

distance (Wilcoxon rank-sum test, p=2.2128e-21), indicating impaired temporal stability (Figure 5B). 346 

In contrast, participants with bipolar disorder displayed higher entropy (two-sample t-test, P=0.3467, 347 

t=0.9436) and global temporal distance (two-sample t-test, P=0.8892, t=0.1395) of temporal stability 348 

matrices, although these differences were not statistically significant. 349 

 350 
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3.3  Validation Analysis 351 

Furthermore, we replicated the entire analysis pipeline using Dataset 2. Community detection using 352 

the WSBM revealed significant differences in community interaction motifs between individuals with 353 

schizophrenia and healthy controls (see Supplementary, S 2 A). Schizophrenia patients exhibited lower 354 

assortativity and higher coreness and peripheryness (Wilcoxon rank-sum test; P=0.0483, P=0.0209, 355 

P=0.0043, respectively). The diversity index was also significantly higher in schizophrenia patients (S 356 

2 B) (Wilcoxon rank-sum test, P=0.0184), indicating participation in multiple motif classes. 357 

Additionally, the 3D community morphospace analysis validated these findings, specifically in patients 358 

with schizophrenia, showing fewer assortative interactions in individuals with schizophrenia (S 2 C).   359 

Temporal stability analysis confirmed impaired temporal stability in schizophrenia (Figure 6A) 360 

patients, with higher entropy (Wilcoxon rank sum test, p=0.0373) (Figure 6B) and global temporal 361 

distance (Wilcoxon rank-sum test; p=2.5559e-04) (Figure 6C). At the network level analysis (Figure 362 

6D), we observe significantly higher global temporal distance in individuals with schizophrenia in the 363 

Control network (p=5.5055e-04), Dorsal attention network (p=0.0057), Default network (p=0.0048), 364 

Somatomotor network (p=8.021e-04), Temporal-Parietal network (p=0.0106), and Ventral attention 365 

network (p=0.0042). The distributions were non-parametric, and significance was tested with the 366 

Wilcoxon rank-sum test. These results validate our initial findings from dataset 1, supporting the 367 

impaired temporal stability in schizophrenia. 368 

  369 
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4. Discussion  370 

The study aimed to explore dFC measures as tools for characterizing common mental disorders 371 

disorder. Using two datasets (N = 408), the WSBM  (Aicher , Jacobs , & Clauset, 2015) revealed lower 372 

assortativity and participation in multiple motifs in schizophrenia compared to healthy individuals 373 

(Figure 2 and supplementary S 2). Comparing across diseases with matched controls, specific brain 374 

areas showed significant differences in assortativity (Figure 3). Although altered community 375 

interactions were observed in ADHD and bipolar disorder, statistical significance was not reached (see 376 

supplementary S 1). To address this limitation, alterations in the dFC were investigated using a novel 377 

methodology (Sastry, Roy, & Banerjee, 2023). This approach leverages FC dynamics to assess 378 

temporal stability in participants with ADHD, bipolar disorder, schizophrenia, and healthy controls. 379 

Entropy and global temporal distance were used as measures of temporal stability. Results showed 380 

increased entropy in the whole-brain temporal landscape and specific resting-state networks in 381 

schizophrenia, indicating decreased temporal stability of dFC (Figure 4).  ADHD participants 382 

exhibited a significant decrease in temporal stability (Figure 5). Notably, temporal stability and 383 

community architecture alternations in schizophrenia were consistent across the two datasets used 384 

(Figure 6). 385 

Prior studies have shown altered community structure in mental disorders, particularly in 386 

schizophrenia. Modularity maximization studies reported decreased modularity in functional brain 387 

networks of individuals with schizophrenia (Alexander-Bloch, et al., 2010). Other studies using 388 

normalized mutual information found significant differences in community structure, with subcortical, 389 

auditory, and somatosensory networks being key contributors (Lerman-Sinkoff & Barch , 2016). 390 

However, these studies were limited by biases associated with modularity maximization and infomap 391 

techniques (Betzel , Medgalia , & Bassett, 2018). To overcome these limitations, the WSBM, capable 392 

of uncovering assortative and non-assortative communities was used in this study (Betzel , Medgalia , 393 

& Bassett, 2018). WSBM revealed distinct communities in diseased and healthy controls (Figure 2B 394 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2023. ; https://doi.org/10.1101/2023.07.14.23292699doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.14.23292699
http://creativecommons.org/licenses/by-nd/4.0/


19 
 

and S 2 A). In our analysis, we classified community interactions into assortative, core, and periphery 395 

motif classes. Results showed less assortativity, higher coreness and peripheryness in communities of 396 

individuals with mental disorders, particularly schizophrenia, compared to healthy controls (Figure 397 

2C, Figure 2D and S 2). The Diversity Index indicated greater participation in multiple motif classes 398 

in schizophrenia (Figure 2C and S 2 B). Furthermore, significant changes in assortativity at the regional 399 

level were observed in schizophrenia, bipolar disorder, and ADHD. These findings provide insights 400 

into the neuropathological profiles of these common mental disorders. 401 

Previous studies in schizophrenia have identified disruptions in modular structure in sensory, auditory, 402 

and visual areas (Bordier , Nicolini , Forcellini , & Bifone , 2018) (Alexander-Bloch , et al., 2012). In 403 

our study, we found significantly lower assortativity in peripheral visual, dorsal and ventral attention, 404 

and temporal parietal networks in schizophrenia (Figure 3C) (Table S2). ADHD patients have shown 405 

decreased brain network integration and increased network segregation, with significant alterations in 406 

local clustering coefficients in cerebellar, frontal, motor, and temporal regions (Lin , et al., 2014). We 407 

observed significant alterations in assortativity in central visual, limbic, default, and somatomotor 408 

networks in ADHD patients (Figure 6A) (Table S4). Studies on bipolar disorder have identified 409 

alterations in brain network topology in frontoparietal and limbic networks (Zhang , et al., 2021). 410 

Similarly, our findings indicate significantly lower assortativity in default and dorsal attention 411 

networks, as well as limbic networks, in bipolar disorder patients (Figure 3B) (Table S3). Overall, 412 

these region-level alterations align with previous studies and suggest that alterations in community 413 

structure play a role in the neuropathology of common mental disorders. Although our attempts to 414 

replicate community detection and interaction motif analysis in ADHD and bipolar disorder patients 415 

did not yield statistically significant results, we attribute this to the limited number of participants and 416 

the dependence of most community detection algorithms on sFC. It is crucial to acknowledge the 417 

limitations of sFC in comprehensively capturing the dynamic nature of brain activity (Preti, Bolton, & 418 

De ville, 2017). Therefore, we focused on estimating the temporal stability of the resting-state dynamic 419 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2023. ; https://doi.org/10.1101/2023.07.14.23292699doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.14.23292699
http://creativecommons.org/licenses/by-nd/4.0/


20 
 

functional connectome to explore its dynamic characteristics and alterations in common mental 420 

disorders. Our methodology involved extracting dominant dFC patterns at each time point, projecting 421 

them into dFC subspaces using PCA, and assessing their similarity through angular distance 422 

calculations (Sastry, Roy, & Banerjee, 2023) (Figure 1C). We introduce two measures to quantify 423 

temporal stability: 1) Entropy, which estimates temporal stability across the entire temporal landscape 424 

and all time points, and 2) Global temporal distance, which measures temporal stability across 425 

successive time points. While previous studies have explored regional variations in temporal stability 426 

(Zhang , et al., 2016) (Dong , et al., 2019), our study extends this exploration by quantifying temporal 427 

stability at both the whole-brain and brain network level.  Our key finding is a significant decrease in 428 

temporal stability among individuals with schizophrenia at both the whole-brain and network levels. 429 

In both Dataset 1 and Dataset 2, we observed increased entropy (Figure 4B) (Figure 6B) and global 430 

temporal distance (Figure 4C) (Figure 6C) of the whole-brain functional connectome in individuals 431 

with schizophrenia, indicating impaired temporal stability as a marker of the disease. Furthermore, 432 

several sub-networks, including the dorsal attention, somatomotor, limbic, ventral attention, control, 433 

and temporal-parietal networks, exhibited impaired temporal stability (Figure 4D and Figure 6D). One 434 

earlier study (Zhang , et al., 2016) found that patients with schizophrenia exhibited significantly 435 

increased temporal variability (decreased temporal stability) of dFCs in subcortical regions, such as 436 

the thalamus, palladium, and visual areas during resting state. Similarly, using flexibility measures, 437 

few groups  (Dong , et al., 2019), (Gifford , et al., 2020) (Long , et al., 2020), have observed significant 438 

impairment in temporal stabilities of dFC in multiple brain areas, including the thalamus, visual areas 439 

among individuals with schizophrenia. In line with these previous studies, our results emphasizing the 440 

significant impairment in temporal stability of dFCs at both the whole-brain and network level have 441 

contributed towards a comprehensive understanding of the temporal stability differences observed in 442 

schizophrenia. ADHD is characterized by dynamic reconfiguration of the functional connectome, with 443 

increased temporal variability in the default-mode network and lower temporal variability in 444 
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subcortical regions reported in previous studies (Lin , et al., 2014) (Fair , et al., 2010)  (Zhang , et al., 445 

2016) (Castellanos , et al., 2008). Our findings show a significant increase in the global temporal 446 

distance of the whole-brain functional connectome in ADHD patients, indicating decreased temporal 447 

stability (Figure 5B). Similarly, there are multiple studies reporting shared similarities in temporal 448 

stability alterations between bipolar disorder and schizophrenia (Long , Lu, & Liu, 2023) (Han , et al., 449 

2020) (Nguyen , et al., 2017). Although our results show changes in temporal stability in individuals 450 

with bipolar disorder, the results were not statistically significant. Overall, our findings, validated 451 

across two datasets, highlight a significant widespread decrease in the temporal stability of dFC in 452 

common mental disorders, especially in schizophrenia. These alterations in dynamic functional 453 

network configurations, captured by temporal stability measures, provide a comprehensive 454 

representation of brain dynamics and reflect the dynamic nature of mental disorders. They hold 455 

promise as potential biomarkers for common mental health pathologies, particularly in ADHD and 456 

schizophrenia, where mental state fluctuations are more dynamic compared to bipolar disorder.  457 

A major methodological limitation of our study is with WSBM. WSBM requires the user to specify 458 

the number of communities (K). Based on previous studies, we chose K=7, but this choice may impact 459 

the results (Tooley , Bassett, & Mackey, 2022) (Allen , et al., 2014). In conclusion, our study 460 

emphasizes the importance of dFC and temporal stability in characterizing common mental disorders. 461 

While WSBM reveals distinct patterns in the community architecture of functionally connected brain 462 

networks between diseased and healthy controls, it faces challenges in differentiating between specific 463 

disorders. However, temporal stability analysis using angular distance, global temporal distance, and 464 

entropy calculations uncovers impaired stability in schizophrenia and ADHD, while bipolar disorder 465 

exhibits notable differences. These findings highlight the significant role of dFC and temporal stability 466 

in understanding and characterizing common mental disorders, providing insights into underlying 467 

mechanisms and potential diagnostic markers.  468 

 469 
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  744 Figure 1 

Figure 1 a brief overview of the methodology used in this study. (A) shows the BOLD time series data 
(B) illustrates the estimation of static functional connectivity using Pearson correlation, which is then 
transformed using the r-to-z method (C) displays topographic representation of the WSBM communities. 
The subject-wise undirected, signed, weighted adjacency matrix serves as the input for the Weighted 
Stochastic Block Model (WSBM), a data-driven generative community detection algorithm that groups 
brain areas into K=7 communities based on their stochastic equivalence. (D) presents the matrix 
representation of the reduced dominant dynamic functional connectivity (dFC) patterns, denoted as D(t), 
computed at each time point (E) demonstrates the calculation of similarity between dominant dFC 
subspaces using angular distance or principal angle (ϕ) (F) showcases the Time X Time temporal stability 
matrix, where each entry represents the principal angle �𝜙𝜙 (𝑡𝑡𝑥𝑥, 𝑡𝑡𝑒𝑒� between dominant dFC subspaces at 
time points  𝑡𝑡𝑥𝑥 and 𝑡𝑡𝑒𝑒. This matrix visualizes the temporal landscape, with the principal angle ranging 
from 0 (indicating low angular distance) to π/2 (indicating high angular distance). Constructing a Time X 
Time temporal stability matrix allows us to visualize the temporal "landscape" for the entire duration of 
the scan. (G) we calculate the temporal stability of the dynamic functional connectome using two 
measures: entropy and global temporal distance. We investigate changes in community architecture in 
common mental health disorders such as schizophrenia, bipolar disorder, and ADHD. 
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  746 

Figure 2 

Figure 2 An overview of the community architecture differences between schizophrenics and healthy 
controls in Dataset 1 (A) shows the static functional connectivity matrices of schizophrenics and healthy 
controls, with brain areas ordered by communities (B) presents the partition of cortical regions into 7 
communities using the Weighted Stochastic Block Model (WSBM), a generative community detection algorithm 
that groups stochastically equivalent brain regions into communities (C) each pair of communities (r and s) is 
classified into one of three community motifs: assortative, coreness, and peripheryness. The diversity index is 
calculated as the average across all brain regions per subject. The violin plots indicate that in schizophrenics, 
communities are less assortative (D) illustrates the construction of a network morphospace using all pairs of 
communities, which are coloured according to their motif type: blue for assortative community interactions and 
green for core or periphery community interactions. 
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  748 

Figure 3 

Figure 3 Profile of brain regions showing significant difference in assortativity between patients, 
age and sex matched healthy controls (A) ADHD (B) bipolar disorder (C) Schizophrenia.  
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Figure 4 

Figure 4 An overview of the temporal stability differences between schizophrenia and healthy 
controls in Dataset 1 (A) showcases the Time X Time temporal stability matrices, visualized as 
the 'Temporal landscape'. Each entry represents the angular distance between dominant dFC 
subspaces at time points 𝑡𝑡𝑥𝑥 and 𝑡𝑡𝑒𝑒, for patients with schizophrenia and healthy controls. In 
schizophrenics, there is a global spread of shorter-lived, low angular distant (yellow hue) repeated 
patterns of stability (B) focuses on quantifying temporal stability across the entire Time X Time 
temporal landscape using entropy (C) quantifies temporal stability over successive time points 
using global temporal distance. Both measures indicate low temporal stability in schizophrenics 
(D) global temporal distance is estimated for all the resting state networks defined in the Schaeffer 
atlas, comparing schizophrenics (purple) and healthy controls (orange). 
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Figure 5 An overview of the temporal stability differences in participants with ADHD and Bipolar 
disorder (A) showcases the Time X Time temporal stability matrices, where each entry represents the 
angular distance between dominant dFC subspaces at time points 𝑡𝑡𝑥𝑥 and 𝑡𝑡𝑒𝑒, for participants with ADHD 
and Bipolar disorder. The temporal stability is quantified using two measures: entropy (B) and global 
temporal distance (C) in patients with ADHD and healthy controls. The results show that global temporal 
distance is significantly higher in participants with ADHD, indicating decreased temporal stability. 
Similarly,  temporal stability is quantified using entropy (D) and global temporal distance € in participants 
with Bipolar disorder and healthy controls. 
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Figure 6 

Figure 6 An overview of the temporal stability differences between individuals with schizophrenia and 
healthy controls in Dataset 2. (A) illustrates the temporal stability matrices, visualized as a temporal 
landscape, for both schizophrenics and healthy controls. Each entry in the matrix represents the angular distance 
between dominant dFC subspaces at time points 𝑡𝑡𝑥𝑥 and 𝑡𝑡𝑒𝑒. The angular distance ranges from 0 (indicated by 
yellow hue) to π/2 (indicated by red hue) (B) quantifies the temporal stability across the entire temporal 
landscape using entropy (C) quantifies the temporal stability over successive time windows using global 
temporal distance. Both measures indicate a decrease in temporal stability in schizophrenics, which aligns with 
the findings from Dataset 1. (D) estimates the global temporal distance for each of the resting state networks 
defined in the Schaeffer atlas for both individuals with schizophrenia (purple) and healthy controls (orange). 
The plots demonstrate a significant decrease in temporal stability in schizophrenics, particularly in the control, 
dorsal attention, default, somatomotor, temporal parietal, and ventral attention networks. 
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S 1 

Supplementary Figures  

S 1 (A-D) Violin plots showing community interaction motifs (assortativity, coreness and peripheryness) and 
diversity index averaged across all communities per subject in participants with bipolar disorder (green) and 
healthy controls (orange) (E-F) Violin plots showing community interaction motifs (assortativity, coreness 
and peripheryness) and diversity index averaged across all communities per subject in participants with 
ADHD (green) and healthy controls (orange) 
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S 2 

S 2 (A) Static functional connectivity matrices where each entry is the Pearson correlation between 
brain regions n and p ordered by communities (B) Each pair of communities, r and s are classified into 
one of three community motifs – assortative, coreness and peripheryness. Diversity index averaged 
across all brain regions per subject. The violin plots indicate, in schizophrenics communities are less 
assortative (C) Morphospace constructed by using all pairs of community interactions and are colour 
coded – blue (assortative community interactions) and green (core or peripheryness community 
interaction).  
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S 3 

S 3 Quantifying temporal stability using entropy for the resting state networks defined in Schaeffer atlas 
in Dataset 1 (A) and Dataset 2 (B). Statistically significant differences (uncorrected) are indicated using 
* (P≤ 0.05), ** (P≤ 0.01), ***(P≤ 0.001), ****(P≤ 0.0001), ns (not significant). 
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 Groups  N  Age (years) Sex (% 

female) 

UCLA dataset 

(Dataset 1) 

Schizophrenia 50 36.46 ± 8.87 

 

24 % 

 

Healthy Controls  124 31.58 ± 8.80 

 

44.90 % 

 

Bipolar disorder  49 35.28 ± 9.02 

 

42.80 % 

 

ADHD  40 33.09 ± 10.7 

 

51.16 % 

 

COBRE Dataset 

(Dataset 2) 

Schizophrenia 71 38.16 ± 13.8 

 

19.71 % 

 

Healthy Controls  74 35.82 ± 11.5 

 

31.08 % 

 

Table S1 Demographics of the UCLA consortium for Neuropsychiatric phenomics LA5c dataset (Dataset 1) 
and COBRE dataset (Dataset 2) used in this study 
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 768 

 769 

 770 

 771 

 772 

Brain regions  
(ROI number) 

Controls  Patient  P value  

Peripheral visual (14) 
 

0.933333 
 

0.886667 
 

0.02618 
 

Peripheral visual (16) 
 

0.926667 
 

0.9 
 

0.03743 
 

Peripheral visual (217) 
 

0.926667 
 

0.886667 
 

0.03239 
 

Peripheral visual (222) 
 

0.94 
 

0.906667 
 

0.0004645 
 

Dorsal attention A (62) 
 

0.93 
 

0.913333 
 

0.04117 
 

Dorsal attention A (65) 
 

0.926667 
 

0.926667 
 

0.004987 
 

Dorsal attention A (69) 
 

0.943333 
 

0.903333 
 

0.02541 
 

Ventral attention/ (88) 
Salient network 
 

0.946667 
 

0.916667 
 

0.01481 
 

Ventral attention/(101) 
Salient network 
 

0.933333 
 

0.933333 
 

0.01064 
 

Temporal parietal (395) 
 

0.913333 
 

0.873333 
 

0.007664 

Table S2 Region wise significant assortativity differences in patients with schizophrenia, age and sex 
matched healthy controls   
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Brain Region  

(ROI number) 

Controls  Patients  P value  

Dorsal attention B (75) 

 

0.92517 

 

0.921769 

 

0.04821 

 

Ventral attention B (101) 

 

0.918367 

 

0.908163 

 

0.04906 

 

Limbic B (113) 

 

0.880952 

 

0.918367 

 

0.001511 

 

Default A (149) 

 

0.911565 

 

0.918367 

 

0.04192 

 

Default A (159) 

 

0.911565 

 

0.908163 

 

0.01705 

 

Default B (173) 

 

0.914966 

 

0.897959 

 

0.0275 

 

Table S3 Region wise significant assortativity differences in patients with bipolar disorder, age and sex 
matched healthy controls   
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Table S4 775 
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 777 

 778 

 779 

Brain Regions  
(ROI number) 

Control  Patient  P value  

Central visual (7) 
 

0.9 
 

0.933333 
 

0.02668 
 

Dorsal attention B (84) 
 

0.904167 
 

0.870833 
 

0.02501 
 

Limbic A (118) 
 

0.866667 
 

0.866667 
 

0.04766 
 

Control A (127) 
 

0.941667 
 

0.9375 
 

0.02998 
 

Control B (142) 
 

0.9 
 

0.925 
 

0.04677 
 

Default A (162) 
 

0.891667 
 

0.858333 
 

0.02264 
 

Default C (191) 
 

0.916667 
 

0.883333 
 

0.03971 
 

Default C (194) 
 

0.870833 
 

0.85 
 

0.04202 
 

Somatomotor A (227) 
 

0.929167 
 

0.9 
 

0.04864 
 

Limbic A (324) 
 

0.870833 
 

0.875 
 

0.04558 
 

Control A (331) 
 

0.9125 
 

0.9 
 

0.02631 
 

Table S4 Region wise significant assortativity differences in patients with ADHD, age and sex matched 
healthy controls   
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