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Summary Statement 

The authors developed and externally validated an automated, scan-to-prediction deep learning 

pipeline that classifies BRAF Mutational status in pediatric low-grade gliomas directly from T2-

Weighted MRI scans. 

 

Key Results  

� An innovative training approach combining self-supervision and transfer learning 

(“TransferX”) is developed to boost model performance in low data settings; 

� TransferX enables the development of a scan-to-prediction pipeline for pediatric LGG 

mutational status (BRAF V600E, fusion, or wildtype) with high accuracy and mild 

performance degradation on external validation; 

� An evaluation metric “COMDist” is proposed to increase interpretability and quantify the 

accuracy of the model’s attention around the tumor.  
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Deep Learning, BRAF Mutational Status, Segmentation, Classification, Pediatric Low-Grade 

Gliomas 

 

List of Abbreviations  

 

pLGG = pediatric low grade glioma; T2W = T2 Weighted; CNN = Convolutional neural network; 

SD = Standard Deviation; CI = Confidence Interval; AUC = Area under the curve; CBTN = Child 

brain tumor network.  
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ABSTRACT 

Purpose 

To develop and externally validate a scan-to-prediction deep-learning pipeline for noninvasive, 

MRI-based BRAF mutational status classification for pLGG. 

Materials and Methods  

We conducted a retrospective study of two pLGG datasets with linked genomic and diagnostic 

T2-weighted MRI of patients: Boston Children’s Hospital (development dataset, N=214), and 

Child Brain Tumor Network (CBTN) (external validation, N=112). We developed a deep learning 

pipeline to classify BRAF mutational status (V600E vs. fusion vs. wild-type) from whole-scan 

input via a two-stage process: 1) 3D tumor segmentation and extraction of axial tumor images, 

and 2) slice-wise, deep learning-based classification of mutational status. We investigated 

knowledge-transfer approaches to prevent model overfitting with a primary endpoint of the area 

under the receiver operating characteristic curve (AUC). To enhance model interpretability, we 

developed a novel metric, COMDist that quantifies the accuracy of model attention with respect 

to the tumor. 

Results  

A combination of transfer learning from a pretrained medical imaging-specific network and self-

supervised label cross-training (TransferX) coupled with consensus logic yielded the highest 

AUC, taken as a weighted average across the three mutational classes, (0.82 [95% CI: 0.70-

0.90], Accuracy: 77%) on internal validation and (0.73 [95% CI 0.68-0.88], Accuracy: 75%) on 

external validation. Training with TransferX also led to an AUC improvement of 17.7% and a 

COMDist Improvement of 6.42% over training from scratch on the development dataset.  

Conclusion  

Transfer learning and self-supervised cross-training improved classification performance and 

generalizability for noninvasive pLGG mutational status prediction in a limited data scenario. 
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INTRODUCTION 

Pediatric low-grade gliomas (pLGGs) are the most common pediatric brain tumors, comprising 

up to 40% of tumors in this population1. These tumors exhibit diverse clinical outcomes and 

molecular characteristics, often driven by an activating BRAF mutation, either the BRAF V600E 

point mutation or fusion events. Molecular classification is vital for accurate treatment selection 

and risk stratification in pLGGs, particularly given the emergence of novel BRAF-directed 

therapies2. The presence of the BRAF V600E mutation, found in 15-20% of cases, was 

historically associated with poor survival, particularly when combined with CDKN2A deletion3, 

though with targeted BRAF pathway-directed therapies this may be changing. BRAF V600E-

mutated pLGGs also exhibit an increased risk of malignant transformation4 while patients with 

BRAF fusion and neurofibromatosis type 1 have a favorable outcome. Accurate distinction 

between BRAF V600E, BRAF fusion, and wildtype tumors, plays a crucial role in determining 

prognosis and optimal treatment strategy. 

 

Surgical resection for pLGG allows for assessment of mutational status. However, in over one-

third of cases, resection, or even biopsy, may not be feasible nor recommended5. In these 

situations, children may require alternative therapies to control a symptomatic tumor or undergo 

periodic magnetic resonance imaging (MRI) surveillance. In these situations, non-invasive, 

imaging-based, tumor molecular subtyping, if accurate and reliable, could enable proper 

selection of patients for BRAF-targeted therapies and clinical trials.  

 

In recent years, deep learning, which extracts features from large quantities of raw data passed 

through multiple layers in a network6, has become the state-of-the-art for medical imaging 

analysis7 8, including imaging-based molecular classification 9,10, and may have utility for 

pediatric brain tumor classification. However, DL performance degrades dramatically in limited 

data scenarios, due to instability, overfitting, and shortcut learning,11 and a key barrier to 

applying deep learning to pediatric brain tumor imaging, is the lack of training data available for 

these rare tumor cases. For these reasons, there has been limited success in using deep 

learning for pediatric glioma mutational classification. Another barrier to clinical usability is that 

most algorithms have required manual tumor segmentation as input, which is resource-intensive 

and requires specialized expertise. To our knowledge, only one study has been published in an 

extended abstract preprint attempting to differentiate between BRAF V600E and fusion 

mutations in LGG with deep learning12. This study trained a convolutional neural network (CNN) 
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on a small number of manually segmented tumors, and was confined to a single institution,

limiting its generalizability.  

 

In this study, we address these gaps by developing and externally validating the first automated,

scan-to-prediction deep learning pipeline capable of non-invasive BRAF mutational status

prediction for pLGG. To achieve this, we propose several innovations, including a multistage

pipeline with built-in pLGG segmentation, BRAF mutation classifiers, and a consensus decision

block to predict BRAF mutation status, including BRAF V600E and BRAF fusion. We leverage

the pLGG dataset as our developmental dataset and a novel combination of in-domain transfer

learning and self-supervision approach, called "TransferX" to maximize performance and

generalizability in a limited data scenario. Additionally, to improve interpretability of our pipeline,

we introduce a way to quantify the model attention via spatial maps, called Center of Mass

Distance (COMDist) analysis. COMDist estimates the distance (in mm) between the center of

mass of the GradCAM heatmap and the tumor's center of mass. Together, these methods

enable practical, accurate noninvasive mutational classification for pLGG. 

 

Figure 1. (A) Schematic of the scan-to-prediction pipeline for molecular subtype classification.

The pipeline inputs the raw T2W MRI scan and outputs the mutation class prediction. (B) Input

and output depiction of the segmentation model from stage 1 of the pipeline. The segmentation
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block also involves registration and preprocessing of the input scan. The output consists of the 

preprocessed input MRI scan along with the co-registered segmentation mask. (C) Flow 

diagram of the TransferX training block and approach. The TransferX algorithm is employed to 

train three individual subtype classifiers (BRAF V600E, Wild-type, BRAF Fusion). (D) The model 

architecture of individual binary molecular subtype classifier. (E) Schematic of consensus 

decision block. The block inputs the classification outputs and corresponding scores from the 

three individual subtype classifiers and fits them into a consensus logic, and outputs the final 

predictions. The mutational class predictions are output sequentially where the input is first 

checked for wild-type or non-BRAF class first. If the input doesn’t belong to wildtype or non-

BRAF class, then the logic progresses to check the BRAF mutation class with BRAF Fusion 

checked first then followed by BRAF V600E. T2W: T2-weighted.  

 

METHODS  

Study Design and Datasets 

This study was conducted in accordance with the Declaration of Helsinki guidelines and 

following the approval of the Dana-Farber/Boston Children’s/Harvard Cancer Center Institutional 

Review Board (IRB). Waiver of consent was obtained from IRB prior to research initiation due to 

public datasets or retrospective study. This study involved two patient datasets: a 

developmental dataset from Boston Children’s Hospital (BCH; n=214), for training, internal 

validation, and hypothesis testing, and a dataset from the Children’s Brain Tumor Network 

(CBTN; n=112)13 for external validation. Both datasets contained linked, pretreatment diagnostic 

T2W MRI and genomic information for children aged 1-25 years with a diagnosis of WHO grade 

I-II glioma. Each patient scan in the CBTN dataset was coupled with a ground truth 

segmentation and corresponding BRAF Mutation class label. These subsets represent all scans 

that passed initial quality control of DICOM metadata. Patient inclusion criteria were the 

following: 1) 1-25 years of age, 2) histopathologically confirmed pLGG, and 3) availability of 

preoperative brain MR imaging with a T2W imaging sequence. BRAF status was determined by 

OncoPanel, which performs targeted exome-sequencing of 227 to 477 cancer-causing genes 

(depending on panel versions 1-3). BRAF mutational status may also have been captured by 

genomic sequencing via in-house PCR on tissue specimens. In cases where neither could not 

be performed, immunohistochemistry (IHC) was used to determine V600E status. BRAF fusion 

status was determined by a gene fusion sequencing panel. DNA copy-number profiling via 

whole-genome microarray analysis was also performed in some cases. We report our results in 
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accordance with the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) guidelines14 

(Supplemental Methods: SM 1).  

 

Table 1. Patient cohort characteristics. 

  
Development 
(BCH, n = 214) 

External Validation  
(CBTN, n = 112) p-values 

Age (years)     0.19* 
median (range) 5 (1 – 20) 6 (1 - 21)  
Sex n (%)    0.82+ 
Female 95 (44.4%) 51 (45.5%) 

 Male 113 (52.8%) 55 (49.1%) 
Unknown 6 (2.8%) 4 (3.6%) 
Race/Ethnicity n (%)   1.076e-06+ 
Non-Hispanic Caucasian/white 145 (67.8%) 71 (64.5%) 

 

African American/Black 6 (2.8%) 14 (12.7%) 
Hispanic/Latinx 3 (1.4%) 10 (9.1%) 
Asian American/Asian 9 (4.2%) 3 (2.7%) 
American Indian/Alaska Native 0 1 (0.9%) 
More than once race 0 1 (0.9%) 
Other/Unknown 51 (23.8%) 10 (9.1%) 
Histologic diagnosis n (%)   0.0005+ 
Pilocytic Astrocytoma 52 (24.2%) 68 (61.8%) 

 

Fibrillary Astrocytoma 0 8 (7.3%) 
Pilomyxoid Astrocytoma 8 (3.7%) 17 (15.5%) 
Ganglioglioma 13 (6.1%) 0 
Dysembryoplastic neuroepithelial 
tumor 

7 (3.3%) 0 

Diffuse Astrocytoma 1 (0.5%) 7 (6.4%) 
Angiocentric Glioma 1 (0.5%) 1 (0.9%) 
Other Low-Grade 
Glioma/Astrocytoma 

132 (61.7%) 9 (8.2%) 

BRAF Mutation Status n (%)   0.0005+ 
V600E 50 (23.4%) 17 (15.2%) 

 Fusion 60 (28.0%) 60 (53.6%) 
Wildtype 104 (48.6%) 35 (31.3%) 
Tumor Locations n (%)   0.0005+ 
Cerebellum/Posterior fossa 40 (18.7%) 33 (29.4%) 

 

Temporal lobe 43 (20.1%) 12 (10.7%) 
Frontal Lobe 22 (10.3%) 4 (3.6%) 
Suprasellar 6 (2.8%) 32 (28.6%) 
Optic Pathway 8 (3.7%) 17 (14.9%) 
Brainstem 7 (3.3%) 9 (7.9%) 
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Thalamus 15 (7.0%) 2 (1.8%) 
Ventricles 14 (6.5%) 2 (11.4%) 
Others 59 (27.6%) 1 (0.9%) 
 

CBTN: Children Brain Tumor Network; BCH: Boston Children’s Hospital. The Kruskal-Wallis 

rank sum test (*) was performed for numerical data age to test the statistical significance 

between age medians. The Fisher’s Exact test (+) was performed for categorical data to test the 

statistical significance differences between CBTN and BCH datasets. A p-value less than 0.05 is 

statistically significant. 

 

Deep Learning Pipeline  

The proposed pipeline for mutation class prediction operates in two stages (Fig. 1A). The initial 

stage involves T2W MRI preprocessing (Supplemental Methods: SM 2).  and input to the tumor 

segmentation model, which is a pretrained nnUNet developed by our group in prior work. Briefly, 

we developed a pLGG auto-segmentation algorithm that demonstrated performance 

indistinguishable from human experts17.  This first stage outputs a preprocessed, skull-stripped 

image along with a corresponding segmentation tumor mask (Fig. 1B) (Supplemental Methods: 

SM 3).  

 

The second stage of the pipeline encompasses three binary subtype classifiers (BRAF Fusion 

vs. all; BRAF V600E vs. all; Wild-type vs. all), each specifically trained to identify one of the 

following classes: BRAF V600E, BRAF Fusion, and Wild-type. For each subtype classifier a 

ResNet50 model18 was chosen as the fundamental encoder for extracting feature embeddings 

from 2D images, given its high performance on medical imaging classification problems 19 20 and 

the availability of pretrained network weights 21. The fully connected layers succeeding the 

average pooling layer of the ResNet50 were replaced by a layer of 1024 neurons, and a final 

layer of single neurons for binary classification (Fig. 1D, Supplemental Methods: SM 3). 

Following binary classification from each binary subtype classifiers, a consensus decision block 

collates the predictions from the classifiers, yielding the overall mutational status prediction. 

 

Subtype Classifier  

Three individual binary subtype classifiers were trained, wild-type classifier, BRAF Fusion 

classifier, and BRAF V600E classifier. For the training, the multi-class development dataset, 

with instances of wild-type, BRAF fusion and BRAF V600E, was divided into three binary 

datasets in a “one Vs rest” format. Each subtype classifier was trained and inferred on the 
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corresponding One Vs rest dataset. For example, wildtype classifier was trained and inferred on 

the wild-type Vs rest binary dataset, similarly for the other subtype classifiers. The external 

validation dataset was split into three one Vs rest dataset for external validation of the individual 

subtype classifiers and the entire pipeline.  

 

Model Training and Evaluation 

Three different strategies were investigated for training individual binary classifiers. The initial 

approach, training from scratch, involved initializing the binary classifier model with random 

weights. For the second approach, called RadImageNet Finetune, the classifier model was 

initiated with pretrained weights from the RadImageNet 22 for the ResNet50 model. This prior 

initialization was intended to yield superior feature embeddings compared to random weight 

initialization and training from scratch or out-of-domain transfer learning 23.  

 

The third approach, called TransferX, starts with pretrained weights from RadImageNet, but 

then adds two sequential stages of finetuning on separate, but related, classification tasks which 

act as pretext tasks for self-supervision, followed by a final finetuning on the target class (Fig. 

1C). As an illustrative example, the training of a BRAF fusion classifier began with initialization 

via pretrained RadImageNet weights and sequential finetuning for BRAF V600E prediction, 

followed by Wild-type prediction, and finally finetuning for BRAF Fusion prediction. We 

hypothesized that combining transfer learning and self-supervised cross-training would enable 

the model to learn stronger, more generalizable features for mutational status prediction by 

exposure to different, though similar, classification problems. The Models were trained to 

minimize loss at the axial slice-level on the development dataset and internally tested on an 

internal validation set (25% of data randomly selected; Supplemental Methods: SM 3) and 

externally tested on external validation dataset.  

 

Consensus Decision Block  

Following binary classification, a consensus decision block collates the predictions from multiple 

binary classifiers, yielding the overall mutational status prediction of the pipeline (Supplemental 

Methods: SM 4). The consensus decision block was designed to emulate logic that would 

optimize the signal-to-noise ratio for mutational status prediction, particularly given the limited 

data scenario (Fig. 1E). We hypothesized that morphologic differences (and signal-to-noise 

ratio) between wild-type and any mutations are greater than between BRAF mutation subtypes 

(BRAF V600E and BRAF Fusion), thus wild-type mutation check is performed first. In instances 
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where the patient exhibits a wild-type mutation, signifying the absence of a BRAF mutation, the 

diagnostic process culminates. Conversely, if the patient possesses any BRAF mutation, further 

classification between BRAF Fusion and BRAF V600E mutations is performed. In this way, the 

use of sequential logic and binary classification form a rationale path to overall mutational status 

prediction and avoids the need for multi-class algorithms that would increase the risk of 

overfitting on a limited dataset. The final output of the consensus decision block and the pipeline 

consequently is a classification decision and its corresponding probability. 

  

Center of Mass Distance Analysis (COMDist) to evaluate model attention 

Gradient-weighted Class Activation Maps (GradCAM)24 images are a common visualization tool 

for a model's focus within images (Fig. 4A), yet currently they are used for qualitative insights on 

where a model’s attention is strongest for image classification. To enable the use of GradCAM 

as a quantitative performance evaluation tool, we developed “Center of Mass Distance” 

(COMDist), a quantifiable metric for comparing GradCAM images across different 

methodologies (Fig. 4C). COMDist calculates and averages the distance (in mm) between the 

tumor's center of mass (from the segmentation mask) and the center of mass of the GradCAM 

heatmap over the entire dataset, with smaller values indicating that the model is more 

accurately focusing on the tumor region (Fig. 4B). A COMDist score provides the clinical user 

with a metric to gauge whether the model is basing its prediction on intra-tumoral information 

(as one would expect) or extemporaneous information far from the tumor (indicating an 

implausible model “shortcut” that should not be trusted).   

 

Performance Evaluation and Statistical Analysis 

Since each of the MRI scan of each patient was factored into multiple tumor slice images 

(Supplemental Methods: SM 2), to generate aggregated patient-level prediction, the output 

probability scores of the individual 2D axial images were averaged to calculate the patient level 

probability score. The patient-level classification was then done by applying the threshold on the 

patient level probability score [Eq 1].  

 

Patient probability score �  
å ����� �	
������
� ��
	��

�����	 
� ����� ������ �
	 � ����� ��
���

     [Eq 1] 

 

The primary performance endpoint was the area under the curve (AUC) of receiver operating 

characteristic (ROC) at the patient-level. We calculated composite AUC and accuracy based on 
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a weighted average of the output of the three mutational subtype classifiers. The three DL 

approaches were initially evaluated on the internal test set (BCH), and the highest performing 

model was locked for external validation (CBTN). Secondary endpoints included sensitivity and 

specificity, precision, and accuracy, and were calculated using the model output, with threshold 

to optimize the Youden Index on the internal test set (Sensitivity + Specificity – 1). Post-hoc 

calibration was applied on the internal validation set and model calibration was assessed 

graphically pre- and post-calibration (Supplemental Methods: SM 5, Fig. S5). We compared 

AUC’s for different models  and calculated 95% Confidence Intervals (CIs) using the DeLong 

method 25. The standard error of the AUC was calculated considering the numbers of positive 

and negative cases in the sample, and the derived variance of AUC. A two-sided p-value of 

<0.05 was considered statistically significant. Statistical metrics and curves were calculated 

using Scikit-learn packages 26 in Python v3.8.  

 

RESULTS  

Patient Characteristics 

The total pLGG patient cohort consisted of 326 pLGG patients from two cohorts, with 214 

patients in the development set from BCH cohort and 112 patients in the external test set from 

CBTN (Table 1). Median age was 6 (range: 1-21) in the CBTN cohort and 8 (range: 1-25) in the 

BCH cohort. All patients had pathologically or clinically diagnosed grade I/II low-grade glioma, 

with a mixture of histologic subtypes and intracranial locations (Table 1). The developmental 

dataset contained 50 (23%), 60 (28%), and 104 (49%) patients with BRAF V600E, BRAF 

Fusion, and Wild-type, respectively, and the external validation dataset contained 17 (15%), 60 

(53%), and 35 (32%) patients with BRAF V600E, BRAF Fusion, Wild-type, respectively (Table 

1). Slice thickness, T2-repetition time, and T2-echo time were significantly different between 

BCH and CBTN datasets (Supplement Fig. S1 and S2). Univariate analysis showed that patient 

age (p=0.14) and sex (p=0.71) do not possess a strong association with BRAF Mutation 

classification decision boundary (Fig. S5, Fig. S6).   

 

Table 2. The pipeline’s performance on classification on BRAF status for internal validation set 

and external validation set.  

 BRAF 
Status 

AUC 
(95%CI) Sensitivity Specificity Accuracy Precision Recall F1-

Score 

Internal 
Validation    Wild-type 0.82 

(0.75 - 0.91) 0.73 0.80 0.77 0.76 0.77 0.77 
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(n=59)          BRAF 
Fusion 

0.87 
(0.61 - 0.97) 0.87 0.70 0.81 0.81 0.80 

BRAF 
V600E 

0.85 
(0.66 - 0.95) 0.75 0.80 0.76 0.82 0.77 

Composite 0.84 
(70 - 90) 0.77 0.76 0.77 0.78 0.77 

External 
Validation 
(n=112) 

Wild-type 0.72 
(0.64 - 0.86) 0.72 0.71 0.72 0.75 0.72 

BRAF 
Fusion 

0.78 
(0.61 - 0.89) 0.60 0.90 0.75 0.77 0.74 

BRAF 
V600E 

0.72 
(0.64 - 0.88) 0.78 0.60 0.75 0.82 0.74 

 Composite  0.73 
(0.68 –0.88) 0.66 0.79 0.75 0.77 0.73 

 

 

Figure 2. Receiver operating characteristics (ROC) curves of the scan-to-prediction pipeline’s

predictions for all the three molecular subtype classes for internal validation (n=59) and external

validation (n=112). The models, trained with TransferX, form the individual subtype classifiers.

The outputs of the subtype classifiers are pooled using consensus logic, to result the pipeline

predictions for each mutation class.   
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TransferX improves deep learning model performance and generalizability 

TransferX outperformed the pipeline with classifiers trained by RadImageNet FineTune and

training from scratch for BRAF mutational status subtype prediction with composite classification

AUC: 0.83 (95% CI 0.71-0.88) and 77% accuracy on internal validation, compared to AUC: 0.74

(95% CI 0.62-0.80) and 73% for training from scratch (Fig. 3B, Fog. 3C). All training

approaches, including TransferX, were most accurate at identifying BRAF fusion, followed by

wild-type and V600E, though TransferX was the only approach to maintain AUC > 0.80 for all

individual subtype classifications (Fig. 3A).  

 

On external validation, there was a mild degradation in performance across all approaches, with

TransferX still demonstrating the highest performance with composite AUC 0.73 (95% CI: 0.68 –

0.88) and 75% accuracy (Fig. 3C). TransferX also demonstrated best performance for

classification of wildtype vs any BRAF mutational class with AUC 0.82 (95% CI: 0.75 – 0.91)

and 77% accuracy (Table 2, Fig. 3A). TransferX showed adequate calibration on the external

validation set, which was further improved after calibrating the model on the internal validation

set (Fig. S7).  

 

TransferX also resulted in superior performance compared to other training approaches when

subtype classifiers (without consensus logic) were tested on the internal and external validation

set for each subtype class (Fig. S8)  

 

Figure 3. (A) AUC is plotted and compared for the pipeline results with individual subtype

classifiers trained using different training approaches (Scratch, RadImageNet FineTune,
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TransferX) for respective mutation class (BRAF wild-type versus fusion versus V600E). P-

values are generated from model comparisons with respect to TransferX. (B) Accuracy and (C) 

AUC comparison of the pipeline with individual subtype classifiers trained with three different 

training approaches. The composite Accuracy and AUC for the entire dataset is calculated by 

the weighted average of the AUCs and Accuracy across the three mutational classes. AUC: 

area under the curve.  

Table 3. Median COMDist value (mm) comparison for three training approaches, of each 

subtype classifier on its corresponding mutation class data.  

 

TransferX yields more accurate model attention 

GradCAMs were generated for the three approaches on all cases (Fig. 4A), and corresponding 

COMDist scores were calculated. TransferX consistently yielded the best average COMDist 

scores across all classification tasks, indicating improved model focus on intra- and peritumoral 

regions (Table 3 & Fig. 4C).  

 

 BRAF Status TransferX  Scratch RadImageNet  

Internal 

Validation 

(n=59) 

Wild-Type  38.02 
41.54  

(p=0.09) 

39.48  

(p=0.46) 

BRAF Fusion   25.8 
27.14  

(p=0.49) 

26.13  

(p=0.86) 

BRAF V600E  33.02 
36.86  

(p=0.09) 

34.40  

(p=0.52) 

External 

Validation 

(n=112) 

Wild-Type  27.8 
28.11 

(p=0.90) 

34.2  

(p=0.009) 

BRAF Fusion  28.0 
 29.7  

(p=0.47) 

28.7 

(p=0.76) 

BRAF V600E  23.03 
 25.24  

(p=0.40) 

 25.21  

(p=0.40) 
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Figure 4. (A) GradCAM image overlay for each mutational class for internal and external

validation sets. (B) COMDist representation for three training approaches. (C) COMDist value

comparison of the scan-to-prediction pipeline for each molecular subtype class, with

corresponding individual subtype classifiers trained with three different training approaches.

GradCam: Gradient-weighted Class Activation Maps; COMDist: Center of Mass Distance.  

 

DISCUSSION 

Pediatric low-grade gliomas can arise in locations that make resection, and even biopsy, morbid

and infeasible. In these situations, the ability to noninvasive detect BRAF mutational status via

diagnostic imaging would be helpful to determine which patients may benefit from targeted

therapeutics that act on the BRAF pathway and enrollment in clinical trials of novel targeted

therapies. In this study, we developed and externally validated a scan-to-prediction algorithm to

noninvasively predict BRAF mutational status that could be used in settings where tissue

diagnosis is infeasible. The limited quantity of data available for pediatric brain tumor analysis

has limited the impact of artificial intelligence in detection of such rare occurring tumors

compared to other malignancies. Our study surmounts this obstacle by combining elements of

transfer learning and self-supervision to develop high performing model that maintains good

performance on testing at an external institution with heterogeneous tumor and scanner

characteristics. Additionally, we introduced COMDist, a quantitative metric to evaluate
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information captured in attention maps that will help make medical imaging algorithms more

interpretable to end users and clinicians. Our study findings contribute to bridging the gap

between artificial intelligence development and clinical translation of medical imaging

classification tools in a limited data scenario. To this end, we have published the code and

pretrained models to provide usable tools for the scientific community and to encourage clinical

testing.   

 

Figure 5. Representative prediction cases of the scan-to-prediction pipeline on the external 

dataset. The final scan-to-prediction pipeline consists of three subtype classifiers, trained using 

TransferX, further pooled together in consensus logic by the consensus decision block. Tumor 

lesions in the T2-weighted images were highlighted with arrows. TP: true positive; FP: false 

positive; TN: true negative; FN: false negative.    

With the emergence of the novel BRAF-directed therapies, the segregation of wild-type tumor

cases from BRAF subtypes in pLGG has become critical. With an External AUC > 0.71 for

classifying wild-type tumor cases vs BRAF cases, the pipeline can be used as an assistive tool
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by clinicians to provide key information in settings where tissue biopsy is infeasible or low-

resource settings that preclude genomic analysis. Beyond BRAF classification, the pipeline’s 

ability to identify BRAF V600E, specifically, position its use as a means to select patients for 

specific V600E inhibitors such as of dabrafenib and trametinib which has shown better 

progression free survival than chemotherapy27,28. While there is a mild performance degradation 

on external dataset, the differences in MR parameters between these datasets are notable (Fig. 

S1, Fig. S2). Similarity in these parameters would result in comparable performance on external 

validation. Importantly, the scan-to-prediction pipeline is practical and not reliant on manual 

segmentation which is resource-intensive and requires specialized expertise. The pipeline also 

exhibits robust performance, with external AUC of 0.74 (n=28), in the classification of BRAF 

mutation status, particularly with tumor cases originating from traditionally challenging regions 

for biopsy such as the Optic Pathway, Thalamus, and Brainstem. This allows for the diagnosis, 

followed by directed therapy, of these challenging tumor locations in a much safer manner.  

 

Classification for mutations in pLGGs have been previously attempted by a few studies, with 

manual segmentation-derived, pre-engineered radiomics being the more common approach. 

Radiomic features have been extracted from MRI images and fitted to classifiers models like 

XGboost, SVMs 1,29. The sensitivity of the dataset size on BRAF mutation classification 

performance was studied by Wagner et al. 30 in a radiomics based study. They showed that 

Neural networks outperform XGBoost for classification AUC and that the performance was 

affected by the size of the data used in training. In general, imaging-based methods have not 

seen much success in BRAF mutation prediction, given the limited data availability and likely 

low signal-to-noise, in terms of geometrical features of tumors. We demonstrate here that inter-

class cross training can lead to more meaningful training rounds with limited data and improve 

performance. This idea was been explored more generally by Muhamedrahimov et al. 31 by 

relaxing the assumption of independence between multiple categories. TransferX expands on 

this work by completely dropping the assumptions of independence between different 

categories of a multiclass dataset with stepwise inter-class training as a pretext task to learn 

robust feature representations. Furthermore, incorporating consensus decision logic to combine 

multiple binary classifiers also helped mitigate overfitting from the limited dataset. For BRAF 

Mutations in LGGs tumor location has a significant correlation with the categorization of gliomas 

(Fig. S9), this positional information is picked by TransferX as the sequential fine-tuning process 

allows the models to learn the spatial dependence of the different mutations, hence leading to 

robust classification performance. 
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Interpretability is a well-recognized important factor for deep learning models for clinical 

translation. A variety of metrics like saliency maps, guided backpropagation have been 

developed to depict the pixels that are contributing for the maximum activation in the network 

and hence being more significant for classification32 33. Another approach which has been very 

popular recently is GradCAM24. Although adding a degree of qualitative interpretability, the 

GradCAM approach has only allowed for case-by-case visualizations for the end-user, which 

are not very useful when trying to establish trust of a model overall. We expand the utility of 

GradCAM in this work with COMDist. By incorporating spatial knowledge of the tumor from 

auto-segmentation, COMDist can quantify, in terms of distance, the model’s attention with 

respect to the correct, biologically rational region of interest in the image. We expect this 

methodology will be valuable for the AI research community as well as clinical end-users 

evaluating and implementing medical imaging AI applications in clinic.  

 

Limitations 

There are several limitations to this work. Firstly, this work is retrospective in nature and subject 

to the biases of our patient samples. We attempted to mitigate this effect of bias by using a 

blinded, external validation set. Thus, we would encourage further independent validation of our 

results, including prospective testing. Additionally, the pipeline is exclusively based on T2W MRI 

scans. While T2W images are the most common and available diagnostic sequence for pLGG, 

T1c, T1, and FLAIR may contain complementary information that enhances performance, which 

we aim to explore in future work. In this work, we decided to leverage a 2D approach with slice-

averaging to minimize overfitting on our limited data set. It is possible that with further data 

collection a 3D approach may work better, however this would significantly increase the model 

parameter size and thus make the model even more prone to overfitting.  

 

Conclusions 

In summary, we developed and externally validated a scan-to-prediction pipeline to analyze 

T2W MRI as input and output BRAF mutational subtype for pediatric low-grade glioma. We 

leveraged a novel combination of transfer learning and self-supervision to mitigate overfitting 

and develop a high-performing and generalizable model. We also proposed a novel evaluation 

metric, COMDist, that can be used to further assess performance and interpretability of AI 

imaging models. Our resulting pipeline warrants prospective validation to determine if it could be 

clinically used in settings where tissue and/or genomic testing is unavailable.  
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