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Abstract 
 
Purpose/Objective(s): 
Here we investigate an approach to develop and clinically validate auto-contouring models for lymph node 
levels and structures of deglutition and mastication in the head and neck. An objective of this work is to provide 
high quality resources to the scientific community to promote advancement of treatment planning, clinical trial 
management, and toxicity studies for the head and neck.  
 
Materials/Methods: 
CTs of 145 patients who were irradiated for a head and neck primary malignancy at MD Anderson Cancer 
Center were retrospectively curated. Data were contoured by radiation oncologists and a resident physician 
and divided into two separate cohorts. One cohort was used to analyze lymph node levels (IA, IB, II, III, IV, V, 
RP) and the other used to analyze 17 swallowing and chewing structures. Forty-seven patients were in the 
lymph node level cohort (training/testing = 32/15).  All these patients received definitive radiotherapy without a 
nodal dissection to minimize anatomic perturbation of the lymph node levels. The remaining 98 patients formed 
the swallowing/chewing structures cohort (training/testing =78/20). Separate nnUnet models were trained and 
validated using the separate cohorts. For the lymph node levels, two double blinded studies were used to 
score preference and clinical acceptability (using a 5-point Likert scale) of AI vs human contours. For the 
swallowing and chewing structures, clinical acceptability was scored. Quantitative analyses of the test sets 
were performed for AI vs human contours for all structures using the Dice Similarity Coefficient (DSC) and the 
95th percentile Hausdorff distance (HD95th). 

Results: 
Across all lymph node levels (IA, IB, II, III, IV, V, RP), median DSC ranged from 0.77 to 0.89 for AI vs manual 
contours in the testing cohort. Across all lymph node levels, the AI contour was superior to or equally preferred 
to the manual contours at rates ranging from 75% to 91% in the first blinded study. In the second blinded 
study, physician preference for the manual vs AI contour was statistically different for only the RP contours (p < 
0.01). Thus, there was not a significant difference in clinical acceptability for nodal levels I-V for manual versus 
AI contours. Across all physician-generated contours, 82% were rated as usable with stylistic to no edits, and 
across all AI-generated contours, 92% were rated as usable with stylistic to no edits. For the swallowing 
structures median DSC ranged from 0.86 to 0.96 and was greater than 0.90 for 11/17 structures types. Of the 
340 contours in the test set, only 4% required minor edits. 
 
Conclusions: 
An approach to generate clinically acceptable automated contours for lymph node levels and swallowing and 
chewing structures in the head and neck was demonstrated. For nodal levels I-V, there was no significant 
difference in clinical acceptability in manual vs AI contours. Of the two testing cohorts for lymph nodes and 
swallowing and chewing structures, only 8% and 4% of structures required minor edits, respectively. All testing 
and training data are being made publicly available on The Cancer Imaging Archive. 
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Introduction 
 

Artificial intelligence-based auto-segmentation models are being adopted in clinical practice within radiation 
oncology. The benefits of such approaches are well known and include time-savings1,2, decreases in 
variability3, and quality assurance applications 4–6. Such advances are pertinent to the head and neck, as 
delineation accuracy of OARs (organs at risk) and targets are limited by interobserver and trial protocol 
variability7–9. Within the anatomic site of head and neck, auto-segmentation models developed through deep 
learning has resulted in a myriad of contouring approaches4,10–17. Many of these models focus on contouring 
OARs that can be delineated from radiotherapy simulation CT scans. Commercial models for fully automated 
target segmentation in the head and neck are not yet available, but research in this area is gaining momentum.  

Of recent interest is the auto-segmentation of the low-risk, or elective clinical target volume (CTV). The low-risk 

CTV is comprised of anatomically-defined lymph node-containing regions (“lymph node levels”) that are at risk 

of metastatic spread, though possess no clinical or radiographic evidence of disease at the time of treatment. 

The set of lymph node levels selected for inclusion in the low-risk CTV is based on lymphatic drainage patterns 

from the location of the primary tumor. Generally accepted volumes based on common tumor locations are well 

documented in consensus guidelines and contouring resources for the head and neck9,18. Automatic CT-based 

segmentation of these lymph node levels (e.g. I-V) is achievable and has been demonstrated by numerous 

works10,19–25. Our clinic previously integrated a deep-learning based approach to contour elective lymph node 

levels in CT scans10. This approach groups nodal levels into families (e.g. IA-V, IB-V, II-IV, and retropharyngeal 

[RP]) so that elective CTVs can be quickly constructed using Boolean algebra for use in manual and automatic 

treatment planning. However, one significant challenge in the field of target segmentation is keeping pace with 

changes in clinical practice. Sources of such changes can be driven by changes in contouring guidelines, 

improvements in image-guidance technology, or evolving evidence that alters our understanding of the balance 

between toxicity and tumor control26,27. Strijbis et also noted in their work on automated segmentation of levels 

I-V that contours produced by Cardenas et al are generous, resembling their institution’s PTVs25. Based on 

physician feedback and changes in clinical practice, we sought to develop a new auto-segmentation model that 

more accurately reflects the narrower treatment volumes utilized in our clinic’s practice today. 

 

Proximal to these CTVs are essential structures which enable deglutition (i.e. swallowing) and mastication (i.e. 

chewing). When the functions of these structures are compromised, side effects such as dysphagia can occur. 

Dysphagia is one of the strongest determinants of quality of life following radiation therapy and can affect many 

physical, mental, and social components of life28–31. Many works have well characterized the dose-effect 

relationships for swallowing and chewing structures28,32,33. Although publicly available models and repositories 

exist for OARs in the head and neck, to our knowledge there exists no such repository of swallowing 

structures. Teguh et al were the last to clinically validate an approach to segment lymph levels and swallowing 

structures in the head and neck in one combined work, but did so with atlas-based auto-segmentation19. Many 

other authors have studied swallowing and chewing structure segmentation, but only include some of the major 

swallowing and chewing structures that can be visualized on CT. A comprehensive auto-contouring approach 

to generate these structures could provide a means for reliable and efficient assessment of dose response 

studies—especially since manual delineation of these many structures is extremely labor intensive.  

The purpose of this work is to present a straightforward approach that can efficiently and effectively create and 
validate a clinical segmentation tool for 1) individual lymph node levels and 2) swallowing and chewing 
structures in the head and neck. For the lymph nodes, the hypothesis of this work is that our approach will 
result in contours that will be as clinically acceptable as physicians’ own manual contours and be preferred at 
rates equal or superior to manual contours. Such an auto-contouring model could eliminate sources of intra-
physician variability present in elective target contouring if used clinically. This will be tested using two double 
blinded studies to score physician preference and contour quality (for manual vs AI contours). For the 
swallowing structures, we use a simpler evaluation approach (i.e. no blinded studies) to gauge clinical 
acceptability of resulting AI contours.  
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In a busy practice with limited physician time, data scarcity can be a challenge for clinics that are wanting to 
develop their own tools or perform clinical research. To this end, we have published the first clinically validated 
dataset of cervical lymph nodes (XXXX) and swallowing and chewing structures (XXXX) on The Cancer 
Imaging Archive (TCIA).  

 

Materials and Methods 
 

The MD Anderson Cancer Center has 10 physicians 11 physicists, and 8 dosimetrists who specialize in head 
and neck cancer at its main hospital. Our treatment planning process for the head and neck uses auto-
contouring for organs-at-risk4 and lymph node level families10 for every patient ( > 100 per month). The 
following subsections outline the data curation, model training, quantitative evaluation, and design of blinded 
studies. This work followed the recommendations by Baroudi et al which suggest guidance for quantitative 
(using overlap and distance metrics) and qualitative evaluation (using physician review) of clinical 
acceptability34. Thus, both quantitative and qualitative review metrics are reported from the literature for lymph 
node segmentation as well as swallowing and chewing structure segmentation. 

 

Patient data 

CTs of 145 patients who were irradiated for a head and neck primary malignancy at MD Anderson Cancer 
Center were retrospectively curated. All data was gathered under an approved institutional review board 
protocol. Three CT scanner models were utilized to obtain images: GE Lightspeed/Discovery, Phillips Brilliance 
Big Bore/64, and Somatom Definition Edge. Modal slice thickness and pixel spacing was 2.5 mm (range: 1.0–
3.3 mm) and 1.17 mm (range: 0.977–1.27 mm), respectively. All patients were imaged supine with head holder 
and thermoplastic mask specified in our institution’s simulation protocol for head and neck radiotherapy. 

The data set of 145 patients were divided into two separate cohorts; one cohort was used to analyze lymph 
node levels and the other used to analyze swallowing and chewing structures. Forty-seven patients were in the 
lymph node level cohort.  All these patients received definitive radiotherapy without a nodal dissection to 
minimize anatomic perturbation of the lymph node levels. The remaining 98 patients formed the 
swallowing/chewing structures cohort. 

Segmentation of ground truth contours 

Five radiation oncologists manually contoured seven lymph node levels (IA, IB, II, III, IV, V, RP) on 3 patients 
each resulting in a total of 105 lymph node levels in 15 patients. These 15 patients served as the testing 
dataset for the lymph node level segmentation model. Contours were anatomically drawn without margin 
according to institutional practice.  

One radiation oncologist contoured 17 structures involved in swallowing and chewing in the head and neck 
(tongue, thyroid cartilage, cricoid, cricopharyngeus, glottic area, supraglottic larynx, buccinators, inferior 
constrictor, medial constrictor, superior constrictor, anterior digastric, posterior digastric, genioglossus, 
masseter, mylogeniohyoid (mgh) complex, lateral pterygoid, and medial pterygoid) on twenty patients. This 
cohort was used as the swallowing/chewing structures testing dataset. 
 

Training and testing methodologies 

A three-step methodology was used to create the final multi-class lymph node level segmentation model. First, 
the publicly available nnUnet model was used to train a multiclass segmentation model using the small, testing 
dataset of 15 patients35. A 3D full resolution model was used with five-fold cross validation; all augmentations 
were enabled. Left and right contours for each nodal level were combined into one volume to prevent 
misclassification from left-right flipping augmentations. Second, the model was used to generate lymph node 
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level contours on 32 additional patients (described above) and were edited by a radiation oncology resident. 
Third, the final model was trained with the 32 patients and tested on the original cohort of 15 patients.  

A similar three-step methodology was used to create the swallowing/chewing structures model. First, 20 
patients’ structures were manually contoured for use as a standard, and an atlas-based model using Elekta 
Admire (Elekta AB, Stockholm, Sweden) with batch fusion was created. Second, the atlas was run on the 
remaining 78 and manually revised by a radiation oncologist. Third, two models were trained to accommodate 
GPU memory (one with 10 structures and another with 7 structures).  The data from the manually revised 78 
patients were used for training, and the 20 remaining patients were used for testing. The nnUnet settings to 
train the models were the same as those mentioned above. 

 

Quantitative analysis of lymph node level, chewing, and swallowing structures 

Dice Similarity Coefficient (DSC) and 95th percentile Hausdorff (HD95th) distance were used as quantitative 
performance metrics between the ground truth contours and the predicted contours. 

For point sets A and B, representing 3-dimensional segmentation volumes, the DSC and HD95th are defined in 
Equations 1-3. |A| and |B| denote each 3-dimensional segmentation volume; S1 and S2 are the surfaces from A 
and B, respectively. 

1) 𝐷𝑆𝐶 =  
2|𝐴∩𝐵|

|𝐴|+|𝐵|
 

2) 𝑑(𝑎, 𝑏) = 𝑚𝑖𝑛‖𝑎 − 𝑏‖2 

3) 𝐻𝐷95𝑡ℎ =  max (percentile(𝑑(𝑆1, 𝑆2)), percentile(𝑑(𝑆2, 𝑆1)) 

 

Blinded studies to evaluate physician preference for lymph node level contours 

Two blinded studies were performed to gauge physician preference and quality on the testing dataset. First, 
ground truth and predicted contour names were identical in the treatment planning system except for a prefix 
“A” or “B”. This prefix was randomly assigned to the set of human or machine contours to blind the physician to 
their identity. The colors of the contours in the treatment planning system were also shuffled so that human or 
machine contours were not the same across all patients. Physicians viewed machine and AI contours 
simultaneously and scored preference as either A, B, C, or D (A = prefer A, B = prefer B, C = prefer either, or D 
= prefer neither. Ultimately there were 525 scores collected in the lymph node contour preference dataset, with 
5 physicians each evaluating 15 CT scans with 7 lymph node levels contoured (5x15x7). Since a period of over 
6 months took place between initial contouring and this blinded study, each of the 5 physicians were unbiased 
in their scorings, despite having previously contoured ground truth data for 3 of the 15 patients. Thus, 
physician scores of preference reflect the frequency that their own, the AI, or a colleague’s contours is 
preferred.  

The second blinded study used the same 15 patient cohort. The goal of this blinded study was to quantify the 
degree to which contours require editing before clinical use. Quantitative scores and comments for each 
contour (AI and manual) were collected for these patients. The scoring of the manual contours provided a 
control and comparison for the AI contours. Due to the labor-intensive nature of this task, each physician only 
rated 3 patients each. One of the three patients was originally contoured by the scoring physician; two of the 
three patients were originally contoured by a different physician. A 5-point Likert scale was used: 

1. Unusable: The automatically generated contours are unusable (ie, wrong body area, outside confines 
of body, etc). 

2. Major edits are necessary: Edits that the reviewer judges are required to ensure appropriate treatment 
are present. Edits required are significantly substantial and the user would prefer to start from scratch. 
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3. Minor edits are necessary: Edits that the reviewer judges are clinically important exist. Also, it is more 
efficient to edit the automatically generated contours than start from scratch. 

4. Minor edits are not necessary: Stylistic differences exist, but differences are not clinically important. The 
current contours are acceptable. 

5. Use-as-is: Clinically acceptable, could be used for treatment without change. 

Student’s t-tests were used to quantify whether the mean of the clinical acceptability scores were significantly 
different for manually generated versus AI generated contours.  

Qualitative scoring for swallowing and chewing structures 

The aforementioned five-point Likert scale was used to qualitatively score structure predictions on the 20-
patient test set from the swallowing/chewing structures patient cohort. Clinically acceptability was scored by 
one physician. 

Results 
 

Lymph node auto-segmentation performance 
 

Median DSC for the test set (n = 15) were 0.83, 0.89, 0.88, 0.85, 0.83, 0.79, 0.77 for levels IA, IB, II, III, IV, V, 
and RP, respectively. Median HD95th

 (in mm) are 2.5, 2.7, 3.3, 4.2, 5.3, 5.5, and 2.9 for levels IA, IB, II, III, IV, 
V, and RP, respectively.  DSC’s are featured in Table I for comparison to other recent lymph node 
segmentation approaches in the literature. 
 

 

Figure 1 | Quantitative metrics for lymph node level segmentation. dsc, dice similarity coefficient; 
hd95, 95th percentile Hausdorff distance 
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Figure 2 | Segmentations of lymph node levels IA, IB, II, III, IV, V, and RP (columns A-G, respectively). 
Solid lines represent ground truth segmentations and dotted lines represent predicted segmentations. 

 

  

Figure 3 | Featured segmentations. White arrow in A indicates bulky adenopathy at level II (red). White 
arrows in B indicate where predicted levels III (dotted blue) and IV (dotted pink) slope in the inferior-
superior direction. 

 

Physician preference for AI-based lymph node segmentations 

Across all contours, physicians preferred the AI contours at a rate of 247/525 = 47%. The manual contours 
were preferred at a rate of 88/525 = 16.8%. The AI contour was superior to or equally preferred to the manual 
contour at a rate of 436/525 = 83%. This rate is the sum of “AI” and “Either” (Table 1). For levels IA, IB, II, III, 
IV, V, and RP, the AI contour was superior to or equally preferred to the manual contour at rates ranging from 
75% to 91%. One physician scored only 1 of 525 contours (level IV) as preferring neither the AI nor the MD 
contour. In this instance, the physician that made the ground truth manual contour and the physician that 
scored were different physicians. On average, physicians preferred their original contours (when unknowingly 
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reviewing their own contours which were blinded) over that of the AI contours only 18% of the time (range = 0 - 
29%). 

Table 1 | Physician preference scoring for manual and AI contours 

  IA IB II III IV V RP Sum 

Either 60% 45% 29% 44% 28% 19% 27% 36% 

AI 24% 40% 51% 44% 47% 60% 64% 47% 

Manual 16% 15% 20% 12% 24% 21% 9% 17% 

Neither 0% 0% 0% 0% 1% 0% 0% 0% 

AI or Either 84% 85% 80% 88% 75% 79% 91% 83% 

 

 

Table 2 | Physician scoring of clinical acceptability for manual and AI contours 

  IA IB II III IV V RP All 

AI 4.2 (3-5) 4.4 (4-5) 4.2 (3-5) 4.4 (4-5) 4.1 (3-5) 4.1 (3-5) 4.5 (3-5) 4.3 (3-5) 

Manual 4.4 (3-5) 4 (3-5) 3.9 (3-5) 4.1 (3-5) 3.9 (3-5) 3.9 (2-5) 3.7 (3-4) 3.9 (2-5) 

p-value 0.37 0.07 0.06 0.11 0.42 0.42 <0.01 <0.01 

 

In a blinded Likert scale assessment of each nodal level, preference for the manual vs AI contour was 
significantly different for only the RP contours (p < 0.01), for which AI was preferred (Table 2). Thus, there was 
not a significant difference in clinical acceptability for nodal levels I-V for manual versus AI contours. When 
radiation oncologists scored their own or other radiation oncologists’ contours, no edits were required (score of 
4 or 5) for 82% of contours. When radiation oncologists scored AI contours, no edits were required for 92% of 
contours. 

 

Swallowing and chewing structures auto-segmentation performance 
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Figure 4 | Quantitative metrics for swallowing/chewing structure segmentations. dsc, dice similarity 
coefficient; hd95, 95th percentile Hausdorff distance 

Median DSC for the test set (n = 20) ranged from 0.86 to 0.96 (Fig 4A); median HD95th
 (in mm) ranged from 

1.2 to 2.5 (Fig 4B). Median DSC was greater than 0.90 for 11/17 structures. 

 

 

 

Figure 5 | Segmentations of all swallowing/chewing structures. 5A is the mid-sagittal plane that cuts 
through a majority of the midline structures; 5B is a sagittal plane that cuts through the buccinator and 
pterygoids. Solid lines represent ground truth segmentations and dotted lines represent predicted 
segmentations. In many of the figures, solid and dotted lines are overlapped. 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2023. ; https://doi.org/10.1101/2023.08.07.23293787doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.07.23293787
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

Figure 6 | Featured segmentations for swallowing/chewing structures requiring minor edits. White 
arrow in A indicates the presence of tumor that is displacing local anatomy. White arrows in B indicate 
where the tongue is displaced by the dental stent. 

 

 

Table 3 | Physician scoring of clinical acceptability for swallowing and chewing structures 
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Physician review of AI-based swallowing and chewing structure segmentations 

Of the 340 contours reviewed, 100% were found to be 3 or greater (minor edits - use as is) as noted in Table 3. 

96% percent of contours were scored as 4 or 5 (stylistic differences, use-as-is). Thyroid cartilage, glottic area, 

larynx, buccinators, digastrics, masseters, mgh complex, and pterygoids had perfect scores (5’s) across all 

patients. Four common issues were identified (1) The genioglossus would contour into the mgh complex when 

transitioning, (2) The anterior digastrics overcontour into the mgh complex, (3) The anterior digastrics would 

overcontour posteriorly, and (4) Transitions between the superior constrictor and medial constrictor, medial 

constrictor and inferior constrictor, and inferior constrictor and cricopharyngeus would be incomplete by 

missing a slice between structures or by splitting into islands at the transition. In general, the algorithm 

performed well in the presence of dental artifact (Fig A1). Examples of minor edits needing to be performed are 

featured in Figure 6 in the presence of tumor or dental stent which distorts the tongue. 

 

 

Discussion 
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This work has demonstrated how a publicly available deep learning model trained with expertly curated data (n 
= 32 lymph node dataset, n = 78 swallowing/chewing structure dataset) can result in a practical segmentation 
tool that is both accurate and clinically acceptable. Furthermore, this work has resulted in two published 
datasets (in The Cancer Imaging Archive) that are available for clinical researchers to reproduce or build upon 
the field of head and neck CT-based tissue segmentation. To our knowledge, these two datasets represent the 
first publicly available datasets for swallowing and chewing structures and lymph nodes contoured on non-
contrast CT, both with physician scores of clinical acceptability.  

Table 4 | Lymph node level segmentation performance in the literature 

Authors Year Approach volume 
minor edits or 

greater required 
DSC 

Teguh et al19 2011 multi-atlas I-V NA 0.73 

Yang et al21 2014 multi-atlas low-risk CTV NA 0.78 

Wong et al22 2020 deep learning IB, II, III, IV, V, RP (as one volume) NA 0.72 

Cardenas et al10 2020 deep learning Ia-V, Ib-V, II-IV, and RP 43% (0.81 - 0.90) 

van der Veen23 2020 deep learning 17 nodal levels 100%* (0.46 - 0.82) 

Strijbis et al25 2022 deep learning I, II, III, IV, V NA (0.71 - 0.85) 

Weissmann et al24 2022 post processing 20 nodal levels NA^ 0.78 

Maroongroge et al 2023 deep learning IA, IB, II, III, IV, V, RP 8% (0.77 - 0.89) 

 

* edits were 1.4 mm on average 
^ Contours were scored by a clinical expert on a 0-100 scale, and was 81 on average. 

 

One early work in lymph node and swallowing structures segmentation in the head and neck was by Teguh et 
al which obtained a DSC of 0.73 on average for lymph node levels I-V and 0.50–0.71 DSC for swallowing and 
chewing structures19. Since then, multiple authors have continued to build more accurate models using deep 
learning, while simultaneously increasing the number of structures predicted by deep learning models (Tables 
4 and 5). While various works such as van der Veen and Weissmann et al reported qualitative evaluations (e.g. 
radiation oncologist scores) and quantitative evaluations (e.g. DSC, HD) for lymph node model contours, few 
authors reported what proportion of deep learning contours require edits before the contours can be used 
clinically (Table 4). For swallowing and chewing structures, most authors have reported what percentage of 
their test set contours require edits before clinical use (Table 5). These rates have ranged from 100% to 18% 
for various structures with DSC’s ranging from 0.5 to at most 0.91 on average or median. In addition to 
accuracy and clinical acceptability, previous works have extensively studied human interobserver variability in 
lymph node level contouring and have quantified it in terms of DSC23,24. Weissman et al demonstrated that 
when physicians re-contoured their own volumes, DSC was 0.77 on average24. Overall, they reported that the 
accuracy of their deep learning approach performed with 0.78 DSC on average across 20 nodal levels and 
made their deep learning model publicly available.  

Regarding the lymph nodes segmentation performance of our approach, quantitative analysis of the lymph 
node level segmentations indicated that DSC ranged from 0.77 to 0.89 across all levels and is comparable to 
other recent approaches in the literature (Table 4). Regarding qualitative evaluation, a blinded study 
investigating physician preference indicated that the AI contours were superior to or equally preferred to the 
manual contours at rates ranging from 75% to 91%. In addition, a blinded study of clinical acceptability 
indicated that there was no significant difference in clinical acceptability between manual contours and AI 
contours for levels IA, IB, II, III, IV, and V, with greater clinical acceptability demonstrated for AI-generated RP 
contours. Furthermore, only 8% of AI lymph node contours require edits for clinical use as determined by our 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 9, 2023. ; https://doi.org/10.1101/2023.08.07.23293787doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.07.23293787
http://creativecommons.org/licenses/by-nd/4.0/


 

 

team of sub-specialized head and neck radiation oncologists. Thus, the hypothesis of this work can be 
accepted, since 1) there is no difference in clinical acceptability between manual and AI contours and 2) the AI 
contours were superior to or equally preferred to the manual contours. Although not directly comparable, our 
average DSC’s in the nodal test set are all greater than previously reported measures of interobserver 
variability mentioned above. Anecdotally, this may suggest that our model accuracy has similar or smaller 
levels of variance compared to human contouring in our practice since there was no preference for manual vs 
AI contours (p <0.01) for all but one nodal level. As is performed in clinical practice, the lymph node model 
learned to seamlessly abut adjacent nodal levels (i.e. no gaps). However, this abutment did not coincide with 
the axial slice planes which are orthogonal to the superior-inferior direction (Figure 2B). A slice plane 
adjustment function was developed by Weissman et al, to post process contours so that they abut in axial 
planes and more closely resemble human contours which are typically contoured in axial views24. While this 
technique resulted in better physician ratings in Weissman’s study (vs no post processing), such a technique 
was not applied to our testing cohort, as our lymph node contours were scored as equivalent or superior to 
manual contours without post processing.  

Strijbis et al demonstrated similar quantitative lymph node model performances values to our work but used a 
training cohort roughly twice the size of our training cohort25. However, as demonstrated by Yu et al, there are 
diminishing returns for increasing U-Net segmentation performance as a function of training dataset size36. 
This is especially true when the training data (in this case CT) contain images of patients with consistent 
patient positioning, immobilization, and imaging protocol. Weismann et al demonstrated that a clinically 
acceptable lymph segmentation model could be made with the publicly available nnUnet architecture with a 
small cohort of patients (n = 35)24. Likewise, we have found this number to be adequate for our patient 
population of head and neck patients which receive radiotherapy simulation CTs.  

Table 5. Swallowing and chewing structures segmentation performance in the literature 

Authors Year Approach volume 

minor 
edits or 
greater 

required 

DSC 

Teguh et al1 2011 multi-atlas swallowing/chewing structures NA (0.50 - 0.71)^^ 

van der Veen et al2 2019 
deep 

learning 
HN OARs and constrictor muscles NA^ (0.71 - 0.97) 

van Dijk et al3 2020 
deep 

learning 
8 Upper digestive and airway-related* ~18-59% (0.52-0.91) 

Li et al4 2022 
deep 

learning 
4 swallowing structures < 50% (0.60-0.84) 

Iyer et al5 2022 
deep 

learning 
4 swallowing/chewing structures* (23-100%) (0.69–0.87) 

Maroongroge et al 2023 
deep 

learning 
17 swallowing/chewing structures* 4% (0.86-0.96) 

 

^ 100%, < 2mm MSD on average 
*left/right designation not included in count 
^^ atlas contours vs reference contours 

 

Regarding the swallowing structures segmenation performance, excellent quantitative and qualitative 
measures were obtained on the swallowing/chewing structures test set. Our work produced a model that 
segments 17 different swallowing and chewing structures, more than any work, to our knowledge, has 
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produced. This publicly available data will be a valuable source of data for future head and neck studies. 
Median DSC was greater than 0.86 for all structures, and although values in the literature cannot be directly 
compared between different datasets, our approach yields the most accurate structures reported in terms of 
DSC. Furthermore, it was demonstrated that 96% percent of contours in the test set could be used clinically 
without edit and this percentage is much greater than any rates previously reported in the literature for 
swallowing and chewing structures (Table 5). Dental stents distorting tongue position (Figure 6B) and the 
presence of abutting tumor (Figure 6B) were common factors which necessitated minor edits. The hypothesis 
of this work, that swallowing and chewing AI contours are clinically acceptable, can be accepted.  

One limitation of this work is that the impact on the model that variations in patient population and radiotherapy 
simulation protocol were not studied. Future studies would benefit from studying the effects of patient 
positioning, adenopathy (as noted in Fig 3A), nodal level dissection, bulky disease, and presence of contrast 
upon segmentation performance. In this work, training and testing cohorts for both datasets used a three-step 
methodology in which ground truth data was generated by a sparsely trained deep learning model or atlas-
based model. Although this strategy is useful for perpetuating sparse data, it can bias the curation process if 
contours are not comprehensively edited after it is generated by the atlas or sparsely trained model. Lastly, not 
all nodal levels were included in this work, as many listed in consensus guidelines are not commonly used. 
Future model refinements will include a more comprehensive selection of nodal levels.  

These models for lymph nodes and swallowing and chewing structures are being integrated into our clinical 
practice at MD Anderson as well as the Radiation Planning Assistant (RPA), a web-based, FDA 510k cleared 
platform that provides contouring and planning to clinics with low resources. Future work will involve multi-
institutional studies to evaluate robustness as well as application based-works that use these tools for clinical 
trial quality assurance and toxicity analyses. 

Conclusion 
 

This work demonstrated an approach to generate clinically acceptable contours for lymph node levels, 
swallowing structures, and chewing structures for CT-based segmentation in the head and neck. A publicly 
available deep learning model using data curated by sub-specialized radiation oncologists in the head and 
neck resulted AI contours which are, on the vast majority, clinically acceptable and highly accurate. This work 
has also produced two separate datasets that are the first publicly available datasets for lymph node levels and 
swallowing and chewing structures in the head and neck. 
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