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Abstract 233 

The genetic basis of severe COVID-19 has been thoroughly studied and many genetic 234 

risk factors shared between populations have been identified. However, reduced sample 235 

sizes from non-European groups have limited the discovery of population-specific 236 

common risk loci. In this second study nested in the SCOURGE consortium, we have 237 

conducted the largest GWAS meta-analysis for COVID-19 hospitalization in admixed 238 

Americans, comprising a total of 4,702 hospitalized cases recruited by SCOURGE and 239 

other seven participating studies in the COVID-19 Host Genetic Initiative. We 240 

identified four genome-wide significant associations, two of which constitute novel loci 241 

and first discovered in Latin-American populations (BAZ2B and DDIAS). A trans-ethnic 242 

meta-analysis revealed another novel cross-population risk locus in CREBBP. Finally, 243 

we assessed the performance of a cross-ancestry polygenic risk score in the SCOURGE 244 

admixed American cohort.  245 

Introduction 246 

To date, more than 50 loci associated to COVID-19 susceptibility, hospitalization, and 247 

severity have been identified using genome-wide association studies (GWAS)1,2. The 248 

COVID-19 Host Genetics Initiative (HGI) has made significant efforts3 to augment the 249 

power to identify disease loci by recruiting individuals from diverse populations and 250 

conducting a trans-ancestry meta-analysis. Despite this, the lack of genetic diversity and 251 

a focus on cases of European ancestries still predominate in the studies4,5. Besides, 252 

while trans-ancestry meta-analyses are a powerful approach for discovering shared 253 

genetic risk variants with similar effects across populations6, they may fail to identify 254 

risk variants that have larger effects on particular underrepresented populations. Genetic 255 

disease risk has been shaped by the particular evolutionary history of populations and 256 

the environmental exposures7. Their action is particularly important for infectious 257 
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diseases due to the selective constrains that are imposed by the host-pathogen 258 

interactions8,9. Literature examples of this in COVID-19 severity includes a DOCK2 259 

gene variant in East Asians10, and frequent loss of function variants in IFNAR1 and 260 

IFNAR2 genes in Polynesian and Inuit populations, respectively11,12.  261 

Including diverse populations in case-control GWAS studies with unrelated participants 262 

usually require a prior classification of individuals in genetically homogeneous groups, 263 

which are typically analysed separately to control the population stratification effects13. 264 

Populations with recent admixture impose an additional challenge to the GWAS due to 265 

their complex genetic diversity and linkage disequilibrium (LD) patterns, requiring the 266 

development of alternative approaches and a careful inspection of results to reduce the 267 

false positives due to population structure7. In fact, there are benefits in study power 268 

from modelling the admixed ancestries either locally, at regional scale in the 269 

chromosomes, or globally, across the genome, depending on factors such as the 270 

heterogeneity of the risk variant in frequencies or the effects among the ancestry 271 

strata14. Despite the development of novel methods specifically tailored for the analysis 272 

of admixed populations15, the lack of a standardized analysis framework and the 273 

difficulties to confidently cluster the admixed individuals into particular genetic groups 274 

often leads to their exclusion from GWAS.  275 

The Spanish Coalition to Unlock Research on Host Genetics on COVID-19 276 

(SCOURGE) recruited COVID-19 patients between March and December 2020 from 277 

hospitals across Spain and from March 2020 to July 2021 in Latin-America 278 

(https://www.scourge-covid.org). A first GWAS of COVID-19 severity among Spanish 279 

patients of European descent revealed novel disease loci and explored age and sex 280 

varying effects of the genetic factors16. Here we present the findings of a GWAS meta-281 

analysis in admixed American (AMR) populations, comprising individuals from the 282 
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SCOURGE Latin-American cohort and the HGI studies, which allowed to identify two 283 

novel severe COVID-19 loci, BAZ2B and DDIAS. Further analyses modelling the 284 

admixture from three genetic ancestral components and performing a trans-ethnic meta-285 

analysis led to the identification of an additional risk locus near CREBBP. We finally 286 

assessed a cross-ancestry polygenic risk score model with variants associated with 287 

critical COVID-19. 288 

Results 289 

Meta-analysis of COVID-19 hospitalization in admixed Americans  290 

Study cohorts 291 

Within the SCOURGE consortium, we included 1,608 hospitalized cases and 1,887 292 

controls (not hospitalized COVID-19 patients) from Latin-American countries and from 293 

recruitments of individuals of Latin-American descend conducted in Spain 294 

(Supplementary Table 1). Quality control details and estimation of global genetic 295 

inferred ancestry (GIA) (supplementary Figure 1) are described in Methods, whereas 296 

clinical and demographic characteristics of patients included in the analysis are shown 297 

in Table 1. Summary statistics from the SCOURGE cohort were obtained under a 298 

logistic mixed model with the SAIGE model (Methods). Another seven studies 299 

participating in the COVID-19 HGI consortium were included in the meta-analysis of 300 

COVID-19 hospitalization in admixed Americans (Figure 1). 301 

GWAS meta-analysis 302 

We performed a fixed-effects GWAS meta-analysis using the inverse of the variance as 303 

weights for the overlapping markers. The combined GWAS sample size consisted of 304 

4,702 admixed AMR hospitalized cases and 68,573 controls.  305 
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This GWAS meta-analysis revealed genome-wide significant associations at four risk 306 

loci (Table 2, Figure 2), two of which (BAZ2B and DDIAS) were novel discoveries. 307 

Variants of these loci were prioritized by positional and expression quantitative trait loci 308 

(eQTL) mapping with FUMA, identifying four lead variants linked to other 310 variants 309 

and 31 genes (Supplementary Tables 2-4). A gene-based association test revealed a 310 

significant association in BAZ2B and in previously known COVID-19 risk loci: 311 

LZTFL1, XCR1, FYCO1, CCR9, and IFNAR2 (Supplementary Table 5).  312 

Located within the gene BAZ2B, the sentinel variant rs13003835 is an intronic variant 313 

associated with an increased risk of COVID-19 hospitalization (Odds Ratio [OR]=1.20, 314 

95% Confidence Interval [CI]=1.12-1.27, p=3.66x10-8). This association was not 315 

previously reported in any GWAS of COVID-19 published to date. Interestingly, 316 

rs13003835 did not reach significance (p=0.972) in the COVID-19 HGI trans-ancestry 317 

meta-analysis including the five population groups1. Based on our mapping strategy 318 

(see Methods), we also prioritized PLA2R1, LY75, WDSUB1, and CD302 in this locus. 319 

The other novel risk locus is led by the sentinel variant rs77599934, a rare intronic 320 

variant located in chromosome 11 within DDIAS and associated with risk of COVID-19 321 

hospitalization (OR=2.27, 95%CI=1.70-3.04, p=2.26x10-8). The PRCP gene was an 322 

additional prioritized gene at this locus.  323 

We also observed a suggestive association with rs2601183 in chromosome 15, which is 324 

located between ZNF774 and IQGAP1 (allele-G OR=1.20, 95%CI=1.12-1.29, 325 

p=6.11x10-8, see Supplementary Table 2), which has not yet been reported in any other 326 

GWAS of COVID-19 to date. This sentinel variant is in perfect LD (r2=1) with 327 

rs601183, an eQTL of ZNF774 in the lung.   328 
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The GWAS meta-analysis also pinpointed two significant variants at known loci, 329 

LZTFL1 and FOXP4. The SNP rs35731912 was previously associated with COVID-19 330 

severity in EUR populations17, and it was mapped to LZTFL1. As for rs2477820, while 331 

it is a novel risk variant within gene FOXP4, it has a moderate LD (r2=0.295) with 332 

rs2496644, which has been linked to COVID-19 hospitalization18. This is consistent 333 

with the effects of LD in tag-SNPs when conducting GWAS in diverse populations. 334 

Functional mapping of novel risk variants 335 

Bayesian fine mapping 336 

We performed different approaches to narrow down the prioritized loci to a set of most 337 

probable genes driving the associations. First, we computed credible sets at the 95% 338 

confidence for causal variants and annotated them with VEP and the V2G aggregate 339 

scoring (Supplementary Table 6, Supplementary Figure 3). The 95% confidence 340 

credible set from the region of chromosome 2 around rs13003835 included 76 variants. 341 

However, the approach was unable to converge allocating variants in a 95% confidence 342 

credible set for the region in chromosome 11. 343 

Colocalization of eQTLs 344 

To determine if the novel genetic risk loci were associated with gene expression in 345 

relevant tissues (whole blood, lung, lymphocytes, and oesophagus mucosa), we 346 

computed the posterior probabilities (PP) of colocalization for overlapping variants 347 

allocated to the 95% confidence credible set. We used the GTEx v8 tissues as the main 348 

expression dataset, although it is important to consider that the eQTL associations were 349 

carried out mainly on individuals of EUR ancestries. To confirm the colocalization in 350 

other ancestries, we also performed analyses on three expression datasets computed on 351 

admixed AMR, leveraging data from individuals with high African GIA, high Native-352 
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American ancestry, and from a pooled cohort (Methods). Results are shown in the 353 

supplementary Table 7. 354 

Five genes (LY75, BAZ2B, CD302, WDSUB1, and PLA2R1) were the candidates for 355 

eQTL colocalization in the associated region in chromosome 2. However, LY75 356 

emerged as the most likely causal gene for this locus since the colocalization in whole 357 

blood was supported with a PP for H4 (PPH4) of 0.941 and with robust results 358 

(supplementary Figure 4). Moreover, this also allowed to prioritize rs12692550 as the 359 

most probable causal variant for both traits at this locus with a PP_SNP_H4 of 0.74. 360 

Colocalization with gene expression data from admixed AMR validated this finding. 361 

LY75 also had evidence of colocalization in lungs (PPH4=0.887) and the esophagus 362 

mucosa (PPH4=0.758). However, we could not prioritize a single causal variant in these 363 

two other tissues and sensitivity analyses revealed a weak support.  364 

CD302 and BAZ2B were the second and third most likely genes that could drive the 365 

association, respectively, according to the colocalization evidence. CD302 was the most 366 

probable according to the high AFR genetic ancestries dataset (supplementary Figure 367 

5).  368 

Despite the chromosome 11 region failing to colocalize with gene expression 369 

associations for any of the tissues, the lead variant rs77599934 is in moderate-to-strong 370 

LD (r2=0.776) with rs60606421, which is an eQTL associated to a reduced expression 371 

of DDIAS in the lungs (supplementary Figure 6). The highest PPH4 for DDIAS was in 372 

the high AFR genetic ancestry expression dataset (0.71).  373 

Transcriptome-wide association study (TWAS) 374 

Five novel genes, namely SLC25A37, SMARCC1, CAMP, TYW3, and S100A12 375 

(supplementary Table 8) were found significantly associated in the cross-tissue TWAS. 376 
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To our knowledge, these genes have not been reported previously in any COVID-19 377 

TWAS or GWAS analyses published to date. In the single tissue analyses, ATP5O and 378 

CXCR6 were significantly associated in lungs, CCR9 was significantly associated in 379 

whole blood, and IFNAR2 and SLC25A37 were associated in lymphocytes.  380 

Likewise, we carried out the TWAS analyses using the models trained in the admixed 381 

populations. However, no significant gene-pairs were detected in this case. The 50 382 

genes with the lowest p-values are shown in the supplementary Table 9. 383 

Genetic architecture of COVID-19 hospitalization in AMR populations 384 

Allele frequencies of rs13003835 and rs77599934 across ancestries 385 

Neither rs13003835 (BAZ2B) or rs77599934 (DDIAS) were significantly associated in 386 

the COVID-19 HGI B2 cross-population or population-specific meta-analyses. Thus, 387 

we investigated their allele frequencies (AF) across populations and compared their 388 

effect sizes. 389 

According to gnomAD v3.1.2, the T allele at rs13003835 (BAZ2B) has an AF of 43% in 390 

admixed AMR groups while AF is lower in the EUR populations (16%) and in the 391 

global sample (29%). Local ancestry inference (LAI) reported by gnomAD shows that 392 

within the Native-American component, the risk allele T is the major allele, whereas it 393 

is the minor allele within the African and European LAI components. These large 394 

differences in AF might be the reason underlying the association found in AMR 395 

populations. However, when comparing effect sizes between populations, we found that 396 

they were in opposite direction between SAS-AMR and EUR-AFR-EAS and that there 397 

was a large heterogeneity among them (Figure 3).  398 

 rs77599934 (DDIAS) had an AF of 1.1% for the G allele in the non-hospitalized 399 

controls (Table 2), in line with the recorded gnomAD AF of 1% in admixed AMR 400 
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groups. This variant has potential to be population-specific variant, given the allele 401 

frequencies in other population groups such as EUR (0% in Finnish, 0.025% in non-402 

Finnish), EAS (0%) and SAS (0.042%) and its greater effect size over AFR populations 403 

(Figure 3). Examining the LAI, the G allele occurs at 1.1% frequency in the African 404 

component while it is almost absent in the Native-American and European. Due to its 405 

low MAF, rs77599934 was not analyzed in the COVID-19 HGI B2 cross-population 406 

meta-analysis and was only present in the HGI B2 AFR population-specific meta-407 

analysis, precluding the comparison (Figure 3). For this reason, we retrieved the variant 408 

with the lowest p-value within a 50 kb region around rs77599934 in the COVID-19 409 

HGI cross-population analysis to investigate if it was in moderate-to-strong LD with our 410 

sentinel variant. The variant with the smallest p-value was rs75684040 (OR=1.07, 411 

95%CI=1.03-1.12, p=1.84x10-3). Yet, LD calculations using the 1KGP phase 3 dataset 412 

indicated that rs77599934 and rs75684040 were poorly correlated (r2=0.11). 413 

Cross-population meta-analyses 414 

We carried out two cross-ancestry inverse variance-weighted fixed-effects meta-415 

analyses with the admixed AMR GWAS meta-analysis results to evaluate whether the 416 

discovered risk loci replicated when considering other population groups. In doing so, 417 

we also identified novel cross-population COVID-19 hospitalization risk loci. 418 

First, we combined the SCOURGE Latin American GWAS results with the HGI B2 419 

ALL analysis (supplementary Table 10). We refer to this analysis as the SC-HGIALL 420 

meta-analysis. Out of the 40 genome-wide significant loci associated with COVID-19 421 

hospitalization in the last HGI release1, this study replicated 39 and the association was 422 

stronger than in the original study in 29 of those (supplementary Table 11). However, 423 

the variant rs13003835 located in BAZ2B did not replicate (OR=1.00, 95%CI=0.98-424 

1.03, p=0.644).  425 
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In this cross-ancestry meta-analysis, we replicated two associations that were not found 426 

in HGIv7 albeit they were sentinel variants in the latest GenOMICC meta-analysis2. We 427 

found an association at the CASC20 locus led by the variant rs2876034 (OR=0.95, 428 

95%CI=0.93-0.97, p=2.83x10-8). This variant is in strong LD with the sentinel variant 429 

of that study (rs2326788, r2=0.92), which was associated with critical COVID-192. 430 

Besides, this meta-analysis identified the variant rs66833742 near ZBTB7A associated 431 

with COVID-19 hospitalization (OR=0.94, 95%CI=0.92-0.96, p=2.50x10-8). Notably, 432 

rs66833742 or its perfect proxy rs67602344 (r2=1) are also associated with upregulation 433 

of ZBTB7A in whole blood and in esophagus mucosa. This variant was previously 434 

associated with COVID-19 hospitalization2. 435 

In a second analysis, we also explored the associations across the defined admixed 436 

AMR, EUR, and AFR ancestral sources by combining through meta-analysis the 437 

SCOURGE Latin American GWAS results with the HGI studies in EUR, AFR, and 438 

admixed AMR, and excluding those from EAS and SAS (Supplementary Table 12). We 439 

refer to this as the SC-HGI3POP meta-analysis. The association at rs13003835 (BAZ2B, 440 

OR=1.01, 95%CI=0.98-1.03, p=0.605) was not replicated and rs77599934 near DDIAS 441 

could not be assessed, although the association at the ZBTB7A locus was confirmed 442 

(rs66833742, OR=0.94, 95%CI=0.92-0.96, p=1.89x10-8). The variant rs76564172 443 

located near CREBBP also reached statistical significance (OR=1.31, 95% CI=1.25-444 

1.38, p=9.64x10-9). The sentinel variant of the region linked to CREBBP (in the trans-445 

ancestry meta-analysis) was also subjected a Bayesian fine mapping (supplementary 446 

Table 6) and colocalization with eQTLs under the GTEx v8 MASHR models in lungs, 447 

esophagus mucosa, whole blood, and transformed lymphocytes. Eight variants were 448 

included in the credible set for the region in chromosome 16 (meta-analysis SC-449 

HGI3POP), although CREBBP did not colocalize in any of the tissues.  450 
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Polygenic risk score models 451 

Using the 49 variants associated with disease severity that are shared across populations 452 

according to the HGIv7, we constructed a polygenic risk score (PGS) model to assess its 453 

generalizability in the admixed AMR (Supplementary Table 13). First, we calculated 454 

the PGS for the SCOURGE Latin Americans and explored the association with 455 

COVID-19 hospitalization under a logistic regression model. The PGS model was 456 

associated with a 1.48-fold increase in COVID-19 hospitalization risk per every PGS 457 

standard deviation. It also contributed to explain a slightly larger variance (R2=1.07%) 458 

than the baseline model. 459 

Subsequently, we divided the individuals into PGS deciles and percentiles to assess 460 

their risk stratification. The median percentile among controls was 40, while in cases it 461 

was 63. Those in the top PGS decile exhibited a 5.90-fold (95% CI=3.29-10.60, 462 

p=2.79x10-9) greater risk compared to individuals in the lowest decile, whereas the 463 

effects for the rest of the comparisons were much milder. 464 

We also examined the distribution of PGS scores across a 5-level severity scale to 465 

further determine if there was any correspondence between clinical severity and genetic 466 

risk. Median PGS scores were lower in the asymptomatic and mild groups, whereas 467 

higher median scores were observed in the moderate, severe, and critical patients 468 

(Figure 4). We fitted a multinomial model using the asymptomatic class as reference 469 

and calculated the OR for each category (Supplementary Table 13), observing that the 470 

disease genetic risk was similar among asymptomatic, mild, and moderate patients. 471 

Given that the PGS was built with variants associated with critical disease and/or 472 

hospitalization and that the categories severe and critical correspond to hospitalized 473 

patients, these results underscore the ability of cross-ancestry PGS for risk stratification 474 

even in an admixed population.   475 
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Finally, we incorporated the novel lead SNPs from our AMR meta-analysis 476 

(rs13003835, rs2477820, and rs77599934) into the PGS model. Their inclusion in the 477 

model contributed to explain a larger variance (R2=1.74%) than the model without 478 

them. This result, however, should be taken with caution given the risk of overfitting 479 

due to the use of the same subjects both for the derivation and testing of the variants. 480 

 481 

DISCUSSION 482 

We have conducted the largest GWAS meta-analysis of COVID-19 hospitalization in 483 

admixed AMR to date. While the genetic risk basis discovered for COVID-19 is largely 484 

shared among populations, trans-ancestry meta-analyses on this disease have primarily 485 

included EUR samples. This dominance of GWAS in Europeans, and the subsequent 486 

bias in sample sizes, can mask population-specific genetic risks (i.e., variants that are 487 

monomorphic in some populations) or be less powered to detect risk variants having 488 

higher allele frequencies in population groups other than Europeans. In this sense, after 489 

combining data from admixed AMR patients, we found two risk loci which are first 490 

discovered in a GWAS of Latin-American populations. Interestingly, the sentinel 491 

variant rs77599934 in the DDIAS gene is a rare coding variant (~1% for allele G) with a 492 

large effect on COVID-19 hospitalization that is nearly monomorphic in most of the 493 

other populations. This has likely led to its exclusion from the cross-populations meta-494 

analyses conducted to date, remaining undetectable.  495 

Fine mapping of the region harbouring DDIAS did not reveal further information about 496 

which gene could be the more prone to be causal, or about the functional consequences 497 

of the risk variant. However, DDIAS, known as damage-induced apoptosis suppressor 498 

gene, is itself a plausible candidate gene.  It has been linked to DNA damage repair 499 
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mechanisms: research showed that depletion of DDIAS led to an increase of ATM 500 

phosphorylation and the formation of p53-binding protein (53BP1) foci, a known 501 

biomarker of DNA double-strand breaks, suggesting a potential role in double-strand 502 

break repair19.  Similarly, elevated levels of phosphorylated nuclear histone 2AXγ were 503 

detected after knocking down DDIAS, further emphasizing its role in DNA damage20. 504 

Interestingly, a study found that the infection by SARS-CoV-2 also triggered the 505 

phosphorylation of the ATM kinase and inhibited repair mechanisms, causing the 506 

accumulation of DNA damage21. This same study reported the activation of the pro-507 

inflammatory pathway p38/MAPK by the virus, which was as well prompted after 508 

knocking-down DDIAS20.  509 

Regarding lung function, the role of DDIAS in lung cancer has been widely studied. It 510 

has been proposed as a potential biomarker for lung cancer after finding that it interacts 511 

with STAT3 in lung cancer cells, regulating IL-622,23 and thus mediating inflammatory 512 

processes. Furthermore, another study determined that its blockade inhibited lung 513 

cancer cell growth20. The sentinel variant was in strong LD with an eQTL that reduced 514 

gene expression of DDIAS in lung, and our findings suggest that DDIAS gene may be 515 

indeed involved in viral response. Hence, one reasonable hypothesis is that reduced 516 

expression of DDIAS could potentially facilitate SARS-CoV-2 infection through the 517 

downregulation of pathways involved in DNA repairment and inflammation. Another 518 

prioritized gene from this region was PRCP, an angiotensinase that has been linked to 519 

hypertension and for which a hypothesis on its role on COVID-19 progression has been 520 

raised24,25.  521 

The risk region found in chromosome 2 prioritized more than one gene. The lead variant 522 

rs13003835 is located within BAZ2B. BAZ2B encodes one of the regulatory subunits of 523 

the Imitation switch (ISWI) chromatin remodelers26 constituting the BRF-1/BRF-5 524 
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complexes with SMARCA1 and SMARCA5, respectively, and the association signal 525 

colocalized with eQTLs in whole blood. The gene LY75 (encoding the lymphocyte 526 

antigen 75) also colocalized with eQTLs in whole blood, esophagus mucosa, and lung 527 

tissues. Lymphocyte antigen 75 is involved in immune processes through antigen 528 

presentation in dendritic cells and endocytosis27, and has been associated with 529 

inflammatory diseases, representing also a compelling candidate for the region. 530 

Increased expression of LY75 has been detected within hours after the infection by 531 

SARS-CoV-228,29.  Lastly, the signal of CD302 colocalized in individuals with high 532 

AFR ancestral admixture in whole blood. This gene is located in the vicinity of LY75 533 

and both conform the readthrough LY75-CD302. It is worth noting that differences in 534 

AF for this variant suggest that analyses in AMR populations might be more powered to 535 

detect the association, supporting the necessity of population-specific studies.  536 

A third novel risk region was observed in chromosome 15, between the genes IQGAP1 537 

and ZNF774, although not reaching genome-wide significance.  538 

Secondary analyses revealed five TWAS-associated genes, some of which have been 539 

already linked to severe COVID-19. In a comprehensive multi-tissue gene expression 540 

profiling study30, decreased expression of CAMP and S100A8/S100A9 genes in COVID-541 

19 severe patients was observed, while another study detected the upregulation of 542 

SCL25A37 among severe COVID-19 patients31. SMARCC1 is a subunit of the SWI/SNF 543 

chromatin remodelling complex that has been identified as pro-viral for SARS-CoV-2 544 

and other coronavirus strains through a genome-wide screen32. This complex is crucial 545 

for ACE2 expression and the viral entry in the cell33.  546 

To explore the genetic architecture of the trait among admixed AMR populations, we 547 

performed two cross-ancestry meta-analyses including the SCOURGE Latin-American 548 

cohort GWAS findings. We found that the two novel risk variants did not associate with 549 
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COVID-19 hospitalization outside the population-specific meta-analysis, highlighting 550 

the importance of complementing trans-ancestry meta-analyses with group-specific 551 

analyses. Notably, this analysis did not replicate the association at the DSTYK locus, 552 

which was associated with severe COVID-19 in Brazilian individuals with higher 553 

European admixture34. This lack of replication supports the initial hypothesis of that 554 

study suggesting that the risk haplotype derived from European populations, as we have 555 

reduced the weight of this ancestral contribution in our study by excluding those 556 

individuals.  557 

Moreover, these cross-ancestry meta-analyses pointed to three loci that were not 558 

genome-wide significant in the HGIv7 ALL meta-analysis: a novel locus at CREBBP, 559 

and two loci at ZBTB7A and CASC20 that were reported in another meta-analysis. 560 

CREBBP and ZBTB7A achieved a stronger significance when considering only EUR, 561 

AFR, and admixed AMR GIA groups. According to a recent study, elevated levels of 562 

the ZBTB7A gene  promote a quasi-homeostatic state between coronaviruses and host 563 

cells, preventing cell death by regulating oxidative stress pathways35. This gene is 564 

involved in several signalling pathways, such as B and T cell differentiation36.  On a 565 

separate note, CREBBP encodes the CREB binding protein (CBP), involved in 566 

transcription activation, that is known to positively regulate the type I interferon 567 

response through virus-induced phosphorylation of IRF-337. Besides, the CREBP/CBP 568 

interaction has been implicated in SARS-CoV-2 infection38 via the cAMP/PKA 569 

pathway. In fact, cells with suppressed CREBBP gene expression exhibit reduced 570 

replication of the so called Delta and Omicron SARS-CoV-2 variants38. 571 

The cross-population PGS model effectively stratified individuals based on their genetic 572 

risk and demonstrated consistency with the clinical severity classification of the 573 

patients. The inclusion of the new variants in the PGS model slightly improved the 574 
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predictive value of the PGS. However, it is important to confirm this last finding in an 575 

external admixed AMR cohort to address potential overfitting arising from using the 576 

same individuals both for the discovery of the associations and for testing the model. 577 

This study is subject to limitations, mostly concerning the sample recruitment and 578 

composition. The SCOURGE Latino-American sample size is small and the GWAS is 579 

underpowered. Another limitation is the difference in case-control recruitment across 580 

sampling regions that, yet controlled for, may reduce the ability to observe significant 581 

associations driven by different compositions of the populations. In this sense, the 582 

identified risk loci might not replicate in a cohort lacking any of the parental population 583 

sources from the three-way admixture. Likewise, we could not explicitly control for 584 

socio-environmental factors that could have affected COVID-19 spread and 585 

hospitalization rates, although genetic principal components are known to capture non-586 

genetic factors. Finally, we must acknowledge the lack of a replication cohort. We have 587 

used all the available GWAS data for COVID-19 hospitalization in admixed AMR in 588 

this meta-analysis due to the low number of studies conducted. Therefore, we had no 589 

studies to replicate or validate the results. These concerns may be addressed in the 590 

future by including more AMR GWAS studies in the meta-analysis, both by involving 591 

diverse populations in study designs and by supporting research from countries in Latin-592 

America.  593 

This study provides novel insights into the genetic basis of COVID-19 severity, 594 

emphasizing the importance of considering host genetic factors through using non-595 

European populations, especially of admixed sources. Such complementary efforts can 596 

pin down new variants and increase our knowledge on the host genetic factors of severe 597 

COVID-19. 598 

Materials and methods 599 
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GWAS in Latin Americans from SCOURGE 600 

The SCOURGE Latin American cohort 601 

A total of 3,729 of COVID-19 positive cases were recruited across five countries from 602 

Latin America (Mexico, Brazil, Colombia, Paraguay, and Ecuador) by 13 participating 603 

centres (supplementary Table 1) from March 2020 to July 2021. In addition, we 604 

included 1,082 COVID-19 positive individuals recruited between March and December 605 

2020 in Spain who either had evidence of origin from a Latin American country or 606 

showed inferred genetic admixture between AMR, EUR, and AFR (with < 0.05% 607 

SAS/EAS). These individuals were excluded from a previous SCOURGE study that 608 

focused on participants with European genetic ancestries16. We used hospitalization as a 609 

proxy for disease severity and defined as cases those COVID-19 positive patients that 610 

underwent hospitalization as a consequence of the infection and used as controls those 611 

that did not need hospitalization due to COVID-19. 612 

Samples and data were collected with informed consent after the approval of the Ethics 613 

and Scientific Committees from the participating centres and by the Galician Ethics 614 

Committee Ref 2020/197. Recruitment of patients from IMSS (in Mexico, City), was 615 

approved by of the National Comitte of Clinical Research, from Instituto Mexicano del 616 

Seguro Social, Mexico (protocol R-2020-785-082). 617 

Samples and data were processed following normalized procedures. The REDCap 618 

electronic data capture tool39,40, hosted at Centro de Investigación Biomédica en Red 619 

(CIBER) from the Instituto de Salud Carlos III (ISCIII), was used to collect and manage 620 

demographic, epidemiological, and clinical variables. Subjects were diagnosed for 621 

COVID-19 based on quantitative PCR tests (79.3%), or according to clinical (2.2%) or 622 

laboratory procedures (antibody tests: 16.3%; other microbiological tests: 2.2%).  623 
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SNP array genotyping  624 

Genomic DNA was obtained from peripheral blood and isolated using the Chemagic 625 

DNA Blood 100 kit (PerkinElmer Chemagen Technologies GmbH), following the 626 

manufacturer’s recommendations. 627 

Samples were genotyped with the Axiom Spain Biobank Array (Thermo Fisher 628 

Scientific) following the manufacturer’s instructions in the Santiago de Compostela 629 

Node of the National Genotyping Center (CeGen-ISCIII; http://www.usc.es/cegen). 630 

This array contains probes for genotyping a total of 757,836 SNPs. Clustering and 631 

genotype calling were performed using the Axiom Analysis Suite v4.0.3.3 software. 632 

Quality control steps and variant imputation 633 

A quality control (QC) procedure using PLINK 1.941 was applied to both samples and 634 

the genotyped SNPs. We excluded variants with a minor allele frequency (MAF) <1%, 635 

a call rate <98%, and markers strongly deviating from Hardy-Weinberg equilibrium 636 

expectations (p<1x10-6) with mid-p adjustment. We also explored the excess of 637 

heterozygosity to discard potential cross-sample contaminations. Samples missing >2% 638 

of the variants were filtered out. Subsequently, we kept the autosomal SNPs and 639 

removed high LD regions and conducted LD-pruning (windows of 1,000 SNPs, with 640 

step size of 80 and r2 threshold of 0.1) to assess kinship and estimate the global 641 

ancestral proportions. Kinship was evaluated based on IBD values, removing one 642 

individual from each pair with PI_HAT>0.25 that showed a Z0, Z1, and Z2 coherent 643 

pattern (according to the theoretical expected values for each relatedness level). Genetic 644 

principal components (PCs) were calculated with PLINK with the subset of LD pruned 645 

variants.  646 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 8, 2024. ; https://doi.org/10.1101/2023.08.11.23293871doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.11.23293871
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

Genotypes were imputed with the TOPMed version r2 reference panel (GRCh38) using 647 

the TOPMed Imputation Server and variants with Rsq<0.3 or with MAF<1% were 648 

filtered out. A total of 4,348 individuals and 10,671,028 genetic variants were included 649 

in the analyses.  650 

Genetic admixture estimation 651 

Global genetic inferred ancestry (GIA), referred to the genetic similarity to the used 652 

reference individuals, was estimated with the ADMIXTURE42 v1.3 software following 653 

a two-step procedure. First, we randomly sampled 79 European (EUR) and 79 African 654 

(AFR) samples from The 1000 Genomes Project (1KGP)43 and merged them with the 655 

79 Native American (AMR) samples from Mao et al.44 keeping the biallelic SNPs. LD-656 

pruned variants were selected from this merge using the same parameters as in the QC. 657 

We then run an unsupervised analysis with K=3 to redefine and homogenize the clusters 658 

and to compose a refined reference for the analyses, by applying a threshold of  ≥95% 659 

of belonging to a particular cluster. As a result of this, 20 AFR, 18 EUR, and 38 AMR 660 

individuals were removed. The same LD-pruned variants data from the remaining 661 

individuals were merged with the SCOURGE Latin American cohort to perform a 662 

supervised clustering and estimated admixture proportions. A total of 471 samples from 663 

the SCOURGE cohort with >80% estimated European GIA were removed to reduce the 664 

weight of the European ancestral component, leaving a total of 3,512 admixed 665 

American (AMR) subjects for downstream analyses. 666 

Association analysis 667 

Results for the SCOURGE Latin Americans GWAS were obtained testing for COVID-668 

19 hospitalization as a surrogate of severity. To accommodate the continuum of GIA in 669 

the cohort, we opted for a joint testing of all the individuals as a single study using a 670 
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mixed regression model, as this approach has demonstrated a greater power and to 671 

sufficiently control population structure45. The SCOURGE cohort consisted of 3,512 672 

COVID-19 positive patients: cases (n=1,625) were defined as hospitalized COVID-19 673 

patients and controls (n=1,887) as non-hospitalized COVID-19 positive patients. 674 

Logistic mixed regression models were fitted using the SAIGEgds46 package in R, 675 

which implements the two-step mixed SAIGE47 model methodology and the SPA test. 676 

Baseline covariables included sex, age, and the first 10 PCs. To account for a potential 677 

heterogeneity in the recruitment and hospitalization criteria across the participating 678 

countries, we adjusted the models by groups of the recruitment areas classified in six 679 

categories: Brazil, Colombia, Ecuador, Mexico, Paraguay, and Spain. This dataset has 680 

not been used in any previously GWAS of COVID-19 published to date. 681 

Meta-analysis of Latin-American populations 682 

The results of the SCOURGE Latin American cohort were meta-analyzed with the 683 

AMR HGI-B2 data, conforming our primary analysis. Summary results from the HGI 684 

freeze 7 B2 analysis corresponding to the admixed AMR population were obtained from 685 

the public repository (April 8, 2022: https://www.covid19hg.org/results/r7/), summing 686 

up 3,077 cases and 66,686 controls from seven contributing studies. We selected the B2 687 

phenotype definition because it offered more power and the presence of population 688 

controls not ascertained for COVID-19 does not have a drastic impact in the association 689 

results. 690 

The meta-analysis was performed using an inverse-variance weighting method in 691 

METAL48. Average allele frequency was calculated and variants with low imputation 692 

quality (Rsq<0.3) were filtered out, leaving 10,121,172 variants for meta-analysis. 693 
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Heterogeneity between studies was evaluated with the Cochran’s-Q test. The inflation 694 

of results was assessed based on a genomic control (lambda).  695 

Definition of the genetic risk loci and putative functional impact 696 

Definition of lead variant and novel loci 697 

To define the lead variants in the loci that were genome-wide significant, an LD-698 

clumping was performed on the meta-analysis data using a threshold p-value<5x10-8, 699 

clump distance=1500 kb, independence set at a threshold r2=0.1 and used the 700 

SCOURGE cohort genotype data as LD reference panel.  Independent loci were deemed 701 

as a novel finding if they met the following criteria: 1) p-value<5x10-8 in the meta-702 

analysis and p-value>5x10-8 in the HGI B2 ALL meta-analysis or in the HGI B2 AMR 703 

and AFR and EUR analyses when considered by separate; 2) Cochran’s Q-test for 704 

heterogeneity of effects is <0.05/Nloci, where Nloci is the number of independent variants 705 

with p<5x10-8; and 3) the nearest gene has not been previously described in the latest 706 

HGIv7 update.  707 

Annotation and initial mapping 708 

Functional annotation was done with FUMA49 for those variants with a p-value<5x10-8 709 

or in moderate-to-strong LD (r2>0.6) with the lead variants, where the LD was 710 

calculated from the 1KGP AMR panel. Genetic risk loci were defined by collapsing 711 

LD-blocks within 250 kb. Then, genes, scaled CADD v1.4 scores, and RegulomeDB 712 

v1.1 scores were annotated for the resulting variants with ANNOVAR in FUMA49. 713 

Gene-based analysis was also performed using MAGMA50 as implemented in FUMA, 714 

under the SNP-wide mean model using the 1KGP AMR reference panel. Significance 715 

was set at a threshold p<2.66x10-6 (which assumes that variants can be mapped to a total 716 

of 18,817 genes). 717 
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FUMA allowed us to perform an initial gene mapping by two approaches: (1) positional 718 

mapping, which assigns variants to genes by physical distance using 10-kb windows; 719 

and (2) eQTL mapping based on GTEx v.8 data from whole blood, lungs, lymphocytes, 720 

and oesophagus mucosa tissues, establishing a False Discovery Rate (FDR) of 0.05 to 721 

declare significance for variant-gene pairs. 722 

Subsequently, to assign the variants to the most likely gene driving the association, we 723 

refined the candidate genes by fine mapping the discovered regions and implementing 724 

functional mapping.  725 

To conduct a Bayesian fine mapping, credible sets for the genetic loci considered novel 726 

findings were calculated on the results from each of the three meta-analyses to identify a 727 

subset of variants most likely containing the causal variant at 95% confidence level, 728 

assuming that there is a single causal variant and that it has been tested. We used 729 

corrcoverage (https://cran.rstudio.com/web/packages/corrcoverage/index.html) for R to 730 

calculate the posterior probabilities of the variant being causal for all variants with an 731 

r2>0.1 with the leading SNP and within 1 Mb except for the novel variant in 732 

chromosome 19, for which we used a window of 0.5 Mb. Variants were added to the 733 

credible set until the sum of the posterior probabilities was ≥0.95. VEP 734 

(https://www.ensembl.org/info/docs/tools/vep/index.html) and the V2G aggregate 735 

scoring from Open Targets Genetics (https://genetics.opentargets.org) were used to 736 

annotate the biological function of the variants contained in the fine-mapped credible 737 

sets 738 

Colocalization analysis 739 

We also conducted colocalization analyses to identify the putative causal genes that 740 

could act through the regulation of gene expression. FUMA’s eQTL mapping enabled 741 
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the identification of genes whose expression was associated with the variants in whole 742 

blood, lungs, lymphocytes, and oesophagus mucosa tissues. We combined this 743 

information with the VEP and V2G aggregate scoring to prioritize genes. For the fine-744 

mapping regions, we included the variants within the calculated credible sets. In the 745 

cases where the fine mapping was unsuccessful, we considered variants within a 0.2 Mb 746 

window of the lead variant. 747 

For each prioritized gene, we then run COLOC51 to assess the evidence of 748 

colocalization between association signals and the eQTLs in each tissue, when at least 749 

one variant overlapped between them. COLOC estimates the posterior probability of 750 

two traits sharing the same causal variant in a locus. Prior probabilities of a variant 751 

being associated to COVID-19 phenotype (p1) and gene expression (p2) were set at 752 

1x10-4, while pp2 was set at 1x10-6 as they are robust thresholds52. The posterior 753 

probability of colocalization (PP4) > 0.75 and a ratio PP4/PP3>3 were used as the 754 

criteria to support evidence of colocalization. Additionally, a threshold of PP4.SNP >0.5 755 

was chosen for causal variant prioritization. In cases were colocalization of a single 756 

variant failed, we computed the 95% credible sets. The eQTL data was retrieved from 757 

GTEx v8 and only significant variant-gene pairs were considered in the analyses.  758 

Colocalization in whole-blood was also performed using the recent published gene 759 

expression datasets derived from a cohort of African Americans, Puerto Ricans, and 760 

Mexican Americans (GALA II-SAGE)53. We used the results from the pooled cohort 761 

for the three discovered loci, and from the AFRHp5 (African genetic ancestry>50%) 762 

and IAMHp5 (Native American genetic ancestry>50%) cohorts for the risk loci in 763 

chromosomes 2 and 11. Results are shown in the Supplementary Table 10.  764 

Sensitivity plots are shown in supplementary Figures 4 and 5. 765 
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Transcription-wide association studies  766 

Transcriptome-wide association studies (TWAS) were conducted using the pretrained 767 

prediction models with MASHR-computed effect sizes on GTEx v8 datasets54,55. 768 

Results from the Latin-American meta-analysis were harmonized and integrated with 769 

the prediction models through S-PrediXcan56 for lungs, whole blood, lymphocytes and 770 

oesophagus mucosa tissues. Statistical significance was set at p-value<0.05 divided by 771 

the number of genes that were tested for each tissue. Subsequently, we leveraged results 772 

for all 49 tissues and run a multi-tissue TWAS to improve power for association, as 773 

demonstrated recently57.  TWAS was also conducted with the MASHR models for 774 

whole-blood in the pooled admixed AMR from the GALA and SAGE studies53. 775 

Cross-population meta-analyses 776 

We conducted two additional meta-analyses to investigate the ability of combining 777 

populations to replicate our discovered risk loci. This methodology enabled the 778 

comparison of effects and the significance of associations in the novel risk loci between 779 

the results from analyses that included or excluded other population groups. 780 

The first meta-analysis comprised the five populations analysed within HGI (B2-ALL). 781 

Additionally, to evaluate the three GIA components within the SCOURGE Latin-782 

American cohort58, we conducted a meta-analysis of the admixed AMR, EUR, and AFR 783 

cohorts (B2).  All summary statistics were retrieved from the HGI repository. We 784 

applied the same meta-analysis methodology and filters as in the admixed AMR meta-785 

analysis.  Novel variants from these meta-analyses were fine-mapped and colocalized 786 

with gene expression. 787 

Cross-population Polygenic Risk Score 788 
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A polygenic risk score (PGS) for critical COVID-19 was derived combining the 789 

variants associated with hospitalization or disease severity that have been discovered to 790 

date. We curated a list of lead variants that were: 1) associated to either severe disease 791 

or hospitalization in the latest HGIv7 release1 (using the hospitalization weights); or 2) 792 

associated to severe disease in the latest GenOMICC meta-analysis2 that were not 793 

reported in the latest HGI release. A total of 49 markers were used in the PGS model 794 

(see supplementary Table 13) since two variants were absent from our study. 795 

Scores were calculated and normalized for the SCOURGE Latin-American cohort with 796 

PLINK 1.9.  This cross-ancestry PGS was used as a predictor for hospitalization 797 

(COVID-19 positive that were hospitalized vs. COVID-19 positive that did not 798 

necessitate hospital admission) by fitting a logistic regression model. Prediction 799 

accuracy for the PGS was assessed by performing 500 bootstrap resamples of the 800 

increase in the pseudo-R-squared. We also divided the sample in deciles and percentiles 801 

to assess risk stratification. The models were fit for the dependent variable adjusting for 802 

sex, age, the first 10 PCs, and the sampling region (in the Admixed AMR cohort) with 803 

and without the PGS, and the partial pseudo-R2 was computed and averaged among the 804 

resamples.  805 

A clinical severity scale was used in a multinomial regression model to further evaluate 806 

the power of this cross-ancestry PGS for risk stratification. This severity strata were 807 

defined as follows: 0) asymptomatic; 1) mild, that is, with symptoms, but without 808 

pulmonary infiltrates or need of oxygen therapy; 2) moderate, that is, with pulmonary 809 

infiltrates affecting <50% of the lungs or need of supplemental oxygen therapy; 3) 810 

severe disease, that is with hospital admission and PaO2<65 mmHg or SaO2<90%, 811 

PaO2/FiO2<300, SaO2/FiO2<440, dyspnea, respiratory frequency≥22 bpm, and 812 

infiltrates affecting >50% of the lungs; and 4) critical disease, that is with an admission 813 
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to the ICU or need of mechanical ventilation (invasive or non-invasive). We also 814 

included the novel risk variants as predictors alongside the PRS to determine if they 815 

provided increased prediction ability.  816 

Data availability 817 

Summary statistics from the SCOURGE Latin-American GWAS will be available at 818 

https://github.com/CIBERER/Scourge-COVID19. 819 
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  985 

 986 

Table 1. Demographic characteristics of the SCOURGE Latin-American cohort. 987 

Variable 
Non Hospitalized 

N = 1,887 

Hospitalized 

N = 1,608  

Age – mean years ± SD 39.1 ± 11.9 
54.1 ±14.5 

Sex - N (%) 
 

 

 Female (%) 1253 (66.4) 668 (41.5)  

GIA* – % mean ±SD   
 

 

 
European 54.4 ±16.2 39.4 ± 20.7 

 
African 15.3 ± 12.7  9.1 ± 11.6 

 
Native American 30.3 ± 19.8 51.46 ± 26.5 

Comorbidities - N (%) 
 

 

 
Vascular/endocrinological 488 (25.9) 873 (54.3) 

 
Cardiac 60 (3.2) 150 (9.3) 

 
Nervous 15 (0.8) 61 (3.8) 

 
Digestive 14 (0.7) 33 (2.0) 

 
Onco-hematological 21 (1.1) 48 (3.00) 

  Respiratory 76 (4.0) 118 (7.3) 

*Global genetic inferred ancestry. 988 

 989 

Table 2. Lead independent variants in the admixed AMR GWAS meta-analysis.  990 

SNP rsID chr:pos EA NEA OR (95% CI) P-value 
EAF 

cases 

EAF 

controls 

Nearest 

gene 
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EA: effect allele; NEA: non-effect allele; EAF: effect allele frequency in the SCOURGE study. 991 

 992 

Table 3. Novel variants in the SC-HGIALL and SC-HGI3POP meta-analyses (with respect 993 

to HGIv7). Independent signals after LD clumping.  994 

EA: effect allele; NEA: non-effect allele. 995 

 996 

Figure 1. Flow chart of this study. 997 

 998 

 999 

rs13003835 2:159407982 T C 1.20 (1.12-1.27) 3.66E-08 0.563 0.429 BAZ2B 

rs35731912 3:45848457 T C 1.65 (1.47-1.85) 6.30E-17 0.087 0.056 LZTFL1 

rs2477820 6:41535254 A T 0.84 (0.79-0.89) 1.89E-08 0.453 0.517 FOXP4-AS1 

rs77599934 11:82906875 G A 2.27 (1.7-3.04) 2.26E-08 0.016 0.011 DDIAS 

SNP rsID chr:pos EA NEA OR (95% CI) P-value Nearest gene Analysis 

rs76564172 16:3892266 T G 1.31 (1.19-1.44) 9.64E-09 CREBBP SC-HGI3POP 

rs66833742 19:4063488 T C 0.94 (0.92-0.96) 1.89E-08 ZBTB7A SC-HGI3POP 

rs66833742 19:4063488 T C 0.94 (0.92-0.96) 2.50E-08 ZBTB7A SC-HGIALL 

rs2876034 20:6492834 A T 0.95 (0.93-0.97) 2.83E-08 CASC20 SC-HGIALL 
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 1000 

 1001 

Figure 2. A) Manhattan plot for the admixed AMR GWAS meta-analysis. Probability 1002 

thresholds at p=5x10-8 and p=5x10-5 are indicated by the horizontal lines. Genome-wide 1003 

significant associations with COVID-19 hospitalizations were found in chromosome 2 1004 

(within BAZ2B), chromosome 3 (within LZTFL1), chromosome 6 (within FOXP4), and 1005 

chromosome 11 (within DDIAS).  A Quantile-Quantile plot is shown in supplementary 1006 

Figure 2. B) Regional association plots for rs1003835 at chromosome 2 and rs77599934 1007 

at chromosome 11; C) Allele frequency distribution across The 1000 Genomes Project 1008 

populations for the lead variants rs1003835 and rs77599934. 1009 

1010 

 1011 
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Figure 3. Forest plot showing effect sizes and the corresponding confidence intervals for 1012 

the sentinel variants identified in the AMR meta-analysis across populations. All beta 1013 

values with their corresponding CIs were retrieved from the B2 population-specific 1014 

meta-analysis from the HGI v7 release, except for AMR, for which the beta value and 1015 

IC from the HGIAMR-SCOURGE meta-analysis is represented. 1016 

 1017 

 1018 

 1019 

Figure 4. (A) Polygenic risk stratified by PGS deciles comparing each risk group 1020 

against the lowest risk group (OR-95%CI); (B) Distribution of the PGS scores in each 1021 
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of the severity scale classes (0-Asymptomatic, 1-Mild disease, 2-Moderate disease, 3-1022 

Severe disease, 4-Critical disease).  1023 

 1024 

 1025 

 1026 

Supplementary Material for: Novel risk loci for COVID-19 hospitalization among 1027 

admixed American populations  1028 

Supplementary Tables are provided in a separate excel file 1029 

Supplementary figures 1030 

Supplementary Figure 1. Global Genetic Inferred Ancestry (GIA) composition in 1031 

the SCOURGE Latin-American cohort. European (EUR), African (AFR) and Native 1032 

American (AMR) GIA was derived with ADMIXTURE from a reference panel 1033 

composed of Aymaran, Mayan, Nahuan, and Quechuan individuals of Native-American 1034 

genetic ancestry and randomly selected samples from the EUR and AFR 1KGP 1035 

populations. The colours represent the different geographical sampling regions from 1036 

which the admixed American individuals from SCOURGE were recruited. 1037 
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 1038 

 1039 

Supplementary Figure 2. Quantile-Quantile plot for the AMR GWAS meta-1040 

analysis. A lambda inflation factor of 1.015 was obtained.  1041 

 1042 

 1043 

 1044 
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 1045 

 1046 

 1047 

 1048 

 1049 

 1050 

 1051 

 1052 

 1053 

Supplementary Figure 3. Regional association plots for the fine mapped loci in 1054 

chromosomes 2 (upper panel) and 16 (lower panel). Coloured in red, the variants 1055 

allocated to the credible set at the 95% confidence according to the Bayesian fine 1056 

mapping. In blue, the sentinel variant. 1057 
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Supplementary Figure 4. Sensitivity plots from COLOC with expression data from 1061 

GTEx v8. The range of p12 values (probability that a SNP is associated with both 1062 

traits) for which the rule H4>0.7 is supported is shown in green in the right plots for 1063 

each analysis. Plots in the left represent the variants included in the risk region common 1064 

to both traits along their individual association -log10(p-values) for each trait, whereas 1065 

the shading shows the posterior probability that the SNP is causal given H4 is true. Trait 1066 

1 corresponds to COVID-19 hospitalization, while trait 2 corresponds to gene 1067 

expression in each analysis. 1068 

 1069 

 1070 
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 1073 

 1074 

Supplementary Figure 5. Sensitivity plots from COLOC with whole blood 1075 

expression data from the GALA and SAGE II studies in AMR individuals. AFRhp5 1076 

corresponds to the expression dataset computed in individuals with high African 1077 

ancestries; AMRhp5 corresponds to the expression dataset computed individuals with 1078 

high AMR ancestries; pooled corresponds to the dataset computed with the total of 1079 

individuals from the study. In the right, the plots show in green the range of p12 values 1080 

(probability that a SNP is associated with both traits) for which the rule H4>0.7 is 1081 

supported. Plots in the left represent the variants included in the risk region common to 1082 

both traits along their individual association -log10(p-values) for each trait, whereas the 1083 

shading shows the posterior probability that the SNP is causal given H4 is true. Trait 1 1084 

corresponds to COVID-19 hospitalization, while trait 2 corresponds to gene expression.  1085 
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 1093 

 1094 

Supplementary Figure 6. Gene-tissue pairs for which either rs1003835 or 1095 

rs60606421 are significant eQTLs at FDR<0.05 (data retrieved from 1096 

https://gtexportal.org/home/snp/). rs1003835 (chromosome 2) maps to BAZ2B, LY75, 1097 

and PLA2R genes. As for the lead variant of chromosome 11, rs77599934, since it was 1098 

not an eQTL, we used an LD proxy variant (rs60606421). DDIAS and PRCP genes map 1099 

closely to this variant. NES and p-values correspond to the normalized effect size (and 1100 

direction) of eQTL-gene associations and the p-value for the tissue, respectively. 1101 

 1102 
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