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233  Abstract

234  The genetic basis of severe COVID-19 has been thoroughly studied and many genetic
235  risk factors shared between populations have been identified. However, reduced sample
236 sizes from non-European groups have limited the discovery of population-specific
237  common risk loci. In this second study nested in the SCOURGE consortium, we have
238  conducted the largest GWAS meta-analysis for COVID-19 hospitalization in admixed
239  Americans, comprising a total of 4,702 hospitalized cases recruited by SCOURGE and
240  other seven participating studies in the COVID-19 Host Genetic Initiative. We
241  identified four genome-wide significant associations, two of which constitute novel loci
242 and first discovered in Latin-American populations (BAZ2B and DDIAS). A trans-ethnic
243  meta-analysis revealed another novel cross-population risk locus in CREBBP. Finally,
244  we assessed the performance of a cross-ancestry polygenic risk score in the SCOURGE

245  admixed American cohort.
246  Introduction

247  To date, more than 50 loci associated to COVID-19 susceptibility, hospitalization, and
248  severity have been identified using genome-wide association studies (GWAS)*?. The
249  COVID-19 Host Genetics Initiative (HGI) has made significant efforts® to augment the
250 power to identify disease loci by recruiting individuals from diverse populations and
251  conducting atrans-ancestry meta-analysis. Despite this, the lack of genetic diversity and
252 afocus on cases of European ancestries gtill predominate in the studies™. Besides,
253  while trans-ancestry meta-analyses are a powerful approach for discovering shared
254  genetic risk variants with similar effects across populations®, they may fail to identify
255  risk variants that have larger effects on particular underrepresented populations. Genetic
256  disease risk has been shaped by the particular evolutionary history of populations and

257  the environmental exposures’. Their action is particularly important for infectious
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258 diseases due to the selective constrains that are imposed by the host-pathogen
259  interactions®®. Literature examples of this in COVID-19 severity includes a DOCK2
260 gene variant in East Asians'®, and frequent loss of function variants in IFNARL and

261 IFNAR2 genesin Polynesian and Inuit populations, respectively***2.

262 Including diverse populations in case-control GWAS studies with unrelated participants
263 usually require a prior classification of individuals in genetically homogeneous groups,
264 which are typically analysed separately to control the population stratification effects™.
265  Populations with recent admixture impose an additional challenge to the GWAS due to
266  their complex genetic diversity and linkage disequilibrium (LD) patterns, requiring the
267  development of alternative approaches and a careful inspection of results to reduce the
268 false positives due to population structure’. In fact, there are benefits in study power
269 from modelling the admixed ancestries either locally, a regional scae in the
270  chromosomes, or globally, across the genome, depending on factors such as the
271  heterogeneity of the risk variant in frequencies or the effects among the ancestry
272 strata™. Despite the development of novel methods specifically tailored for the analysis
273 of admixed populations™, the lack of a standardized analysis framework and the
274  difficulties to confidently cluster the admixed individuals into particular genetic groups

275  often leadsto their exclusion from GWAS.

276  The Spanish Coadlition to Unlock Research on Host Genetics on COVID-19
277  (SCOURGE) recruited COVID-19 patients between March and December 2020 from
278  hospitals across Spain and from March 2020 to July 2021 in Latin-America
279  (https://www.scourge-covid.org). A first GWAS of COVID-19 severity among Spanish
280  patients of European descent revealed novel disease loci and explored age and sex
281  varying effects of the genetic factors™. Here we present the findings of a GWAS meta-

282  anaysis in admixed American (AMR) populations, comprising individuals from the

9
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283  SCOURGE Latin-American cohort and the HGI studies, which allowed to identify two
284 novel severe COVID-19 loci, BAZ2B and DDIAS. Further analyses modelling the
285  admixture from three genetic ancestral components and performing a trans-ethnic meta-
286 andysis led to the identification of an additional risk locus near CREBBP. We finally
287 assessed a cross-ancestry polygenic risk score model with variants associated with

288  critical COVID-19.

289 Results

290 Meta-analysis of COVID-19 hospitalization in admixed Americans

291  Study cohorts

292 Within the SCOURGE consortium, we included 1,608 hospitalized cases and 1,887
293  controls (not hospitalized COVID-19 patients) from Latin-American countries and from
294  recruitments of individuals of Latin-American descend conducted in Spain
295  (Supplementary Table 1). Quality control details and estimation of globa genetic
296 inferred ancestry (GIA) (supplementary Figure 1) are described in Methods, whereas
297  clinica and demographic characteristics of patients included in the analysis are shown
298 in Table 1. Summary statistics from the SCOURGE cohort were obtained under a
299 logistic mixed model with the SAIGE model (Methods). Another seven studies
300 participating in the COVID-19 HGI consortium were included in the meta-analysis of

301  COVID-19 hospitalization in admixed Americans (Figure 1).

302  GWASmeta-analysis

303 We performed a fixed-effects GWAS meta-analysis using the inverse of the variance as
304 weights for the overlapping markers. The combined GWAS sample size consisted of

305 4,702 admixed AMR hospitalized cases and 68,573 controls.
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306 This GWAS meta-analysis revealed genome-wide significant associations at four risk
307 loci (Table 2, Figure 2), two of which (BAZ2B and DDIAS) were novel discoveries.
308 Variants of these loci were prioritized by positional and expression quantitative trait loci
309 (eQTL) mapping with FUMA,, identifying four lead variants linked to other 310 variants
310 and 31 genes (Supplementary Tables 2-4). A gene-based association test revealed a
311  dgnificant association in BAZ2B and in previously known COVID-19 risk loci:

312  LZTFL1, XCRL1, FYCO1, CCR9, and IFNAR2 (Supplementary Table 5).

313  Located within the gene BAZ2B, the sentinel variant rs13003835 is an intronic variant
314  associated with an increased risk of COVID-19 hospitalization (Odds Ratio [OR]=1.20,
315  95% Confidence Interval [Cl]=1.12-1.27, p=3.66x10®). This association was not
316  previously reported in any GWAS of COVID-19 published to date. Interestingly,
317  rs13003835 did not reach significance (p=0.972) in the COVID-19 HGI trans-ancestry
318 meta-analysis including the five population groups'. Based on our mapping strategy

319  (see Methods), we also prioritized PLA2R1, LY75, WDSUBL, and CD302 in this locus.

320 The other novel risk locus is led by the sentinel variant rs77599934, a rare intronic
321  variant located in chromosome 11 within DDIAS and associated with risk of COVID-19
322 hospitalization (OR=2.27, 95%Cl=1.70-3.04, p=2.26x10®). The PRCP gene was an

323  additional prioritized gene at this locus.

324  We aso observed a suggestive association with rs2601183 in chromosome 15, which is
325 located between ZNF774 and 1QGAPLl (alele-G OR=1.20, 95%Cl=1.12-1.29,
326 p=6.11x107, see Supplementary Table 2), which has not yet been reported in any other
327 GWAS of COVID-19 to date. This sentinel variant is in perfect LD (r’=1) with

328  rs601183, an eQTL of ZNF774 in the lung.
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329 The GWAS meta-analysis aso pinpointed two significant variants a known loci,
330 LZTFL1 and FOXP4. The SNP rs35731912 was previously associated with COVID-19
331  severity in EUR populations®, and it was mapped to LZTFL1. As for rs2477820, while
332 it is a novel risk variant within gene FOXP4, it has a moderate LD (r?=0.295) with
333 rs2496644, which has been linked to COVID-19 hospitalization'®. This is consistent

334  with the effects of LD in tag-SNPs when conducting GWAS in diverse populations.
335  Functional mapping of novel risk variants
336  Bayesian fine mapping

337  We performed different approaches to narrow down the prioritized loci to a set of most
338 probable genes driving the associations. First, we computed credible sets at the 95%
339  confidence for causal variants and annotated them with VEP and the V2G aggregate
340 scoring (Supplementary Table 6, Supplementary Figure 3). The 95% confidence
341  credible set from the region of chromosome 2 around rs13003835 included 76 variants.
342  However, the approach was unable to converge allocating variants in a 95% confidence

343  credible set for the region in chromosome 11.
344  Colocalization of eQTLs

345 To determine if the novel genetic risk loci were associated with gene expression in
346  relevant tissues (whole blood, lung, lymphocytes, and oesophagus mucosa), we
347  computed the posterior probabilities (PP) of colocalization for overlapping variants
348  allocated to the 95% confidence credible set. We used the GTEXx v8 tissues as the main
349  expression dataset, although it is important to consider that the eQTL associations were
350 carried out mainly on individuals of EUR ancestries. To confirm the colocalization in
351  other ancestries, we also performed analyses on three expression datasets computed on

352 admixed AMR, leveraging data from individuals with high African GIA, high Native-
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353  American ancestry, and from a pooled cohort (Methods). Results are shown in the

354  supplementary Table 7.

355  Five genes (LY75, BAZ2B, CD302, WDSUBL, and PLA2R1) were the candidates for
356 eQTL colocdization in the associated region in chromosome 2. However, LY75
357 emerged as the most likely causal gene for this locus since the colocalization in whole
358 blood was supported with a PP for H4 (PPH4) of 0.941 and with robust results
359  (supplementary Figure 4). Moreover, this also alowed to prioritize rs12692550 as the
360 most probable causal variant for both traits at this locus with a PP_SNP_H4 of 0.74.
361  Colocalization with gene expression data from admixed AMR validated this finding.
362 LY75 aso had evidence of colocalization in lungs (PPH4=0.887) and the esophagus
363  mucosa (PPH4=0.758). However, we could not prioritize a single causal variant in these

364  two other tissues and sensitivity analyses revealed a weak support.

365 CD302 and BAZ2B were the second and third most likely genes that could drive the
366  association, respectively, according to the colocalization evidence. CD302 was the most
367  probable according to the high AFR genetic ancestries dataset (supplementary Figure

368 5).

369 Despite the chromosome 11 region failing to colocalize with gene expression
370  associations for any of the tissues, the lead variant rs77599934 is in moderate-to-strong
371 LD (r*=0.776) with rs60606421, which is an eQTL associated to a reduced expression
372 of DDIASIn the lungs (supplementary Figure 6). The highest PPH4 for DDIAS was in

373 thehigh AFR genetic ancestry expression dataset (0.71).
374  Transcriptome-wide association study (TWAS)

375 Five novel genes, namely SLC25A37, SMARCC1, CAMP, TYW3, and SI100A12

376  (supplementary Table 8) were found significantly associated in the cross-tissue TWAS.
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377  To our knowledge, these genes have not been reported previously in any COVID-19
378  TWAS or GWAS analyses published to date. In the single tissue analyses, ATP50 and
379 CXCR6 were significantly associated in lungs, CCR9O was significantly associated in

380  whole blood, and IFNAR2 and SLC25A37 were associated in lymphocytes.

381 Likewise, we carried out the TWAS analyses using the models trained in the admixed
382  populations. However, no significant gene-pairs were detected in this case. The 50

383  geneswith the lowest p-values are shown in the supplementary Table 9.

384  Genetic ar chitecture of COVID-19 hospitalization in AMR populations

385  Allele frequencies of rs13003835 and rs77599934 across ancestries

386  Neither rs13003835 (BAZ2B) or rs77599934 (DDIAS) were significantly associated in
387 the COVID-19 HGI B2 cross-population or population-specific meta-analyses. Thus,
388  we investigated their allele frequencies (AF) across populations and compared their

389  effect sizes.

390  According to gnomAD v3.1.2, the T allele at rs13003835 (BAZ2B) has an AF of 43% in
391 admixed AMR groups while AF is lower in the EUR populations (16%) and in the
392  globa sample (29%). Loca ancestry inference (LAI) reported by gnomAD shows that
393  within the Native-American component, the risk allele T is the major allele, wheress it
394 is the minor alele within the African and European LAl components. These large
395 differences in AF might be the reason underlying the association found in AMR
396  populations. However, when comparing effect sizes between populations, we found that
397  they were in opposite direction between SAS-AMR and EUR-AFR-EAS and that there

398  wasalarge heterogeneity among them (Figure 3).

399  rs77599934 (DDIAS) had an AF of 1.1% for the G alele in the non-hospitalized

400 controls (Table 2), in line with the recorded gnomAD AF of 1% in admixed AMR
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401 groups. This variant has potential to be population-specific variant, given the allele
402  frequencies in other population groups such as EUR (0% in Finnish, 0.025% in non-
403  Finnish), EAS (0%) and SAS (0.042%) and its greater effect size over AFR populations
404  (Figure 3). Examining the LAI, the G allele occurs a 1.1% frequency in the African
405  component while it is almost absent in the Native-American and European. Due to its
406 low MAF, rs77599934 was not analyzed in the COVID-19 HGI B2 cross-population
407 meta-analysis and was only present in the HGI B2 AFR population-specific meta-
408  analysis, precluding the comparison (Figure 3). For this reason, we retrieved the variant
409  with the lowest p-value within a 50 kb region around rs77599934 in the COVID-19
410 HGI cross-population analysis to investigate if it was in moderate-to-strong LD with our
411  sentinel variant. The variant with the smallest p-value was rs75684040 (OR=1.07,
412 95%CI=1.03-1.12, p=1.84x103). Yet, LD calculations using the 1KGP phase 3 dataset

413 indicated that rs77599934 and rs75684040 were poorly correlated (r>=0.11).
414  Cross-population meta-analyses

415 We carried out two cross-ancestry inverse variance-weighted fixed-effects meta
416  anayses with the admixed AMR GWAS meta-analysis results to evaluate whether the
417  discovered risk loci replicated when considering other population groups. In doing so,

418  we aso identified novel cross-population COVID-19 hospitalization risk loci.

419  First, we combined the SCOURGE Latin American GWAS results with the HGI B2
420 ALL analysis (supplementary Table 10). We refer to this analysis as the SC-HGI L
421  meta-analysis. Out of the 40 genome-wide significant loci associated with COVID-19
422 hospitalization in the last HGI release’, this study replicated 39 and the association was
423  stronger than in the original study in 29 of those (supplementary Table 11). However,
424  the variant rs13003835 located in BAZ2B did not replicate (OR=1.00, 95%CI=0.98-

425  1.03, p=0.644).
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426  In this cross-ancestry meta-analysis, we replicated two associations that were not found
427 in HGIV7 albeit they were sentinel variantsin the latest GenOMICC meta-analysis’. We
428 found an association at the CASC20 locus led by the variant rs2876034 (OR=0.95,
429  95%Cl=0.93-0.97, p=2.83x10®). This variant is in strong LD with the sentinel variant
430 of that study (rs2326788, r?=0.92), which was associated with critical COVID-19%
431  Besides, this meta-analysis identified the variant rs66833742 near ZBTB7A associated
432 with COVID-19 hospitalization (OR=0.94, 95%C1=0.92-0.96, p=2.50x10"®). Notably,
433 rs66833742 or its perfect proxy rs67602344 (r°=1) are also associated with upregulation
434  of ZBTB7A in whole blood and in esophagus mucosa. This variant was previously

435  associated with COVID-19 hospitalization®.

436 In a second analysis, we aso explored the associations across the defined admixed
437 AMR, EUR, and AFR ancestral sources by combining through meta-analysis the
438 SCOURGE Latin American GWAS results with the HGI studies in EUR, AFR, and
439  admixed AMR, and excluding those from EAS and SAS (Supplementary Table 12). We
440  refer to this as the SC-HGIzpop meta-analysis. The association at rs13003835 (BAZ2B,
441  OR=1.01, 95%CI=0.98-1.03, p=0.605) was not replicated and rs77599934 near DDIAS
442  could not be assessed, although the association at the ZBTB7A locus was confirmed
443 (rs66833742, OR=0.94, 95%CI=0.92-0.96, p=1.89x107). The variant rs76564172
444  located near CREBBP aso reached datistical significance (OR=1.31, 95% CI=1.25-
445  1.38, p=9.64x10°). The sentinel variant of the region linked to CREBBP (in the trans-
446  ancestry meta-analysis) was also subjected a Bayesian fine mapping (supplementary
447  Table 6) and colocalization with eQTLs under the GTEx v8 MASHR models in lungs,
448  esophagus mucosa, whole blood, and transformed lymphocytes. Eight variants were
449 included in the credible set for the region in chromosome 16 (meta-analysis SC-

450  HGIspop), although CREBBP did not colocalize in any of the tissues.
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451  Polygenic risk score models

452  Using the 49 variants associated with disease severity that are shared across populations
453  according to the HGIv7, we constructed a polygenic risk score (PGS) model to assess its
454  generalizability in the admixed AMR (Supplementary Table 13). First, we calculated
455  the PGS for the SCOURGE Latin Americans and explored the association with
456  COVID-19 hospitalization under a logistic regresson model. The PGS model was
457  associated with a 1.48-fold increase in COVID-19 hospitalization risk per every PGS
458  standard deviation. It also contributed to explain a slightly larger variance (R2=1.07%)

459  than the baseline model.

460  Subsequently, we divided the individuals into PGS deciles and percentiles to assess
461  their risk gtratification. The median percentile among controls was 40, while in cases it
462 was 63. Those in the top PGS decile exhibited a 5.90-fold (95% CI=3.29-10.60,
463  p=2.79x10°) greater risk compared to individuals in the lowest decile, whereas the

464  effectsfor the rest of the comparisons were much milder.

465 We aso examined the distribution of PGS scores across a 5-level severity scale to
466  further determine if there was any correspondence between clinical severity and genetic
467  risk. Median PGS scores were lower in the asymptomatic and mild groups, whereas
468  higher median scores were observed in the moderate, severe, and critical patients
469  (Figure 4). We fitted a multinomial model using the asymptomatic class as reference
470  and calculated the OR for each category (Supplementary Table 13), observing that the
471  disease genetic risk was similar among asymptomatic, mild, and moderate patients.
472 Given that the PGS was built with variants associated with critical disease and/or
473  hospitalization and that the categories severe and critical correspond to hospitalized
474  patients, these results underscore the ability of cross-ancestry PGS for risk stratification

475  evenin an admixed population.
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476  Finaly, we incorporated the novel lead SNPs from our AMR metaanalysis
477  (rs13003835, rs2477820, and rs77599934) into the PGS model. Their inclusion in the
478 mode contributed to explain a larger variance (R2=1.74%) than the model without
479  them. This result, however, should be taken with caution given the risk of overfitting

480 dueto the use of the same subjects both for the derivation and testing of the variants.

481

482 DISCUSSION

483  We have conducted the largest GWAS meta-analysis of COVID-19 hospitalization in
484  admixed AMR to date. While the genetic risk basis discovered for COVID-19 is largely
485  shared among populations, trans-ancestry meta-analyses on this disease have primarily
486  included EUR samples. This dominance of GWAS in Europeans, and the subsequent
487  bhias in sample sizes, can mask population-specific genetic risks (i.e., variants that are
488  monomorphic in some populations) or be less powered to detect risk variants having
489  higher alele frequencies in population groups other than Europeans. In this sense, after
490 combining data from admixed AMR patients, we found two risk loci which are first
491 discovered in a GWAS of Latin-American populations. Interestingly, the sentinel
492  variant rs77599934 in the DDIAS geneis arare coding variant (~1% for alele G) with a
493  large effect on COVID-19 hospitalization that is nearly monomorphic in most of the
494  other populations. This has likely led to its exclusion from the cross-populations meta-

495  analyses conducted to date, remaining undetectable.

496  Fine mapping of the region harbouring DDIAS did not reveal further information about
497  which gene could be the more prone to be causal, or about the functional consequences
498  of the risk variant. However, DDIAS known as damage-induced apoptosis suppressor

499  gene, is itself a plausible candidate gene. It has been linked to DNA damage repair
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500 mechanisms: research showed that depletion of DDIAS led to an increase of ATM
501  phosphorylation and the formation of p53-binding protein (53BP1) foci, a known
502  biomarker of DNA double-strand breaks, suggesting a potentia role in double-strand
503  break repair'®. Similarly, elevated levels of phosphorylated nuclear histone 2AXy were
504  detected after knocking down DDIAS, further emphasizing its role in DNA damage®.
505 Interestingly, a study found that the infection by SARS-CoV-2 aso triggered the
506 phosphorylation of the ATM kinase and inhibited repair mechanisms, causing the
507 accumulation of DNA damage®™. This same study reported the activation of the pro-
508 inflammatory pathway p38/MAPK by the virus, which was as well prompted after

509  knocking-down DDIAS®.

510 Regarding lung function, the role of DDIAS in lung cancer has been widely studied. It
511  has been proposed as a potential biomarker for lung cancer after finding that it interacts
512 with STAT3 in lung cancer cells, regulating 1L-6%% and thus mediating inflammatory
513  processes. Furthermore, another study determined that its blockade inhibited lung
514  cancer cell growth®. The sentinel variant was in strong LD with an eQTL that reduced
515  gene expression of DDIAS in lung, and our findings suggest that DDIAS gene may be
516 indeed involved in viral response. Hence, one reasonable hypothesis is that reduced
517 expression of DDIAS could potentidly facilitate SARS-CoV-2 infection through the
518 downregulation of pathways involved in DNA repairment and inflammation. Another
519  prioritized gene from this region was PRCP, an angiotensinase that has been linked to
520 hypertension and for which a hypothesis on its role on COVID-19 progression has been

521  raised®?®,

522  Therisk region found in chromosome 2 prioritized more than one gene. The lead variant
523  rs13003835 is located within BAZ2B. BAZ2B encodes one of the regulatory subunits of

524  the Imitation switch (ISWI) chromatin remodelers® constituting the BRF-1/BRF-5
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525  complexes with SMARCA1 and SMARCAD, respectively, and the association signal
526 colocalized with eQTLs in whole blood. The gene LY75 (encoding the lymphocyte
527  antigen 75) also colocalized with eQTLs in whole blood, esophagus mucosa, and lung
528  tissues. Lymphocyte antigen 75 is involved in immune processes through antigen
529  presentation in dendritic cells and endocytosis”, and has been associated with
530 inflammatory diseases, representing also a compelling candidate for the region.
531 Increased expression of LY75 has been detected within hours after the infection by
532 SARS-CoV-22%%. Lastly, the signa of CD302 colocalized in individuas with high
533  AFR ancestral admixture in whole blood. This gene is located in the vicinity of LY75
534  and both conform the readthrough LY 75-CD302. It is worth noting that differences in
535  AF for thisvariant suggest that analysesin AMR populations might be more powered to

536  detect the association, supporting the necessity of population-specific studies.

537 A third novel risk region was observed in chromosome 15, between the genes IQGAP1

538  and ZNF774, although not reaching genome-wide significance.

539  Secondary analyses revealed five TWAS-associated genes, some of which have been
540 aready linked to severe COVID-19. In a comprehensive multi-tissue gene expression
541 profiling study™, decreased expression of CAMP and S100A8/S100A9 genes in COVID-
542 19 severe patients was observed, while another study detected the upregulation of
543  SCL25A37 among severe COVID-19 patients®. SMARCCL is a subunit of the SWI/SNF
544  chromatin remodelling complex that has been identified as pro-viral for SARS-CoV-2
545  and other coronavirus strains through a genome-wide screen®. This complex is crucial

546 for ACE2 expression and the viral entry in the cell®.

547  To explore the genetic architecture of the trait among admixed AMR populations, we
548  performed two cross-ancestry meta-analyses including the SCOURGE Latin-American

549  cohort GWAS findings. We found that the two novel risk variants did not associate with
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550 COVID-19 hospitalization outside the population-specific meta-analysis, highlighting
551  the importance of complementing trans-ancestry meta-analyses with group-specific
552 analyses. Notably, this analysis did not replicate the association at the DSTYK locus,
553  which was associated with severe COVID-19 in Brazilian individuals with higher
554  European admixture®. This lack of replication supports the initia hypothesis of that
555  study suggesting that the risk haplotype derived from European populations, as we have
556  reduced the weight of this ancestral contribution in our study by excluding those

557 individuals.

558 Moreover, these cross-ancestry meta-analyses pointed to three loci that were not
559  genome-wide significant in the HGIv7 ALL meta-analysis: a novel locus at CREBBP,
560 and two loci a ZBTB7A and CASC20 that were reported in another meta-analysis.
561 CREBBP and ZBTBYA achieved a stronger significance when considering only EUR,
562 AFR, and admixed AMR GIA groups. According to a recent study, elevated levels of
563 the ZBTB7A gene promote a quasi-homeostatic state between coronaviruses and host
564  cells, preventing cell death by regulating oxidative stress pathways®. This gene is
565 involved in several signalling pathways, such as B and T cell differentiation®. On a
566  sSeparate note, CREBBP encodes the CREB binding protein (CBP), involved in
567  transcription activation, that is known to positively regulate the type | interferon
568  response through virus-induced phosphorylation of IRF-3*. Besides, the CREBP/CBP
569 interaction has been implicated in SARS-CoV-2 infection® via the cAMP/PKA
570 pathway. In fact, cells with suppressed CREBBP gene expression exhibit reduced

571 replication of the so called Delta and Omicron SARS-CoV-2 variants™.

572  The cross-population PGS model effectively stratified individuals based on their genetic
573 risk and demonstrated consistency with the clinical severity classification of the

574  patients. The inclusion of the new variants in the PGS model slightly improved the
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575  predictive value of the PGS. However, it is important to confirm this last finding in an
576  externa admixed AMR cohort to address potential overfitting arising from using the

577  sameindividuals both for the discovery of the associations and for testing the model.

578  This study is subject to limitations, mostly concerning the sample recruitment and
579  composition. The SCOURGE Latino-American sample size is small and the GWAS is
580 underpowered. Ancther limitation is the difference in case-control recruitment across
581  sampling regions that, yet controlled for, may reduce the ability to observe significant
582  associations driven by different compositions of the populations. In this sense, the
583 identified risk loci might not replicate in a cohort lacking any of the parental population
584  sources from the three-way admixture. Likewise, we could not explicitly control for
585  socio-environmental factors that could have affected COVID-19 spread and
586  hospitalization rates, although genetic principal components are known to capture non-
587  genetic factors. Finally, we must acknowledge the lack of areplication cohort. We have
588 used all the available GWAS data for COVID-19 hospitalization in admixed AMR in
589  this meta-analysis due to the low number of studies conducted. Therefore, we had no
590 studies to replicate or validate the results. These concerns may be addressed in the
591  future by including more AMR GWAS studies in the meta-analysis, both by involving
592  diverse populationsin study designs and by supporting research from countries in Latin-

593  America

594  This study provides novel insights into the genetic basis of COVID-19 severity,
595 emphasizing the importance of considering host genetic factors through using non-
596  European populations, especialy of admixed sources. Such complementary efforts can
597  pin down new variants and increase our knowledge on the host genetic factors of severe

598 COVID-19.

599 Materialsand methods

22


https://doi.org/10.1101/2023.08.11.23293871
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.08.11.23293871; this version posted February 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

600 GWASInLatin Americansfrom SCOURGE
601 The SCOURGE Latin American cohort

602 A total of 3,729 of COVID-19 positive cases were recruited across five countries from
603  Latin America (Mexico, Brazil, Colombia, Paraguay, and Ecuador) by 13 participating
604  centres (supplementary Table 1) from March 2020 to July 2021. In addition, we
605 included 1,082 COVID-19 positive individuals recruited between March and December
606 2020 in Spain who either had evidence of origin from a Latin American country or
607 showed inferred genetic admixture between AMR, EUR, and AFR (with < 0.05%
608 SASEAS). These individuals were excluded from a previous SCOURGE study that
609  focused on participants with European genetic ancestries™. We used hospitalization as a
610 proxy for disease severity and defined as cases those COVID-19 positive patients that
611  underwent hospitalization as a consequence of the infection and used as controls those

612  that did not need hospitalization due to COVID-19.

613  Samples and data were collected with informed consent after the approval of the Ethics
614 and Scientific Committees from the participating centres and by the Galician Ethics
615  Committee Ref 2020/197. Recruitment of patients from IMSS (in Mexico, City), was
616  approved by of the National Comitte of Clinical Research, from Instituto Mexicano del

617  Seguro Social, Mexico (protocol R-2020-785-082).

618 Samples and data were processed following normalized procedures. The REDCap
619  electronic data capture tool®*, hosted at Centro de Investigacion Biomédica en Red
620 (CIBER) from the Instituto de Salud Carlos 111 (ISCI1I), was used to collect and manage
621  demographic, epidemiological, and clinical variables. Subjects were diagnosed for
622  COVID-19 based on quantitative PCR tests (79.3%), or according to clinical (2.2%) or

623  laboratory procedures (antibody tests: 16.3%; other microbiological tests: 2.2%).
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624  SNP array genotyping

625 Genomic DNA was obtained from peripheral blood and isolated using the Chemagic
626 DNA Blood 100 kit (PerkinElmer Chemagen Technologies GmbH), following the

627  manufacturer’s recommendations.

628 Samples were genotyped with the Axiom Spain Biobank Array (Thermo Fisher
629  Scientific) following the manufacturer’s instructions in the Santiago de Compostela
630 Node of the National Genotyping Center (CeGen-ISCIII; http://www.usc.es/cegen).
631 This array contains probes for genotyping a total of 757,836 SNPs. Clustering and

632  genotype caling were performed using the Axiom Analysis Suite v4.0.3.3 software.
633  Quality control steps and variant imputation

634 A quality control (QC) procedure using PLINK 1.9 was applied to both samples and
635 the genotyped SNPs. We excluded variants with a minor allele frequency (MAF) <1%,
636 a call rate <98%, and markers strongly deviating from Hardy-Weinberg equilibrium
637  expectaions (p<1x10®) with mid-p adjustment. We aso explored the excess of
638  heterozygosity to discard potential cross-sample contaminations. Samples missing >2%
639 of the variants were filtered out. Subsequently, we kept the autosoma SNPs and
640 removed high LD regions and conducted LD-pruning (windows of 1,000 SNPs, with
641 step size of 80 and r? threshold of 0.1) to assess kinship and estimate the global
642  ancestral proportions. Kinship was evaluated based on IBD values, removing one
643  individua from each pair with PI_HAT>0.25 that showed a Z0, Z1, and Z2 coherent
644  pattern (according to the theoretical expected values for each relatedness level). Genetic
645  principal components (PCs) were calculated with PLINK with the subset of LD pruned

646  variants.
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647  Genotypes were imputed with the TOPMed version r2 reference panel (GRCh38) using
648 the TOPMed Imputation Server and variants with Rsg<0.3 or with MAF<1% were
649 filtered out. A total of 4,348 individuals and 10,671,028 genetic variants were included

650 intheanalyses.
651  Genetic admixture estimation

652  Global genetic inferred ancestry (GIA), referred to the genetic similarity to the used
653  reference individuals, was estimated with the ADMIXTURE* v1.3 software following
654  atwo-step procedure. First, we randomly sampled 79 European (EUR) and 79 African
655  (AFR) samples from The 1000 Genomes Project (IKGP)* and merged them with the
656 79 Native American (AMR) samples from Mao et a.** keeping the biallelic SNPs. LD-
657  pruned variants were selected from this merge using the same parameters as in the QC.
658  We then run an unsupervised analysis with K=3 to redefine and homogenize the clusters
659  and to compose arefined reference for the analyses, by applying a threshold of >95%
660  of belonging to a particular cluster. As aresult of this, 20 AFR, 18 EUR, and 38 AMR
661 individuals were removed. The same LD-pruned variants data from the remaining
662 individuals were merged with the SCOURGE Latin American cohort to perform a
663  supervised clustering and estimated admixture proportions. A total of 471 samples from
664  the SCOURGE cohort with >80% estimated European GIA were removed to reduce the
665 weight of the European ancestral component, leaving a total of 3,512 admixed

666  American (AMR) subjects for downstream analyses.
667  Association analysis

668  Results for the SCOURGE Latin Americans GWAS were obtained testing for COVID-
669 19 hospitalization as a surrogate of severity. To accommodate the continuum of GIA in

670 the cohort, we opted for a joint testing of all the individuals as a single study using a
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671 mixed regresson model, as this approach has demonstrated a greater power and to
672 sufficiently control population structure®. The SCOURGE cohort consisted of 3,512
673  COVID-19 positive patients: cases (n=1,625) were defined as hospitalized COVID-19

674  patients and controls (n=1,887) as non-hospitalized COVID-19 positive patients.

675 Logistic mixed regression models were fitted using the SAIGEgds® package in R,
676  which implements the two-step mixed SAIGE*” model methodology and the SPA test.
677  Baseline covariables included sex, age, and the first 10 PCs. To account for a potential
678 heterogeneity in the recruitment and hospitalization criteria across the participating
679  countries, we adjusted the models by groups of the recruitment aress classified in six
680  categories: Brazil, Colombia, Ecuador, Mexico, Paraguay, and Spain. This dataset has

681  not been used in any previously GWAS of COVID-19 published to date.
682 Meta-analysis of Latin-American populations

683  The results of the SCOURGE Latin American cohort were meta-analyzed with the
684 AMR HGI-B2 data, conforming our primary analysis. Summary results from the HGI
685 freeze 7 B2 analysis corresponding to the admixed AMR population were obtained from

686  the public repository (April 8, 2022: https://www.covid19hg.org/results/r7/), summing

687  up 3,077 cases and 66,686 controls from seven contributing studies. We selected the B2
688  phenotype definition because it offered more power and the presence of population
689  controls not ascertained for COVID-19 does not have a drastic impact in the association

690  results.

691 The metaanalysis was performed using an inverse-variance weighting method in
692 METAL™. Average alele frequency was calculated and variants with low imputation

693  quality (Rsg<0.3) were filtered out, leaving 10,121,172 variants for meta-analysis.
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694  Heterogeneity between studies was evaluated with the Cochran’s-Q test. The inflation

695  of results was assessed based on a genomic control (lambda).
696  Definition of the genetic risk loci and putative functional impact
697  Definition of lead variant and novel loci

698 To define the lead variants in the loci that were genome-wide significant, an LD-
699  clumping was performed on the meta-analysis data using a threshold p-value<5x10®,
700  clump distance=1500 kb, independence set at a threshold r°=0.1 and used the
701  SCOURGE cohort genotype data as LD reference panel. Independent loci were deemed
702 as anovel finding if they met the following criteria: 1) p-value<5x10® in the meta-
703  analysis and p-value>5x10® in the HGI B2 ALL meta-analysis or in the HGI B2 AMR
704 and AFR and EUR analyses when considered by separate; 2) Cochran’s Q-test for
705  heterogeneity of effects is <0.05/Njqi, Where Niog iS the number of independent variants
706  with p<5x10® and 3) the nearest gene has not been previously described in the latest

707  HGIV7 update.
708  Annotation and initial mapping

709  Functional annotation was done with FUMA® for those variants with a p-value<5x10°®
710 or in moderate-to-strong LD (r*>0.6) with the lead variants, where the LD was
711 calculated from the 1IKGP AMR panel. Genetic risk loci were defined by collapsing
712 LD-blocks within 250 kb. Then, genes, scaled CADD v1.4 scores, and RegulomeDB
713 V1.1 scores were annotated for the resulting variants with ANNOVAR in FUMA®,
714  Genebased analysis was aso performed using MAGMA® as implemented in FUMA,
715  under the SNP-wide mean model using the 1IKGP AMR reference panel. Significance
716  was set at athreshold p<2.66x107° (which assumes that variants can be mapped to atotal

717  of 18,817 genes).
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718  FUMA alowed us to perform an initial gene mapping by two approaches: (1) positional
719  mapping, which assigns variants to genes by physical distance using 10-kb windows;
720 and (2) eQTL mapping based on GTEXx v.8 data from whole blood, lungs, lymphocytes,
721 and oesophagus mucosa tissues, establishing a False Discovery Rate (FDR) of 0.05 to

722  declare significance for variant-gene pairs.

723 Subseguently, to assign the variants to the most likely gene driving the association, we
724  refined the candidate genes by fine mapping the discovered regions and implementing

725  functional mapping.

726  To conduct a Bayesian fine mapping, credible sets for the genetic loci considered novel
727  findings were calculated on the results from each of the three meta-analyses to identify a
728  subset of variants most likely containing the causal variant at 95% confidence level,
729  assuming that there is a single causal variant and that it has been tested. We used

730  corrcoverage (https://cran.rstudio.com/web/packages/corrcoverage/index.html) for R to

731  caculate the posterior probabilities of the variant being causal for al variants with an
732 r?>>0.1 with the leading SNP and within 1 Mb except for the novel variant in
733 chromosome 19, for which we used a window of 0.5 Mb. Variants were added to the
734  credible set until the sum of the posterior probabilities was >0.95. VEP

735  (https.//www.ensembl.org/info/docs/tools/vep/index.html) and the V2G aggregate

736  scoring from Open Targets Genetics (https://genetics.opentargets.org) were used to

737  annotate the biological function of the variants contained in the fine-mapped credible

738  sets

739  Colocalization analysis

740  We also conducted colocalization analyses to identify the putative causal genes that

741  could act through the regulation of gene expression. FUMA’s eQTL mapping enabled
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742  the identification of genes whose expression was associated with the variants in whole
743  blood, lungs, lymphocytes, and oesophagus mucosa tissues. We combined this
744  information with the VEP and V2G aggregate scoring to prioritize genes. For the fine-
745  mapping regions, we included the variants within the calculated credible sets. In the
746  cases where the fine mapping was unsuccessful, we considered variants within a 0.2 Mb

747  window of the lead variant.

748  For each prioritized gene, we then run COLOC™ to assess the evidence of
749  colocalization between association signals and the eQTLSs in each tissue, when at least
750 one variant overlapped between them. COLOC estimates the posterior probability of
751  two traits sharing the same causal variant in a locus. Prior probabilities of a variant
752  being associated to COVID-19 phenotype (pl) and gene expression (p2) were set at
753 1x10™, while pp2 was set at 1x10° as they are robust thresholds®. The posterior
754  probability of colocalization (PP4) > 0.75 and a ratio PP4/PP3>3 were used as the
755  criteriato support evidence of colocalization. Additionally, athreshold of PP4.SNP >0.5
756  was chosen for causal variant prioritization. In cases were colocalization of a single
757  variant failed, we computed the 95% credible sets. The eQTL data was retrieved from

758  GTEx v8 and only significant variant-gene pairs were considered in the analyses.

759  Colocdlization in whole-blood was aso performed using the recent published gene
760  expression datasets derived from a cohort of African Americans, Puerto Ricans, and
761  Mexican Americans (GALA 11-SAGE)>. We used the results from the pooled cohort
762  for the three discovered loci, and from the AFRHp5 (African genetic ancestry>50%)
763 and IAMHp5 (Native American genetic ancestry>50%) cohorts for the risk loci in

764  chromosomes 2 and 11. Results are shown in the Supplementary Table 10.

765  Sendtivity plots are shown in supplementary Figures 4 and 5.
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766  Transcription-wide association studies

767  Transcriptome-wide association studies (TWAS) were conducted using the pretrained
768  prediction models with MASHR-computed effect sizes on GTEx v8 datasets™*.
769  Results from the Latin-American meta-analysis were harmonized and integrated with
770  the prediction models through S-PrediXcan® for lungs, whole blood, lymphocytes and
771 oesophagus mucosa tissues. Statistica significance was set at p-value<0.05 divided by
772 the number of genes that were tested for each tissue. Subsequently, we leveraged results
773 for al 49 tissues and run a multi-tissue TWAS to improve power for association, as
774  demonstrated recently®’. TWAS was also conducted with the MASHR models for

775 whole-blood in the pooled admixed AMR from the GALA and SAGE studies™.
776 Cross-population meta-analyses

777  We conducted two additional meta-analyses to investigate the ability of combining
778  populations to replicate our discovered risk loci. This methodology enabled the
779  comparison of effects and the significance of associations in the novel risk loci between

780  theresults from analyses that included or excluded other population groups.

781  The first meta-analysis comprised the five populations analysed within HGI (B2-ALL).
782  Additionally, to evaluate the three GIA components within the SCOURGE Latin-
783 American cohort™, we conducted a meta-analysis of the admixed AMR, EUR, and AFR
784  cohorts (B2). All summary statistics were retrieved from the HGI repository. We
785  applied the same meta-analysis methodology and filters as in the admixed AMR meta-
786  anaysis. Novel variants from these meta-analyses were fine-mapped and colocalized

787  with gene expression.

788  Cross-population Polygenic Risk Score
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789 A polygenic risk score (PGS) for critical COVID-19 was derived combining the
790  variants associated with hospitalization or disease severity that have been discovered to
791 date. We curated a list of lead variants that were: 1) associated to either severe disease
792 or hospitalization in the latest HGIV7 release® (using the hospitalization weights); or 2)
793  associated to severe disease in the latest GenOMICC meta-analysis’ that were not
794  reported in the latest HGI release. A total of 49 markers were used in the PGS model

795  (seesupplementary Table 13) since two variants were absent from our study.

796  Scores were calculated and normalized for the SCOURGE Latin-American cohort with
797 PLINK 1.9. This cross-ancestry PGS was used as a predictor for hospitalization
798 (COVID-19 positive that were hospitalized vs. COVID-19 positive that did not
799 necessitate hospital admission) by fitting a logistic regression model. Prediction
800 accuracy for the PGS was assessed by performing 500 bootstrap resamples of the
801 increasein the pseudo-R-squared. We also divided the sample in deciles and percentiles
802  toassessrisk stratification. The models were fit for the dependent variable adjusting for
803  sex, age, the first 10 PCs, and the sampling region (in the Admixed AMR cohort) with
804  and without the PGS, and the partial pseudo-R2 was computed and averaged among the

805  resamples.

806 A clinical severity scale was used in a multinomial regression model to further evaluate
807 the power of this cross-ancestry PGS for risk stratification. This severity strata were
808 defined as follows: 0) asymptomatic; 1) mild, that is, with symptoms, but without
809  pulmonary infiltrates or need of oxygen therapy; 2) moderate, that is, with pulmonary
810 infiltrates affecting <50% of the lungs or need of supplemental oxygen therapy; 3)
811 severe disease, that is with hospital admission and PaO,<65 mmHg or Sa0,<90%,
812  Pa0O,/Fi0,<300, SaO./Fi0,<440, dyspnea, respiratory frequency>22 bpm, and

813 infiltrates affecting >50% of the lungs; and 4) critical disease, that is with an admission
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to the ICU or need of mechanical ventilation (invasive or non-invasive). We also
included the novel risk variants as predictors alongside the PRS to determine if they

provided increased prediction ability.

Data availability

Summary statistics from the SCOURGE Latin-American GWAS will be available at

https://github.com/CIBERER/Scourge-COV1D19.
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Table 1. Demographic characteristics of the SCOURGE Latin-American cohort.

Non Hospitalized Hospitalized
Variable
N =1,887 N = 1,608
Age— mean years + SD 39.1+119 41145
Sex - N (%)
Female (%) 1253 (66.4) 668 (41.5)
GIA* — % mean +SD
European 54.4 +16.2 394+ 20.7
African 153+127 9.1+116
Native American 30.3+£19.8 51.46 + 26.5
Comorbidities - N (%)
Vascular/endocrinological 488 (25.9) 873 (54.3)
Cardiac 60 (3.2 150 (9.3)
Nervous 15(0.8) 61 (3.8)
Digestive 14 (0.7) 33(2.0)
Onco-hematological 21(1.1) 48 (3.00)
Respiratory 76 (4.0) 118 (7.3)

*Global genetic inferred ancestry.

Table 2. Lead independent variants in the admixed AMR GWAS meta-analysis.

SNPrsID chr:pos

EA  NEA

OR (95% CI) P-value

EAF EAF Nearest

cases controls gene
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rs13003835 2:159407982 T C 1.20(1.12-1.27) 3.66E-08 0.563

rs35731912  3:45848457 T C 1.65(1.47-1.85) 6.30E-17 0.087

rs2477820 6:41535254 A T 0.84(0.79-0.89) 1.89E-08 0.453

rs77599934  11:82906875 G

>

227 (1.7-304)  2.26E-08 0.016

0.429 BAZ2B

0.056 LZTFL1

0.517 FOXP4-ASL

0.011 DDIAS

EA: effect allele; NEA: non-effect allele; EAF: effect allele frequency in the SCOURGE study.

Table 3. Novel variants in the SC-HGIa . and SC-HGIzpop meta-analyses (with respect

to HGIV7). Independent signals after LD clumping.

SNP rsID chr:pos EA NEA OR(95%Cl)

P-value Nearestgene  Analysis

rs76564172 | 16:3892266 T G 1.31 (1.19-1.44) 9.64E-09 CREBBP SC-HGl 3pop
rs66833742 | 19:4063488 T C 0.94 (0.92-0.96) 1.89E-08 ZBTB7A SC-HGl 3pop
rs66833742 | 19:4063488 T C 0.94 (0.92-0.96) 2.50E-08 ZBTB7A SC-HGI AL
rs2876034 20:6492834 A T 0.95 (0.93-0.97) 2.83E-08 CASC20 SC-HGI 5
EA: effect allele; NEA: non-effect allele.
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1000
1001

1002  Figure 2. A) Manhattan plot for the admixed AMR GWAS meta-analysis. Probability
1003 thresholds at p=5x10"® and p=5x10" are indicated by the horizontal lines. Genome-wide
1004  significant associations with COVID-19 hospitalizations were found in chromosome 2
1005  (within BAZ2B), chromosome 3 (within LZTFL1), chromosome 6 (within FOXP4), and
1006  chromosome 11 (within DDIAS). A Quantile-Quantile plot is shown in supplementary
1007  Figure 2. B) Regional association plots for rs1003835 at chromosome 2 and rs77599934
1008  at chromosome 11; C) Allele frequency distribution across The 1000 Genomes Project

1009  populations for the lead variants rs1003835 and rs77599934.

—logialp)

C chr:160264493 1/
// = b
- b
- B .
v N
° ,’/ - ] = \»
1 2 3 4 5 6 7T B 9 0 M 1213 15 7 1921 23 = aray
| LR -y
Chromasome R = : -
! c
|
A
N /

5 & & B oz
Recombinalion 2ats (cMMs]|
'
&
%

chril:82617917 G/

L P o2 oz :
Recombinabien Rats (UMb}

1010

1011


https://doi.org/10.1101/2023.08.11.23293871
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.08.11.23293871; this version posted February 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

It is made available under a CC-BY-NC-ND 4.0 International license .

Figure 3. Forest plot showing effect sizes and the corresponding confidence intervals for
the sentinel variants identified in the AMR meta-analysis across populations. All beta
values with their corresponding Cls were retrieved from the B2 population-specific
meta-analysis from the HGI v7 release, except for AMR, for which the beta value and

IC from the HGIamr-SCOURGE meta-analysis is represented.
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Figure 4. (A) Polygenic risk stratified by PGS deciles comparing each risk group

against the lowest risk group (OR-95%CI); (B) Distribution of the PGS scores in each
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of the severity scale classes (0-Asymptomatic, 1-Mild disease, 2-Moderate disease, 3-

Severe disease, 4-Critical disease).

A B

M ; ‘ . " 2
PGS decile Severity scale

Qdds ratio (95% CI)
Score

Supplementary Material for: Novel risk loci for COVID-19 hospitalization among

admixed American populations
Supplementary Tables are provided in a separate excel file
Supplementary figures

Supplementary Figure 1. Global Genetic Inferred Ancestry (GIA) composition in
the SCOURGE L atin-American cohort. European (EUR), African (AFR) and Native
American (AMR) GIA was derived with ADMIXTURE from a reference panel
composed of Aymaran, Mayan, Nahuan, and Quechuan individuals of Native-American
genetic ancestry and randomly selected samples from the EUR and AFR 1KGP
populations. The colours represent the different geographical sampling regions from
which the admixed American individuals from SCOURGE were recruited.
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1040  Supplementary Figure 2. Quantile-Quantile plot for the AMR GWAS meta-
1041  analysis. A lambdainflation factor of 1.015 was obtained.
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1054  Supplementary Figure 3. Regional association plots for the fine mapped loci in
1055 chromosomes 2 (upper panel) and 16 (lower panel). Coloured in red, the variants
1056  alocated to the credible set at the 95% confidence according to the Bayesian fine
1057  mapping. In blue, the sentinel variant.
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1061  Supplementary Figure 4. Sensitivity plots from COL OC with expression data from
1062 GTEXx v8. The range of pl2 values (probability that a SNP is associated with both
1063 traits) for which the rule H4>0.7 is supported is shown in green in the right plots for
1064 each analysis. Plots in the left represent the variants included in the risk region common
1065  to both traits along their individual association -log10(p-values) for each trait, whereas
1066 the shading shows the posterior probability that the SNPis causal given Hyistrue. Trait
1067 1 corresponds to COVID-19 hospitaization, while trait 2 corresponds to gene

1068  expressionin each analysis.
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1075  Supplementary Figure 5. Sensitivity plots from COLOC with whole blood
1076  expression data from the GALA and SAGE Il studiesin AMR individuals. AFRhp5
1077  corresponds to the expression dataset computed in individuals with high African
1078  ancestries; AMRhp5 corresponds to the expression dataset computed individuals with
1079  high AMR ancestries; pooled corresponds to the dataset computed with the total of
1080 individuals from the study. In the right, the plots show in green the range of p12 values
1081  (probability that a SNP is associated with both traits) for which the rule H,>0.7 is
1082  supported. Plots in the left represent the variants included in the risk region common to
1083  both traits aong their individual association -log10(p-values) for each trait, whereas the
1084  shading shows the posterior probability that the SNP is causal given Ha is true. Trait 1
1085  correspondsto COVID-19 hospitalization, while trait 2 corresponds to gene expression.
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Supplementary Figure 6. Gene-tissue pairs for which either rs1003835 or

rs60606421 are significant

eQTLs at

FDR<0.05 (data

retrieved from

https://gtexportal.org/home/snp/). rs1003835 (chromosome 2) maps to BAZ2B, LY75,
and PLAZR genes. As for the lead variant of chromosome 11, rs77599934, since it was
not an eQTL, we used an LD proxy variant (rs60606421). DDIAS and PRCP genes map
closely to this variant. NES and p-values correspond to the normalized effect size (and

direction) of eQTL-gene associations and the p-value for the tissue, respectively.


https://doi.org/10.1101/2023.08.11.23293871
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.08.11.23293871; this version posted February 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Whaole Blood
Thyroid
Skin - Sun Exposed (Lower leg)
Skin - Mot Sun Exposed (Suprapubic)
Pancreas .
Nerve - Tibial ¢
Muscle - Skeletal
Lung
Heart - Atrial Appendage
Esophagus - Muscularis
Esophagus - Mucosa
Esophagus - Gastroesophageal Junction
Colon - Sigmoid
Artery - Tibial
Artery - Aorta
Adipose - Visceral (Omentum) ®

Adipose - Subcutaneous

L
—

BAZZE
CDIAS
PLAZR1
FRCP

1ogtoe) |GG

.
o
(=]
—
oo
w

NESsign = - = +

NESvalue ® 02 @ 04 @ 05
1103

1104

1105  Scourge Cohort Group
1106  Full list of cohort members and affiliations

1107  Javier Abellan™?; René Acosta-1saac®; Jose Maria Aguado™>®’; Carlos Aguilar®; Sergio
1108  Aguilera-Albesa’®; Abdolah Ahmadi Sabbagh'; Jorge Alba™?; Sergiu Albu®*4*;

1109  KarlaA.M. Alcal&Gallardo®; Julia Alcoba-Florez'’; Sergio Alcolea Batres™®; Holmes
1110  Rafael Algarin-Lara™?; Virginia Almadana®; Julia Almeida®®**?*%; Berta

1111 Almoguera®?’; MariaR. Alonso®; Nuria Alvarez”®; Rodolfo Alvarez-Sala Walther®,
1112 MénicaT. Andrade®*; Alvaro Andreu-Bernabeu®-®; Maria Rosa Antonijoan®’; Eunate

52


https://doi.org/10.1101/2023.08.11.23293871
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.08.11.23293871; this version posted February 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156

It is made available under a CC-BY-NC-ND 4.0 International license .

Arana-Arri®**: Carlos Aranda®>%; Celso Arango®*"®; Carolina Araque®*; Nathalia
K. Araujo®; Izabel M.T. Araujo*; Ana C. Arcanjo****: Ana Arnaiz***': Francisco
Arnalich Fernandez®; Maria J. Arranz™®; José Ramon Arribas Lopez*®; Maria-Jesus
Artiga®; Yubelly Avello-Malaver®; Carmen Ayuso®®?’; Ana Margarita Bal dién ot
Belén Ballina Martin'; Ral C. Baptista-Rosas>>***; Andrea Barranco-Diaz®; Maria
Barreda- Sanchez”>%; Viviana Barrera-Penagos™ Moncef Belhassen-Garcia™” 58
Enrique Bernal®; David Bernal-Bello®; Joao F. Bezerr 0 Marcos A.C. Bezerra’®
Natalia Blanca-L6pez®; Rafael Blancas®; Lucia Boix- Palop : Alberto Borobia®™; Elsa
Bravo®®; Maria Brion®"®®; Oscar Brochado-Kith® - Ramon Brugada70 L8872 M atilde
Bustos™; Alfonso Cabello™; Juan J. Caceres-Agra’; Esther Calbo’®; Enrique J.

cal derén77'78'79' Shirley Camacho®: Cristi na Carbonel|®**®; Servando Cardona-
Huerta®; Antonio Augusto F. Carioca®; Maria Sanchez Carpi ntero *3. Carlos Carpio
Segura18 ThéssiaM.T. Carratto®; José Antonio Carrillo-Avila? ° MariaC.C.
Carvalho®®; Carlos Casasnovas® ®?’; Luis Castano®3*?"%%: Carlos F. Castafio®™*;
Jose E. Castelao™; Aranzazu Castellano Candalija’®; MariaA. Castillo™; Y olanda
Cafiadas®; Francisco C. Ceballos?’; Jessica G. Chaux®’; Walter G. Chaves-

Santi ago% %, Sylena Chiquillo-Gomez™*?°; Marco A. Cid-Lopez'®; Oscar Cienfuegos-
Jmenez®; Rosa Conde-Vicente™; M. Lourdes Cordero-Lorenzana™; Dolores
Corella®: - Almudena Corrales™ %, : Jose L. Cortes-Sanchez®*®; Marta Corton®#;
Tatiana X. CostalOl Raquel Cruz”” 102, : MarinaS. Cruz*’; L uisa Cuesta® GabrreIaC R
Cunha'®; David Dalmau'®"®; Raquel C.S. Dantas-Komatsu™; M. Teresa Darnaude'®
Alba De Marti no—Rodrlguez107 198 juan De la Cruz Troca'®*'*"8: Juan Delgado-
Cuesta'™; Aranzazu Diaz de Bustamante'®; Covadonga M. Diaz-Caneja®*"®; Beatriz
Dietl”; Silvia Diz-de Almeida®”'%%; Elena Dominguez-Garrido™'?; Alice M. Duarte™
Anderson Diaz-Pérez”®; Jose EchaveSustaet 3 Rocio Eiros™*; César O. Enciso-
Olivera®?®; Gabriela Escudero™™; Pedro Pablo Espan a*'®; Gladys Mercedes Estigarribia
Sanabria . : Maria Carmen Farifias®™**’; Marianne R. Fernandas118 9 Lidia
Fernandez- Caballero26 - Maria J. Fernandez—Nest 120 Ramoén Fernandez45 21 Silvia
Fernandez Ferrero™; Yolanda Fernandez Martinez™; Ana Fernandez-Cruz*?%; Uxia
Fernandez-Robel 0'%*; Amanda Fernandez-Rodriguez®’; Marta Fernandez-
Sampedro™*#"%: Ruth Fernandez-Sanchez”®*’; Tania Fernandez-Villa™**"®, Carmen
Fernéndez Caprtan92 Patricia FIoreﬁ—Perez125 Vicente Friaza"; Lécides Fuenmayor-
Hernandez®®; Marta Fuertes NUfiez'; Victoria Fumad6'?®; Ignacro Gadea?’; Lidia
Gagliardi®**®; Manuela Gago-Dominguez'?®'?; Natalia Gallego™°; Cristina Galoppo™*
Carlos Garcia-Cerrada™***; Josefina Garcia-Garcia™; Inés Garcia®®?’; Mercedes
Garcia35 % |eticia Garcia 5%, : Marfa Carmen Garcia Torrej 6n**? |rene Garcia-
Garcia’® Carmen Garcra—lbarbra 547"‘6; Andrés C. GarciaM ontero134 AnaGarcia-

Soi dan135 Elisa Garcia-V azquez™; Aitor Garcia-de-Vicufia®**; Emiliano Garza-
Frias®; Jesus Gaytan-Martinez™®’, Angela Gentile™"; Belén Gil- Fournrer138 Fernan
Gonzalez Bernaldo de Quirés*®®; Manuel Gonzal ez-Sagrado Hugo Gonzalo Benito™*;
Beatriz Gonzélez Alvarez'*"'%; Anna Gonzéalez-Neira®; Javier Gonzé ez-Pefias®*%*"
Oscar Gorgojo-Galindo™; Florencia Guaragna™'; Genilson P. Guegel***; Beatriz
Guillen-Guio®™; Encarna Guillen-Navarro®4344 2. : Pablo Guisado- Vasco113 Luz D.
Gutierrez-Castafieda*>*%; Juan F. Gutiérrez- Bautrsta146 Luis Gémez Carrera'®; Maria

53


https://doi.org/10.1101/2023.08.11.23293871
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.08.11.23293871; this version posted February 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200

It is made available under a CC-BY-NC-ND 4.0 International license .

Gomez Garcia'?®; Angela Gomez Sacrlstan147 Javier Gomez-Arrue'®%®: Mario
Go6mez-Duque 30, : Miguel Gérgolas™; Sarah Heili- Fradas148 Estefania Hernandez'?
Luis D. Hernandez-Ortega™®***; Cristina Hernandez Moro™; Guillermo Hernandez—
Pérez®; Rebeca Hernandez-Vaguero™?; Belen Herraez?®; M. Teresa Herranz™; Maria
Herrera®®; Marfa José Herrero™**>*; Antonio Herrero-Gonzalez™>>; Juan P.

Horcajada 156.157,14156 7. Natale Imaz- Ayo33 Maider Intxausti-Urrutibeaskoa™; Rafael H.
Jacomo™®; Rubén Jara™; Perez Maria Jazmin™*"; Maria A. Jimenez-Sousa®™’; Angel
Jiménez®%; Pilar Ji menezl“s, Ignacio Jiménez-Alfaro'®; lolanda Jordan'®* 182 "8 Rocio
Laguna-Goya™®*'®®; Daniel Laorden'®; Marfa Lasa-Lazaro'®*'®; Maria Claudia
Lattig?*®; Ailen Launent 131 Anabel Liger Borja™’; Lucia Llanos169 Esther Lopez-
Garcia™® 1078170 : Rosario Lopez-Rodriguez®®*’; Leonardo Lorente'"; José E.
Lozano'’%; Marla Lozano-Espinosa™’; Andre D. Luchessi*’®; Eduardo L6pez
Granados'***2": Amparo Lopez-Bern(s™ %, Miguel A. Lopez Ruz'"1"178: Aluisio X.
Magalhdes-Brasil *'%;Ignacio Mahill0'®%*®-%; Esther M ancebo®*'®*; Carmen Mar''®;
CristinaMarcelo Calvo®™; Miguel Marcos™%; Alba Marcos-DeIgaoIo124 Pablo Mariscal
Aguilar'®; MartaMartin-Fernandez'®%; Laura Martin-Pedraza®®; Amalia Martinez*®;
Iciar Martinez-Lopez'®*'®; Oscar Martinez-Nieto™'%®; Pedro Martinez-Paz'*®; Angel
Martinez-Perez'®®; Michel F. Martinez-Resendez®*; MariaM. Martin*®’; Maria Dolores
Martin'®; Vicente Martin'?*®, Caridad Martin-Lépez*®’; José-Angel Martin-
Oterino®™*% Maria Martin-Vicente®; Ricardo Martinez**®; Juan José Martinez
SilviaMartinez**"; Violeta Martinez Robles'; Eleno Martinez-Aquino™®®; Oscar
Martinez-Gonzé ez**°; Andrea Martinez-Ramas®?’; LauraMarzal®®?"; AliciaMarin
Candon®; Jose Antonio Mata-Marin,™*" Juliana F. Mazzeu'"****'%%: Jeane F.P.
Medeiros™; Francisco J. Medrano’”®™; Xose M. Meijome™®***; Natalia M gjuto-
Monterolgs, Celso T. Mendes-Junior & 196, 197 Humberto Mendoza Charris®?; Eleuterio
Merayo Macias'™; Fatima Mercadillo*®®; Arieh R. Mercado-Sesma™**; Pablo
Minguez®®?’; Antonio J J. Molina™®*"®, Elena Molina-Roldan®®; Juan José M ontoya149
Patricia M oreira-Escriche®®’; XeniaM orel o0s-Arnedo®?; Victor Moreno Cuerda®

Alberto Moreno Fernandez®; Antonio Moreno-Doc6n®; Junior Moreno—EscaJ ante20
Rubén Morilla™??; Patricia Mufioz Garcia®®**®; AnaMéndez- Echevarrl % Pablo
Neira™"; Julian Ne-vaclo27 131205 |5rael Nieto- Gananl:"5 Joana F.R. Nunes ROCIO
Nufiez- Torreﬁ28 Antonia Obredor—Hew a®®?”: 3. Gonzalo Ocejo-Vinyal 545 - Virginia
Olivar™®"; Silviene F. Oliveira'*%% 208'210'211; Lorena Ondo®®?’; Alberto Orfag??324%;
Luis Ortega®?; Eva Ortega-Paino™; Fernando Ortiz-Flores 547, : Rocio Ortiz-Lopez?*#, .
José A. Oteo12 2% Harry Pachgj oa215 218 Manuel Pacheco™; Fredy Javier Pacheco-
Miranda®; Irene Padilla Conejo™; Sonla Panadero-Fajardo®®; Mara Parellada™*"®;
Roberto Panente—Rodrlguez131 Estela Paz-Artal®*'®?'": Germén Peces-Barba®® 99
Miguel S. Pedromingo Kus™®; Celia Perales'®’; Patricia Perezzzo, Gustavo Perez- de
Nanclares®?*; Teresa Perucho??; Aline Pic-Taylor 2929211 | isheth A. Pichardo™;
Mel-lina Pinsach-Abuin™®®; Luz Adriana Pinzon®**; Guillermo Pita®; Francesc Pla-
Junca®®®?’; Laura Planas-Serra®?’; Ericka N. Pompa-Mera®®**¥’: Gloria L. Porras-
Hurtado™; Aurora Pujol®?"%®; César Pérez*®®; Felipe Pérez-Garcia™’?®®; Patricia
Pérez-Matute®™*; Alexandra Pérez-Serra™®®; M. Elena Pérez-Toméas™; Marfa Eugenia
Quevedo Chavez'*?°; Maria Angeles Qui Jada3° 229 | nés Quintela'®®; Diana Ramirez-

88, 27

54


https://doi.org/10.1101/2023.08.11.23293871
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.08.11.23293871; this version posted February 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239

1240

1241

1242

It is made available under a CC-BY-NC-ND 4.0 International license .

Montafio®; Soraya Ramiro Ledn*®"; Pedro Rascado Sedes™"; Delia Recalde™"'%;
Emma Recio-Fernandez®'; Salvador Resino®™’; Adriana P. Ribeiro®***2 Carlos S.
Rivadeneira-Chamorro®; Diana Roa-Agudel0®'; Montserrat Robelo Pardo®™"; Marilyn
Johanna Rodriguez™; German Ezequiel Rodriguez Novoa™"; Fernando Rodriguez-
Artalejo'®1% 78170 Carlos Rodriguez-Gallego™*?**; José A. Rodriguez-Garcia™; Marfa
A. Rodriguez-Hernandez™; Antonio Rodriguez-Nicolas™®; Agusti Rodriguez-
Palmero®>®; Paula A. Rodriguez-Urrego™; Belén Rodriguez Maya'; Marena
Rodrl’guez Ferrer”®; Emilio Rodrl’guez Ruiz231 12 Federico Rojo”*?*; Andrea Romero-
Coronado®; Filomeno Rondén Garcia* I:ldLaS—Resazg@ Antonio Rosales-Castill0®’;
Cladelis Rubl 0°%2%: Maria Rubio Ollvera35 . Montserrat Ruiz®*?"; Francisco Ruiz-
Cabell0™*®17"#°: Eva Ruiz-Casares™?; Juan J. Ruiz-Cubillan®™*"; Javier Ruiz-
Hornillos241 36242. pahlo Ryan®*##4#*7": Hector D. Salamanca™ . : Lorena Salazar-
Garcia®; Giorgina Gabriela Salgueiro Orlglla 2. Crigtina Sancho-Sa nz*; Jorge Luis
Sandoval-Ramirez,**" Anna Sangil®*; Arnoldo Santos?®®; Ney P.C. Santos™®; Amanda
C.M. Salide *2%® Agatha Schliiter®?’; Sonia Segovia®>**"?*: Alex Serra-Llovich®*;
Fernando Sevil Puras®; Marta Sevilla Porras”**; Miguel A. Sicolo®™?*; Vivian N.
Silbiger'”™; Nayara S. Silva™; FabreLaLG%l#a“g Cristina Silvan Fuentas27 Jordi
Solé-Violan®3#2>* José Manuel Soria™®®; Jose V. Sorli*%"; Renata R. Sousa'’®; Juan
Carlos Souto®; KarIaSC Souza®; Vanessa S. Souza'®; Joth Sprockel **3% David A.
Suarez-Zamora’; José Javier Sudrez-Rama'?®; Pedro-Luis Sanchez***%; Antonio J.
Sénchez Lopez255 Maria Concepcion Sanchez Prados'®; Javier Sanchez Real™"; Jorge
Sanchez Redondo™?*®; Clara Sanchez-Pablo™*: Olga Sanchez-Pernaute™’; Xiana
Taboada-Fraga'®; Eduardo Tamayo®®*%7": Alvaro Tamayo-Velasco®™®; Juan Carlos
Tara(:ldo—Fernandez155 Nathali A.C. Tavares260 Carlos Telleria'®"'%; Jair Antonio
Tenorio Castafio?”*3%?%; Algjandro Teper'®!; Ronald P. Torres Guii erre2221, Juan
Torres-Macho®”; Lilian Torres-Tobar*; Jestis Troya®; Miguel Urioste™®; Juan
ValenciaRamos”®; Agustin Valido??®; Juan Pablo Vargas Gall0®**?*°; Belén
Varén®®; Romero H. T Vasconcel 0s”®; Tomas Vega®'; Santiago V elasco-Quirce®®®
Julia Vidan Estévez™; Miriam Vieitez-Santiago™*’; Carlosvllch&s269 Lavinia
Villalobos™; Felipe Villar®®; Judit Villar- Garci Zonare, : Cristina Villaverde®?’; Pablo
Villoslada-Blanco™; Anansed&Berdlc ValentlnaVeIez Santamaria®”®;
Virginia Victor®3; Zuleima Y &fiez?; Antonio Zapatero-Gaviria®’®; Ruth Zarate274
Sandra Zazo®®; Gabriela V. daSiIv *: Raimundo de Andrés*’>; JessmaN G.de
Araujoz‘r’2 Carmen de Juan®:; sulianna Lys de Sousa Alves Neri®®; Carmen dela
Horra’®; AnaB. delaHoz>; Victor deI Campo-Pérez*’”; Manoella do Monte
Alves™ 2. Katiusse A. dos Santos™; Y ady Alvarez-Benitez**?; Felipe Alvarez-
Navia®™®®; Maria ifiiguez”*; Miguel Lépez de Heredia®’; Ingrid Mendes™’; Rocio
Moreno®’; Esther Sande” %1% Carlos Flores?®* %923 jos¢ A. Riancho™“4"%";
Augusto Rojas-Martinez®; Pablo Lapunzina®13%2%>; Angel Carracedo® 12212 125

Scourge Cohort Group’ s filiations
! Hospital Universitario Mostoles, Medicina I nterna, Madrid, Spain

2 Universidad Francisco de Vitoria, Madrid, Spain

55


https://doi.org/10.1101/2023.08.11.23293871
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.08.11.23293871; this version posted February 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

1243
1244

1245
1246

1247
1248

1249

1250
1251

1252

1253
1254

1255
1256
1257

1258
1259

1260

1261
1262

1263

1264
1265

1266
1267
1268
1269
1270

1271
1272

1273

1274
1275

1276
1277

1278
1279

1280
1281

It is made available under a CC-BY-NC-ND 4.0 International license .

3 Haemostasis and Thrombosis Unit, Hospital de la Santa Creu i Sant Pau, [1B Sant Pau,
Barcelona, Spain

*, Unit of Infectious Diseases, Hospital Universitario 12 de Octubre, Instituto de I nvestigacion
Sanitaria Hospital 12 de Octubre (imasl2), Madrid, Spain

®, Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0002), Instituto de
Salud Carlos 111, Madrid, Spain

€ School of Medicine, Universidad Complutense, Madrid, Spain

’  Centro de Investigacion Biomédica en Red de Enfermedades I nfecciosas (CIBERINFEC),
Ingtituto de Salud Carlos 111, Madrid, Spain

8 Hospital General Santa Bérbara de Soria, Soria, Spain

° Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital,
Pamplona, Spain

10 Navarra Health Service, NavarraBioM ed Research Group, Pamplona, Spain
1 Complejo Asistencial Universitario de Ledn, Ledn, Spain
12 Hospital Universitario San Pedro, Infectious Diseases Department, Logrofio, Spain

1 Fundacion Institut Guttmann, | ngtitut Universitari de Neurorehabilitacié adscrit ala UAB,
Hospital de Neurorehabilitacid, Barcelona, Spain

¥ Universitat Autdonoma de Barcelona (UAB), Barcelona, Spain

2 Fundacié Institut d’ Investigacié en Ciéncies de la Salut Germans Trias i Pujol, Barcelona,
Spain

18 Hospital General de Occidente, Guadalgjara, Mexico

7 'Microbiology Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife,
Spain

18 Hospital Universitario La Paz-IDIPAZ, Servicio de Neumologia, Madrid, Spain

19 Camino Universitario Adelita de Char, Mired |PS, Barranquilla, Colombia

2 Universidad Simén Bolivar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
2l Hospital Universitario Virgen Macarena, Neumologia, Seville, Spain

% Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain

3 Centro de Investigacion del Cancer (IBMCC) Universidad de Salamanca - CSIC, Salamanca,
Spain
% Biomedical Research Institute of Salamanca (IBSAL) Salamanca, Spain

% Centre for Biomedical Network Research on Cancer (CIBERONC), Instituto de Salud Carlos
I, Madrid, Spain

% Department of Genetics & Genomics, Instituto de Investigacion Sanitaria-Fundacion Jiménez
Diaz University Hospital - Universidad Autonomade Madrid (I11S-FJD, UAM), Madrid, Spain

" Centre for Biomedical Network Research on Rare Diseases (CIBERER), I ngtituto de Salud
Carlos|l1, Madrid, Spain

8 Spanish National Cancer Research Centre, Human Genotyping-CEGEN Unit, Madrid, Spain
# Hospital das Forcas Armadas, Brazil
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% Exército Brasileiro, Brazil

% Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health,
Hospital General Universitario Gregorio Marafion (1iSGM), Madrid, Spain

¥ Clinical Pharmacology Service, Hospital de la Santa Creu i Sant Pau, 11B Sant Pau,
Barcelona, Spain

% Biocruces Bizkai HRI, Barakaldo, Bizkaia, Spain
¥ Cruces University Hospital, Osakidetza, Barakaldo, Bizkaia, Spain
% Hogpital Infanta Elena, Valdemoro, Madrid, Spain

% |ngtituto de Investigacion Sanitaria-Fundacion Jiménez Diaz University Hospital -
Universidad Auténomade Madrid (11S-FID, UAM), Madrid, Spain

3 Centre for Biomedical Network Research on Mental Health (CIBERSAM), Instituto de Salud
Carlos|l1, Madrid, Spain

¥ Fundacion Hospital Infantil Universitario de San José, Bogota, Colombia
¥ Fundacion Universitaria de Ciencias de la Salud, Bogot, Colombia

% Universidade Federal do Rio Grande do Norte, Programa de Pés-graduacsio em Ciéncias da
Salde, Natal, Brazil

! Universidade Federal do Rio Grande do Norte, Departamento de Medicina Clinica, Natal,
Brazil

2 Departamento de Genética e Morfologia, I nstituto de Ciéncias Bioldgicas, Universidade de
Brasilia, Brasilia, Brazil

8 Colégio Maristade Brasilia, Brazil

“ Associacio Brasileira de Educacéo e Cultura, Brazil

“ IDIVAL, Santander, Spain

“ Universidad de Cantabria, Santander, Spain

4" Hospital U M Valdecilla, Santander, Spain

8 Hospital Universitario La Paz-IDIPAZ, Servicio de Medicina Interna, Madrid, Spain
* Fundacio Doceéncial Recerca Mutua Terrassa, Barcelona, Spain

0 Spanish National Cancer Research Center, CNIO Biobank, Madrid, Spain

*! Fundacion Santa Fe de Bogota, Departamento Patologiay Laboratorios, Bogota, Colombia
%2 Hospital General de Occidente, Zapopan, Jalisco, Mexico

3 Centro Universitario de Tonal4, Universidad de Guadalagjara, Tonal, Jalisco, Mexico

* Centro de Investigacion Multidisciplinario en Salud, Universidad de Guadalgjara, Tonal3,
Jalisco, Mexico

* Ingtituto Murciano de Investigacion Biosanitaria (IM1B-Arrixaca), Murcia, Spain
* Universidad Catélica San Antonio de Murcia (UCAM), Murcia, Spain

> 'Hospital Universitario de Salamanca-IBSAL, Servicio de Medicina Interna-Unidad de
Enfermedades I nfecciosas, Salamanca, Spain

% Universidad de Salamanca, Salamanca, Spain
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* Hospital Universitario de Fuenlabrada, Department of Internal Medicine, Madrid, Spain
% Escola Tecnica de Salide, Laboratorio de Vigilancia Molecular Aplicada, Para, Brazil
® Federal University of Pernambuco, Genetics Postgraduate Program, Recife, PE, Brazil
82 Hospital Universitario Infanta Leonor, Servicio de Alergia, Madrid, Spain

8 Hospital Universitario del Tajo, Servicio de Medicina Intensiva, Aranjuez, Spain

% Hospital Universitario Mutua Terrassa, Barcelona, Spain

® Hospital Universitario LaPaz-IDIPAZ, Servicio de Farmacologia, Madrid, Spain

% Alcaldiade Barranquilla, Secretaria de Salud, Barranquilla, Colombia

% Instituto de Investigacion Sanitaria de Santiago (1DIS), Xenética Cardiovascular, Santiago de
Compostela, Spain

% Centre for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), Instituto
de Salud Carlos 11, Madrid, Spain

% Unidad de Infeccion Viral e Inmunidad, Centro Nacional de Microbiologia (CNM), Instituto
de Salud Carlos 111 (1SCIIT), Madrid, Spain

" Cardiovascular Genetics Center, Institut d’ I nvestigacio Biomédica Girona (IDIBGI), Girona,
Spain

™ 'Medical Science Department, School of Medicine, University of Girona, Girona, Spain

2 Hospital Josep Trueta, Cardiology Service, Girona, Spain

3 Ingtitute of Biomedicine of Seville (IBiS), Consejo Superior de Investigaciones Cientificas
(CSIO)- University of Seville- Virgen del Rocio University Hospital, Seville, Spain

™ Division of Infectious Diseases, Ingtituto de Investigacion Sanitaria-Fundacion Jiménez Diaz
University Hospital - Universidad Auténoma de Madrid (11S-FIJD, UAM), Madrid, Spain

™ Intensive Care Unit, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran
Canaria, Spain
. Hospital Universitario Mutua Terrassa, Terrassa, Spain

" Departamento de Medicina, Hospital Universitario Virgen del Rocio,Universidad de Sevilla,
Seville, Spain

"8 Centre for Biomedical Network Research on Epidemiology and Public Health (CIBERESP),
Ingtituto de Salud Carlos 111, Madrid, Spain

” Institute of Biomedicine of Seville (IBiS), Consejo Superior de Investigaciones Cientificas
(CSIO)- University of Seville- Virgen del Rocio University Hospital, Seville, Spain

8 Universidad de los Andes, Facultad de Ciencias, Bogot4, Colombia

8 Hospital Universitario de Salamanca-IBSAL, Servicio de Medicina Interna, Salamanca,
Spain

8 Tecnologico de Monterrey, Escuela de Medicinay Ciencias de la Salud and Hospital San
Jose TecSalud, Monterrey, Mexico

8 University of Fortaleza (UNIFOR), Department of Nutrition. Fortaleza, Brazil

8 Departamento de Quimica, Faculdade de Filosofia, Ciéncias e Letras de Ribeirzo Preto,
Universidade de Séo Paulo, Brazil
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& Andalusian Public Health System Biobank, Granada, Spain

8 Universidade Federal do Rio Grande do Norte, Programa de Pés-Graduacio em Ciéncias
Farmacéuticas, Natal, Brazil

8 Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge,
L'Hospitalet de Llobregat (Barcelona), Spain

8 Bellvitge Biomedical Research Institute (IDIBELL), Neurometabolic Diseases Laboratory,
L'Hospitalet de Llobregat, Spain

8 Centre for Biomedical Network Research on Diabetes and Metabolic Associated Diseases
(CIBERDEM), Instituto de Salud Carlos 11, Madrid, Spain

% University of Pais Vasco, UPV/EHU, Bizkaia, Spain

° 'Oncology and Genetics Unit, Ingtituto de Investigacion Sanitaria Galicia Sur, X erencia de
Xestion Integrada de Vigo-Servizo Galego de Salde, Vigo, Spain

% Hospital Universitario La Paz, Hospital Carlos 11, Madrid, Spain
% Hospital de San José, Sociedad de Cirugia de Bogota, Bogota, Colombia
o Hospital Universitario Rio Hortega, Valladolid, Spain

% Servicio de Medicinaintensiva, Complejo Hospitalario Universitario de A Corufia
(CHUAC), Sistema Galego de Salide (SERGAS), A Corufia, Spain

% Vaencia University, Preventive Medicine Department, Valencia, Spain

9 Centre for Biomedical Network Research on Physiopatology of Obesity and Nutrition
(CIBEROBN), Ingtituto de Salud Carlos |11, Madrid, Spain

% Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain

% Centre for Biomedical Network Research on Respiratory Diseases (CIBERES), Instituto de
Salud Carlos 111, Madrid, Spain

1% Otto von Guericke University, Departament of Microgravity and Translational Regenerative
Medicine, Magdeburg, Germany

101 ‘M aternidade Escola Janério Cicco, Natal, Brazil

102 Centro Singular de Investigacion en Medicina Molecular y Enfermedades Cronicas
(CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain

19 Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marafion
(1iISGM), Madrid, Spain

1% Programa de P6s Graduagdo em Ciéncias da Satide, Faculdade de Medicina, Universidade
deBrasilia, Brasilia, Brazil

1% Fundacié Docéncia | Recerca M utua Terrassa, Terrassa, Spain

1% Hogpital Universitario Mostoles, Unidad de Genética, Madrid, Spain
197 Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
1% Instituto Investigacion Sanitaria Aragon (11S-Aragon), Zaragoza, Spain

1% Department of Preventive Medicine and Public Health, School of Medicine, Universidad
Auténoma de Madrid, Madrid, Spain

10 1diPaz (Instituto de Investigacion Sanitaria Hospital Universitario La Paz), Madrid, Spain
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1 Hospital Universitario Virgen del Rocio, Servicio de Medicina Interna, Seville, Spain

12 Unidad Diagnostico Molecular. Fundacion Rioja Salud, La Rioja, Spain

3 Hogpital Universitario Quironsalud Madrid, Madrid, Spain

14 Hogpital Universitario de Salamanca-IBSAL, Servicio de Cardiologia, Salamanca, Spain
1> Hogpital Universitario Puerta de Hierro, Servicio de Medicina Interna, Magjadahonda, Spain
118 Biocruces Bizkaia Health Research Institute, Galdakao University Hospital, Osakidetza,
Bizkaia, Spain

17 | nstituto Regional de Investigacion en Salud-Universidad Nacional de Caaguazt, Caaguaz(,
Paraguay

18 Universidade Federal do Par4, Nticleo de Pesquisas em Oncologia, Belém, Par, Brazil

9 Hospital Ophir Loyola, Departamento de Ensino e Pesquisa, Belém, Par4, Brazil

120 Universidad Nacional de Asuncion, Facultad de Politécnica, Paraguay

21 Fundacion Asilo San Jose, Santander, Spain

122 'Unidad de Enfermedades I nfecciosas, Servicio de Medicina | nterna, Hospital Universitario
Puertade Hierro, Ingtituto de Investigacion Sanitaria Puerta de Hierro - Segoviade Arana,
Madrid, Spain

123 Urgencias Hospitalarias, Complejo Hospitalario Universitario de A Corufia (CHUAC),
Sistema Galego de Salde (SERGAS), A Corufia, Spain

124 Grupo de Investigacion en Interacciones Gen-Ambientey Salud (GIIGAS) - Ingtituto de
Biomedicina (IBIOMED), Universidad de Ledn, Lebdn, Spain

125 Hospital Universitario Nifio Jests, Pediatrics Department, Madrid, Spain

126 Unitat de Malalties Infeccioses i Importades, Servei de Pediatria, I nfectious and | mported
Diseases, Pediatric Unit, Hospital Universitari Sant Joan de Dell, Barcelona, Spain

27 ‘Microbiology Department, Instituto de Investigacion Sanitaria-Fundacion Jiménez Diaz
University Hospital - Universidad Auténoma de Madrid (11S-FJD, UAM), Madrid, Spain

128 Fundacion Publica Galega de Medicina Xendmica, Sistema Galego de Salide (SERGAS)
Santiago de Compostela, Spain

129 Instituto de Investigacion Sanitaria de Santiago (ID1S), Santiago de Compostela, Spain

130 Ingtituto de Genética M édicay Molecular INGEMM), Hospital Universitario La Paz-
IDIPAZ, Madrid, Spain
B! Hogpital de Nifios Ricardo Gutierrez, Buenos Aires, Argentina

182 Centre for Biomedical Network Research on Rare Diseases (CIBERER), Ingtituto de Salud
Carlos|Il1, Madrid, Spain Universidad Francisco de Vitoria, Madrid,Spain

133 Hogpital Infanta Elena, Servicio de Medicina I ntensiva, Valdemoro, Madrid, Spain

134 University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), Salamanca,
Spain
135 Department of Immunology, IRY CIS, Hospital Universitario Ramon y Cajal, Madrid, Spain

136 Osakidetza, Cruces University Hospital, Bizkaia, Spain

60


https://doi.org/10.1101/2023.08.11.23293871
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.08.11.23293871; this version posted February 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

1436
1437
1438

1439

1440
1441

1442
1443

1444
1445

1446
1447

1448

1449
1450

1451
1452

1453
1454
1455

1456
1457

1458
1459

1460
1461

1462
1463

1464
1465

1466
1467

1468
1469

1470
1471

1472

1473
1474

1475

It is made available under a CC-BY-NC-ND 4.0 International license .

187 | nstituto Mexicano del Seguro Saocial, IMSS. Centro Médico Nacional La Raza. Hospital de
Infectologia. Mexico City, Mexico.
38 Hospital Universitario de Getafe, Servicio de Genética, Madrid, Spain

139 Ministerio de Salud Ciudad de Buenos Aires, Buenos Aires, Argentina

M0 Hospital Clinico Universitario de Valladolid, Unidad de Apoyo ala Investigacion,
Vadladolid, Spain

M1 Universidad de Valladolid, Departamento de Cirugia, Valladolid, Spain
142 Secretaria Municipal de Saude de Apodi, Natal, Brazil

143 seccion Genética Médica - Servicio de Pediatria, Hospital Clinico Universitario Virgen de la
Arrixaca, Servicio Murciano de Salud, Murcia, Spain

144 Departamento Cirugia, Pediatria, Obstetriciay Ginecologia, Facultad de Medicina,
Universidad de Murcia (UMU), Murcia, Spain

%5 Hospital Universitario Centro Dermatol gico Federico Lleras Acosta, Bogota, Colombia

%6 Hospital Universitario Virgen de las Nieves, Servicio de Andlisis Clinicos e Inmunologia,
Granada, Spain

7 Pneumology Department, Hospital General Universitario Gregorio Marafion (iiSGM),
Madrid, Spain

148 | ntermediate Respiratory Care Unit, Department of Pneumology, Instituto de Investigacion
Sanitaria-Fundacién Jiménez Diaz University Hospital - Universidad Autbnomade Madrid (11S-
FJD, UAM), Madrid, Spain

8 Clinica Comfamiliar Risaralda, Pereira, Colombia
10 Centro Universitario de Tonal4, Universidad de Guadalajara, Guadalajara, Mexico

31 Centro de Investigacion Multidisciplinario en Salud, Universidad de Guadalgjara,
Guadal gjara, Mexico

152 'Unidad de Cuidados, Intensivos Hospital Clinico Universitario de Santiago (CHUS),
Sistema Galego de Salide (SERGAS), Santiago de Compostela, Spain

133 11S La Fe, Plataforma de Farmacogenética, Valencia, Spain
34 Universidad de Valencia, Departamento de Farmacologia, Vaencia, Spain

1% Data Analysis Department, Instituto de Investigacion Sanitaria-Fundacion Jiménez Diaz
University Hospital - Universidad Auténoma de Madrid (I11S-FJD, UAM), Madrid, Spain

1% Hospital del Mar, Infectious Diseases Service, Barcelona, Spain
7 Institut Hospital del Mar d’ Investigacions Médiques (IMIM), Barcelona, Spain

158 CEXS-Universitat Pompeu Fabra, Spanish Network for Research in I nfectious Diseases
(REIPI), Barcelona, Spain

19 Biocruces Bizkaia Health Research Institute, Basurto University Hospital, Osakidetza,
Bizkaia, Spain
180 sahin Medicina Diagndstica, Brazil

181 ' Opthalmology Department, Instituto de Investigacion Sanitaria-Fundacion Jiménez Diaz
University Hospital - Universidad Auténoma de Madrid (11S-FIJD, UAM), Madrid, Spain

162 'Hogpital Sant Joan de Deu,Pediatric Critical Care Unit, Barcelona, Spain
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183 paediatric Intensive Care Unit, Agrupacion Hospitalaria Clinic-Sant Joan de Déu,
Esplugues de Llobregat, Barcelona, Spain

184 Hogpital Universitario 12 de Octubre, Department of Immunology, Madrid, Spain

1% Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Transplant
Immunology and Immunodeficiencies Group, Madrid, Spain

186 SIGEN Alianza Universidad delos Andes - Fundacion Santa Fe de Bogota, Bogot4,
Colombia

187 'Hospital General de Segovia, Medicina Intensiva, Segovia, Spain
168 Programa de P6s-Graduacdo em Biologia Animal, Universidade de Brasilia, Brasilia, Brazil

19 Clinical Trials Unit, Instituto de Investigacion Sanitaria-Fundacion Jiménez Diaz University
Hospital - Universidad Auténomade Madrid (I11S-FJD, UAM), Madrid, Spain

0 IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
1 Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Spain

72 Direccién General de Salud Publica, Consejeria de Sanidad, Junta de Castillay Ledn,
Valladolid, Spain

1% Universidade Federal do Rio Grande do Norte, Departamento de Analises Clinicase
Toxicologicas, Natal, Brazil

7 Hospital Universitario La Paz-IDIPAZ, Servicio de Inmunologia, Madrid, Spain

1% LaPaz Institute for Health Research (IdiPAZ), Lymphocyte Pathophysiology in
Immunodeficiencies Group, Madrid, Spain

176 Hospital Universitario Virgen de las Nieves, Servicio de Enfermedades I nfecciosas,
Granada, Spain

7 Ingtituto de Investigacion Biosanitaria de Granada (ibs GRANADA), Granada, Spain
8 Universidad de Granada, Departamento de Medicina, Granada, Spain

' Faculdade de Medicina, Universidade de Brasilia, Brasilia, Brazil

180 Fundacion Jiménez Diaz, Epidemiology, Madrid, Spain

181 Universidad Auténoma de Madrid, Department of Medicine, Madrid, Spain

182 Universidad de Valladolid, Departamento de Medicina, Valladolid, Spain

183 Hospital Universitario Infanta Leonor, Servicio de Medicina Intensiva, Madrid, Spain
184 Unidad de Genéticay Gendmica |slas Baleares, Islas Baleares, Spain

18 Hospital Universitario Son Espases, Unidad de Diagnostico Molecular y Genética Clinica,
Islas Baleares, Spain

185 Genomics of Complex Diseases Unit, Research Intitute of Hospital de la Santa Creu i Sant
Pau, 11B Sant Pau, Barcelona, Spain

187 | ntensive Care Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife,
Spain

188 Preventive Medicine Department, Instituto de Investigacion Sanitaria-Fundacion Jiménez
Diaz University Hospital - Universidad Autonomade Madrid (I1S-FJD, UAM), Madrid, Spain

1 Servicio de Medicina Interna, Sanatorio Franchin, Buenos Aires, Argentina
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% Hospital Universitario del Tajo, Servicio de Medicina Intensiva, Toledo, Spain
191 Programa de P6s-Graduaco em Ciéncias Médicas, Universidade de Brasilia, Brasilia, Brazil

192 Programa de Pés-Graduacdo em Ciéncias da Salde, Universidade de Brasilia, Brasilia,
Brazil

183 Hospital El Bierzo, Gerencia de Asistencia Sanitaria del Bierzo (GASBI), Gerencia
Regional de Salud (SACYL), Ponferrada, Spain

194 Grupo INVESTEN, Instituto de Salud Carlos 111, Madrid, Spain

1% 'Unidad de Cuidados Intensivos, Complejo Universitario de A Corufia (CHUAC), Sistema
Galego de Salide (SERGAS), A Corufia, Spain

1% Programa de Pos-Graduacso em Genética da Faculdade de Medicina de Ribeirdo Preto
97 programa de P6s-Graduag&o em Quimica da Faculdade de Filosofia, Ciénciase Letrasde
Ribeirdo Preto

% Hospital El Bierzo, Unidad Cuidados Intensivos, Ledn, Spain

1% Spanish National Cancer Research Centre, Familial Cancer Clinical Unit, Madrid, Spain

20 | ngtituto de | nvestigacion Sanitaria San Carlos (1d1SSC), Hospital Clinico San Carlos
(HCSC), Madrid, Spain

2! Hospital Universitario Severo Ochoa, Servicio de Medicina Interna, Madrid, Spain
22 Universidad de Sevilla, Departamento de Enfermeria, Seville, Spain

23 Hospital General Universitario Gregorio Marafion (1iSGM), Madrid, Spain
2% Hospital Universitario La Paz-IDIPAZ, Servicio de Pediatria, Madrid, Spain
25 ERN-ITHACA-European Reference Network

2% Unidad de Genéticay Genomica Islas Baleares, Unidad de Diagnéstico Molecular y
Genética Clinica, Hospital Universitario Son Espases, Islas Baleares, Spain

27 | nstituto de I nvestigacion Sanitaria | slas Baleares (1dI SBa), Islas Baleares, Spain
28 programa de Pés-Graduacdo em Biologia Animal, Universidade de Brasilia, Brasilia, Brazil

2 programa de Pos-Graduacio em Ciéncias da Salde, Universidade de Brasilia, Brasilia,
Brazil

20 Programa de P6s-Graduacao Profissional em Ensino de Biologia, Universidade de Brasilia,
Brasilia, Brazil

21 Programa de Pos-Graduacdo em Ciéncias Médicas, Universidade de Brasilia, Brasilia, Brazil
412 Anatomia Patoldgica, Ingtituto de Investigacion Sanitaria San Carlos (1dISSC), Hospital
Clinico San Carlos (HCSC), Madrid, Spain

23 Tecnolégico de Monterrey, Monterrey, Mexico

24 | nfectious Diseases, Microbiota and Metabolism Unit, CSIC Associated Unit, Center for
Biomedical Research of La Rioja (CIBIR), Logrofio, Spain

25 Centro de Investigacion en Anomalias Congénitas y Enfermedades Raras (CIACER),
Universidad | cesi

48 Departamento de Genetica, Fundacion Valle del Lili

27 Universidad Complutense de Madrid, Department of |mmunology, Ophthalmology and
ENT, Madrid, Spain
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218 Department of Neumology, I nstituto de Investigacion Sanitaria-Fundacion Jiménez Diaz
University Hospital - Universidad Auténoma de Madrid (11S-FIJD, UAM), Madrid, Spain

29 Hospital Nuestra Sefiora de Sonsoles, Avila, Spain

0 |nditex, A Corufia, Spain

2! Osakidetza, Cruces University Hospital, Barakaldo, Bizkaia, Spain
%2 GENYCA, Madrid, Spain

22 Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant
Pau, Universitat Autdnoma de Barcelona, Barcelona, Spain

4 | ngtituto Mexicano del Seguro Social (IMSS), Centro Médico Nacional Siglo XX, Unidad
de Investigacion Médica en Enfermedades | nfecciosas y Parasitarias, Mexico City, Mexico

5 Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain

6 | ntensive Care Department, | nstituto de Investigacion Sanitaria-Fundacion Jiménez Diaz
University Hospital - Universidad Auténoma de Madrid (I11S-FJD, UAM), Madrid, Spain

21 Hospital Universitario Principe de Asturias, Servicio de Microbiologia Clinica, Madrid,
Spain

8 Universidad de Alcala de Henares, Departamento de Biomedicina y Biotecnologia, Facultad
de Medicinay Cienciasde la Salud, Madrid, Spain

2 Drug Research Centre, Institut d’ Investigacié Biomédica Sant Pau, 11B-Sant Pau, Barcelona,
Spain

20 Departamento de Genetica, Clinica imbanaco

%1 Unidad de Cuidados Intensivos, Hospital Clinico Universitario de Santiago (CHUS),
Sistema Galego de Sallde (SERGAS), Santiago de Compostela, Spain

22 Universidade de Brasilia, Brasilia, Brazil

%3 Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrin, Las Palmas
de Gran Canaria, Spain

24 Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran
Canaria, Spain

% University Hospital Germans Trias i Pujol, Pediatrics Department, Badalona, Spain

%8 Department of Pathology, Biobank, Instituto de Investigacion Sanitaria-Fundacion Jiménez
Diaz University Hospital - Universidad Auténoma de Madrid (11S-FJD, UAM), Madrid, Spain

%! Hospital Universitario Virgen de las Nieves, Servicio de Medicina Interna, Granada, Spain

28 Fundacién Universitaria de Ciencias de la Salud, Grupo de Ciencias Basicas en Salud
(CBS), Bogota, Colombia

%9 sociedad de Cirugia de Bogot4, Hospital de San José, Bogoté, Colombia

20 Universidad de Granada, Departamento Bioquimica, Biologia Molecular e Inmunologia lll,
Granada, Spain

21 Hospital Infanta Elena, Allergy Unit, Valdemoro, Madrid, Spain
#2 Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain

3 Hospital Universitario Infanta Leonor, Madrid, Spain
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24 Complutense University of Madrid, Madrid, Spain
#° Gregorio Marafién Health Research I nstitute (1iSGM), Madrid, Spain

?%® Colégio Militar de Brasilia

7 The John Walton Muscular Dystrophy Research Centre, Newcastle University and
Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.

#8 Neuromuscular Unit, Neuropediatrics Department, Institut de Recerca Sant Joan de Déu,
Hospital Sant Joan de Déu, Spain

9 Fundacio Docénciai Recerca Mutua Terrassa, Terrassa, Spain

0 Casa de Saide S4o Lucas, Natal, Brazil

%! Hospital Rio Grande, Rio Grande do Norte, Natal, Brazil

%2 Universidade Federal do Rio Grande do Norte, Pés-graduacdo em Biotecnologia - Rede de
Biotecnologia do Nordeste (Renorbio), Natal, Brazil

%3 Intensive Care Unit, Hospital Universitario de Gran Canaria Dr. Negrin, Las Palmas de Gran
Canaria, Spain

%4 Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain

%% Bjobank, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain

%% Universidad Rey Juan Carlos, Madrid, Spain

»’ Reumathology Service, Ingtituto de Investigacion Sanitaria-Fundacion Jiménez Diaz
University Hospital - Universidad Auténoma de Madrid (I11S-FJD, UAM), Madrid, Spain

%8 Hospital Clinico Universitario de Valladolid, Servicio de Anestesiologia y Reanimacion,
Valladolid, Spain

%% Hospital Clinico Universitario de Valladolid, Servicio de Hematologiay Hemoterapia,
Valadolid, Spain

20 Hospital Universitario Lauro Wanderley, Brazil

%1 Hospital Universitario Infanta Leonor, Servicio de Medicina Interna, Madrid, Spain
%2 University Hospital of Burgos, Burgos, Spain

%3 Universidad de Sevilla, Seville, Spain

%4 Fundacion Santa Fe de Bogota, Instituto de servicios medicos de Emergenciay trauma,
Bogoté, Colombia

%5 Universidad de los Andes, Bogota, Colombia

%8 Quironprevencion, A Corufia, Spain

%7 Junta de Castillay Ledn, Consgjeria de Sanidad, Valladolid, Spain
%8 Gerencia Atencion Primaria de Burgos, Burgos, Spain

% | mmunogenetics-Histocompatibility group, Servicio de Inmunologia, Ingtituto de
Investigacion Sanitaria Puerta de Hierro - Segovia de Arana, Madrid, Spain

20 Hospital del Mar, Department of Infectious Diseases, Barcelona, Spain

21 IMIM (Hospital del Mar Medical Research Institute, Institut Hospital del Mar
d’ Investigacions Mediques), Barcelona, Spain

%2 Universitat Autdnoma de Barcelona, Department of Medicine, Spain
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13 Consejeria de Sanidad, Comunidad de Madrid, Madrid, Spain
2 Centro parael Desarrollo de la Investigacion Cientifica, Asuncién, Paraguay

" |Internal Medicine Department, I nstituto de Investigacion Sanitaria-Fundacion Jiménez Diaz
University Hospital - Universidad Auténoma de Madrid (11S-FJD, UAM), Madrid, Spain

2% Universidade Federal do Rio Grande do Norte, Programa de Pés Graduag&o em Nutrico,
Natal, Brazil

2" Preventive Medicine Department, Ingtituto de Investigacion Sanitaria Galicia Sur, Xerencia
de Xestion Integrada de Vigo-Servizo Galego de Salde, Vigo, Spain

8 Universidade Federal do Rio Grande do Norte, Departamento de Infectologia, Natal, Brazil
1 Hospital de Doengas Infecciosas Giselda Trigueiro, Rio Grande do Norte, Natal, Brazil

20 Genomics Division, Ingtituto Tecnolégico y de Energias Renovables, Santa Cruz de
Tenerife, Spain
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