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ABSTRACT

Purpose: Fluorescein staining (FS) is a standard method of assessing corneal epithelium (CE)
integrity. However, the equipment and personnel required for FS may be unavailable in
low-resource environments. We developed and validated a low-cost, noninvasive, and
quantitative CE evaluation pipeline using a custom smartphone attachment and convolutional
neural networks (CNNs).

Methods: A 3D-printed smartphone attachment and placido disk illumination module was
attached to a OnePlus 7 Pro smartphone. 26 smartphone-acquired images were obtained from 15
subjects, comprising a dataset including healthy eyes and corneal epitheliopathies of Oxford
grade I-V. A classifier CNN was trained on 8 subjects (23,173 image patches) to identify areas of
suspected epithelial disruption, and validated on 7 subjects (10,883 image patches). The fraction
of disrupted corneal surface area (FDSA) was computed for each subject from the model output.
Results were compared with FS slit lamp photos which were independently graded by two
clinicians using the Oxford scheme.

Results: FDSA showed promise as a non-invasive marker of CE integrity, with mean FDSA in
the Oxford >II cohort being higher than the Oxford ≤II cohort (p = 0.04 and p = 0.09 using
Oxford scores from each clinician, respectively). Additionally, areas of CE disruption identified
by our smartphone-based technique showed qualitative concordance with those revealed by FS.

Conclusions: Our technique for smartphone-based CE imaging and automated analysis is a
promising low-cost, noninvasive method to quantitatively evaluate the CE.

Translational Relevance: This tool can be used to evaluate ocular surface disease in
low-resource regions.
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INTRODUCTION

The cornea has a surface epithelium (CE) that creates a barrier to the outside environment and is

critical to the eye’s refractive power and clarity1. The epithelium may be disrupted by trauma,

infection, exposure, dry eye disease, systemic disease with ocular surface involvement, and

topical medications and their preservatives. CE breakdown is typically painful and leaves the eye

susceptible to invasion by pathogens.

Identifying and treating corneal epithelium breakdown is critical to ocular health and

preservation of vision. Currently, corneal epithelium breakdown is diagnosed with fluorescein

staining (FS). Fluorescein dye applied to the cornea adheres to exposed basement membrane and

corneal stroma and is visualized using cobalt blue light and a slit lamp biomicroscope2,3. In

low-resource regions, many of the health facilities that bear the brunt of the medical burden do

not have access to specialized equipment or trained medical technicians. This problem is

magnified by imbalances in healthcare coverage: in India, for instance, 60% of all medical

personnel reside in urban centers despite these centers only containing 30% of the country’s

population4. In addition, FS is generally assessed by visual inspection and even with standard

grading systems may be ill-suited for longitudinal evaluation, where gradual changes may not

always be visually apparent5. Finally, the grading process has been found to be inconsistent

between different clinicians6. The management of corneal epitheliopathies can thus benefit from

a portable, low-cost, and more quantitative means of evaluating the corneal surface.
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In recent years, smartphone-based innovations have shown potential to expand access to

ophthalmological screenings due to their inexpensive and scalable nature. For instance, a

low-cost, point-of-care tool for evaluating corneal endothelial health has demonstrated

comparable accuracy to “gold standard” specular microscopy, which costs tens of thousands of

dollars7. Another smartphone-based device uses an illuminated 3D-printed attachment and an

image analysis pipeline to diagnose keratoconus8. With regards to fluorescein examination,

however, there does not yet exist a tool that is standalone, low-cost, quantitative, and

noninvasive. Although computer vision algorithms have been developed to quantify FS images,

they still require high-resolution digital image capture of the eye, which is typically performed

by attaching a camera to a slit-lamp microscope3,9. Moreover, the use of fluorescein dye poses an

additional resource requirement as well as the risk of patient discomfort.

To address this need, we developed a smartphone-based CE evaluation tool ideal for remote and

low-resource settings. We designed modular adaptors that project an illuminated pattern onto the

corneal surface, enabling the identification of intact and disrupted corneal surface regions based

on their distinct reflective properties. We also trained convolutional neural networks (CNNs) to

process images and highlight regions with suspected corneal surface disruption. The hardware

attachments can be readily and cheaply produced using 3D-printed components and LEDs, and

can be customized to accommodate a variety of phone dimensions.

Our novel platform enables rapid, point-of-care evaluation of corneal epithelial integrity. Unlike

previous methods, our system does not require the use of fluorescein dye, thereby eliminating
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one of the many barriers of corneal imaging in low-resource communities. Furthermore, our

hardware attachment is capable of being manufactured at less than $10 apiece, compared with a

slit lamp which can cost thousands of dollars. In contrast to the current standard, our system is

portable and image analysis does not require trained professionals, allowing for expanded access

to CE evaluation for follow-up treatment or prophylactic care.

METHODS

The corneal surface yields evidence of any surface disruptions via distortions in the reflection of

a projected image. The projection of a high-density illumination pattern (HDIP) onto a healthy

corneal surface yields a reflection which perfectly recreates the pattern, whereas any surface

disruptions (for example, due to infection or dry eye) will result in imperfections in the

reflection. Disrupted regions of arbitrary size will be visible in the reflection so long as the HDIP

is of sufficiently high spatial frequency. By capturing the reflection with a smartphone camera

and processing the image with CNNs, we identify and quantify regions of suspected epithelial

disruption. In this section, we present elements of our hardware and software design and their

motivating factors.

Hardware

The smartphone attachment is composed of an attachment body and an HDIP module. Current

prototypes are 3D-printed in polylactic acid (PLA), though our design is amenable to other
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manufacturing methods such as injection molding. The attachment body is a two-piece plastic

clamp which has a snap-on interface for the HDIP module as well as built-in grips for holding

the device in a vertical or horizontal orientation (Fig. 1a-b). Although in principle the attachment

body can be made adjustable such that it can accommodate multiple smartphone models, during

testing we found that a model-specific design with no moving parts was easier to use and more

feasible given the substantially lower manufacturing costs. In practice, different attachment body

designs to accommodate different smartphone models can be readily and cheaply produced. In

the prototype shown here, the attachment body is designed for a OnePlus 7 Pro smartphone

(OnePlus Technology, Shenzhen, China).

The HDIP module projects a pattern onto the corneal surface and enables the reflection to be

captured by the smartphone camera. It consists of a base, lens insert, and diffuser (Fig. 1c-d). A

chip-on-board (COB) flexible LED strip (Dephen, Shenzhen, China) is mounted in a circular

ring on the inner wall of the base, and is attached to a USB A-to-C adapter (JSAUX, Shenzhen,

China), which can draw power from either a 5V power bank or directly from the attached

smartphone. The base also contains a mounting point for a convex lens with diameter 12.5 mm

and focal length 35 mm (Part #L5865, Surplus Shed, Fleetwood, PA). This lens decreases the

minimum focus distance of the smartphone camera to enable it to focus on the corneal surface.

The diffuser is a double-walled conical shell which serves to diffuse the light from the LED strip

to evenly illuminate the cornea, and it holds an interchangeable insert that creates the HDIP.

Diffusers with different heights may be produced to allow for variation in the depth of the

subject’s ocular orbit.
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Although many patterns for the HDIP insert are possible, we adopted a placido disk due to it

being radially symmetrical, and thus more amenable to downstream image processing algorithms

(Fig. 1d). Moreover, the spatial frequency of a placido disk is readily adjustable by altering the

thickness of the circular mires. In the prototype shown here, the insert is made from

paper-backed vinyl (Craftables, Springfield, TN) from which alternating rings have been cut and

removed from the upper vinyl layer. Other materials for the insert are possible, including printer

paper or cardstock on which the placido pattern is printed, as long as the pattern can be projected

with sufficient contrast between light and dark mires. The density of the placido mires

determines the smallest disrupted region able to be resolved by this system.

Due to the geometry of the placido-cornea system, evenly-spaced mires on the placido insert will

result in unevenly-spaced mires on the corneal reflection. In order to maximize the performance

of the image processing algorithm, the spacing of mires on the reflection must be as uniform as

possible. To solve this issue, we wrote a custom Python ray-tracing script which calculates the

spacing of mires on the placido insert required to achieve a near-uniformly spaced reflection.

Given the dimensions of the HDIP module and the desired mire density, the script computes the

angles of the projected and reflected rays and generates an SVG image for printing or vinyl

cutting (Fig. S1). In this script, the corneal surface is approximated as a spherical convex mirror

with radius 7.8 mm8.

Software Overview

5
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The software consists of a graphical user interface (GUI) frontend and two CNN models on the

backend. The GUI allows the user to upload an image or video and manually select the frame (if

video input) and region of interest (ROI), as well as batch process images (Fig. 2). As a proof of

concept, to assist with ROI selection, a regression CNN can optionally be invoked to

automatically estimate the (x, y) coordinates of the center of the mires (Fig. S2). A patch-based

CNN classifier is then used to identify disrupted regions in the ROI (Fig. S3). All software was

developed in Python 3.8.8 with Tensorflow version 2.8.0 and OpenCV version 4.5.5.

Data Acquisition

A pilot study was conducted at L.V. Prasad Eye Institute in Hyderabad, India. 15 subjects were

imaged using the smartphone attachment in one or both eyes, forming a total dataset of 26

smartphone-captured images. All subjects were 18 years of age or older. Healthy patients as well

as patients with corneal epitheliopathies of varying severity (Oxford I, II, III, IV, V) were

represented within the data collected. This study was approved by the Institutional Review Board

of the L.V. Prasad Eye Institute and informed consent was obtained from all subjects.

The hardware attachment was mounted on a OnePlus 7 Pro smartphone (OnePlus Technology,

Shenzhen, China) and placed against the ocular orbit of each subject such that the optical axis of

the camera was approximately in line with the optical axis of the pupil. The position of the

device was adjusted until the reflection of the placido mires on the cornea came into focus. A

short video at 4K resolution, 30 frames per second was captured, during which the subject was

asked to blink. The process was repeated until a video with sufficient clarity was obtained. The
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video capture process took approximately 10 seconds per eye. A traditional fluorescein

examination was also performed on the same eye.

Regression Model Details

The exact center of the placido mires was manually annotated for 214 video frames from 6

subjects. Each image was first cropped to a centrally located 1000 × 1000 pixel region, then

downsized to 500 × 500 pixels. Data augmentation was performed by shifting the initial location

of the 1000 × 1000 pixel crop, which helps the model learn the location of the center regardless

of its position within the input image. After augmentation, all images from one subject (336)

were reserved for testing and the remaining images (2508) were used for training. Two neurons

in the output layer were trained to predict the x and y coordinates of the center, respectively (Fig.

S2).

Classifier Model Details

In contrast to a typical semantic segmentation architecture such as a U-Net10, our patch-based

classification approach allows the model to assign values between 0 and 1 to ambiguous regions.

For each input image, a ground truth mask was manually drawn using GNU Image Manipulation

Program (GIMP 2.10.22). Red and green were used to denote completely distorted and intact

mire regions, respectively, while ambiguous regions were left unmarked (Fig. S3). During

preprocessing, each frame was cropped to a 1000 × 1000 pixel square centered at the placido

disk origin (either manually selected or estimated using the regression model above) and

remapped to polar coordinate space while maintaining the same image dimensions. Every k = 20
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pixels in the remapped image was sampled as a 3-channel patch of size 101 × 101 pixels,

normalized, and mapped to the cropped and polar-remapped ground truth (Fig. S3). If the

percentage of green pixels or the percentage of red pixels in the ground truth patch surpassed a

predefined threshold of 80%, the patch was assigned to the “intact” or “disrupted” set,

respectively (Fig. S3). The model was trained on this binary classification task, considering each

patch independently of the others.

During inference, an image (after ROI masking) is preprocessed in the same manner as described

above (Fig. 3). The single-neuron output layer yields a value between 0 and 1 for each patch,

which is converted into an RGB value and assigned to the pixel at the patch center (where 1

corresponds to a pure green pixel, for example). Because every k = 20 pixels is sampled as a

patch (yielding 2500 total patches per 1000 × 1000 pixel image), the colors of areas between

patch centers are linearly interpolated in order to generate a heatmap. The heatmap may be

post-processed by masking out regions of the image which are not covered by the placido disk

reflection. This heatmap is then overlaid on the original image to highlight predicted disrupted

areas in red (Fig. 3).

The classifier model was trained as follows. Each video was manually evaluated to determine the

timestamps of any eye blinks present. The first frame with acceptable clarity was identified

within the 1 second period following the blink, and if such a frame could not be found, the video

was discarded. The pixel coordinates of the center of the placido disk reflection were manually

annotated for each frame. In total, 26 frames from 26 videos representing 15 subjects were
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obtained for model training and evaluation. Finally, a stratified train-test split was performed

manually such that 1) videos from the same subject belonged to the same dataset and 2) each

dataset had an approximately equal distribution of intact and disrupted regions. In the training

set, we allowed redundant frames (multiple frames representing the same eye), but in the testing

set only one frame was kept per eye. This gave a total of 23,173 training patches from 8 subjects

(17 frames) and 10,883 testing patches from 7 subjects (8 frames, not including one discarded

frame from a duplicate eye). The proportion of intact patches was ~77% in the training set and

~81% in the testing set. Oxford grading11 was performed on the unpatched test set by two

independent ophthalmologists who were not shown the output of the model.

Statistical Analysis

For each eye, we computed the fraction disrupted surface area (FDSA), which is defined as the

proportion of red pixels in the ROI-masked heatmap relative to the total number of nonzero

pixels (where “red” is defined by an RGB value where R > G). The formula for FDSA is shown

below, where N is the number of nonzero pixels, 𝟙 is an indicator function, and Ri and Gi

represent the respective RGB values for the red and green color channels of pixel i.

An unpaired one-tailed t-test was performed between the FDSA scores of Oxford ≤II and Oxford

>II subjects, using the SciPy package (1.7.3) in Python (3.8.8). P values < 0.05 were considered

9
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statistically significant.

RESULTS

The regression model was trained for 20 epochs, with a final MSE training loss of 6.09 px2 and

testing loss of 574 px2. This indicates that, on average for this test set, the estimated center is

about 24 pixels off from the true center (or 4.8% of the side length of the input image). Visually,

the predictions are very close to the true center (Fig. S2). Inference for the regression model

takes less than one second per image on an Intel Core i7-8706G CPU. Although the regression

model was not invoked when testing the classifier model below, our results demonstrate that an

automatic center-finding algorithm is feasible.

The classifier model was trained for 4 epochs, with a final accuracy of 90.87% across all patches

of the test set. Inference for the classifier takes approximately 120 seconds per image on an Intel

Core i7-8706G CPU. Visual inspection of the resulting heatmaps indicates good agreement with

FS for subjects A, C, D, F, G with focal staining (Fig. 4). On the other hand, scattered or

punctate staining patterns such as those found in subjects B and E are not well recapitulated by

the heatmaps (Fig. 4). In particular, it appears that in the latter case the placido images either do

not fully capture the diffuse nature of surface disruptions or introduce artifacts arising from poor

focus or tear film residue. In nearly all cases, however, there is good agreement between the

heatmaps and the disruption pattern present on the placido images. We note an exception to this

for subject E, left eye, where the algorithm erroneously marks the darker pupillary region as

10
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disrupted. Model performance will likely improve with the inclusion of additional training data.

We compared average FDSA values between Oxford ≤II and Oxford >II subjects. Oxford scores

were in agreement between the two clinicians except for subjects C and D, where clinician A

assigned a score of II and clinician B assigned a score of III for each. Using clinician A’s Oxford

scores, the average FDSA for the two classes was 0.166 and 0.463, respectively (one-tailed

unpaired t test, p = 0.04). Using clinician B’s Oxford scores, the average FDSA for the two

classes was 0.127 and 0.368, respectively (one-tailed unpaired t test, p = 0.09). Though the

power of this analysis is limited by the small size of the labeled validation cohort, these results

suggest that the FDSA statistic, calculated from the model output, is able to partially recapitulate

the clinical insight from FS.

DISCUSSION

In this study, we report the development of a novel and low-cost method of evaluating the health

of the corneal epithelium. A 3D-printed smartphone attachment projects a placido disk pattern

onto the corneal surface, and the reflection is captured by a smartphone camera. A companion

software program automatically locates the reflected pattern in the resulting image and identifies

regions of suspected corneal epithelial disruption. 15 subjects were imaged using the proposed

system and, although quantitative results are limited due to the small sample size, we

demonstrate the following proof-of-concept:

11
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1. A reflected placido disk pattern reveals continuity of the corneal epithelium and is

capable of highlighting irregular ocular surfaces.

2. A smartphone-based imaging system is capable of generating and capturing clinically

useful images of the corneal epithelium.

3. A software pipeline can preprocess and automatically highlight regions of suspected

damage in such images.

In general, the method performs better on conditions exhibiting focal FS, such as corneal ulcers,

compared with those exhibiting scattered staining, such as superficial punctate keratitis. With

additional training data and hardware refinement, accuracy of both the classification and

regression models may be increased. This technology has the potential to simplify and

standardize the diagnosis and monitoring of ocular surface disease.

The requirements of fluorescein dye and slit-lamp microscopy in the current standard of care for

evaluating corneal surface integrity pose challenges in remote areas and resource-limited primary

care settings, as well as in the care of subjects who are bedridden due to illness and who cannot

travel to an eye clinic to be evaluated. In addition, the subjectivity of the fluorescein scoring

procedure makes it difficult to track the progression of a corneal surface defect over time.

Furthermore, ophthalmologists have historically had a higher level of patient-to-provider

infections than other specialties, a risk exacerbated by COVID-1912,13,14. Using our proposed

system, patients can be examined with minimal contact and without the need to administer

fluorescein, potentially reducing disease transmission.

12
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We now discuss current limitations of the proposed method, along with possible solutions.

Firstly, the resolution of the placido mires is not sufficient for detection of smaller corneal

surface disruptions, such as those found in superficial punctate keratitis; however, this resolution

is sufficient for screening for large-scale defects, and could be increased by increasing the

density of the placido mires. Secondly, there is an optical blind spot at the center of the placido

disk, where the camera is located. However, this only covers around ~1% of the placido

reflection (~12 mm2), and this limitation is inherent to the design of similarly designed corneal

topographers used in clinics today15. If necessary, this could simply be resolved by capturing two

corneal images at a slightly different angle and merging the result. Finally, a fundamental

challenge when acquiring images is the need to ensure the reflection is in focus, which could be

mitigated by integrating a customized autofocusing system in the image capture methodology.

Some additional challenges arise from our low-cost prototyping and manufacturing process.

Firstly, because our placido insert is created from a two-dimensional sheet which is rolled into a

cone, there are potential distortions and artifacts in the mire pattern if the insert is not properly

seated in the diffuser. Secondly, as shown by our raytracing script (Fig. S1b), the placido disk

reflection does not exist in one focal plane, and in fact occupies a convex surface. When focusing

on the center of the cornea, this can cause reflected mires at the periphery of the placido pattern

to appear slightly out of focus. These issues may be addressed by 1) printing the placido disk

pattern onto the diffuser directly, and 2) experimenting with non-conical designs for the diffuser

such that the virtual image of its projection forms a flat surface. These would require a modest

13
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increase in the cost of manufacture, but the total cost would still be far below that of traditional

instrumentation.

With improvements in the hardware and additional data collection, additional software

capabilities are planned for the near future. Firstly, additional image processing algorithms may

be developed to enable automatic image capture by detecting blinks and verifying the image is in

focus. The regression CNN presented here may be augmented with a segmentation model to

enable automatic masking of non-mire regions. Given the morphology and extent of disrupted

corneal regions, another deep learning model may be trained to provide both

Oxford/NEI-equivalent scores11,16 as well as etiological diagnoses. For example, herpes simplex

keratitis yields a distinctive dendritic ulcer17. These capabilities would allow this method to be

more easily integrated within existing clinical workflows. Finally, we plan to convert the

software into a mobile application to run on-device for rapid, point-of-care evaluation without

the need for an internet connection.

The development of mobile health technologies is a part of a broader ongoing initiative to deploy

more tractable, scalable, and cost-effective healthcare solutions in remote locations.

Opportunities for using mobile health technologies have significantly improved within the past

few years with smartphones becoming an increasingly ubiquitous technology. Additionally, the

use of digital imaging techniques is spreading worldwide, bringing mobile imaging to health

clinics in remote rural areas. The increasing quality and reliability of machine learning

algorithms, along with the falling cost of hardware, paves the way for transformed health care
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paradigms. Our novel low-cost noninvasive corneal imaging system offers an innovative solution

to eye care challenges posed in low-resource environments and has the potential to advance

global health equity.
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FIGURES

Figure 1. Smartphone attachment. a) 3D render of device with attached OnePlus 7 Pro
smartphone. b) Photos of the device with illumination switched on or off. c) Disassembled
components of device. d) Close-up of placido disk insert.

Figure 2. Graphical user interface for high-throughput screening of corneal subjects. Top
row: main interface with progress bar. Bottom row, left to right: Frame preview, manual ROI
selection interface, heatmap visualization of result.

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.29.23293788doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.29.23293788
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. Image processing pipeline for epithelial defect identification from
smartphone-acquired images. (a) Image capture of corneal surface; (b.i) automated
center-finding algorithm with regression CNN or manual center annotation, followed by
1000x1000 circular crop; (b.ii) automated corneal segmentation or manual ROI selection; (c)
transformation from Cartesian to polar coordinates; (d) patch-based inference with classification
CNN; (e) postprocessing and masking to generate final heatmap visualization of surface
integrity.
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Figure 4. Epithelial defects revealed by fluorescein examination are visible under
smartphone-based white-light imaging and are highlighted by the deep learning-based
image processing pipeline. Image rows, top to bottom: Corneal epithelial defects visualized
with fluorescein staining; placido disk images captured with handheld smartphone attachment;
corneal epithelial defects computed by classifier network with manual ROI selection. Oxford
scores were assigned independently by two ophthalmologists from the fluorescein images.
Scores ≤II are shown in blue, scores >II are shown in orange. FDSA, fraction disrupted surface
area (computed by algorithm). * indicates post-keratoplasty.
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SUPPLEMENTARY MATERIAL

Figure S1. Design of white light illumination module, assisted by custom ray-tracing script.
Two example placido disk designs are shown with their corresponding parameters. Diagrams
show cross-section of optical system, with circle approximating the cornea and sloped line
representing the conical wall of the diffuser. The position of the camera is approximated as the
apex of the cone. The intersection points of the primary rays (blue) denote the approximately
equidistant white-black mire transitions in the placido disk reflection on the cornea. The
intersection points of the secondary rays (gray) represent the virtual image formed by the placido
disk reflection. This virtual image appears as a convex surface (orange). The placido pattern is
projected to 2D by the script (equivalent to flattening the conical surface) and shown in the
rightmost column. Measurements: r, radius of circle; h, height of cone; w, radius of cone; θmin,
angle of smallest ring from optical axis; θmax, angle of largest ring from optical axis; n, number of
mires.
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Figure S2. Training paradigm and architecture for center-finding regression model. (a)
Ground truth assignment of mire center. (b) Preparation of data with images and ground truth. (c)

Architecture of regression CNN. (d) Example results of center prediction on test set.

Figure S3. Training paradigm and architecture for patch-based classification model. (a)
Ground truth assignment to patches. (b) Preparation of data with image patches and ground truth.
(c) Architecture of binary classifier CNN.
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