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Abstract 

Purpose: Convolutional neural networks (CNNs) have been proposed for super-resolution in CT, 

but training of CNNs requires high-resolution reference data. Higher spatial resolution can also be 

achieved using deconvolution, but conventional deconvolution approaches amplify noise. We 

develop a CNN that mitigates increasing noise and that does not require higher-resolution 

reference images.  

Methods: Our model includes a noise reduction CNN and a deconvolution CNN that are 

separately trained. The noise reduction CNN is a U-Net, similar to other noise reduction CNNs 

found in the literature. The deconvolution CNN uses an autoencoder, where the decoder is fixed 

and provided as a hyperparameter that represents the system point spread function. The encoder is 

trained to provide a deconvolution that does not amplify noise. Ringing can occur from 

deconvolution but is controlled with a difference of gradients loss function term. Our technique 

was demonstrated on a variety of patient images and on ex vivo kidney stones. 

Results: The noise reduction and deconvolution CNNs produced visually sharper images at low 

noise. In ex vivo mixed kidney stones, better visual delineation of the kidney stone components 

could be seen.  

Conclusions: A noise reduction and deconvolution CNN improves spatial resolution and reduces 

noise without requiring higher-resolution reference images.  
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1 Introduction 

Spatial resolution is an important image quality metric for every medical imaging modality, 

including computed tomography (CT). Tasks such as lung nodule characterization, bone fracture 

detection, and kidney stone assessment all benefit from higher spatial resolution. Historically, in-

plane spatial resolution has improved slowly, increasing from 10 line pairs per cm in 1980 to 

about 20 line pairs per cm in 2015 (1). Other modalities have witnessed much faster progress: 

MRI has seen spatial resolution improvements with every magnet strength upgrade; ultrasound 

has seen spatial resolution improvements from higher frequency transducers enabled by lower 

noise electronics, and PET scanners have seen spatial resolution improvements from time-of-

flight coincidence detectors. The primary reason for slower progress in CT is the nature of the 

pixelated scintillator-photodiode detector, in which smaller pixels reduce detection efficiency. 

When these limitations are overcome using, for example, recent photon counting detectors that 

increase fill factor (2, 3), there is still the more fundamental limitation of the noise power 

spectrum: higher spatial frequencies are always associated with increased noise because they are 

sampled by fewer views (4).  

 

Absent new hardware, software approaches can be employed to improve the resolution of a 

reconstructed CT image. We consider two categories of software approaches that enhance the 

representation of small-scale image features: super-resolution and deconvolution. We define 

super-resolution as a technique that improves the sampling rate of the image, e.g. increasing the 

matrix size from 512x512 pixels to 1024x1024 pixels. We define deconvolution as a technique 

that inverts the blurring caused by the fin ite spatial resolution of the imaging system. In 

photographic images acquired with a wide depth of field and sharp focus, super-resolution is 

often the best approach for enhancing fine detail. In CT images, the point spread function is often 

larger than the reconstructed voxel size in high-resolution protocols, so deconvolution 

approaches would improve spatial resolution even without increasing the matrix size. 
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Although analytic approaches exist for both deconvolution and super-resolution, they are of 

limited practical use due to the ill-posed nature of the problem in the presence of quantum noise. 

Traditional approaches to deconvolution employ some type of regularization to increase 

robustness to noise. Recent studies have demonstrated that deep learning models such as 

convolutional neural networks (CNNs) can be used. These nonlinear CNNs encode prior 

information from training examples that can enhance the accuracy of the output high-resolution 

images. These CNNs have been demonstrated very effectively for photographic images (5-7), 

and progress has also been reported for CT images (8, 9). Two of the most significant challenges 

for applying these techniques to CT imaging are: 1) the high amount of noise in CT compared to 

conventional photography, and 2) the lack of a high-resolution ground truth reference needed to 

optimize the CNN parameters.  

 

Previous groups using CNNs for CT super-resolution have reported the ability to recover 

standard-resolution CT from downsampled, low-resolution CT, but they have not convincingly 

demonstrated the ability to increase the resolution of standard-resolution CT. For example, Park 

et al. trained a CNN to map the average of a stack of adjacent axial slices to the central slice (8). 

Umehara et al. trained a CNN to map from a 2x downsampled chest CT image to an original-

resolution chest CT image, outperforming simpler schemes such as linear or bicubic 

interpolation (10). You et al. used generative adversarial networks with several constrains, 

including cycle consistency, but also required high-resolution CT images during training (9). It is 

not established that these techniques, demonstrated for the task of mapping half-resolution to 

standard-resolution, could be applied without modification to map from standard-resolution to 

double-resolution. While such a leapfrog approach has been applied successfully in the context 

of noise reduction, there is reason to believe it would be less effective for super-resolution. The 

texture of noise and the scale of the point spread function are not invariant across resolution 

scales. For this reason, noise reduction CNNs do not generalize well across reconstruction kernel 

changes (11, 12). 

 

The purpose of this work is to develop a noise reduction and resolution enhancement CNN that 

does not require high-resolution reference images. We will use a novel autoencoder scheme and 

provide the network with an estimate of the point spread function, which the CNN will use to 
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perform resolution enhancement. We will apply the CNN to a variety of patient datasets and to 

ex vivo kidney stones. Kidney stones are a special application because several kinds of kidney 

stones appear similar in CT imaging, but knowing the composition of a kidney stone is a 

cornerstone of the management of recurrent nephrolithiasis (13). Today, stones are collected 

after passing naturally or when extracted surgically and are analyzed chemically to determine 

chemical composition, but a method to determine stone composition from CT images would be 

much more convenient. Today, dual energy CT can reliably differentiate uric acid from nonuric 

acid stones (14), but differentiation of mixed stones or of nonuric acid subtypes can only occur 

under ideal conditions (15). Higher resolution CT could be useful for this task.  

2 Materials and Methods 

2.1 General design and motivation 

Let the overall effect of the finite spatial resolution of the imaging system be modeled as a 

function K : Y  → 𝑋 that maps from a high-resolution image representation 𝑦 ∈ 𝑌 to a 

corresponding low-resolution image 𝑥 ∈ 𝑋. Solving the image deconvolution problem is 

equivalent to finding a solution Φ!"#$%& that is the inverse of 𝐾. Specifically, we need Φ!"#$%& 

to satisfy the following condition: 

Φ'()*+,-𝐾(𝑦)0 = Φ'()*+,(𝑥) = 𝑦, ∀𝑦 ∈ 𝑌	 (1) 

 

One major challenge to solving Eq. 1 is noise. Noise arises from x-ray quantum statistics and 

may further be exacerbated by electronic noise in the detector. In the presence of noise, we can 

abstractly decompose the observed CT image z as 𝑧 = 𝐾(𝑦) + δ, where δ denotes the image 

features arising from random noise. The expression from Equation 1 then becomes: 

Φ'()*+,(𝐾(𝑦) + δ) = Φ'()*+,(𝑧) = y. (2) 

 

We can reduce expression in Equation 2 by introducing a noise-reduction operator Φ'(+*-.( that 

satisfies the condition: 

Φ'(+*-.((𝐾(𝑦) + δ) = 𝐾(𝑦) = 𝑥	 (3) 

 

When this operator is composed with Φ'()*+,, Equation 2 reduces to the form of Equation 1: 
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Φ!"#$%&-Φ!"%$/0"(K(y)  + δ)0 = Φ'()*+,-𝐾(𝑦)0 = Φ'()*+,(𝑥) = y	 (4) 

 

Defining explicit models for the operators Φ'()*+, and Φ'(+*-.( is difficult in practice. 

Considering that noise 𝛿 has some finite chance of taking on any possible image, perfect 

solutions to Φ'()*+, and Φ'(+*-.( cannot exist. Instead, they can only be optimized or trained to 

be effective with typical noise realizations. In this work, we chose to model these operators as 

deep CNNs with tunable parameters θ that are optimized using supervised learning. Through the 

parameter optimization process, we aim to find parameters θ∗ such that: 

θ!"#$%&∗   = argmin
2
[Φ!"#$%&(K(y), 𝜃) 	− 	y] (5) 

 

θ!"%$/0"∗   = argmin
2
[Φ!"%$/0"(K(y) 	+ 	𝛿, 𝜃) − K(y)] (6) 

 

The resulting CNN models Φ'()*+,(𝑥, θ ∗) and Φ'(+*-.((𝑥, θ ∗) are then approximate solutions 

to the deconvolution problem posed by Equation 4. 

 

To evaluate the expression in Equation 5, the high-resolution image 𝑦 must be known. This is 

problematic in a practical setting, since the CT scanner only produces images with limited spatial 

resolution, corresponding to 𝐾(𝑦). The corresponding high-resolution image 𝑦 is unknown. We 

circumvent this problem by applying the blurring operator 𝐾 to both sides of Equation 4. This 

results in the modified optimization condition: 

θ!"#$%&∗   = argmin
2
M𝐾-Φ!"#$%&(K(y), 𝜃)0 − K(	y)N (7) 

 which is also minimized by the desired solution Φ'()*+,(𝐾(𝑦), 𝜃) = 𝑦. Equation 7 is critical to 

the optimization process in this work, since it allows us to optimize the CNN models using 

supervised learning without explicit knowledge of the high-resolution ground-truth 𝑦. The data 

preparation process and the optimization configurations for Φ'()*+,(𝑥, θ) and Φ'(+*-.((𝑥, θ) are 

described in greater detail in the following sections.  
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2.2 Denoising model optimization 

We first optimized the Φ'(+*-.((𝑥, θ) operator, implemented as a CNN. The architecture of this 

CNN resembles the U-Net design that is commonly used for tasks related to medical image 

segmentation (16), but some modifications were made.  

 

First, a preprocessing layer that applies common CT window settings to the input values, and 

rescales the outputs to the range [0,1], was used. The outputs for each window level, along with 

the rescaled full-range image, are stacked along the channel dimension before being passed to 

the convolutional layers. This allows the downstream layers to adjust the weights of different CT 

image features as part of the optimization process. Second, compared to the original U-Net, the 

overall architecture is wider (more filters per layer) and less deep (fewer downsampling steps), 

which reflects the localized nature of the noise reduction task compared to semantic image 

segmentation. A schematic of the CNN architecture and the relevant models can be found in 

Figure 1. 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 2, 2023. ; https://doi.org/10.1101/2023.08.31.23294861doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.31.23294861


7 

Figure 1: Schematic diagram of the CNN models during training and inference phases. The denoising 
autoencoder and the deconvolution encoder are modeled using variations of the U-Net architecture. The 
decoder approximates the finite spatial resolution of the imaging system using fixed convolutional layer with a 
Gaussian kernel. White boxes denote image-domain representations at various points in the processing chain. 
Red arrows connect images to the associated loss functions (red boxes) that are optimized during the training 
phase. The grey boxes denote the final output images during the inference phase. 

 

Training data for optimizing the model using a bootstrapping approach. Image patches with a 

shape of 64x64x7 pixels were extracted from the original CT images, and 10 independent noise 

realizations were added using a noise insertion tool (17). A total of 150,000 images patches 

generated from 9 of the 10 noise simulations was used for training. From the remaining noise 

simulation, 200 patches were extracted as validation data to monitor for overfitting during the 

optimization process. 

 

During the optimization phase, the simulated high-noise image patches were used as inputs to the 

CNN model, and the corresponding original images were used as target outputs. Including 

multiple independent noise realizations as inputs acts as a form of data augmentation to reduce 

overfitting and encourage the model output to be invariant with respect to the addition of typical 

CT noise features. The model was optimized to minimize the mean squared difference between 

the output images and original (low-noise) target images for 50 epochs using the Adam optimizer 

with a maximum learning rate of 0.001 and a step decay factor of 0.25 every 16 epochs.  

 

2.3 Deconvolution model and optimization 

The deconvolution operator Φ'()*+,(𝑥, θ) was also modeled as a CNN with a U-Net-based 

architecture, illustrated in Figure 1. The operator 𝐾(𝑥) that represents the finite spatial resolution 

of the imaging system was modeled using a convolution layer with a Gaussian kernel at fixed 

width of 0.23 mm. The width of the Gaussian kernel was empirically tuned. The dataset used for 

optimizing the deconvolution model consisted of paired high-noise (𝑥) and low-noise (𝑡) image 

patches as described previously. 
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During the training phase, the simulated high-noise image patches 𝑥 were first passed through a 

CNN denoising autoencoder that was pre-trained according to Section 2.2. The resulting low-

noise images 𝑥'(+*-.(' were then used as inputs to the deconvolution model  Φ'()*+, to produce 

an output “encoded” representation 𝑥(+)*'('. The convolutional blurring operator 𝐾 was then 

applied to the encoded image, to produce an output decoded image 𝑥'()*'('.  

 

Optimization of Φ'()*+,  was driven by a minimization of a loss function consisting of three 

terms. The first term was a standard L2 cycle consistency term of the form: 

𝐿)3)4(   =  ‖𝑡 − 𝑥'()*'('||5	 (8) 

This term enforced consistency between t and 𝑥'()*'(' = 𝐾-Φ'()*+,(𝑥)0, which pushes 

Φ'()*+, to approximate the desired inverse condition in Equation 7. The second term was a 

noise-invariance term of the form: 

𝐿+*-.( = U|𝑡(+)*'(' − 𝑥(+)*'('|U
5
	 (9) 

which enforces consistency between the encoded (deconvolved) representations of the low-noise 

and high noise images and further reduces noise in the encoded domain. Finally, a “direction-of-

gradient” (DOG) loss term of the form: 

𝐿678 = WU𝑅𝑒𝐿𝑈-−∇(𝑡) ∙ ∇(𝑥(+)*'(')0UW
5
	 (10) 

was implemented to reduce the presence of high frequency “ringing” artifacts. This term is 

minimized when the gradients of the encoded image and the reference image are not mis-aligned. 

The loss functions from the weighted sum of Equations (8-10) was minimized over 50 epochs of 

gradient descent with the Adam optimizer with a maximum learning rate of 0.001 and a step 

decay factor of 0.25 every 16 epochs. 

3 Results 

Figure 2 illustrates the trained autoencoder without noise invariance and DOG regularization. 

This sharpens the image but also introduces ringing. Ringing is a more general phenomenon that 

is seen in analytic CT reconstruction with certain sharp kernels, where edge overshoot is 

considered an acceptable tradeoff for improved visualization. Careful tuning of the regularization 

weights reduces these ringing artifacts. 
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Figure 2. Autoencoder trained without additional regularization. On the right panel, the white arrow points 

to the enhanced sharpening of the airways, while the black arrow points to ringing artifacts that occur 

around the mediastinum. 

 

Figure 3 shows the application of our denoising and deconvolution CNN on a routine abdominal 

scan. The borders of the kidneys appear to be better defined after denoising and deconvolution, 

and noise in the liver is greatly reduced. A ground truth image (higher resolution CT) is not 

available, as would be typical in most applications of super-resolution CT. Ringing is mostly 

controlled from regularization. 

 
Figure 3. Denoising and deconvolution of a routine slice of an abdominal scan shows apparent 

reductions in noise and sharpening of boundaries.  

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 2, 2023. ; https://doi.org/10.1101/2023.08.31.23294861doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.31.23294861


10 

Models were also applied to ex vivo kidney stones scanned in an ultrahigh resolution (UHR) 

protocol. UHR scans were acquired with a SOMATOM Force using a Uq69 kernel (the sharpest 

available quantitative kernel) and a CTDI of approximately 60 mGy, much higher than would be 

used in routine clinical practice and reconstructed to a 100 mm FOV. Figure 4 shows the kidney 

stones with the denoising model alone as well as the combined model. Some finer structures are 

more easily seen after the deconvolution step.  

Original  Denoised Denoised + Deconvolved 

   

   

   
Figure 4: Examples of ex vivo kidney stones at various processing stages with a windowing 

interval of [0, 2500] HU. Left column shows the original UHR CT images. Central column 
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shows the images after processing with the denoising model only. Right column shows the 

images after processing with the denoising and deconvolution algorithm.  

 

 

4 Discussion 

Supervised deep learning for super-resolution CT is challenged by the lack of high-resolution 

reference images. We use deconvolution to eliminate the need for high-resolution reference 

images and instead supply an estimated point spread function. Our results suggest that improved 

visualization can occur, even when the original protocol is optimized for maximum spatial 

resolution. Artifacts are present but are controlled by regularization. In clinical practice, we 

expect that the value of our approach will be task-dependent. For tasks that do not require very 

high spatial resolution, it may be sufficient to simply reconstruct at a sharper kernel than normal 

and denoise this image to control the elevated noise. We previously demonstrated that joint 

denoising of multiple kernels may be valuable (18). However, when it is desirable to go beyond 

the sharpest kernel of the CT scanner, there may be incremental value of the deconvolution 

autoencoder approach, as seen in Figure 4. Besides kidney stone assessment, other clinical tasks 

in this category include quantification of lumen diameter (19) and evaluation of the temporal 

bone (20). 

 

This work is an example of the more general problem of missing training labels. In CT noise 

reduction, other authors have addressed this problem by using noise-to-noise mappings (21) or 

by using a CycleGAN approach (22). A major difference is that in noise reductions, several good 

options exist to create realistic training labels, including phantom-based noise insertion (23), 

analytic estimation and backprojection of CT noise of the correct texture (24), or insertion of 

very realistic noise with cooperation of the scanner vendor (17). Noise reduction CNNs created 

by CT vendors can be expected to have especially good modeling of the noise pipeline. On the 

other hand, for the super-resolution problem, realistic estimates of the training labels cannot be 

created, at least for patient scans and when operating a CT scanner at its maximum spatial 

resolution.  
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As the adoption of noise reduction CNNs continues to increase, our algorithm provides a way for 

further image enhancement in high-resolution protocols. Deep learning reconstruction and 

denoising products have already been demonstrated to provide some clinical benefit above 

iterative reconstruction (25). Many tools currently being developed provide control over 

denoising strength but not image sharpness. An autoencoder chained to the primary noise 

reduction CNN provides a mechanism of providing sharper images that could further tune image 

quality. Currently, tasks that require maximum spatial resolution are reconstructed with 

frequency boosting ultrasharp FBP kernels. Our work provides a means for translating these  

reconstruction algorithms into deep learning reconstruction, where additional noise reduction is 

possible.  
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