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Key Points 42 

Question: Does a commercial artificial intelligence model accurately identify intracranial 43 

hemorrhage subtypes on computed tomography (CT) of the head? 44 

 45 

Findings: This retrospective study used non-contrast CT studies to compare artificial 46 

intelligence model outputs to consensus neuroradiologist interpretations. The model was 47 

provided with either thin (≤1.5mm) or thick (>1.5 and ≤5mm) series. The model detected each 48 

of acute subdural/epidural hematoma, acute subarachnoid hemorrhage, intra-axial 49 

hemorrhage and intraventricular hemorrhage with sensitivity and specificity greater than 80%. 50 

 51 

Meaning: This artificial intelligence model could assist radiologists through its accurate 52 

detection of intracranial hemorrhage subtypes.  53 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 8, 2023. ; https://doi.org/10.1101/2023.09.07.23295189doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.07.23295189


 Page 3

Abstract 54 

Importance: Intracranial hemorrhage is a critical finding on computed tomography (CT) of the 55 

head. 56 

 57 

Objective: This study compared the accuracy of an AI model (Annalise Enterprise CTB) to 58 

consensus neuroradiologist interpretations in detecting four hemorrhage subtypes: acute 59 

subdural/epidural hematoma, acute subarachnoid hemorrhage, intra-axial hemorrhage and 60 

intraventricular hemorrhage. 61 

 62 

Design: A retrospective standalone performance assessment was conducted on datasets of 63 

non-contrast CT head cases acquired between 2016 and 2022 for each hemorrhage subtype.  64 

 65 

Setting: The cases were obtained from five hospitals in the United States. 66 

 67 

Participants: The cases were obtained from patients aged 18 years or older. The positive cases 68 

were selected based on the original clinical reports using natural language processing and 69 

manual confirmation. The negative cases were selected by taking the next negative case 70 

acquired from the same CT scanner after positive cases. 71 

 72 

Interventions: Each case was interpreted independently by up to three neuroradiologists to 73 

establish consensus interpretations. Each case was then interpreted by the AI model for the 74 

presence of the relevant hemorrhage subtype. The neuroradiologists were provided with the 75 
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entire CT study. The AI model separately received thin (≤1.5mm) and/or thick (>1.5 and ≤5mm) 76 

axial series. 77 

 78 

Results: The four cohorts included 571 cases for acute subdural/epidural hematoma, 310 cases 79 

for acute subarachnoid hemorrhage, 926 cases for intra-axial hemorrhage and 199 cases for 80 

intraventricular hemorrhage. The AI model identified acute subdural/epidural hematoma with 81 

area under the curve (AUC) 0.973 (95% confidence interval (CI), 0.958-0.984) on thin series and 82 

0.942 (95% CI, 0.921-0.959) on thick series; acute subarachnoid hemorrhage with AUC 0.993 83 

(95% CI, 0.984-0.998) on thin series and 0.966 (95% CI, 0.945-0.983) on thick series; intra-axial 84 

hemorrhage with AUC 0.969 (95% CI, 0.956-0.980) on thin series and 0.966 (95% CI, 0.953-85 

0.976) on thick series; and intraventricular hemorrhage with AUC 0.987 (95% CI, 0.969-0.997) 86 

on thin series and 0.983 (95% CI, 0.968-0.994) on thick series. Each finding had at least one 87 

operating point with sensitivity and specificity greater than 80%. 88 

 89 

Conclusions and Relevance: The assessed AI model accurately identified intracranial 90 

hemorrhage subtypes in this CT dataset. Its use could assist the clinical workflow especially 91 

through enabling triage of abnormal CTs.  92 
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Introduction  93 

Intracranial hemorrhage is a critical finding on computed tomography (CT) of the head and 94 

requires emergent medical attention. There are four key subtypes that occur in different 95 

regions of the brain: epidural/subdural hematoma, subarachnoid hemorrhage, intra-axial 96 

hemorrhage and intraventricular hemorrhage.
1,2

 The faster detection of intracranial 97 

hemorrhage on head CT can enable sooner management and intervention including surgery.
3-5

 98 

 99 

The use of artificial intelligence (AI) to identify intracranial hemorrhage on head CT has been 100 

proposed to assist clinical care, especially by triaging suspected cases for sooner interpretation 101 

by a radiologist. There have been at least thirteen computer assisted triage devices (CADt) 102 

cleared by the US Food and Drug Administration (FDA) for intracranial hemorrhage detection.
6
 103 

While these devices report subgroup performance for identification of different intracranial 104 

hemorrhage subtypes as an “intracranial hemorrhage”,
7,8

 the AI model assessed in the current 105 

study is the first FDA-cleared CADt device to output the identified intracranial hemorrhage 106 

subtype(s).
9
 It specifically identifies acute subdural/epidural hematoma, acute subarachnoid 107 

hemorrhage, intra-axial hemorrhage and intraventricular hemorrhage. 108 

 109 

This study calculated the performance of this AI model by comparing its outputs to consensus 110 

neuroradiologist interpretations on a cohort of head CT cases for each of the four findings. The 111 

AI device was provided separately with thin (≤1.5mm) and/or thick (>1.5 and ≤5mm) axial series 112 

from each case so that the performance on different slice thicknesses could be calculated. The 113 
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performance was also calculated for cases belonging to demographic and technical subgroups 114 

to determine the generalizability of the device.  115 
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Methods 116 

Study design 117 

This retrospective standalone model performance study was conducted using radiology cases 118 

from five hospitals within the Mass General Brigham (MGB) network between 2016 and 2022. It 119 

was approved by the MGB Institutional Review Board with waiver of informed consent. It was 120 

conducted in accordance with relevant guidelines and regulations including the Health 121 

Insurance Portability and Accountability Act (HIPAA). This report followed the Standards for 122 

Reporting Diagnostic Accuracy (STARD 2015) reporting guideline. 123 

 124 

Case selection 125 

The cohorts for each of the four intracranial hemorrhage subtypes were selected in a 126 

consecutive manner based on the original radiology reports. The positive cases were identified 127 

through a natural language processing search engine (Nuance mPower Clinical Analytics) 128 

followed by manual report review. The negative cases were identified by taking the next 129 

negative case acquired on the same CT scanner after the positive cases to avoid temporal and 130 

technical bias. The cohort size for each of the positive and negative cases was based on 131 

powering calculations as described in the statistical analysis section below. When the cohort 132 

had equal numbers of positive and negative cases, the next negative cases were taken after 133 

each positive case; when there were unequal numbers of positive and negative cases, the next 134 

negative cases were taken after every Nth positive case based on the ratio of positive to 135 

negative cases to ensure the principles of consecutive selection applied. 136 

 137 
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The cohort considered all CT head cases performed at a hospital including inpatient and 138 

outpatient; there were no limitations on the original CT head clinical indication. The CT head 139 

cases were obtained from patients at least 18 years of age. The CT head cases were taken from 140 

unique patients; only the first CT head from a given patient was included. It was possible for a 141 

case to be included across multiple cohorts (e.g., both intra-axial hemorrhage and 142 

intraventricular hemorrhage).  143 

 144 

All cases were deidentified and underwent an image quality review by an American Board of 145 

Radiology (ABR)-certified neuroradiologist. The relevant series for the model interpretations 146 

were selected at the same time as described under the series selection section below. The 147 

review was performed using the FDA-cleared eUnity image visualization software (Version 6 or 148 

higher) and an internal web-based annotation system that utilized the REDCap electronic data 149 

capture tools hosted at MGB.
10,11

 150 

 151 

Series selection 152 

The model was provided with a single selected series at the time of model inference. These 153 

series were non-contrast thin (≤1.5mm) and/or thick (>1.5 and ≤5mm) axial series for each CT 154 

head case. The series were selected such that the thin series was the thinnest available series 155 

≤1.5mm; the thick series was randomized between the thinnest and thickest available series 156 

>1.5 and ≤5mm to ensure representation of series thicknesses across the entire range. The 157 

series were selected at the same time as the image quality review. After series selection, a 158 

DICOM metadata review was additionally performed to ensure that the slice thickness was 159 
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within the appropriate range and that there was a consistent slice interval (with tolerance of 160 

±0.2mm).  161 

 162 

Ground truth interpretations 163 

Ground truth interpretations were performed by up to three ABR-certified neuroradiologists. 164 

They answered whether the relevant finding was “Present” or “Absent”. They provided their 165 

interpretations independently, without access to the original radiology reports and in different 166 

worklist orders. They used the same image visualization software and annotation system as was 167 

used in the image quality review. They had access to the entire CT head case (i.e., were not 168 

restricted to the series selected for model inference). For determining consensus 169 

interpretations, a “2+1” strategy was used: the first two neuroradiologists interpreted every 170 

case and a third neuroradiologist then interpreted cases with discrepant interpretations.  171 

 172 

Model inference 173 

The evaluated AI model was version 3.1.0 of the Annalise Enterprise CTB Triage Trauma device. 174 

It is the same AI model used by the Annalise Enterprise (CTB module) device, which is 175 

commercially available in some non-US markets and whose development has been previously 176 

described.
12

 In brief, it consists of an ensemble of five neural networks with three heads: one 177 

for classification, one for left-right localization and one for segmentation. It can identify 130 178 

different radiological findings and was trained on over 200,000 CT head cases, which were each 179 

labelled by at least three radiologists.  180 

 181 
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The Annalise Enterprise CTB Triage Trauma device only provides binary classification outputs 182 

about the identification of findings, which is consistent with FDA regulations for CADt devices. 183 

The model was installed at MGB for use in this study and received only the Digital Imaging and 184 

Communications in Medicine (DICOM)-formatted CT head cases. It outputted a classification 185 

score between 0 and 1 for each of acute subdural/epidural hematoma, acute subarachnoid 186 

hemorrhage, intra-axial hemorrhage and intraventricular hemorrhage. A binary output for each 187 

of these findings could be derived using prespecified operating points. 188 

 189 

Statistical analysis 190 

The statistical analysis was performed in R (version 4.0.2) on the full analysis set. The 191 

predefined endpoints included the areas under the receiver operating characteristic curves 192 

(AUCs) for the identification of acute subdural/epidural hematoma, acute subarachnoid 193 

hemorrhage, intra-axial hemorrhage and intraventricular hemorrhage for each of thin and thick 194 

series. The AUCs were calculated using the consensus annotations and the classification scores 195 

from the AI model. The prespecified endpoints also included the sensitivity and specificity at 196 

predetermined operating points; this paper reports the performance at those operating points 197 

that have received US Food and Drug Administration clearance. They were calculated by 198 

comparing the binary model output at each operating point with the consensus annotations 199 

(i.e., by calculating the number of true positive, false negative, true negative and false positive 200 

cases).  201 

 202 
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The AUCs, sensitivities and specificities were calculated as exploratory analyses for the 203 

subgroups of sex, age, race, ethnicity and CT scanner manufacturer. These parameters were 204 

derived from clinical databases or DICOM fields for each radiology case. Any missing data were 205 

treated as “Unknown” and no data were imputed. 206 

 207 

All confidence intervals (CIs) were calculated using bootstrapped intervals with 2,000 208 

resamples. The sample sizes for each of the findings were powered based on preliminary model 209 

results at a balanced operating point to ensure the lower bound of the 95% CI for sensitivity 210 

was >80% and specificity was >80%.   211 
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Results 212 

Acute subdural/epidural hematoma 213 

A cohort of 571 CT head cases were selected for the acute subdural/epidural hematoma cohort. 214 

This cohort resulted in 423 thin series and 571 thick series for which the model could be 215 

evaluated (Supplementary Table 1).  216 

 217 

Thin series 218 

The model successfully performed inference on 409 (96.7%) thin series. This cohort for analysis 219 

included 185 (45.2%) women and 224 (54.8%) men; mean (SD) age was 67.0 (19.3) years; there 220 

were 308 (75.3%) positive cases and 101 (24.7%) negative cases (Table 1). The AI model 221 

identified acute subdural/epidural hematoma with AUC of 0.973 (95% CI: 0.958-0.984; Figure 222 

1A) and, at an operating point of 0.060177, the sensitivity was 91.6% (95% CI: 88.3-94.5%) and 223 

the specificity was 87.1% (95% CI: 80.2-93.1%; Supplementary Table 2). These performances 224 

were broadly consistent across sex, age, ethnicity, race and manufacturer with all subgroups 225 

having sensitivity and specificity of at least 80% except for “unavailable” ethnicity specificity 226 

(66.7% for 6 cases) and Asian race specificity (75.0% for 4 cases; Supplementary Table 3). 227 

 228 

Thick series 229 

The model successfully performed inference on 539 (94.4%) thick series. This cohort for analysis 230 

included 241 (44.7%) women and 298 (55.3%) men; mean (SD) age was 66.8 (19.0) years; there 231 

were 401 (74.4%) positive cases and 138 (25.6%) negative cases (Table 1). The AI model 232 

identified acute subdural/epidural hematoma with AUC of 0.942 (95% CI: 0.921-0.959; Figure 233 
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1B) and, at an operating point of 0.060177, the sensitivity was 82.5% (95% CI: 78.8-86.0%) and 234 

the specificity was 89.9% (84.8-94.2%; Supplementary Table 2). These performances were 235 

broadly consistent across sex, age, ethnicity, race and manufacturer with all subgroups having 236 

sensitivity and specificity of at least 80% except for age ≤65 years sensitivity (77.7% for 148 237 

cases), Black or African American race sensitivity (78.6% for 14 cases), NeuroLogica 238 

manufacturer specificity (0.0% for 1 case; Supplementary Table 3). 239 

 240 

Acute subarachnoid hemorrhage 241 

A cohort of 310 CT head cases were selected for the acute subarachnoid hemorrhage cohort. 242 

This cohort resulted in 244 thin series and 309 thick series for which the model could be 243 

evaluated (Supplementary Table 4).  244 

 245 

Thin series 246 

The model successfully performed inference on 238 (97.5%) thin series. This cohort for analysis 247 

included 125 (52.5%) women and 113 (47.5%) men; mean (SD) age was 66.5 (19.5) years; there 248 

were 149 (62.6%) positive cases and 89 (37.4%) negative cases (Table 1). The AI model 249 

identified acute subarachnoid hemorrhage with AUC of 0.993 (95% CI: 0.984-0.998; Figure 2A) 250 

and, at an operating point of 0.060162, the sensitivity was 94.0% (95% CI: 89.9-97.3%) and the 251 

specificity was 96.6% (95% CI: 92.1-100.0%; Supplementary Table 5). These performances were 252 

consistent across sex, age, ethnicity, race and manufacturer with all subgroups having 253 

sensitivity and specificity of at least 80% (Supplementary Table 6). 254 

 255 
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Thick series 256 

The model successfully performed inference on 292 (94.5%) thick series. This cohort for analysis 257 

included 148 (50.7%) women and 144 (49.3%) men; mean (SD) age was 66.6 (18.7) years; there 258 

were 184 (63.0%) positive cases and 108 (37.0%) negative cases (Table 1). The AI model 259 

identified acute subarachnoid hemorrhage with AUC of 0.966 (95% CI: 0.945-0.983; Figure 2B) 260 

and, at an operating point of 0.020255, the sensitivity was 90.8% (95% CI: 86.4-94.6%) and the 261 

specificity was 90.7% (95% CI: 85.2-95.4%; Supplementary Table 5). These performances were 262 

consistent across sex, age, ethnicity, race and manufacturer with all subgroups having 263 

sensitivity and specificity of at least 80% (Supplementary Table 6). 264 

 265 

Intra-axial hemorrhage 266 

A cohort of 926 CT head cases were selected for the intra-axial hemorrhage cohort. This cohort 267 

resulted in 733 thin series and 925 thick series for which the model could be evaluated 268 

(Supplementary Table 7).  269 

 270 

Thin series 271 

The model successfully performed inference on 710 (96.9%) thin series. This cohort for analysis 272 

included 330 (46.5%) women and 380 (53.5%) men; mean (SD) age was 66.0 (18.4) years; there 273 

were 484 (68.2%) positive cases and 226 (31.8%) negative cases (Table 1). The AI model 274 

identified intra-axial hemorrhage with AUC of 0.969 (95% CI: 0.956-0.980; Figure 3A) and, at an 275 

operating point of 0.322700, the sensitivity was 93.2% (95% CI: 90.9-95.5%) and the specificity 276 

was 85.8% (95% CI: 81.0-90.3%; Supplementary Table 8). These performances were broadly 277 
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consistent across sex, age, ethnicity, race and manufacturer with all subgroups having 278 

sensitivity and specificity of at least 80% except for “two or more” race sensitivity (66.7% for 3 279 

cases), “unavailable” ethnicity specificity (54.5% for 11 cases), Asian race specificity (72.7% for 280 

11 cases) and “unavailable” race specificity (75.0% for 8 cases; Supplementary Table 9). 281 

 282 

Thick series 283 

The model successfully performed inference on 884 (95.6%) thick series. This cohort for analysis 284 

included 411 (46.5%) women and 473 (53.5%) men; mean (SD) age was 66.7 (18.0) years; there 285 

were 591 (66.9%) positive cases and 293 (33.1%) negative cases (Table 1). The AI model 286 

identified intra-axial hemorrhage with AUC of 0.966 (95% CI: 0.953-0.976; Figure 3A) and, at an 287 

operating point of 0.203600, the sensitivity was 93.2% (95% CI: 91.2-95.3%) and the specificity 288 

was 85.3% (95% CI: 80.9-89.1%; Supplementary Table 8). These performances were broadly 289 

consistent across sex, age, ethnicity, race and manufacturer with all subgroups having 290 

sensitivity and specificity of at least 80% except for “two or more” race sensitivity (75.0% for 4 291 

cases), NeuroLogica manufacturer sensitivity (50.0% for 2 cases), “unavailable” ethnicity 292 

specificity (46.2% for 13 cases), Asian race specificity (72.7% for 11 cases) and “unavailable” 293 

race specificity (50.0% for 10 cases; Supplementary Table 9). 294 

 295 

Intraventricular hemorrhage 296 

A cohort of 199 CT head cases were selected for the intraventricular hemorrhage cohort. This 297 

cohort resulted in 159 thin series and 199 thick series for which the model could be evaluated 298 

(Supplementary Table 10).  299 
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 300 

Thin series 301 

The model successfully performed inference on 153 (96.2%) thin series. This cohort for analysis 302 

included 77 (50.3%) women and 76 (49.7%) men; mean (SD) age was 66.4 (20.4) years; there 303 

were 74 (48.4%) positive cases and 79 (51.6%) negative cases (Table 1). The AI model identified 304 

intraventricular hemorrhage with AUC of 0.987 (95% CI: 0.969-0.997; Figure 4A) and, at an 305 

operating point of 0.051859, the sensitivity was 90.5% (95% CI: 83.8-95.9%) and the specificity 306 

was 97.5% (95% CI: 93.7-100.0%; Supplementary Table 11). These performances were broadly 307 

consistent across sex, age, ethnicity, race and manufacturer with all subgroups having 308 

sensitivity and specificity of at least 80% except for NeuoLogica sensitivity (0.0% for 1 case; 309 

Supplementary Table 12). 310 

 311 

Thick series 312 

The model successfully performed inference on 187 (94.0%) thick series. This cohort for analysis 313 

included 92 (49.2%) women and 95 (50.8%) men; mean (SD) age was 67.0 (19.6) years; there 314 

were 91 (48.7%) positive cases and 96 (51.3%) negative cases (Table 1). The AI model identified 315 

intraventricular hemorrhage with AUC of 0.983 (95% CI: 0.968-0.994; Figure 4A) and, at an 316 

operating point of 0.051859, the sensitivity was 87.9% (95% CI: 81.3-93.4%) and the specificity 317 

was 97.9% (95% CI: 94.8-100.0%; Supplementary Table 11). These performances were 318 

consistent across sex, age, ethnicity, race and manufacturer with all subgroups having 319 

sensitivity and specificity of at least 80% (Supplementary Table 12).  320 
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Discussion 321 

This retrospective diagnostic study assessed the performance of an AI model in identifying 322 

acute subdural/epidural hematoma, acute subarachnoid hemorrhage, intra-axial hemorrhage 323 

and intraventricular hemorrhage on head CT. The model achieved sensitivity greater than 80% 324 

and specificity greater than 80% for all four findings. These results are consistent with other 325 

FDA-cleared intracranial hemorrhage CADt devices.
7,8,13-22

 However, this model is the first FDA-326 

cleared CADt device that outputs the subtype of intracranial hemorrhage.
9
 327 

 328 

The output of the subtype of intracranial hemorrhage provides users with more explainability 329 

of the model outputs. As has been noted on an assessment of a similar model for 330 

pneumothorax identification, the FDA regulations for a CADt device only permit devices to 331 

output the binary classification performance (the AI model assessed here technically outputs a 332 

binary classification for each of the four subtypes).
23

 A segmentation output could otherwise 333 

further assist with explainability by demonstrating the location of the identified intracranial 334 

hemorrhage. 335 

 336 

The performance of the model was broadly consistent across sex, age, ethnicity, race and 337 

manufacturer subgroups with the vast majority achieving sensitivity and specificity above 80%. 338 

For the minority of subgroups that did not achieve a sensitivity or specificity of at least 80%, all 339 

except one had small sample sizes of less than 15. The sensitivity for the age ≤65 years 340 

subgroup for the thick series for acute subdural/epidural hematoma was 77.7% despite 341 
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including 148 cases; we note that the overall sensitivity was 82.5% and that these two values 342 

had overlapping 95% CIs. 343 

 344 

When the model performance was calculated at the same operating point on both thin and 345 

thick series, it had better sensitivity on the thin series and better specificity on the thick series. 346 

This observation likely relates to the increased z-axis resolution on the thin series, which can 347 

facilitate better identification of hemorrhage especially for small hemorrhages that may only be 348 

present on a small number of slices. The thinner series, however, also have more noise that 349 

could lead to the model incorrectly identifying hemorrhage.
24

 A consideration for clinical use 350 

may be the use of a lower operating point for thick series to balance out this difference. 351 

 352 

As part of the study design, the cohorts of cases were selected based on the original radiology 353 

reports and subsequently interpreted in a consensus manner by neuroradiologists. The 354 

rationale for this approach is that the binary presence or absence of each finding is confirmed 355 

for every case based on the radiologic images alone, which matches what the model uses. It is, 356 

however, possible for the interpretations to change between the original reports and the 357 

neuroradiologist interpretations especially given the original reports can be aided by knowledge 358 

of the clinical situation and longitudinal radiology scans. All cohorts had a smaller number of 359 

positive cases based on the consensus neuroradiologist interpretations compared to the 360 

original reports. These cases would be considered ground truth negative for the analysis and, if 361 

the model identified them as positive, then they would have been recorded as false positive 362 
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cases with subsequently decreased specificity. The real-world specificity may therefore be 363 

higher than what is recorded as part of this study.  364 
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Limitations 365 

A key limitation of this study is that it is a retrospective study outside of the clinical workflow. 366 

As was noted in the similar assessment of a pneumothorax model, this study therefore 367 

establishes the accuracy of the model but does not assess its impact on the clinical workflow 368 

including for case prioritization and patient outcomes.
23

 This initial step is necessary to ensure 369 

the model has the potential to provide clinical benefit. Further evaluation will be required 370 

moving forward to prove such benefit. 371 

 372 

This study examines the ability of the model to identify each hemorrhage subtype 373 

independently. It does not consider the overlap of hemorrhage subtypes, which is common in 374 

the clinical environment; as an example, intraventricular hemorrhage occurs in 30 to 50% of 375 

patients with intra-axial hemorrhage.
5
 This overlap may lead to redundancy especially when the 376 

model identifies a first hemorrhage subtype but then misses a second or third subtype. It is also 377 

possible that the model incorrectly identifies a second or third subtype when only a first 378 

subtype is present. Further research may consider the application of this model when multiple 379 

hemorrhage subtypes are present.   380 
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Conclusion 381 

This diagnostic study assessed an AI model that accurately detected four subtypes of 382 

intracranial hemorrhage including acute subdural/epidural hematoma, acute subarachnoid 383 

hemorrhage, intra-axial hemorrhage and intraventricular hemorrhage. Its use in the clinical 384 

environment may lead to improved care and outcomes for patients with intracranial 385 

hemorrhage.  386 
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Tables 458 

Table 1: Demographic and technical breakdown of CT head cases for each finding.  459 

 460 
 Acute subdural/epidural hematoma Acute subarachnoid hemorrhage Intra-axial hemorrhage Intraventricular hemorrhage 

 Thin series Thick series Thin series Thick series Thin series Thick series Thin series Thick series 

 Positive Negative Positive Negative Positive Negative Positive Negative Positive Negative Positive Negative Positive Negative Positive Negative 

Total 308 101 401 138 149 89 184 108 484 226 591 293 74 79 91 96 

                 

Sex                 

Female 131 

(42.5%) 

54 

(53.5%) 

172 

(42.9%) 

69 

(50.0%) 

87 

(58.4%) 

38 

(42.7%) 

97 

(52.7%) 

51 

(47.2%) 

214 

(44.2%) 

116 

(51.3%) 

258 

(43.7%) 

153 

(52.2%) 

40 

(54.1%) 

37 

(46.8%) 

46 

(50.5%) 

46 

(47.9%) 

Male 177 

(57.5%) 

47 

(46.5%) 

229 

(57.1%) 

69 

(50.0%) 

62 

(41.6%) 

51 

(57.3%) 

87 

(47.3%) 

57 

(52.8%) 

270 

(55.8%) 

110 

(48.7%) 

333 

(56.3%) 

140 

(47.8%) 

34 

(45.9%) 

42 

(53.2%) 

45 

(49.5%) 

50 

(52.1%) 

                 

Age                 

≤65 years 113 

(36.7%) 

44 

(43.6%) 

148 

(36.9%) 

61 

(44.2%) 

42 

(28.2%) 

53 

(59.6%) 

55 

(29.9%) 

59 

(54.6%) 

196 

(40.5%) 

102 

(45.1%) 

228 

(38.6%) 

127 

(43.3%) 

25 

(33.8%) 

32 

(40.5%) 

30 

(33.0%) 

41 

(42.7%) 

>65 years 195 

(63.3%) 

57 

(56.4%) 

253 

(63.1%) 

77 

(55.8%) 

107 

(71.8%) 

36 

(40.4%) 

129 

(70.1%) 

49 

(45.4%) 

288 

(59.5%) 

124 

(54.9%) 

363 

(61.4%) 

166 

(56.7%) 

49 

(66.2%) 

47 

(59.5%) 

61 

(67.0%) 

55 

(57.3%) 

Mean ± SD 

(years) 

68.1 ± 

19.0 

63.8 ± 

19.7 

67.7 ± 

18.4 

64.0 ± 

20.4 

71.3 ± 

16.8 

58.5 ± 

21.2 

70.3 ± 

16.8 

60.3 ± 

20.2 

66.5 ± 

18.1 

64.8 ± 

18.9 

67.2 ± 

17.6 

65.7 ± 

18.7 

69.5 ± 

19.2 

63.5 ± 

21.1 

69.7 ± 

18.1 

64.4 ± 

20.8 

                 

Ethnicity                 

Hispanic 26 (8.4%) 16 

(15.8%) 

34 (8.5%) 17 

(12.3%) 

7 (4.7%) 11 

(12.4%) 

6 (3.3%) 11 

(10.2%) 

41 (8.5%) 18 (8.0%) 48 (8.1%) 22 (7.5%) 9 (12.2%) 9 (11.4%) 9 (9.9%) 9 (9.4%) 

Not Hispanic 266 

(86.4%) 

79 

(78.2%) 

350 

(87.3%) 

115 

(83.3%) 

130 

(87.2%) 

70 

(78.7%) 

164 

(89.1%) 

89 

(82.4%) 

411 

(84.9%) 

196 

(86.7%) 

506 

(85.6%) 

257 

(87.7%) 

63 

(85.1%) 

68 

(86.1%) 

78 

(85.7%) 

85 

(88.5%) 

Prefer not to say 

/ Decline 

0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (2.2%) 0 (0.0%) 2 (1.9%) 2 (0.4%) 1 (0.4%) 3 (0.5%) 1 (0.3%) 0 (0.0%) 1 (1.3%) 0 (0.0%) 1 (1.0%) 

Unavailable 16 (5.2%) 6 (5.9%) 17 (4.2%) 6 (4.3%) 12 (8.1%) 6 (6.7%) 14 (7.6%) 6 (5.6%) 30 (6.2%) 11 (4.9%) 34 (5.8%) 13 (4.4%) 2 (2.7%) 1 (1.3%) 4 (4.4%) 1 (1.0%) 

                 

Race                 

American Indian 

or Alaska Native 

0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (1.1%) 1 (0.5%) 1 (0.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Asian 17 (5.5%) 4 (4.0%) 16 (4.0%) 6 (4.3%) 7 (4.7%) 5 (5.6%) 8 (4.3%) 4 (3.7%) 35 (7.2%) 11 (4.9%) 39 (6.6%) 11 (3.8%) 2 (2.7%) 2 (2.5%) 2 (2.2%) 2 (2.1%) 

Black or African 

American 

14 (4.5%) 11 

(10.9%) 

14 (3.5%) 13 (9.4%) 4 (2.7%) 2 (2.2%) 6 (3.3%) 3 (2.8%) 30 (6.2%) 12 (5.3%) 39 (6.6%) 12 (4.1%) 7 (9.5%) 9 (11.4%) 8 (8.8%) 8 (8.3%) 

Native Hawaiian 

or Other Pacific 

Islander 

0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.2%) 0 (0.0%) 2 (0.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

White or 

Caucasian 

242 

(78.6%) 

73 

(72.3%) 

324 

(80.8%) 

105 

(76.1%) 

122 

(81.9%) 

67 

(75.3%) 

151 

(82.1%) 

84 

(77.8%) 

365 

(75.4%) 

179 

(79.2%) 

455 

(77.0%) 

239 

(81.6%) 

58 

(78.4%) 

61 

(77.2%) 

72 

(79.1%) 

80 

(83.3%) 

Other 18 (5.8%) 8 (7.9%) 25 (6.2%) 8 (5.8%) 4 (2.7%) 8 (9.0%) 4 (2.2%) 8 (7.4%) 29 (6.0%) 11 (4.9%) 29 (4.9%) 14 (4.8%) 5 (6.8%) 4 (5.1%) 5 (5.5%) 4 (4.2%) 

Two or more 3 (1.0%) 1 (1.0%) 6 (1.5%) 2 (1.4%) 2 (1.3%) 0 (0.0%) 3 (1.6%) 1 (0.9%) 3 (0.6%) 3 (1.3%) 4 (0.7%) 4 (1.4%) 0 (0.0%) 1 (1.3%) 0 (0.0%) 0 (0.0%) 

Declined 1 (0.3%) 1 (1.0%) 2 (0.5%) 1 (0.7%) 1 (0.7%) 1 (1.1%) 1 (0.5%) 2 (1.9%) 2 (0.4%) 2 (0.9%) 2 (0.3%) 2 (0.7%) 0 (0.0%) 1 (1.3%) 0 (0.0%) 1 (1.0%) 

Unavailable 13 (4.2%) 3 (3.0%) 14 (3.5%) 3 (2.2%) 9 (6.0%) 5 (5.6%) 10 (5.4%) 5 (4.6%) 19 (3.9%) 8 (3.5%) 21 (3.6%) 10 (3.4%) 2 (2.7%) 1 (1.3%) 4 (4.4%) 1 (1.0%) 

                 

Manufacturer                 

GE Healthcare 101 32 113 42 55 34 50 33 107 59 185 100 24 25 24 24 
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(32.8%) (31.7%) (28.2%) (30.4%) (36.9%) (38.2%) (27.2%) (30.6%) (22.1%) (26.1%) (31.3%) (34.1%) (32.4%) (31.6%) (26.4%) (25.0%) 

NeuroLogica 1 (0.3%) 0 (0.0%) 2 (0.5%) 1 (0.7%) 0 (0.0%) 1 (1.1%) 0 (0.0%) 1 (0.9%) 1 (0.2%) 0 (0.0%) 2 (0.3%) 0 (0.0%) 1 (1.4%) 1 (1.3%) 1 (1.1%) 1 (1.0%) 

Philips 1 (0.3%) 0 (0.0%) 1 (0.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.2%) 0 (0.0%) 1 (0.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Siemens 204 

(66.2%) 

68 

(67.3%) 

200 

(49.9%) 

67 

(48.6%) 

93 

(62.4%) 

54 

(60.7%) 

94 

(51.1%) 

52 

(48.1%) 

372 

(76.9%) 

166 

(73.5%) 

368 

(62.3%) 

162 

(55.3%) 

49 

(66.2%) 

53 

(67.1%) 

48 

(52.7%) 

49 

(51.0%) 

Toshiba 1 (0.3%) 1 (1.0%) 85 

(21.2%) 

28 

(20.3%) 

1 (0.7%) 0 (0.0%) 40 

(21.7%) 

22 

(20.4%) 

3 (0.6%) 1 (0.4%) 35 (5.9%) 31 

(10.6%) 

0 (0.0%) 0 (0.0%) 18 

(19.8%) 

22 

(22.9%) 
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Figures 461 

Figure 1: Performance for acute subdural/epidural hematoma. A and B, Receiver operating 462 

characteristic curves for the thin series (A) and thick series (B). The shaded region reflects the 463 

bootstrapped 95% CIs. The selected point on each graph reflects the operating point at the 464 

operating points described in the text. C, D and E, Example images for true positive (C), false 465 

negative (D) and false positive (E) cases. The model classification score output is provided for 466 

each case. 467 

 468 

Figure 2: Performance for acute subarachnoid hemorrhage. A and B, Receiver operating 469 

characteristic curves for the thin series (A) and thick series (B). The shaded region reflects the 470 

bootstrapped 95% CIs. The selected point on each graph reflects the operating point at the 471 

operating points described in the text. C, D and E, Example images for true positive (C), false 472 

negative (D) and false positive (E) cases. The model classification score output is provided for 473 

each case. 474 

 475 

Figure 3: Performance for intra-axial hemorrhage. A and B, Receiver operating characteristic 476 

curves for the thin series (A) and thick series (B). The shaded region reflects the bootstrapped 477 

95% CIs. The selected point on each graph reflects the operating point at the operating points 478 

described in the text. C, D and E, Example images for true positive (C), false negative (D) and 479 

false positive (E) cases. The model classification score output is provided for each case. 480 

 481 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 8, 2023. ; https://doi.org/10.1101/2023.09.07.23295189doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.07.23295189


 Page 29

Figure 4: Performance for intraventricular hemorrhage. A and B, Receiver operating 482 

characteristic curves for the thin series (A) and thick series (B). The shaded region reflects the 483 

bootstrapped 95% CIs. The selected point on each graph reflects the operating point at the 484 

operating points described in the text. C, D and E, Example images for true positive (C), false 485 

negative (D) and false positive (E) cases. The model classification score output is provided for 486 

each case.  487 
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Figure 2: Acute subarachnoid hemorrhage performance
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Figure 3: Intra-axial hemorrhage performance

D. False negative case E. False positive case

Model:  
0.98

Model: 0.69 Model:  
0.39

Model:  
0.12

Model:  
0.29

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 8, 2023. ; https://doi.org/10.1101/2023.09.07.23295189doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.07.23295189


A. B.

C.

Thin series Thick series

0.0

0.2

0.4

0.6

0.8

1.0

0.00.20.40.60.81.0
Specificity

Se
ns

iti
vi

ty

Bootstrapped 95% CI (0.969,0.997)
AUC 0.987

0.0

0.2

0.4

0.6

0.8

1.0

0.00.20.40.60.81.0
Specificity

Se
ns

iti
vi

ty

Bootstrapped 95% CI (0.968,0.994)
AUC 0.983

True positive cases

Figure 4: Intraventricular hemorrhage performance
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