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Identifying cancer risk groups by integrative multi-omics has attracted researchers in their quest to find biomarkers from diverse
risk-related omics. Stratifying the patients into cancer risk groups using genomics is essential for clinicians for pre-prevention
treatment to improve the survival time for patients and identify the appropriate therapy strategies. This study proposes an integrative
multi-omics framework that can extract the features from various omics simultaneously. The framework employs autoencoders to
learn the non-linear representation of the data and applies tensor analysis for feature learning. Further, the clustering method is used
to stratify the patients into multiple cancer risk groups. Several omics were included in the experiments, namely methylation, somatic
copy-number variation (SCNV), micro RNA (miRNA) and RNA sequencing (RNAseq) from two cancer types, including Glioma and
Breast Invasive Carcinoma from the TCGA dataset. The results of this study are promising, as evidenced by the survival analysis and
classification models, which outperformed the state-of-art. The patients can be significantly (p-value<0.05) divided into risk groups
using extracted latent variables from the fused multi-omics data. The pipeline is open source to help researchers and clinicians identify
the patients’ risk groups using genomics.
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1 INTRODUCTION

The subdivision of cancer and the identification of risk groups are of great significance in medicine for the diagnosis and
treatment of cancer. Currently, in clinical practice, cancers are commonly treated according to their histological origin
and pathological features. This approach has some limitations, such as similar histopathological features in some tumour
masses, but their clinical presentation is quite different and corresponds to different risk groups. Several studies [Lee
and Kim(2021)] have shown that the pathological system of tumours at the molecular level is well characterised in terms
of their parthenogenesis and stage of development. Fortunately, as the Human Genome Project progresses and new
sequencing technologies continue to emerge and spread, a wealth of omics data is being generated that contributes to a
better understanding of the issues involved. Nevertheless, due to the inherent complexity of biological systems, there is
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a limit to the information provided by a single piece of omics data. Genomic variation caused by somatic mutations,
epigenetic changes, individual differences and environmental influences are possible during tumour development. The
traditional analyses based on individual omics cannot capture the heterogeneity of all biological processes [Chaudhary
et al.(2018)]. On the other hand, using omics data also poses statistical modelling and computational challenges. In some
omics data, there is the problem of a small number of samples and a large number of features [Braytee et al.(2017)].
Further, reliance on a single-omics may lose much information due to high data dimensionality and low sample size
challenges. Therefore, these problems with single-omics hinder the better identification of risk groups or clinical
phenotypes.

Recently, there has been a growing trend towards studying and analyzing multi-omics data, including genomics,
epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, imaging, and others. The use of integrated
data analysis has various advantages. It compensates for the lack of information in single-omics data and provides
an integrated view of cancer analysis at the molecular level. This approach can play an essential role in assessing
metastasis and selecting treatments for patients, thus contributing to the development of precision medicine. Few studies
related have used autoencoders in deep learning to extract features of multi-omics data and use these new features
to build predictive models [Chaudhary et al.(2018)] [Ding et al.(2018)]. Further, some studies have used unsupervised
feature extraction for multi-omics based on tensor decomposition [Taguchi(2017)] [Taguchi(2019)]. However, the small
size omics datasets have not been considered and identifying the risk groups from multiple omics data has not been
investigated.

This study develops a multi-omics feature learning framework to stratify patients into high and low-risk groups by
minimising information loss and learning significant features. Autoencoders are used as a dimensionality reduction
method to capture the non-linear relationships between the data to maximise the retention of the original information
in each single-omics data. Then, the latent variables of each omic are concatenated, and further feature learning is
carried out using tensor analysis. Combining deep learning and tensor analysis avoids overweighting omics datasets
due to high dimensionality while learning important common features across multi-omics. Our proposed framework
comprises three main components. Firstly, the original omics data is dimensionalised using autoencoders, which employ
a combination of non-linear functions to reconstruct the original input. It is known that this method performs well when
applied to biological data, with less information lost [Chaudhary et al.(2018)] [Ding et al.(2018)] [Zhang et al.(2018)] [Yao
et al.(2022)] [Zhou et al.(2022)] and is therefore well suited to handle omics information. Secondly, the processed
multi-omics data is fused into a tensor. The significant global features of different omics datasets can be learned through
CANDECOMP/PARAFAC (CP) decomposition to extract interpretable latent factors. While the original data may not be
fully recoverable from the CP decomposition of the compressed data, we focused on obtaining a more interpretable
and meaningful representation of the data that captures its essential characteristics. Finally, the components extracted
from tensor decomposition are utilized for clustering. The clustering results are evaluated using survival analysis.
Additionally, a supervised learning model is built and used to predict Tumor Purity for the breast dataset due to the
availability of class labels.

The practical relevance of the results generated by the proposed framework is evident. Specific risk groups could be
detected earlier based on the framework results, which help clinicians to choose more appropriate therapies at different
stages of treatment. Meanwhile, tensor analysis of multi-omics combined with deep learning methods may inspire more
ways to identify cancer risk groups from the molecular level. Our contributions are summarized as follows:
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• We propose a non-linear multi-omics method that considers the non-linear relationships between features in the
assays.

• We integrate Tensors in the proposed model to extract expressive feature sets that capture important patterns
and relationships in the data.

• We thoroughly evaluate our methods on two public datasets: Glioma and Breast Invasive Carcinoma. Our results
are highly promising, as the survival analysis and classification models indicate.

2 RELATEDWORK

With the development of high-throughput sequencing technology, omics analysis techniques are becoming increasingly
mature and sophisticated. In contrast, the integration and analysis of multi-omics data have become a new direction
for researchers to explore the mechanisms of life. At the same time, various challenges exist in the fusion analysis of
multi-omics, such as high dimensional data with a relatively much smaller sample size and heterogeneity of individual
omics. This work focuses on the tensor analysis of multi-omics data. This section outlines the main research findings in
multi-omics, and the relevant methods involved in the processing and analysis of multi-omics data are reviewed.

2.1 Multi-omics Analysis

Many studies were conducted early to analyse a single-omics data [Conesa et al.(2016)]. However, the complexity
of biological systems cannot be fully characterized by a single-omics. For example, while genomics has revealed
genetic alterations in cancer patients, not all genetic variants cause changes in their expression and function [Long
and Wang(2020)]. Furthermore, because of the high levels of noise that can be generated in omics data, experiments
performed in isolation may lack the statistical significance to reveal valuable correlation results. Millions of single
nucleotide variants (SNV) may be identified in a typical genome-wide association, and it is difficult to determine which
SNV is the actual cause of a disease. Thus, studying biomolecular changes in only one aspect makes it difficult to
understand complex biological processes, particularly salient in complex diseases.

Several studies have devoted considerable effort to investigating how to address the complex multi-omics data.
Specifically, A study integrates complementary data from different perspectives, such as the genome, transcriptome,
proteome, metabolome and interactome to reduce noise and boost statistical power [Ideker et al.(2011)]. Cohen et al.
(2018) combined cell-free DNA mutations and circulating protein biomarkers to develop a new blood-based prediction
method, CancerSEEK, which enables early diagnosis of cancers and locates the organ of origin of these cancers [Cohen
et al.(2018)]. Tepeli et al.(2019) use somatic mutation, transcriptomics and proteomics data to find kidney cancer
subgroups. The integrated analysis of multi-omics data has brought great help in understanding complex biological
systems, offering great possibilities to understand the molecular regulatory mechanisms in biological systems, the
mechanisms of gene expression regulation and even to simulate the natural conditions of biological systems [Tepeli
et al.(2020)]. Yet few studies use multi-omics to predict risk groups for specific cancers.

2.2 Integration Approaches of Multi-omics data

Data integration in multi-omics combines data from different technologies or sources to provide the maximum amount
of valuable information. Depending on the timing of integration, data integration can be broadly classified into three
types: early, intermediate and late. The basic idea of early integration is to join the different data from the original or
dimension reduction process into a single large matrix. Then, it is fed into a model to obtain prediction results [Zitnik
et al.(2019)]. It can consider correlations between features as long as the data are not redundant. However, it ignores
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the unique distribution of each histological data type, the weights need to be normalised, and the dimensionality of the
input data is increased. Therefore, it is essential to find ways to mitigate these issues when integrating multi-omics data
using early integration methods.

Intermediate integration is the joint integration of multi-omics by preserving the data structure of the dataset without
prior transformation and without relying on simple joins. It is an algorithm that fuses them through a joint model. This
method reduces the complexity of multi-omics datasets and can address the problem of dataset diversity [Rappoport
and Shamir(2018)]. In the EL-Manzalawy et al. (2018) study, to reduce the loss of information caused by selecting
features for each group individually, they used the mRMR extension as an intermediate feature selection method that
selects features by considering complementarity within and across histological blocks [El-Manzalawy et al.(2018)]. This
integration is highly performed, but the heterogeneity between datasets can prevent this integration from working
correctly. Only a few methods can discover patterns shared between omics, requiring the development of more new
algorithms to integrate data. Late integration involves training separate models for each omics data to learn features
combined as input to a classifier or regressor [Sharifi-Noghabi et al.(2019)]. This approach avoids some of the challenges
of collecting diverse data using specialized tools for each omics type. However, this strategy only integrates predictions
for each omic independently, and the cost of extracting features to integrate is high. Additionally, it fails to capture
omics interactions and prevents models from sharing knowledge or exploiting complementary information during the
learning process. As a result, combining predictions needs to be precise to leverage multi-omics data and gain insight
into the underlying biological mechanisms of disease, leading to lower reliability [Picard et al.(2021)].

2.3 Dimensionality Reduction for Multi-omics

A study integrates several types of statistical methods for gene-wide measures to predict skin melanoma prognosis
with the help of dimensionality reduction techniques, including elastic net, sparse PCA (sPCA) and sparse PLS, which
are used to extract variables from multi-omics data [Jiang et al.(2016)]. Park et al. (2020) first identified homogeneous
blocks of variables and then used sPCA on each omics dataset to extract the sPCs. Multi-omics factor analysis (MOFA)
can be considered a statistically rigorous generalisation of (sparse) PCA to multi-omics data. In the study by Argelaguet
et al. (2018), MOFA enabled the inference of a set of (hidden) factors to capture the biological and technical sources of
variability [Argelaguet et al.(2018)]. The acquired factors supported subsequent analyses such as identifying sample
subgroups, data interpolation and abnormal samples. There are considerable constraints to MOFA and related factor
models, involving their extendibility and lack of ability to interpret ancillary information about inter-cellular struc-
ture [Argelaguet et al.(2020)]. Recently introduced in bioinformatics, deep learning techniques have also been used
for multi-omics data-related tasks, which can perform well with dimensionality reduction. Autoencoder (AE) is one
of the data compression algorithms and is divided into two parts: the first part is the encoder, which is generally a
multi-layer network that compresses the input data into a vector (also known as a bottleneck layer), thus reducing
the dimensionality. The second part is the decoder, where the bottleneck layer is reconstructed into the same data as
the original input after passing through a multi-layer network. Chaudhary (2018) extracted compacted features from
liver cancer data using autoencoder to process RNA, miRNA, and DNA methylation data. A Cox model was used to
filter the compacted features based on survival time to obtain samples with new features [Chaudhary et al.(2018)]. The
samples were clustered to obtain labels, and the SVM classification model was trained using label supervision. Ding et
al. (2018) used deep learning methods to identify informative features in the multi-omics data. The classifier trained on
this basis could predict the effectiveness of drugs in cancer cell lines. They used autoencoder to effectively reduce the
dimensionality of the integrated data [Ding et al.(2018)]. For multi-omics cancer datasets with high dimensionality
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and noise, these deep learning-based multi-omics integration methods have advantages over traditional methods
due to the strong fitting ability of deep neural networks. Therefore, our study will use an autoencoder to reduce the
dimensionality of the omics data. Unlike Chaudhary (2018) and Ding et al. (2018), we will not use an autoencoder for
the fused data because of the concern that data with too much dimensionality will overwhelm smaller data, but instead
use autoencoder for each technology separately for dimensionality reduction to ensure that the information of each
omic is maximally retained. Several methods have utilized autoencoders for dimensionality reduction by concatenating
multi-omics datasets into a single, two-dimensional matrix. However, unfolding the data and analyzing it using two-way
methods can result in information loss, as it disregards the modular structure that is inherent in the data [Lemsara
et al.(2020)], [Ma and Zhang(2019)], [Zhang et al.(2018)], [Song et al.(2022)], [Chaudhary et al.(2018)].

2.4 Tensor Decomposition

An unsupervised feature extraction method based on tensor decomposition is proposed by creating k pattern tensors
based on a multi-view dataset, then applying HOSVD to decompose these tensors and finally performing a clustering
algorithm [Taguchi(2019)]. By measuring gene expression in combination with RNA-seq analysis in adipose, lym-
phoblastoid cell lines (LCL) and skin, Hore et al. (2016) decompose 3D tensors of gene expression using the Bayesian
sparse tensor decomposition model to reveal the gene networks associated with genetic variation [Hore et al.(2016)].
The CANDECOMP/PARAFAC (CP) decomposition is applied to genomic and epigenomic data. After decomposing the
tensor, learning is achieved using Support Tensor Machine Regression (STR) and Ridge Tensor Regression (RTR). Using
such an approach, the CP decomposition constraint performs more robust than models based on individual data types
and concatenation methods [Fang(2019)]. Fanaee-T and Thoresen (2019) use integrated dimension reduction and tensor
decomposition in their implementation of visualising multi-omics data [Fanaee-T and Thoresen(2019)]. In addition,
Taguchi and Turki (2021) propose kernel tensor decomposition (KTD) to improve multi-omics analysis [Taguchi and
Turki(2022)]. Jung et al. (2021) propose a Multi-Omics Non-negative Tensor decomposition for Integrative analy-
sis (MONTI), which uses a three-dimensional tensor with the addition of non-negative constraints when exploring
subtype-specific features such as breast cancer and other clinical features for decomposition [Jung et al.(2021)].

In conclusion, the literature suggests that several methods have been proposed for analyzing multi-omics data.
However, there are still several open challenges that need to be addressed. These include addressing the variation in
the dimensionality of different omics data, accurately representing non-linear data, identifying cancer risk groups
using information from various omics, and retaining the maximum amount of information from omics features during
dimensionality reduction before data integration.

3 METHODS AND MATERIALS

3.1 Data Collection

The data used in this study were collected from an open platform LinkedOmics [Vasaikar et al.(2018)], which provides
access to multi-omics data from all 32 TCGA Cancer Types and 10 Clinical Proteomics Tumor Analysis Consortium
(CPTAC) cancer cohorts. To ensure enough samples to support our training and testing, we selected the Glioma and
Breast Invasive Carcinoma cancer types as they have more than 1000 samples available. Four omics data have enough
samples and significant differences in the size of the features for each cancer type. The four omics selected for breast are
methylation (CpG-site level, HM450K), miRNA (HiSeq, Gene level), RNAseq (HiSeq, Gene level), and SCNV (Focal level,
log-ratio). Similarly, in glioma, the same omics are chosen except for changing the miRNA to miRNA (Gene level) as
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Fig. 1. Our proposed framework contains three main components: feature extraction, tensor analysis, and risk prediction.

there is no miRNA (HiSeq, Gene Level) in the available data. All the omics contain continuous data only as researching
on mixture data type is out of scope for this study. The selected omics data include portions of the shared samples
across the four technologies and clinical information. To ensure that the same set of common samples was used in the
experiments, we matched each of the four technologies’ data with the corresponding clinical data to define our dataset.
Consequently, we obtained 616 common raw samples for breast cancer and 508 for glioma..

The dimensions of the omics data varied significantly, with the largest being methylation, which had up to 335,854
dimensions, and the smallest being SCNV with only 69 dimensions. RNAseq had 20,155 dimensions and miRNA had
823 dimensions. The huge dimension difference makes handling data loss and delusion during dimension matching
challenging. All the values in omics are continuous data. Further, we noticed many features only contained values for a
few samples while all others were zero. The collected omics data of both cancer types have two common challenges.
The first challenge is the huge size difference between different omics. For example, SCNV has only 69 genes, while
methylation can have more than 330 thousand genes. This difference does not allow combining the data because the
larger ones may dilute the lower-size omics. The other challenge is the low number of samples after the common samples
are selected across various omics and the huge number of dimensions in some technologies, such as methylation.

3.2 Our Framework

Our proposed framework consists of three main components, as shown in Figure 1. In the first component, meaningful
features are extracted for each omic using separate stacked autoencoders. In the second component, the output as
extracted features of each omic is fused by a 3D tensor which stacks three same size matrices (𝐴, 𝐵,𝐶 ). The tensor is
decomposed using CP decomposition. Finally, using decomposed factors from the tensor to generate the risk prediction
by using different kinds of prediction models such as classification and clustering.

3.2.1 Data Preprocessing. The collected datasets are split into 70% training data and 30% testing data to ensure a
sufficient number of test cases. Data cleaning is applied to both breast and glioma datasets to handle the missing values.
Only methylation contains a limited number of missing values, so we replace them with the mean value of the related
gene features. Since it is uncertain whether zero values in omics data are meaningful or not, we decided to keep them

6

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 13, 2023. ; https://doi.org/10.1101/2023.09.12.23295458doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.12.23295458


Identification of Cancer Risk Groups through Multi-Omics Integration using Autoencoder and Tensor Analysis ,

to avoid any loss of meaningful information. After the cleaning phase, the data is scaled by the MinMaxScaler function
as follows

𝑥
′
=

𝑥 −𝑚𝑖𝑛(𝑥)
𝑚𝑎𝑥 (𝑥) −𝑚𝑖𝑛(𝑥)

3.2.2 Feature Extraction using Stacked Autoencoder. Since the sizes of omics data are various and can be extremely
large due to many genes, it is necessary to reduce or compress them to a reasonable size. We aim to keep the maximum
information in the extracted features from all the omics datasets. To achieve this goal, the stacked autoencoder model
is implemented and applied to separate omics. It consists of an artificial neural network widely used for dimension
reduction. It aims to extract meaningful information from the input dataset, transform them into smaller size latent
and reconstruct the input data from the latent [Bank et al.(2020)]. To create the stacked autoencoder model, we have
implemented the following steps:

Step 1: Encoding. Given an omics dataset, 𝐷 with 𝑁 samples and 𝑑 features, an encoder in the autoencoder model
compresses the 𝑑 features into 𝑑′ where d >d’. The hidden layers stack within the encoder, reducing nodes between 𝑑
and 𝑑′. The encoder part uses a non-linear mapping function to map the input data to hidden layer units and between
the hidden layers. Assume ℎ denotes the activation of the hidden layer neural unit, then its mathematical expression is
as follows

ℎ = 𝑓 (𝑥) = 𝑆𝑓 (𝑤𝑥 + 𝑝) (1)

where𝑤 represents the learning weighted matrix connecting the input layer and the stacking hidden layers. 𝑆𝑓 is
the activation function at the last hidden layers, which is usually a Sigmoid function or a Tanh function as shown below
in Eq. 2 and Eq. 3 respectively.

𝑓 (𝑥) = 1
1 + 𝑒−𝑥

(2)

𝑓 (𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥

(3)

We also add a ReLU activation function in each hidden layer which has the following equation

𝑅𝑒𝐿𝑈 (𝑥) = (𝑥)+ =𝑚𝑎𝑥 (0, 𝑥) (4)

The following section shows the structure of the encoder for both datasets: Breast Invasive Carcinoma and Glioma.
Encoder Structure for Breast Invasive Carcinoma. After preprocessing, the four selected omics for breast data

contain the same sets of samples and various features, e.g. SCNV, miRNA, RNAseq, and methylation, including 69, 823,
20155 and 335854 features, respectively. The structure will differ since they are all served by a separate autoencoder
except for SCNV. The input features on the input layer are the initial features. Considering the size of SCNV is very
small compared with others, we impute zero value to increase the size so that other omics do not need to be significantly
reduced to match the specific dimension size. Therefore, SCNV was imputed to 512 features and fit into the autoencoder.
Since the deep learning model may not learn zero value, the information will not be diluted [Mitra et al.(2020)]. The
values for each layer are selected from a specific range so that the dimension of the current hidden layer is half of the
last layer. Due to hardware limitations, it cannot set a higher value than 1024 on the first hidden layer for the two large
omics. Hence, selecting the optimal target latent feature size below 1024 becomes necessary. More specifically, there is
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Fig. 2. Encoder Structure for Breast Invasive Carcinoma

a ReLU activation function between each hidden layer. A three layers encoder is supplied with specific hidden nodes on
each layer for the two large omics, while miRNA is served by a two layers encoder and SCNV is served by a single-layer
encoder, as shown in Fig. 2

Encoder Structure for Glioma: The same four omics in the breast data are selected for glioma, with minor
differences in the feature size. Initially, SCNV has 72 features, miRNA has 791, methylation has 336630, and RNAseq
has 20118 features. Since these omics’ feature sizes are similar to those in breast data, encoders with similar structures
are implemented for them. During the evaluation through training loss, there are changes in the target latent size and
the features in the hidden layers for some omics. Same to the methylation in the breast, it cannot increase the output
features to more than 1024 of the first hidden layers due to hardware limitations. Hence, it is compulsory to select the
optimal target latent feature size below 1024. More specifically, there is a ReLU activation function between each hidden
layer. Similar to the ones in breast data, the two large omics are served by the three layers encoder while the other two
smaller omics fit into the two layers encoder. The detailed structure is presented in Figure 3.

Step 2: Bottleneck. The compressed output is generated in the latent space in the bottleneck layer, having the
same feature size as the number of nodes in the last hidden layer of the encoder. This latent output is regarded as the
compressed output of the model. There are two usages of this latent output. The first usage is to put into the decoder
of the stacked autoencoder to reconstruct the original input and evaluate the model by calculating the loss between
the original input and reconstructed output. The other usage is to take this latent as the model output for the next
component of our framework. For Breast Invasive Carcinoma, The optimal latent size for each is selected by inspecting
the training loss and the validation loss in 10-fold cross-validation and gaining the one with the lowest training loss
and stable low validation loss. After evaluating different targets, e.g. latent feature sizes, including 64, 128, 256, 512 and
training the model using the entire train set, the resulting latent for each omics are 256 for SCNV, 128 for miRNA, 256
for methylation and 512 for RNAseq. For glioma, Similar to the breast cancer data, the evaluation of the optimal latent
feature size is performed in a similar way using 10-fold cross-validation. As a result, the optimal latent for each omics is
128 for SCNV, 128 for miRNA, 256 for methylation and 128 for RNAseq.
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Fig. 3. Encoder structure for Glioma

Step 3: Decoding. The decoder part of the model mirrors the encoder part. Setting the same numbers of hidden
layers, the decoder aims to reconstruct the input from the latent as follows

𝑦 = 𝑔(ℎ) = 𝑆𝑔 (𝑤ℎ + 𝑞) (5)

where the𝑤 ′ represents the weight matrix between hidden layers,𝑦 represents the reconstructed input and 𝑆𝑔 represents
the activation function for the decoder.

Step 4: Loss function and back-propagation. To calculate the loss between the original input and reconstructed
output, Mean Squared Error(MSE) is the loss function commonly used for autoencoder training. Assuming input 𝑥 and
target 𝑦, the loss can be written as

𝑙 (𝑥,𝑦) = 𝐿 = 𝑙1, ..., 𝑙𝑁
𝑇 , 𝑙𝑛 = (𝑥𝑛 − 𝑦𝑛)2 (6)

where 𝑁 is the batch size 128. Since the default setup of the model is used

𝑙 (𝑥,𝑦) =𝑚𝑒𝑎𝑛(𝐿)

Parameter setting. The autoencoder is trained using 10-fold cross-validation to determine the optimal target latent
size. Using the entire train set, each model will be trained again by setting the latent output as the optimal value. After
running ten epochs, both the average training loss and validation loss of each model are around 1% to 3%. Adam is
selected as the optimizer, and the learning rate is set to 0.001 to avoid overlearning. The latent for each test set is
generated by the trained models.

3.2.3 Multi-omics Tensor Data Fusion and Decomposition. Tensor Data Fusion. A 3D tensor is used to fuse these
latents of each omics data. However, The matrices in the tensor must have the same size. To retain most of the
information fused into the tensor, the latent embeddings with larger sizes are divided into multiple smaller embeddings
with the same size as the smallest latent embedding. These matrices are the same size, so they can be stacked to form
a tensor. The stacking strategy frequently merges multiple data sources into a single tensor that can be utilized in
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Fig. 4. Stacking the matrices with the same size to build the tensor of shape: samples, assays, and latent features

machine learning models. The effectiveness of this approach is impacted by the quality of the extracted features. If the
features are noisy or not relevant to the intended task, then the stacking strategy may not be effective. However, in our
method, we implement an autoencoder first to compress the data and learn new features using non-linear functions.

Four sets of latent features for breast training data are created, which contain the following shapes (samples, latent
features) among various omics: SCNV (431,256), miRNA (431, 128), RNAseq (431, 512) and methylation (431, 256). The
test data contains the same feature size with 185 samples. To integrate these latents into the same size, the minimum
size among these latents is set as the target and split the larger ones evenly to the target. For example, we split four
pieces of RNAseq having a shape (431,128) for each. Then, the pieces can be stacked to form a tensor, as demonstrated
in Fig. 4. Therefore, it can fuse all the related data compressed by autoencoders into a tensor. After stacking them in the
orthogonal axis, we successfully retrieve two tensors with shapes (431, 9, 128) and (185, 9, 128) for the train and test sets,
respectively. Similar to the breast data, four latents belonging to glioma are generated after compressing the original
by autoencoder. The shapes of each training set are as follows: SCNV (355,128), miRNA (355,128), RNAseq (355,128)
and methylation (355, 256). The test sets share the same feature size separately and have 153 samples. After splitting
to match 128, the minimum feature size, they are stacked in the orthogonal axis to form two tensors with shapes of
samples, assays, and latent features, e.g., (355, 5, 128) and (153, 5, 128) for the train set and test sets respectively.

Tensor Decomposition process. Given a tensor 𝑋 ∈ ℜ𝐼× 𝐽 ×𝐾 , We use Parafac [Carroll and Chang(1970)] (a.k.a CP
decomposition) to decompose the tensor into three matrices A, B and C as shown in Fig. 5. Matrix A represents the
patient’s mode, B represents the omics feature mode and C represents the genes (latent features) mode. In this sense, a
tensor 𝑋 can be written as

𝑋 ≈
𝑅∑︁
𝑟=1

𝜆𝑟 𝐴𝑟 ◦ 𝐵𝑟 ◦𝐶𝑟 ≡ [𝜆;𝐴, 𝐵,𝐶] (7)

where "◦" is a vector outer product. 𝑅 is the latent element, 𝐴𝑟 , 𝐵𝑟 and 𝐶𝑟 are r-th columns of component matrices
𝐴 ∈ ℜ𝐼×𝑅 , 𝐵 ∈ ℜ𝐽 ×𝑅and 𝐶 ∈ ℜ𝐾×𝑅 , and 𝜆 is the weight used to normalize the columns of 𝐴, 𝐵,and 𝐶 .

The main goal of CP decomposition is to decrease the sum square error between the model and a given tensor 𝑋 :

min
𝐴,𝐵,𝐶

∥𝑋 −
𝑅∑︁
𝑟=1

𝜆𝑟 𝐴𝑟 ◦ 𝐵𝑟 ◦𝐶𝑟 ∥2𝑓 , (8)
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Fig. 5. Tensor decomposition

where ∥𝑋 ∥2
𝑓
is the sum squares of𝑋 , and the subscript 𝑓 is the Frobenius norm. In this work, we use the core consistency

diagnostic technique (CORCONDIA) technique described in [Bro and Kiers(2003)] to determine the number of rank-one
tensors 𝑅 when it decomposed using the CP method.

It seems at first that the function presented in Equation 8 is a non-convex problem since it aims to optimize the sum
squares of three matrices. However, the problem can be reduced to a linear least squares problem by fixing two of the
factor matrices, and solving only the third one. Following this approach, the ALS technique can be employed which
repeatedly solves each component matrix by locking all other components until it converges.

We remark that ALS can lead to sensitive solutions and it is not, in general, robust and hence motivates the need to
incorporate the notion of penalty and regularization. Incorporating regularization and penalization parameters into
the 𝐿1 norms makes it possible to achieve smooth representations of the outcome and thus bypass the perturbation
surrounding the local minimum problem [Anaissi et al.(2018)]. The algorithm for CP decomposition using regularized
ALS (RALS) is described in Algorithm 1. The 𝐿1 penalty terms | |𝑋 | |𝐿1 =

∑
· |𝑥 · | enforces the intensity of sparsity in 𝑋 .

Algorithm 1: Regularized Least Squares for CP
Input: Tensor 𝑋 ∈ ℜ𝐼× 𝐽 ×𝐾

Output: Matrices 𝐴 ∈ ℜ𝐼×𝑅 , 𝐵 ∈ ℜ𝐽 ×𝑅 , 𝐶 ∈ ℜ𝐾×𝑅 , and 𝜆
1: Initialize 𝐴, 𝐵,𝐶
2: Repeat
3: 𝐴 = argmin

𝐴

1
2 ∥𝑋 (1) −𝐴(𝐶 ⊙ 𝐵)𝑇 ∥2 + 𝛾𝑋𝐴

| |𝑋 (1) | |𝐿1
4: 𝐵 = argmin

𝐵

1
2 ∥𝑋 (2) − 𝐵(𝐶 ⊙ 𝐴)𝑇 ∥2 + 𝛾𝑋𝐵

| |𝑋 (2) | |𝐿1
5: 𝐶 = argmin

𝐶

1
2 ∥𝑋 (3) −𝐶 (𝐵 ⊙ 𝐴)𝑇 ∥2 + 𝛾𝑋𝐶

| |𝑋 (3) | |𝐿1
(𝑋 (𝑖 ) is the unfolded matrix of 𝑋 in a current mode)

6: until converged

Interestingly, our proposed method employs a tensor for data fusion. The alternative naive approach would simply
concatenate the multi-omics datasets into one single two-dimensional matrix. However, unfolding the data and analyzing
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Fig. 6. Multi-omics data fused in a tensor.

them using two-way methods may lead to information loss since it breaks the modular structure inherent in the data.
Therefore, a tensor data fusion approach will allow us to arrange the data from a set of multi-omics datasets as one
single data structure T called a tensor. This tensor T has data in a form of a three-way tensor X ∈ R𝐴×𝐵×𝐶 where 𝐴
represents the number of multi-omics dataset, 𝐵 represents the number of features in each omic dataset, and 𝐶 is the
total number of patients. The structure of this tensor is shown in Fig. 6

3.2.4 Multi-omics Clustering and Prediction Models. In this section, the patients are stratified into low and high-risk
groups using the latent features from the integrated multi-omics data: SCNV, miRNA, RNAseq, and methylation. To
rationally identify different subsets of patients associated with different overall survival (OS), several clustering methods
are investigated to cluster the patients into two groups using the integrated latent features from four omics including
K-means, hierarchical clustering, DBSCAN, and Gaussian Mixture Model. To demonstrate a different performance of
low and high-risk groups, prognostic significance is evaluated using univariate (Kaplan-Meier) and multivariate (Cox-
regression) models across treated patients from the breast and glioma datasets. The p-value evaluates the statistically
significant level. Further, tumor purity classification model is developed on the breast data as it is available only in
the clinical breast data. Tumor purity is an important medical feature that explains the proportion of cancer cells. We
categorize the tumor purity level into high and low levels based on the threshold of 0.7. The patient is considered as a
high purity level when the tumor purity value is greater than or equal to 0.7 and low otherwise [Cheng et al.(2020)]. It is
worth mentioning that the data is divided into the training and testing sets for the clustering and classification models.

4 EXPERIMENTS AND RESULTS

The evaluated datasets are downloaded from the public linkedomics repository1 including four single-omics datasets
of SCNV, methylation, miRNA and RNAseq in addition to the clinical dataset for each cancer type. Breast Invasive
and Glioma are the only two types with more than 600 clinical samples compared with all other cancer types. The
chosen four single-omics datasets also have sample sizes of over 600, which are sufficient for the analysis. The core
consistency diagnostic technique (CORCONDIA) suggests the rank 𝑅 = 9 for the breast multi-omics tensor and 5 for
glioma tensor [Bro and Kiers(2003)]. We compared our proposed method to MOFA [Argelaguet et al.(2018)].

1http://linkedomics.org
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4.1 Survival Analysis for Glioma

We investigate whether the patients can be stratified into risk groups for glioma cancer using the latent features from
the multi-omics genomics data. The latent features are learned from our proposed framework, as shown in Fig. 1.
First, for each type of cancer, the data is decomposed to 70% training data for model building and 30% testing data.
Hierarchical clustering divides the patients into two or three risk groups. Then, to evaluate the ability of the multi-omics
latent features to stratify patient overall survival (OS), a univariate regression model is fitted across glioma patients in
the training set (N=330) and testing set (N=144). The significance levels are indicated as –𝑙𝑜𝑔10 (p-value). Kaplan–Meier
curves visualize the probability of survival outcomes over time in each group as shown in Fig. 7 and 8. A general
observation is revealed from the results that multi-omics latent variables are significantly associated with patient OS
in univariate models across all the patients in the training set. The patients could be stratified into low (N=147) and
high-risk (N=183) groups and three groups with significantly different OS (p-value<0.05) as shown in Fig. 7.

Fig. 7. Overall survival of our method on glioma patients in training set stratified by hierarchical clustering using multi-omics latent
variables. The ’p’ value represents the P-value of the log-rank test comparing the different groups.

For the test set of glioma cancer, both significant results are observed if cluster the data is into two groups and
three groups (Fig.8). The p-value of 0.037 can be obtained when clustering the test set into two risk groups and less
than 0.0001 for three risk groups. We compared our results with the state-of-the-art method, MOFA. The latent factors
extracted by MOFA from both the training and testing sets did not significantly stratify patients into two or three risk
groups, as demonstrated in Figs. 9 and 10. The p-value was not significant in all training and testing sets, except for
the glioma testing set, which was significant. These results were obtained using five factors that resulted in the best
performance using the MOFA method. Therefore, our framework can generate important latent features from multiple
genomics data related to the patient’s overall survival. The clustering model can dichotomize patients with statistically
significant p-value across all glioma patients.

4.2 Survival Analysis for Breast Cancer

The patients in the training set of breast cancer (N=426) using the learned latent variables from multi-omics data can be
stratified into two groups and three groups by using the combination of Canberra distance and ward linkage for the
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Fig. 8. Overall survival of our method on glioma patients in the testing set stratified by hierarchical clustering using multi-omics
latent variables. The ’p’ value represents the P-value of the log-rank test comparing the different groups

Fig. 9. Overall survival of MOFA on glioma patients in training set using multi-omics latent variables. The ’p’ value represents the
P-value of the log-rank test comparing the different groups

hierarchical clustering algorithm with the significant difference between the two risk groups (p-value is 0.0085) and
for three groups of p-value 0.029. The survival curves are shown in Fig. 11. However, the testing set (N=181) patients
cannot be stratified into risk groups with significant differences using hierarchical clustering. The Kaplan-Meier survival
curves of the risk groups do not show significant differences at the 5% significance level between the two and three
curves (p-value is 0.078 and 0.16, respectively), as shown in Fig. 12. Our method outperformed MOFA in significantly
stratifying breast cancer patients into multiple risk groups. This was observed by developing a clustering model that
dichotomized breast cancer patients using the latent factors of the MOFA method. As shown in Figs. 13 and 14, there
was no statistically significant difference between the two and three risk groups across all breast cancer patients in
both the training and testing sets.

Since very few patients can survive longer than 3000 days, to achieve more significant results, we restrict the
survival time of patients to up to 3000. When adopting the combination of maximum distance and ward linkage for the
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Fig. 10. Overall survival of MOFA on glioma patients in the testing set using multi-omics latent variables. The ’p’ value represents the
P-value of the log-rank test comparing the different groups

Fig. 11. Overall survival of our method on breast patients in training set stratified by hierarchical clustering using multi-omics latent
variables. The ’p’ value represents the P-value of the log-rank test comparing the different groups.

hierarchical clustering algorithm, both training and test sets’ results are significant. As shown in Fig. 15, the p-value of
0.015 is observed when clustering the train set of breast cancer into two groups, while the p-value of 0.032 is obtained
when clustering the test set of breast cancer into two groups.

Overall, the results for glioma cancer perform better than the ones for breast cancer. The results demonstrate that
the features extracted from the autoencoder models are significant after tensor decomposition, which further proves
the utilization of the multi-omics data is meaningful for determining the risk of patients with a specific cancer type.
By identifying patients’ risk levels, the overall survival rate is expected to be increased by either involving earlier
inventions for cancers or choosing better therapies for patients with different stages of tumor.
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Fig. 12. Overall survival of our method on breast patients in testing set stratified by hierarchical clustering using multi-omics latent
variables. The ’p’ value represents the P-value of the log-rank test comparing the different groups

Fig. 13. Overall survival of MOFA on breast patients in training set stratified by hierarchical clustering using multi-omics latent
variables. The ’p’ value represents the P-value of the log-rank test comparing the different groups

4.3 Interpret Latent Variables using t-SNE Visualization

Deep learning methods have shown remarkable success in our method to learn the non-linear representation of the
data. However, one of the main challenges with deep learning methods is the interpretation of the learned features,
including latent variables, which can be highly complex and abstract, making it difficult to interpret the meaning of
individual latent variables. Latent variables represent underlying biological features that cannot be directly observed,
but visualization techniques such as t-SNE can be used to interpret them graphically.

In this experiment, we first applied t-SNE on the latent variables extracted from our proposed method to identify
clusters of samples with similar latent variable values. As shown in Fig. 16, the resulting clusters can provide insights
into the underlying biological processes or molecular pathways driving differences between samples. For example,
they may suggest that the latent variables from multi-omics are capturing differences in gene expression or other
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Fig. 14. Overall survival of MOFA on breast patients in testing set stratified by hierarchical clustering using multi-omics latent
variables. The ’p’ value represents the P-value of the log-rank test comparing the different groups

Fig. 15. Overall survival of our method on breast patients in the training and testing sets with restriction survival time to 3000 days
which stratified by hierarchical clustering using multi-omics latent variables. The ’p’ value represents the P-value of the log-rank test
comparing the different groups.

molecular features associated with the disease subtype. Next, we evaluated the latent variables generated by MOFA for
multi-omics. The results, visually observed in Fig. 17, demonstrate that our proposed method more effectively separates
samples using multi-omics latent variables in the glioma testing dataset.

4.4 Classification on Tumor Purity for CP decomposition of Breast

We further evaluate the multi-omics latent variables to classify the patients based on tumor purity as presented in
Table 1. We have conducted the experiments on the breast data only because this feature exists only in its clinical
data. Tumor purity is categorised into low and high groups based on a threshold of 0.7. Comparing the performance of
different classification models based on the result sets of CP decomposition and tucker decomposition, it is observed
that the model trained with the data after CP decomposition performs better. This classification problem is particularly
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Fig. 16. t-SNE plots of multi-omics latent variables in our method for glioma and breast testing data respectively.

Fig. 17. t-SNE plots of multi-omics latent variables in MOFA for glioma and breast testing data respectively.

challenging in the breast dataset, and even state-of-the-art methods struggle to achieve high accuracy [Li et al.(2019)].
Specifically, by testing the result sets of CP decomposition with different ranks, the best model is Random Forest which
is trained on the result sets of CP decomposed by setting the decomposed rank to 9. The accuracy rate is 0.69, and
the weighted F1-score is 0.65. For the remaining models, Logistic Regression, Naive Bayes, SVM, and AdaBoost have
the same accuracy of 0.59, but their F1-score does not reach 0.4, so their performance is relatively poorer. Therefore,
Random Forest can be used to classify tumor purity if using the CP decomposition method.

Three parameters are tuned in the random forest model: estimators, max depth, and max features. Among them,
estimators have the most significant impact on the results. The optimal values are identified using the search space.
Firstly, we search estimator values from 0 to 200. A random forest is built based on the interval of 10, and the intervals
are taken as the x-axis, and the corresponding cross-validation scores are set as the y-axis (Fig.18). Based on the
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Accuracy Macro F1 Weighted F1
Logistic regression 0.59 0.37 0.44
KNN 0.41 0.29 0.23
Naive Bayes 0.59 0.37 0.44
Decision tree 0.41 0.29 0.23
SVM 0.59 0.37 0.44
Random forest 0.69 0.60 0.65
Gradient Boosting 0.44 0.36 0.32
Adaboost 0.59 0.37 0.44

Table 1. Classification of Tumor Purity on CP Decomposition

Fig. 18. Parameter tuning.

results, the highest accuracy value when the estimator is 133. Finally, using the estimators of 133 as the determining
parameter, optimal values of both max depth and max features can be obtained in a similar process, which is two and
nine, respectively.

5 DISCUSSION

We first indicate the significance of using multi-omics data and fusing the latent variables using tensors to identify the
cancer risk groups. In this section, we conduct experiments using single-omics data on breast cancer. The patients are
clustered into two groups, and the survival analysis is conducted separately to see whether those features extracted
from autoencoder models of single-omics are significant or not. The p-value is reported in Table 2, which shows the
insignificance difference between risk groups by using the single-omics separately for all technologies for breast data.
On the other hand, the survival analysis results on glioma single-omics data are significant as presented in Table 3.
Therefore, the performance of the latent variables of single-omics datasets of glioma is consistent with the latent
variables of multi-omics, which proves that using the features from multiple omics produces significant results in both
breast and glioma datasets.

Overall, this study delivers a novel framework that overcomes few potential issues. Firstly, the framework handles
every single-omics separately instead of combining all the omics at the first step. Concatenation-based integration
methods, which combine all the omics into a single large matrix, have proved to integrate the multi-omics information
in some cases (Reel et al. 2021). However, one of the main issues is that the information in smaller omics is very likely to
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Training Testing
RNAseq 0.25 0.28
SCNV 0.58 0.43
miRNA 0.15 0.58
Methylation 0.48 0.094

Table 2. P-value to stratify the patients into
two risk groups for training and testing
breast data on single-omics

Training Testing
RNAseq <0.001 0.013
SCNV <0.001 0.004
miRNA <0.001 0.04
Methylation <0.001 0.005

Table 3. P-value to stratify the patients
into two risk groups for training and testing
glioma data on single-omics

be lost. In our case, SCNV is at high risk of missing information because it only has 69-72 feature size, while methylation
is far larger than it, with more than 330k features. The framework approached in this study can avoid this concern as
it handles each omic separately before fusing. Implementing autoencoders individually compresses as much as the
original information of each single-omics. Secondly, instead of forcing a common target dimension for all the omics to
reduce to, compressing each of them to their most optimal size makes more sense since the aim is to keep the maximum
information of single-omics during the compressing process. Again, combining multi-omics to a large matrix can lose
the information from the smaller size omics. It may be missing information when the feature extraction or selection
methods are implemented on this large integrated matrix. Integrating these multi-omics after they were compressed by
a separate autoencoder can reduce the risk of information loss, as these multi-omics data will no longer have huge size
differences. The framework compresses the maximum information for each omic and then integrates them into a tensor,
minimizes the information loss brought by compressing as a whole, and avoids handling multi-omics on integration
when they have huge size differences.

Objectively, the framework does not add any knowledge from the biological area. We aim to investigate the biological
interpretation of the difference between the low and high-risk groups identified by the latent variables extracted from
multi-omics cancer data which could include:

• Differential activation of oncogenic pathways: The latent variables may be capturing differences in the activation
of pathways involved in cancer development and progression. Patients in the high-risk group may have higher
levels of activation of oncogenic pathways, leading to more aggressive tumor growth and a worse prognosis.

• Immune system dysfunction: The latent variables may be associated with differences in the immune response
to cancer. Patients in the high-risk group may have immune system dysfunction, such as reduced immune
surveillance or an immunosuppressive tumor microenvironment, which allows the tumor to evade detection and
destruction by the immune system.

• Treatment response: The latent variables may be predictive of how well patients will respond to different cancer
treatments. Patients in the high-risk group may be less responsive to standard treatments, leading to a worse
prognosis.

6 CONCLUSION

We propose a multi-omics framework using deep-learning autoencoders and tensors to identify the cancer risk groups.
Multi-omics integrates diverse omics data including methylation, somatic copy-number variation (SCNV), micro
RNA (miRNA) and RNA sequencing (RNAseq). Our proposed framework use autoencoders for each omics data
separately to reduce the number of dimensions and capture the maximum information. The latent variables are
extracted from individual omics data and integrated using tensors, then, the common features are identified using

20

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 13, 2023. ; https://doi.org/10.1101/2023.09.12.23295458doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.12.23295458


Identification of Cancer Risk Groups through Multi-Omics Integration using Autoencoder and Tensor Analysis ,

CANDECOMP/PARAFAC (CP) decomposition. The low-dimensional multi-omics data is clustered into two and three
risk groups using Hierarchical clustering. Several survival analysis experiments have been conducted which indicated
that the low dimensional multi-omics data can be stratified into high and low-risk groups. Further, a classification model
is constructed using the fused features from multi-omics data to predict the tumor purity in breast cancer. The future
direction of this work will involve incorporating biological knowledge to further investigate the inter-relationships
among different techniques and molecules.
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