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Abstract 

The COVID-19 pandemic has exposed a number of key challenges that need to be urgently 
addressed. In particular, rapid identification and validation of prognostic markers is required. Mass 
spectrometric studies of blood plasma proteomics provide a deep understanding of the relationship 
between the severe course of infection and activation of specific pathophysiological pathways. Analysis 
of plasma proteins in whole blood may also be relevant for the pandemic as it requires minimal sample 
preparation. Here, for the first time, frozen whole blood samples were used to analyze 189 plasma 
proteins using multiple reaction monitoring (MRM) mass spectrometry and stable isotope-labeled 
peptide standards (SIS). A total of 128 samples (FRCC, Russia) from patients with mild (n=40), 
moderate (n=36) and severe (n=19) COVID-19 infection and healthy controls (n=33) were analyzed. 
Levels of 114 proteins were quantified and compared. Significant differences between all of the groups 
were revealed for 61 proteins. Changes in the levels of 30 reproducible COVID-19 markers 
(SERPING1, CRP, C9, ORM1, APOA1, SAA1/SAA2, LBP, AFM, IGFALS, etc.) were consistent with 
studies performed with serum/plasma samples. Levels of 70 proteins correlated between whole blood 
and plasma samples. The best-performing classifier built with 13 significantly different proteins 
achieved the best combination of ROC-AUC (0.93-0.95) and accuracy (0.87-0.93) metrics and 
distinguished patients from controls, as well as patients by severity and risk of mortality. Overall, the 
results support the use of frozen whole blood for MRM analysis of plasma proteins and assessment of 
the status of patients with COVID-19. 

 

1. Introduction 

The COVID-19 pandemic has revealed some important aspects that require urgent decision-
making and has compelled the global community to rapidly develop both effective therapeutic 
approaches and diagnostic methods, including those that predict the risk of an adverse outcome. The 
lessons of this pandemic must certainly be learned in order to effectively respond to other similar 
challenges, and they concern not only urgent innovations, but also the significantly increased workload 
for medical institutions and analytical laboratories due to the high influx of patients and samples for 
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analysis. Particularly, mass spectrometry (MS)-based proteomics has the potential to be used as an ideal 
analytical technology in such situations, as it can provide the fastest, deepest unbiased analysis 
necessary for the understanding of the role of specific biological processes in the ongoing 
pathophysiological changes, as well as to create specific marker panels [1,2]. For productive analysis of 
the increased number of samples, it is also essential to use the least time-consuming sample preparation 
methods to minimize erroneous results. 

Blood serum and plasma are among the most traditional samples for clinical assays and have 
been used in the largest number of biomarker studies of COVID-19. In the case of this infection, blood 
studies are of particular relevance because the coronavirus affects the functioning of the capillary 
endothelium by promoting its inflammation and can cause acute distress respiratory syndrome, multiple 
organ dysfunction or even sepsis [3-6], and thus undoubtedly affects the lipidomic, proteomic and 
metabolomic plasma/serum profiles [7-10]. As early as in July 2020, several untargeted high-resolution 
MS based proteomic studies of blood serum were performed and showed good intersections with each 
other in a number of dysregulated proteins and, in general, complemented each other in the list of 
potential markers of disease severity [11-13]. Already these first results indicated the relationship 
between the severe course of disease progression and elevated levels of coagulation and complement 
components [13], as well as with activation of acute phase proteins and down-regulation of some 
apolipoproteins accompanied by dysregulation of metabolites involved in lipid metabolism [11]. One 
way or another, all further untargeted and targeted MS studies of serum and blood plasma, with or 
without depletion of major proteins, led to similar conclusions [14-24]. Overall, ~100 proteins have 
been shown in at least two different MS studies to be concordantly dysregulated. For 15 of them, 
concordant dysregulation has been shown in at least five studies. These include 10 up-regulated 
proteins: alpha-1-antichymotrypsin (SERPINA3) [11,14-23], plasma protease C1 inhibitor (SERPING1) 
[11,13,17-19,21-23], C-reactive protein (CRP) [11,12,14,15,21-23], complement component C9 (C9) 
[11,13,16,18,22,23], alpha-1-acid glycoprotein 1(ORM1, AGP1) [14,16-18,22,23], von Willebrand 
factor (VWF) [16,17,19,21-23], inter-alpha-trypsin inhibitor heavy chain 3 (ITIH3) [11,12,16,18,22], 
actin (ACTB, ACTC1, ACTA2) [12,14,21-23], serum amyloid A-1 and A2 proteins (SAA1, SAA2) 
[11,12,14,22,23], lipopolysaccharide-binding protein (LBP) [11,12,17,22,23]; as well as 5 down-
regulated proteins: histidine-rich protein (HRG) [15,18-22], apolipoprotein A-I (APOA1) 
[12,16,18,21,22], afamin (AFM) [14,17,18,21,22], insulin-like growth factor-binding protein complex 
acid labile subunit (IGFALS) [14,20-22,24], and N-acetylmuramoyl-L-alanine amidase (PGLYRP2) 
[11,14,18,21,22]. 

Whole blood is not such a popular research object due to its much higher proteome complexity 
and domination of red blood cell proteins. However, the possibility of serum/plasma preparation may be 
more or less limited under the extreme circumstances of a pandemic with a significantly increased influx 
of hospitalized patients. At the same time, whole blood samples do not require even the simplest 
processing, small samples can be collected even by the patient at home, and can easily be stored frozen 
or as dried blood spots. Therefore, for pandemic conditions, it seems particularly appropriate to assess 
the diagnostic potential of whole-blood proteomics. 

Until now, studies of plasma proteins in whole blood have not been very popular. This may be 
due to the predominant use of immuno-based approaches for assays targeted at specific proteins. While, 
the use of complex subjects such as whole blood greatly increases the number of non-specific and false 
positive results. There are two ways to process and store whole blood: drying or freezing the sample. 
Usually for MS-based proteomic analysis the dry blood spots (DBS) technique (when blood samples are 
blotted and dried on filter paper) is used [25-27]. The use of volumetric absorptive microsampling 
(VAMS) to deplete highly abundant proteins allows to reach ~2000 protein identifications in DBS [28]. 
But frozen whole blood samples are much easier and faster to collect and are commonly used for genetic 
or immunological studies [29]. Therefore, their additional proteomic analysis may be particularly 
relevant in a pandemic. However, quantitative MS studies of plasma proteins in frozen whole blood are 
rare and no such studies have been performed during the COVID-19 pandemic.  
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In this study, the ability of MRM-MS to quantify plasma proteins in frozen whole blood samples 

was evaluated. Samples collected during the COVID-19 pandemic from 95 patients with varying disease 
severity and a group of healthy controls were analyzed to estimate the levels of 189 blood plasma 
proteins using stable isotope-labeled peptide standards (SIS). The analyzed proteins included ~100 
previously reported COVID-19 markers proposed in previous MS studies with blood plasma and sera.  
A combination of statistics and machine learning was used for data analysis in order to build the best-
performing classifier for severity prediction in patients with COVID-19. 

 

2. Materials and Methods 

2.1 Study population 

Participants were recruited in the Department for treatment of the novel coronavirus infection at the 
Federal Research Clinical Center (FRCC) under Federal Medical and Biological Agency (Russia) from 
25.06.2021 till 19.07.2021. 95 patients were positive according to PCR-testing for SARSCoV-2. All 95 
patients have been hospitalized; all of them had viral pneumonia confirmed by high resolution computer 
tomography of the chest. The group of healthy controls (n=33) was recruited among the FRCC staff. 
Informed consent was obtained from all participants, and the study was approved by the FRCC local 
ethical committee (clinical protocol No. 5, 11 May 2021). Patients were divided into severity groups 
according to the respiratory support they needed. Mild (n=40) - did not need oxygen supply, moderate 
(n=36) needed low flow oxygen support, and severe (n=19) needed high flow nasal oxygen, non 
invasive or invasive mechanical ventilation (11 of them died). The demographic and clinical 
characteristics of the studied groups are presented in Table 1. 

Table 1. Subject demographics. 

 COVID-19 patients Controls 
Total Mild Moderate Moderate 

N 95 40 36 19 33 
Age (years)a 55 (44; 70) 50 (37; 63) 61 (52; 69) 67 (52; 73) 57 (41; 68) 
Sex (%, F) 57 63 55 44 67 
Body mass indexa 27 (25; 33) 25 (24; 29) 29 (26; 34) 29 (25; 39) 26 (22; 31) 
Smokers (%) 17 9 18 34 30 
Onset of symptoms (days)a 6 (4; 8) 7 (5; 8) 6 (4; 8) 6 (4; 7) - 
Hospitalization duration 

(days)a 
10 (7; 14) 7 (6; 9) 11 (9; 14) 15 (13; 18) - 

Lung damage (%, CT) 30 (25; 50) 25 (15; 25) 40 (25; 50) 75 (62; 75) - 
CRP (mg/L)a 43 (14; 70) 22 (10; 50) 58 (17; 99) 47 (19; 99) 3.5 (1.8; 12.4) 
Total protein (g/L)a 69 (64; 73) 68 (65; 73) 70 (67; 73) 63 (61; 70) 73 (68; 74) 
Leukocytes (109/L)a 5 (4; 6) 4 (4; 6) 5 (4; 7) 5 (5; 6) 8.6 (6.5; 10.7) 
ESR (mm/hour)a 33 (20; 46) 26 (18; 40) 40 (28; 60) 34 (24; 46) 38 (21; 60) 
Lymphocytes (%) 21 (14; 28) 27 (21; 32) 18 (13; 23) 16 (11; 20) 27 (17; 32) 
Lymphocytes (109/L)a 1.0 (0.7; 1.4) 1.2 (0.9; 1.4) 1.0 (0.6; 1.4) 0.9 (0.6; 1.1) 2.0 (1.5; 2.6) 
a - Median values are given; the 0.25 and 0.75 percentiles are indicated in brackets. 
 Abbreviations: CT - computed tomography scan; CRP - C-reactive protein; ESR - erythrocyte 
sedimentation rate. 
 

 
2.2 Whole blood sample collection and preparation for MS 
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Venous blood was collected using vacuum tubes with K2+-EDTA, aliquoted and stored at -80 °C. 
The study was performed using isotope-labeled standard (SIS) "heavy" peptides, which were added to 
each sample and acted as internal standards for normalization, and unlabeled "light" peptides (NAT), 
which were used to create quantitative calibration curves. Synthesis and characterization of SIS and 
NAT peptides was carried out in the Omics lab at Skoltech using standard procedures, which were 
previously described in detail [23,24,30]. The list of peptides and proteins is provided in Supplementary 
Table S1.  

 Sample preparation was carried out using 10 μL of whole blood, similar to the protocols applied 
for plasma [23,24,31]. After thawing, the blood samples were carefully mixed and centrifuged at 4000g 
for 10 minutes. Before trypsinolysis, the samples were denaturated and reduced by incubation with 6 M 
urea, 13 mM dithiothreitol and 200 mM Tris × HCl (pH 8.0, +37 °C, 30 min). Next, the proteins were 
alkylated by a 30-min incubation in the dark with 40 mM iodoacetamide. For trypsinolysis, the samples 
were diluted with 100 mM Tris × HCl (pH 8.0) until <1 M urea; L-(tosylamido-2-phenyl) ethyl 
chloromethyl ketone (TPCK)-treated trypsin (Worthington) was added at a 20:1 (protein:enzyme, w/w) 
ratio; and the samples were incubated for 18 h at 37 °C. The reaction was quenched by acidifying the 
reaction mixture with formic acid (FA) to a final concentration of 1.0% (pH ≤ 2), and an estimated 
peptide concentration of ~1 mg/mL [30]. Then each sample (40 μL) was spiked with 10μL of the SIS 
peptide mixture, prepared by solubilization in 30% ACN/0.1% FA and dilution to 10× LLOQ per μL 
with 0.1% FA. All samples were then concentrated by solid-phase extraction (SPE) using an Oasis HLB 
μElution plate: 1) the plate was conditioned with MeOH (600μL), equilibrated with 0.1% FA (600μL), 
and loaded with samples; 2) the wells were washed with H2O (600μL, ×3); 3) bound peptides were 
eluted with 70% ACN/0.1% FA (55 μL) [24]. For each reference standard and quality control sample, 
40 μl of a BSA surrogate matrix digest (143 μg/mL) was spiked with the SIS peptide mixture, as well as 
with the same volume of a level-specific “light” peptide mixture at a ratio of 4:1:1 (v/v/v). The standard 
curve and quality control samples were subjected to the same SPE procedure. All SPE eluates were 
evaporated using a speed vacuum concentrator and stored at -80°C. Prior to LC-MS/MS analysis, the 
samples were reconstituted in 34 μL of 0.1% FA. 

 
2.3 Plasma samples 
Plasma samples from 32 healthy controls were prepared in parallel with their whole blood 

samples to study the correlation between target protein concentrations. Plasma was obtained by 
centrifuging the K2+-EDTA whole blood samples at 4000 × g for 10 min at room temperature within 1h 
after collection. The aliquots were stored at -80°C. Sample preparation for MRM-MS was performed as 
described above for whole blood samples. 

 
2.4 LC-MS/MS analysis and MS data processing 

All samples were analyzed in duplicate by HPLC-MS using an ExionLC™ UHPLC system 
(Thermo Fisher Scientific, Waltham, MA, USA) coupled online to a SCIEX QTRAP 6500+ triple 
quadrupole mass spectrometer (SCIEX, Toronto, ON, Canada). LC and MRM parameters were adapted 
and optimized basing on the previous studies done with the BAK125/270 kits [30, 31]. 

The loaded sample volume was 10 μL per injection. HPLC separation was carried out using an 
Acquity UPLC Peptide BEH column (C18, 300 Å, 1.7 μm, 2.1 mm × 150 mm, 1/pkg) (Waters, Milford, 
MA, USA) with gradient elution. Mobile phase A was 0.1% FA in water; mobile phase B - 0.1% FA in 
acetonitrile. LC separation was performed at a flow rate of 0.4 mL/min using a 53-min gradient from 2 
to 45% of mobile phase B. Mass spectrometric measurements were carried out using the MRM 
acquisition method. The electrospray ionization (ESI) source settings were as follows: ion spray voltage 
4000 V, temperature 450°C and ion source gas 40 L/min. The corresponding transition list for MRM 
experiments with retention time values and Q1/Q3 masses for each peptide is available in Table S1. 

For quantitative analysis of the LC-MS/MS raw data, Skyline Quantitative Analysis software 
(version 20.2.0.343, University of Washington) was used. To calculate the peptide concentrations in the 
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measured samples (fmol per 1 µL of plasma), calibration curves were generated using the 1/(x2)-
weighted linear regression method. All experimental results were uploaded to the PeptideAtlas SRM 
Experiment Library (PASSEL) and are available via link: 
http://www.peptideatlas.org/PASS/PASS05842 (accessed on 4 September 2023). 

 
2.5 Statistical Analysis  
Statistical analysis and data visualization were performed using Python (3.7.3) scripts with SciPy 

[32], Seaborn [33], matplotlib [34], and Pandas [35] packages. 
Proteins identified in less than 60% of the samples were excluded; the final number of analyzed 

features was 114. The data was Log2(x+1) transformed. "NaN" - values were replaced with random non-
zero values using a Gaussian distribution with a shift down = 0.4 and width = 0.2 of the mean value for 
each group of patients (control, mild, moderate, and severe). 

The Mann-Whitney test was used to evaluate statistical differences between the groups. p-values 
were adjusted using the Benjamini-Hochberg method. The Cohen`s size (mean difference divided by the 
variance for different groups of samples) was also considered.  

The ordinary least squares (OLS) method was used to construct the linear regression model in 
order to compare the data from paired whole blood and plasma samples from control patients. 

 
2.6 Machine Learning 
The Scikit-Learn package was used to obtain all machine learning models [36]. To differentiate 

between pairwise groups, 4 classifying algorithms were considered: k-Nearest Neighbors (kNN), 
Logistic Regression (LR), Random Forest (RF), and the Support Vector Classifier (SVC). For the 
application of all algorithms, except RF, normalized data were used. The best models were determined 
using k-Fold cross-validation (k = 4). Features were selected according to preliminary statistical 
analysis. Specific hyper-parameters for each algorithm were selected using a grid search based on the 
highest ROC-AUC scores for different combinations of compared groups and protein marker panels. 
The proposed hyper-parameters for the classifiers discussed in the "results" section are presented in the 
Supplementary materials (Table S5). 

 
3. Results 

3.1 Significantly dysregulated plasma proteins in whole blood 
In total, 189 target plasma proteins were analyzed in whole blood samples using LC–MRM MS with 

corresponding SIS peptides and resulted in 114 quantitatively measured proteins. (Supplementary Table 
S2). These 114 proteins included 89 previously described COVID-19 markers, with 54 reproducible 
markers according to ≥2 studies, of which 36 were consistently dysregulated in ≥3 different studies and 
10 were shown to be significant in ≥5 studies.  

Pairwise comparison of different groups of patients with each other and with healthy controls 
revealed a very large number of proteins with statistically significant differences (Supplementary Table 
S3). A total of 61 proteins passed the 5% FDR cutoff after the Benjamini–Hochberg multiple testing 
correction in at least one pairwise comparison: 21 were up-regulated, 36 were down-regulated, and 4 
showed different directions for different comparison groups (Table 2). 
 
 

 

Table 2. Significantly dysregulated plasma proteins in whole blood 

 
No. 

 
Gene 
name 

 
UniProt 

ID 

group comparison, p-valuesa References, 
consistent /  
incosistentb    

Disease 
vs. 

Severe 
vs. 

Severe 
vs. 

Lethal 
vs. 
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Control  Control Mild Survived  
Up-regulated proteins 

1 F9
c P00740 0.0024 0.0027 0.040 <0.01* [16,17,22] 

2 PRDX1c Q06830 0.010 0.0020 0.034 <0.05* - 

3 APOC3 P02656 0.025 0.0058 <0.05* n.d. - 
4 APOC4 P55056 <0.05* 0.011 <0.05* n.d. [22] 
5 SERPING1d P05155 8.4E-07 7.4E-04 n.d. n.d. [11,13,17-19,21-23] 

6 ORM1d P02763 3.6E-04 0.012 n.d. n.d. [14,16-18,22,23] 

7 PRDX2 P32119 0.0011 0.0042 n.d. n.d. [23] 
8 SAA1, 

SAA2d 
P0DJI8, 
P0DJI9 

0.0014 0.026 n.d. n.d. [11,12,14,22,23] 

9 MASP2 O00187 0.0047 0.049 n.d. n.d. [13] 
10 APCS P02743 0.0068 0.015 n.d. n.d. [14,19,23] 
11 LBP P18428 0.015 0.046 n.d. n.d. [11,12,17,22,23] 
12 HP P00738 0.022 0.046 n.d. n.d. [11,12,23]/ [24] 
13 PARK7c Q99497 0.015 0.012 n.d. n.d. [23] 

14 CRP P02741 0.036 <0.05* n.d. n.d. [11,12,14,15,21-23] 
15 MMP9 P14780 n.d. 0.021 0.042 n.d. [23] 
16 C1QAc P02745 0.0011 <0.05* n.d. n.d. - 
17 APOE P02649 0.015 0.023 n.d. n.d. - 
18 PEPDc P12955 0.025 0.046 n.d. n.d. - 

19 VTN P04004 0.0081 n.d. n.d. n.d. [16,22] 
20 C9d P02748 0.017 n.d. n.d. n.d. [11,13,16,18,22,23] 

21 CPN1 P15169 0.010 n.d. n.d. n.d. - 

Down-regulated proteins 
22 APOA1

d
 P02647 3.4E-04 2.5E-04 0.013 <0.05* [12,16,18,21,22] 

23 AHSG P02765 8.3E-04 2.5E-04 0.0027 <0.01* [15,18,21,22] 
24 TF P02787 0.013 0.012 <0.05* <0.05* [12,18,21] 
25 IGFBP3 P17936 0.018 0.0017 0.0010 0.025 [19-21] / [17] 
26 ATRNc O75882 9.5E-06 1.4E-04 0.018 n.d. [18,22] 

27 CRTAC1c Q9NQ79 2.7E-04 4.9E-04 0.042 n.d. [23] 

28 ECM1c Q16610 0.0014 0.0010 <0.05* n.d. [19,20] 

29 C1R P00736 0.031 1.4E-04 8.1E-04 n.d. [12,15,22] 
30 IGFALS

 d
 P35858 0.034 0.0061 0.024 n.d. [14,20-22,24] 

31 ITIH2c P19823 0.0068 0.0095 n.d. <0.05* [15,20,22,24] 

32 AFMc,d P43652 0.033 0.0046 n.d. <0.01* [14,17,18,21,22] 

33 APOM O95445 n.d. 0.0018 8.1E-04 <0.01* [19,22] 
34 FETUB Q9UGM5 n.d. 0.0019 2.6E-04 <0.05* [20] 
35 GCc P02774 n.d. 0.0031 0.0010 <0.05* [22] 

36 TTR P02766 n.d. 0.028 0.026 <0.01* [20-22] 
37 SERPINA6c P08185 n.d. 0.028 0.0057 <0.05* [19] 

38 LUM P51884 2.5E-08 3.0E-04 n.d. n.d. [11] 
39 F13A1c P00488 4.7E-05 0.0053 n.d. n.d. [13,16,20] 

40 APOA4 P06727 1.2E-04 2.0E-04 n.d. n.d. [14,18] 
41 APOH P02749 7.6E-04 0.0074 n.d. n.d. [18,20] 
42 APOC1c P02654 0.0011 0.0027 n.d. n.d. [12,18,22] 

43 SERPINA4 P29622 0.0071 0.046 n.d. n.d. [14,16,18,22] / [19] 
44 SHBG P04278 0.024 0.028 n.d. n.d. [14] 
45 GPLD1 P80108 0.034 0.036 n.d. n.d. [20] 
46 SERPINA7 P05543 n.d. 0.021 0.0068 n.d. [22] / [19] 
47 SERPIND1 P05546 n.d. <0.05* n.d. <0.05* [16,21,24] / [13,19] 
48 ALBc P02768 n.d. n.d. 0.040 <0.05* [11,12] 

49 CAMPc P49913 0.0018 0.036 n.d. n.d. - 
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50 GSTP1c P09211 0.029 <0.05* n.d. n.d. - 

51 ANG P03950 <0.05* 0.046 n.d. n.d. - 
52 C8B P07358 n.d. 0.032 <0.05* n.d. [19] /  [12,13,17] 
53 LGALS3c P17931 0.011 n.d. n.d. n.d. - 

54 OLR1 P78380 n.d. n.d. n.d. <0.01* - 
55 S100A9 P06702 0.016 n.d. n.d. n.d. [14,23] 
56 FGG P02679 0.029 n.d. n.d. n.d. [12,16,19] 
57 C1RLc Q9NZP8 n.d. n.d. 0.040 n.d. [22] 

Up/Down-regulated proteins 
58 F12 P00748 0.0014 <0.05* n.d. <0.05* [13,14] 
59 APOL1c O14791 0.0018 n.d. 0.040 n.d. [14,17,22] 

60 LYZc P61626 7.6E-04 n.d. n.d. <0.05* [21,22] 

61 CPN2c P22792 0.0047 n.d. n.d. <0.05* [22] 
a - The table lists only proteins for which at least one comparison had p<0.05 after the Benjamini-
Hochberg correction. Asterisks (*) show uncorrected p-values for these proteins, when the corrected 
values are above 0.05.  A blue background indicates down-regulation; a red background indicates up-
regulation; ‘n.d.’ – not different. 
b -  Gray background shows references to studies where the direction of dysregulation differs from our 
results. For proteins with up/down regulation, this refers to the “disease vs. control” comparison. 
c - Proteins with poorly correlated concentrations between whole blood and plasma samples.  
d - The most reproducible COVID-19 markers. 

 

Six of the revealed significantly different proteins (up-regulated F9 and PRDX1, and down-regulated 
APOA1, AHSG, TF and IGFBP3) deserve special attention as they were found to be different between 
all groups presented in Table 2. Thus, they not only distinguish patients from healthy controls but also 
distinguish patients by severity and risk of mortality. Nevertheless, some other proteins (including 
SERPING1, ATRN, LUM, and ORM1) demonstrate an even greater difference between groups of 
patients and healthy controls (Fig. 1). 

In general, the results presented in Table 2 show very good agreement with the results of other 
studies and a very insignificant number of inconsistencies. It is noteworthy that most literary data 
concerns serum analyses [12-15] and research that involves the depletion of major plasma proteins 
[19,22]; nevertheless, for most proteins, our findings still align well with these studies. Notably, 9 of the 
analyzed top 10 COVID-19 markers also showed significant differences in whole blood samples, while 
no significant difference was found only for ACTA2 (Supplementary Table S3). 
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Figure 1. Significantly different proteins that distinguish various groups. Asterisks (*) ind
significant difference at p<0.05 after the Benjamini–Hochberg correction.  Protein levels are sh
arbitrary units on a Log2(x+1) scale. 

 

3.2 Correlation of protein concentrations between whole blood and plasma 
To better understand the relevance of comparing results obtained on whole blood with pu

results for plasma/serum, analysis of the correlations is particularly important. For this analysis of
whole blood and plasma samples from 32 healthy controls was carried out. The constructed
regression for the average protein concentrations confirms a linear relationship between measur
in whole blood and plasma (Fig. 2). Overall, the data are well described by the proposed linear 
with 93% of the proteins falling into the 95% prediction interval with only 8 outliers. Even taki
account the data for all proteins, the coefficient of determination R2 turned out to be 0.58 (>0.5
suggests a good fit of the model to the data. After removing the 8 outliers the R2 coefficient incre
0.88, indicating a much better agreement between the data and the constructed linear model.  
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Figure 2. Comparison of target protein concentrations between paired frozen whole blood and 
samples from 32 healthy controls. (A)  Linear regression plot of average protein concentration
dots indicate proteins that fall outside the predicted interval (95%) for the constructed linear reg
model. (B) Distribution profiles of average protein concentrations in plasma and whole blood sam
 

To assess the coherence of plasma-blood data for each individual protein Pearson corr
coefficients for paired plasma and blood samples were estimated (Supplementary Table S4). Acc
to these calculations, 19 proteins showed a strong positive correlation (R>0.8, p-value <0.00
proteins were moderately correlated (R>0.7, p-value <0.001), and 34 were weakly correlated (R
p-value <0.05). The non-correlating proteins (R<0.35, p-value >0.05) included 22 of the 61 signif
different proteins mentioned in Table 2. Most of the outliers also turned out to be non-corre
ACTA2, PARK7, PRDX1, IGFBP2, and GSTP1.  

 
 
 

Building classifiers distinguishing between patients and healthy controls 

Differences in the proteomic profiles among severity groups can be used to identify 
features for COVID-19 stage classification with a machine-learning approach.  Four algorithm
considered to build a classifier: logistic regression (LR), random forest (RF), k-nearest neighbors
and the support vector classifier (SVC) (Supplementary Table S6). 

Initially 19 proteins significantly different between the mild and severe COVID-19 group
considered as a “reference” set: C1R, APOM, FETUB, IGFBP3, GC, AHSG, SERPINA6,  SERP
APOA1, ATRN, IGFALS, TTR, APOL1, PRDX1, C1RL, ALB, F9, CRTAC1, and MMP9 (Ta
Features that were significant for several pairwise comparisons seemed to be of particular imp
(F9, PRDX1, APOA1, AHSG, TF, and IGFBP3). While, proteins that did not show differences b
controls and patients were omitted from the list (APOM, FETAB, GC, SERPINA6, SERPINA7
C1RL, ALB, and MMP9). In addition, APOL1 was also excluded due to its opposite regula
different pairwise comparisons (Table 2). Therefore, the first proposed panel consisted of just 9 p
including С1R, IGFBP3, AHSG, APOA1, ATRN, IGFALS, PRDX1, F9, and CRTAC1. An LR
classifier reached the highest ROC-AUC (0.97) and accuracy (0.90) characteristics for this pa
distinguishing between mild and severe COVID-19 groups. For determination of lethal cases, t
metrics were shown with the kNN classifier (ROC-AUC = 0.94, accuracy = 0.93). However, none
classifiers obtained with this panel reached the 0.9 threshold of the ROC-AUC metric in other p
comparisons (Table 3). 
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In order to improve the model’s performance for classifying both mild versus severe patie
well as controls versus all patients, the protein panel required further improvements. LU
SERPING1 were appended as they demonstrated the highest p-values in the latter comparison. 
evaluation of different combinations of features revealed that addition of TF and SER
particularly enhanced the classification of different groups achieving the best ROC-AUC (0.9
and accuracy (0.86-0.93) metrics when using the RF algorithm (Table 3). Therefore, the re
universal panel consisted of 13 proteins including С1R, IGFBP3, AHSG, APOA1, ATRN, IG
PRDX1, F9, CRTAC1, TF, LUM, SERPING1, and SERPINA6. The RF-13 classifier was foun
the best in different pairwise comparisons and demonstrated a high ROC-AUC >0.9 and accura
for all comparison groups (Fig. 3). This model turned out to be the most versatile among all
considered, as it well determines both COVID-19-positivity in general, and allows to detect seve
even lethal cases.   

 
Table 3. ROC-AUC and accuracy characteristics of different classifiers. 

 
Panel 

 
Algorithm 

ROC-AUC / Accuracy 
Severe vs. 

Mild 
Disease vs. 

Control  
Lethal vs. 
Survived 

9 proteins: 
C1R, IGFBP3, AHSG, APOA1, ATRN, 

IGFALS, PRDX1, F9, CRTAC1 

LR 0.98 / 0.90 0.89 / 0.84 0.90/ 0.79 
RF 0.96 / 0.86 0.85 / 0.80 0.92 / 0.93 

kNN 0.96 / 0.88 0.82 / 0.81 0.94 / 0.93 
SVC 0.95 / 0.86 0.87 / 0.78 0.89 / 0.93 

12 proteins: 
C1R, IGFBP3, AHSG, APOA1, ATRN, 

IGFALS, PRDX1, F9, CRTAC1, TF, LUM, 
SERPING1 

LR 0.98 / 0.91 0.95 / 0.87 0.86 / 0.76 
RF 0.96 / 0.86 0.94 / 0.88 0.90 / 0.89 

kNN 0.89 / 0.85 0.91 / 0.88 0.92 / 0.91 
SVC 0.98 / 0.83 0.94 / 0.81 0.83 / 0.91 

13 proteins: 
С1R, IGFBP3, AHSG, APOA1, ATRN, 

IGFALS, PRDX1, F9, CRTAC1, TF, LUM, 
SERPING1, SERPINA6 

LR 0.98 / 0.88 0.95 / 0.90 0.88 / 0.77 
RF 0.95 / 0.88 0.94 / 0.86 0.94 / 0.93 

kNN 0.93 / 0.81 0.91 / 0.86 0.90 / 0.93 
SVC 0.99 / 0.81 0.94 / 0.81 0.90 / 0.89 

 

Figure 3. Characteristics of the best performing RF-13 classifier distinguishing COVID-19 patien
ROC-AUC metrics for different pairwise comparisons using 4-fold cross-validation. Insert - Con
matrix for the classifier prediction of mild or severe COVID-19 course of progression;   (B) Prob
scores obtained by the developed RF-13 classifier. The scores were obtained by applying the
classifier to a test set (all moderate patients and 30% of the mild and severe samples) after train
the rest 70% of the mild and severe samples). 
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For further validation of the developed RF-13 classifier 70% of the mild/severe patients dataset 

were used for training, while the remaining 30% and all samples from moderate patients were used as a 
test set. The resulting probabilities assigned by the classifier to specific samples (Fig. 3B) show a very 
good agreement with the diagnosed severity of COVID-19. 

  
 

Discussion 

The obtained results mainly confirm the possibility of using frozen whole blood as an object for 
MRM analysis of plasma proteins and assessment of the status of patients with COVID-19. Overall, the 
results are in good agreement with those obtained in MS studies on serum or plasma from COVID-19 
patients. In addition, good agreement between measurements in whole blood and plasma samples was 
demonstrated for most of the targeted proteins, and this result is consistent with a recent study showing 
high proteomic similarity between plasma and venous or capillary whole blood samples [37]. All of the 
above is in favor of considering whole blood as an object of proteomic analysis, the relevance of which 
may increase under conditions of an increased sample influx, since whole blood does not require 
additional sample preparation and can be collected in small volumes at home by the patient himself. 

In general, of the 61 measured reproducible markers, only 5 did not match with any study (FGG, 
CA1, C1R, S100A9, and F12). Importantly, 9 of the 10 highly reproducible COVID-19 proteomic 
markers confirmed their significant up- (SERPING1, ORM1, SAA1/SAA2, LBP, CRP, C9) or down-
regulation (APOA1, AFM), IGFALS) trends in whole blood samples, in full agreement with the serum 
and plasma MS studies. Notably, the obtained results showed only minor inconsistencies with these 
studies (Table 2). Even without taking into account the partial depletion of proteins in some of the other 
studies (which analyze serum or use depletion of major proteins), it is important to note that in half of 
the cases, earlier results also have some inconsistencies with each other for a number of proteins, 
including HP, IGFBP3, SERPINA4, SERPINA7, SERPIND1, C8B and other (Table 2). However, the 
absolute discrepancy with several other studies still requires further validation on the use of particular 
proteins as potential markers in whole blood.  

The considered variants of marker panels first of all were aimed at distinguishing surviving and 
lethal patients, and as little as just 9 proteins was sufficient to reach the best combination of ROC-AUC 
and accuracy metrics of >0.90 with RF and kNN algorithms. Importantly, 5 of these proteins (C1R, 
IGFBP3, AHSG, APOA1, and IGFALS) turned out to be correlated between whole blood and plasma 
samples. AHSG demonstrated the best correlation, and together with APOA1 showed significant 
differences in a number of pairwise comparisons including ‘disease vs. control’, ‘severe vs. mild’, and 
‘lethal vs. survived’ (Table 2). Only C1R demonstrated an inconsistent with the other studies 
dysregulation trend. Among the non-correlating proteins (ATRN, PRDX1, F9, and CRTAC1) PRDX1 
was also in the outliers in the regression analysis. Importantly, of the proteins selected for different 
variants of the panel, only this one was not previously identified as a potential marker of COVID-19 in 
MS-proteomic studies. It is likely that the poor agreement between plasma and blood measurements of 
this protein demonstrated in this study may explain why this protein was not significant in plasma and 
serum studies. However, it is important to note that PRDX2, another protein involved in the same 
pathways as PRDX1, also turned out to be significantly different in the current study, with regulation 
consistent with other works and, moreover, with the same upward trend as PRDX1.  

Expansion of the panel with proteins that showed the lowest p-values in comparisons between 
controls and patients (SERPING1 and LUM), as well as with additional proteins that distinguish well 
different groups (TF and SERPINA6), made it possible to obtain a more universal classifier that 
distinguishes not only survivors from the lethal cases, but also patients from controls and patients by 
severity. However, to distinguish between particular groups, the composition of the protein panel may 
be varied to further improve its performance. In particular, discrimination from controls can be 
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improved by monitoring levels of ORM1, F13, APOA4, and APOH. While for distinguishing between 
severe and mild patients the panel may be enhanced with APOM, FETUB, GC, and SERPINA7. 

In general, it seems very important that for most of the analyzed proteins, the results obtained with 
frozen whole blood samples are consistent with those from plasma and serum. This suggests that some 
extrapolations are appropriate. However, the results of our study clearly demonstrate that the profiles of 
important proteins in plasma, serum, and whole blood samples can be somewhat different, and this is 
important to consider when creating specific diagnostic protein panels. 
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