Breathing zone pollutant levels are associated with asthma exacerbations in high-risk children ============================================================================================== * Camille M. Moore * Jonathan Thornburg * Elizabeth A. Secor * Katharine L. Hamlington * Allison M. Schiltz * Kristy L. Freeman * Jamie L. Everman * Tasha E. Fingerlin * Andrew H. Liu * Max A. Seibold ## ABSTRACT **Background** Indoor and outdoor air pollution levels are associated with poor asthma outcomes in children. However, few studies have evaluated whether breathing zone pollutant levels associate with asthma outcomes. **Objective** Determine breathing zone exposure levels of NO2, O3, total PM10 and PM10 constituents among children with exacerbation-prone asthma, and examine correspondence with in-home and community measurements and associations with outcomes. **Methods** We assessed children’s personal breathing zone exposures using wearable monitors. Personal exposures were compared to in-home and community measurements and tested for association with lung function, asthma control, and asthma exacerbations. **Results** 81 children completed 219 monitoring sessions. Correlations between personal and community levels of PM10, NO2, and O3 were poor, whereas personal PM10 and NO2 levels correlated with in-home measurements. However, in-home monitoring underdetected brown carbon (Personal:79%, Home:36.8%) and ETS (Personal:83.7%, Home:4.1%) personal exposures, and detected black carbon in participants without these personal exposures (Personal: 26.5%, Home: 96%). Personal exposures were not associated with lung function or asthma control. Children experiencing an asthma exacerbation within 60 days of personal exposure monitoring had 1.98, 2.21 and 2.04 times higher brown carbon (p<0.001), ETS (p=0.007), and endotoxin (p=0.012), respectively. These outcomes were not associated with community or in-home exposure levels. **Conclusions** Monitoring pollutant levels in the breathing zone is essential to understand how exposures influence asthma outcomes, as agreement between personal and in-home monitors is limited. Inhaled exposure to PM10 constituents modifies asthma exacerbation risk, suggesting efforts to limit these exposures among high-risk children may decrease their asthma burden. **CLINICAL IMPLICATIONS** In-home and community monitoring of environmental pollutants may underestimate personal exposures. Levels of inhaled exposure to PM10 constituents appear to strongly influence asthma exacerbation risk. Therefore, efforts should be made to mitigate these exposures. **CAPSULE SUMMARY** Leveraging wearable, breathing-zone monitors, we show exposures to inhaled pollutants are poorly proxied by in-home and community monitors, among children with exacerbation-prone asthma. Inhaled exposure to multiple PM10 constituents is associated with asthma exacerbation risk. KEY WORDS * Personal exposures * Particulates * Asthma * Exacerbations * Environmental monitoring * Pollutant ## INTRODUCTION Asthma is one of the most prevalent diseases of childhood, impacting an estimated 6 million children in the United States.1 For many, asthma can be effectively controlled using standard therapies; however, it is estimated that up to 18% of children with asthma have more severe disease, characterized by frequent exacerbations that require emergency department visits, courses of systemic corticosteroids, and/or hospitalization.2–4 These exacerbation-prone (EP) children experience the majority of the patient burden and economic costs associated with childhood asthma.5 In addition, asthma exacerbations are associated with progressive loss of lung function, which puts children with EP-asthma at increased risk for chronic lung disease in adulthood.6–8 While viruses, particularly human rhinoviruses A and C, are implicated in the majority of childhood asthma exacerbations9, 10, non-viral exacerbations may be triggered by air pollution.11 In addition, air pollution may impair mucosal barrier function12, 13 and phagocyte airway clearance14, as well as alter adaptive immune responses15, 16, suggesting that air pollution could indirectly influence risk for exacerbations by increasing susceptibility to and harm from viral infections17–19. Several epidemiological studies found that peaks in emergency department and hospital admission for asthma coincide with seasonal fluctuations in ambient air pollution and that increased levels of ambient pollutants are associated with exacerbation.20, 21 However, results have been mixed in terms of which pollutants are associated with increased risk.22–29 Studies of the impact of ambient pollution on asthma symptoms and lung function have also been inconsistent, with some studies finding air pollution results in poor asthma outcomes,30–32 others finding no impact,33, 34 and others finding associations only for specific subgroups of children.35, 36 One explanation for these conflicting results is exposure misclassification or measurement error due to using community ambient air quality monitoring sites to assess an individual’s exposure level.37, 38 Children spend a majority of their time indoors39, and there can be large differences between indoor and outdoor levels of air pollutants.40–44 Therefore, there has been a growing interest in assessing the impact of indoor air pollution and allergen levels on asthma outcomes.32, 33, 45–50 However, studies employing indoor stationary monitors placed in a single location (usually a child’s bedroom) suffer from many of the same problems as using outdoor monitors,51–53 as children spend a significant portion of their day away from the home in school and physical activity can generate a “personal cloud” of increased particulate matter (PM) exposure that may not be captured by a stationary monitor.43, 54 Inaccurate exposure measurements can bias results of analyses and mask associations between environmental exposures and asthma outcomes.37 In this study, we investigate the role of personal environmental exposures in asthma outcomes in an urban cohort of children with EP asthma. Person-level environmental exposures, including ozone (O3), nitrogen dioxide (NO2), PM10 (particles less than 10 microns in diameter), and several PM10 constituents, including brown carbon (BrC), black carbon (BC), environmental tobacco smoke (ETS), endotoxin and 𝛽-glucan, were collected using wearable monitors to accurately characterize individual children’s breathing zone exposure levels. We describe factors associated with personal exposures, assess the agreement between personal exposure measurements and community outdoor and in-home measures, and evaluate the relationship between personal exposures and asthma outcomes, including lung function, asthma severity, and exacerbation. ## METHODS ### Cohort ENIGMA was an observational study of children with EP asthma conducted from June 2018 to September 2022 in the Denver metro area in Colorado. We recruited 100 children 8 to 16 years old with clinician-diagnosed asthma. Initially, eligible children were required to have had at least one asthma exacerbation in the prior 12 months; however, eligibility criteria were modified in December 2020 to include children with at least one exacerbation in the prior 18 months to aid in recruitment during the COVID-19 pandemic. An asthma exacerbation was defined as an asthma-related unscheduled visit to an emergency department, clinic, or urgent care facility; overnight hospitalization; or course of systemic corticosteroids. Individuals were excluded if they were self-reported active smokers, homeschooled, or had conditions that would interfere with the safety or performance of the study. Initially, our study design was longitudinal seasonal assessments of environmental exposures which were immediately followed by a clinical assessment of lung function and asthma status. Due to the COVID-19 pandemic, we switched to a cross-sectional design with modifications to the exposure and clinical assessments in February 2021. The Colorado Multiple Institutional Review Board approved the protocol for the study. The participant and at least one legal guardian provided informed written consent and, if age-appropriate, assent. ### Environmental Exposure Assessments Personal exposure monitoring was performed for approximately 72 hours prior to all scheduled study visits performed through May 2022. RTI MicroPEMs™ (Research Triangle Park, NC) collected filter and real-time PM10, temperature, humidity, and accelerometry measurements. Ogawa passive dosimeters (Ocala, FL) measured NO2 and O3 (summer only) exposure.55 Participants wore all devices in a belt bag placed diagonally across the chest such that the monitor inlet was within the breathing zone i.e., within 10 inches of the nose and mouth.56, 57 PM10 filters underwent gravimetric analysis58 and were then analyzed for BC, BrC, ETS, endotoxin and 𝛽-glucan (Supplement). Pre-pandemic participants (n=49) also had in-home environmental monitors placed in their bedroom concurrent with their first 72-hour personal monitoring session. Hourly air quality data (O3, NO2, and PM10) from the Denver Colorado Air Monitoring Program monitoring site were obtained from the Environmental Protection Agency’s Air Quality System API for years 2018 through 2022. ### Clinical Assessments Clinical assessments included lung function measured by spirometry, asthma control, and questions on healthcare and medication usage in the previous 60 days (Supplement). Spirometry was performed per American Thoracic Society/European Respiratory Society standards.59 Asthma control was assessed with the validated Asthma Control Test (ACT)60 for participants ages 12 years and older (5-25 scale), and the Childhood ACT (cACT)61, 62 for participants ages 6-11 years (0-27 scale). ### Statistical Methods We compared log10(personal exposures) between participants with and without asthma control (cACT or ACT ≥ 20 vs. <20), hospitalization in the 18 months prior to enrollment, and signs of exacerbation in the 60-days prior to their exposure assessment (systemic corticosteroid use or unscheduled health care visits for asthma), using censored regression models to account for observations below the limit of detection (LOD) with robust standard errors to account for repeated measures. As over 50% of BC measurements were below the LOD, we dichotomized BC levels into “Detected” vs. “Not Detected” and used generalized estimating equation (GEE) logistic regression models. Pre-bronchodilator spirometry and the percent change in spirometry measures after bronchodilation were evaluated for association with the log10(exposures) using GEE models. All models controlled for age, sex, race-ethnicity, season (except O3) and monitor wearing compliance, measured as the percent of awake time spent wearing the personal monitor. In addition, post-bronchodilation change models were adjusted for the corresponding baseline lung function measure. A Benjamini-Hochberg correction was applied to the p-values across the eight exposures to control the false discovery rate (FDR) at 5%. Full details are available in the Supplement. ## RESULTS ### ENIGMA cohort demographic and clinical characteristics The ENIGMA study performed personal exposure monitoring on 81 children with EP asthma. Participants ranged from 8.2 to 16.7 years in age (median: 12 years, interquartile range (IQR): 10.7-14.4; Table 1) and 64% were male. The majority reported Hispanic ethnicity (56.8%); 13.6%, 14.8%, and 14.8% reported non-Hispanic Black, non-Hispanic White, and other race/ethnicities, respectively. Out of the 81 participants, 75 (92.6%) experienced 1 or more exacerbation in the 12 months prior to enrollment. In addition, 88.9% had one or more unscheduled healthcare or emergency department visits, 86.4% had been prescribed oral corticosteroids, and 24.7% required hospitalization related to their asthma in the 18 months prior to enrollment. During the course of the study, 29.6% of participants reported one or more unscheduled asthma-related health care visits and 25.9% reported one or more courses of systemic corticosteroids for asthma in the 60 days prior to a study visit. View this table: [Table 1:](http://medrxiv.org/content/early/2023/09/23/2023.09.22.23295971/T1) Table 1: Participant characteristics (N=81). N(%) or median [IQR]. ### ENIGMA environmental exposure assessment design In the pre-pandemic phase of ENIGMA (June 2018 to February 2020), children underwent clinical characterization and biosampling study visits every 3 months for up to 12 months (Figure 1). 72-hours prior to these study visits, participants were directed to wear personal monitors collecting ambient PM10, NO2 and O3 (summer only). Additionally, particulates on the monitor filter were analyzed to determine BC, BrC, and ETS, and extracted to measure endotoxin, and 𝛽-glucan levels. However, visits were paused during the first year of the COVID-19 pandemic (March 2020-February 2021), after which the study continued with a cross-sectional design. Therefore, longitudinal exposure data is available on 55 participants and single timepoint data on 26 participants. ![Figure 1.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2023/09/23/2023.09.22.23295971/F1.medium.gif) [Figure 1.](http://medrxiv.org/content/early/2023/09/23/2023.09.22.23295971/F1) Figure 1. Overview of the ENIGMA study design. For comparison to the personal monitor data, we obtained community air quality monitoring station data (PM10, NO2, O3), matched to the participants’ personal monitoring periods. Additionally, for most pre-pandemic participants (N=49), we also collected in-home exposure levels (PM10, NO2, BC, BrC, and ETS), measured from stationary monitors placed near and in the same room as the child’s bed, during the same time as the first personal monitoring session. ### Personal exposure to environmental pollutants is widespread and highly variable in children with EP-asthma In total, 219 personal exposure monitoring sessions were conducted across the 81 participants, with a median of 3 monitoring sessions per participant, pre-pandemic. Participants had high wearing compliance, wearing their personal monitors for a median of 72.1% (IQR: 53.2%-88.4%) of their time awake. 99.5%, 98.5%, and 94.8% of the collected samples had detectable PM10, NO2, and O3, respectively (Figure 2A, Table 2). However, there was wide variation in exposure level for each, with PM10 ranging from <1 to 141.9 𝜇g/m3, NO2, from <2 to 99.1 parts per billion (ppb), and O3 from <1.5 to 23.3 ppb (Figure 2B). ![Figure 2.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2023/09/23/2023.09.22.23295971/F2.medium.gif) [Figure 2.](http://medrxiv.org/content/early/2023/09/23/2023.09.22.23295971/F2) Figure 2. A) Detection of exposures using personal monitoring. B) Box and whisker plots of personal exposures. Boxes indicate the first, second, and third quartiles of the distribution. Whiskers extend to 1.5 times the inter-quartile range. Dashed lines indicate lower limits of detection. View this table: [Table 2:](http://medrxiv.org/content/early/2023/09/23/2023.09.22.23295971/T2) Table 2: Description of personal exposures by season. N(%) or median [IQR]. Regarding PM10 constituents, all samples had detectable endotoxin and 𝛽-glucan, and wide variation in levels of these exposures, with endotoxin ranging from 0.04 to 101.3 EU/m3 and 𝛽-glucan levels ranging from 18.5 to 1,162 pg/m3. Detection rates were lower for other PM10 constituents with only 32.3%, 63.2%, and 66.7% of samples having detectable BC, BrC, and ETS respectively. BC, BrC and ETS ranged from <0.3 to 46.9, <0.3 to 6.1, and <0.3 to 56.6 𝜇g/m3, respectively. ### Seasonal variation in pollutant exposures To understand if seasonal fluctuations could explain the wide variation in exposures levels, we compared exposure levels for each pollutant between seasons (STable 1). Personal PM10 levels did not significantly vary by season (Figure 3). In contrast, NO2 levels were significantly lower in the summer compared to winter (20.1% lower, CI: 32.3% to 5.8% lower; FDR = 0.019); however, there was still substantial overlap in the distribution of NO2 levels between seasons. ![Figure 3.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2023/09/23/2023.09.22.23295971/F3.medium.gif) [Figure 3.](http://medrxiv.org/content/early/2023/09/23/2023.09.22.23295971/F3) Figure 3. Distributions of personal exposures by season. Boxes indicate the first, second, and third quartiles of the distribution. Whiskers extend to 1.5 times the inter-quartile range. Stars indicate significant differences between seasons (FDR adjusted p-value < 0.05). While total PM10 did not significantly differ between seasons, there were seasonal differences in the levels of several PM10 constituents. ETS and BrC levels were significantly lower in the summer compared to all other seasons. The largest seasonal difference was between summer and fall, with ETS and BrC exposure levels being 77.3% (CI: 87.2% to 59.6% lower; FDR<0.0001) and 61.5% (CI: 73.9% to 43.1% lower; FDR<0.0001) lower in the summer, respectively. While at relatively low levels, BC followed a different pattern, with significantly higher odds of detection in the summer months compared to all other seasons (Odds Ratios: Summer v Spring 7.48 (2.45 to 22.82; FDR = 0.0009); Summer v Winter 2.71 (1.26 to 5.82; FDR = 0.019); Summer v Fall 2.99 (1.36 to 6.56; FDR = 0.015)). Endotoxin and 𝛽-glucan levels did not significantly differ between seasons. ### Person-level exposures vary between children and within children over time Since there was substantial overlap in the distribution of exposures between seasons, we next considered whether the large range in observed values was more reflective of differences in exposure environments encountered by different participants (between participant variation) or changes in the environment encountered by the same participants (within participant variation). Examining this, we found large differences in average PM10 levels between participants, with some participants having average exposures less than 10 𝜇g/m3 and others having average exposures nearly 10-fold higher (Figure 4A). ![Figure 4.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2023/09/23/2023.09.22.23295971/F4.medium.gif) [Figure 4.](http://medrxiv.org/content/early/2023/09/23/2023.09.22.23295971/F4) Figure 4. A) Dot plot of personal PM10 measures for subjects with at least 2 PM10 observations. Each column in the plot represents a subject. Dots indicate individual PM10 measures and lines indicate the range of personal PM10 for a subject. B) Dot plot of personal NO2 measures for subjects with at least 2 NO2 observations. C) Sources of variability in personal exposure data. Variation that can be explained by season, percent of time the participant wore the monitor, between subject differences, and the remaining within subject variability are shown in purple, blue, green and pink, respectively. However, there was also wide variation in PM10 levels within individual participants, with an average 2.8-fold difference between a participant’s highest and lowest PM10 measurement. Similarly, for NO2, the lowest average exposure for a participant was 5.9 ppb compared to 57.7 ppb for the participant with the highest average exposure (Figure 4B). For NO2 there was an average 2.0-fold difference between a participant’s highest and lowest measurement. Similar patterns can be seen for other exposures (SFigure 1). To quantify this more formally, we used linear mixed effects models to estimate the proportion of variability in personal exposures that could be attributed to seasonal variation, differences in wearing compliance (measured as the percent of waking hours during which the participant wore the monitor), between participant differences, and the remaining within participant variability (Figure 4C). Season explained a relatively small proportion of the variability in exposure levels, ranging from 1% for PM10 to 14% for ETS, as did wearing time (range: 1% for BC and endotoxin to 9% for PM10). Between participant differences accounted for a more substantial proportion of the variability in personal exposures, ranging from 17% for BC to 59% for NO2, suggesting that even though participants live in the same general geographic location, there are still large differences in the exposure levels experienced by these participants. To understand the drivers of between participant variability in exposure levels, we tested for association between participant and household characteristics and personal exposures. Neither age, sex, race-ethnicity, nor BMI were significantly associated with any of the exposures; however, there were associations between socio-economic factors and personal PM10 (STable 1). Children with parents with a high school education or less had 1.46-times higher exposure to PM10 (CI:1.12-1.92, FDR=0.046), and children from households with annual incomes less than $20,000 also had 1.45-times higher exposure to PM10 (95% CI:1.13-1.88, FDR=0.036). Finally, we assessed the influence of within-participant variability on variation in exposure levels. For most exposures we found within-participant variability was a substantial contributor to variation in exposure levels, ranging from 38% for NO2 to 73% for BC (Figure 4C). This within participant variability could reflect longitudinal variation in microenvironments encountered by individual participants, changes in activity levels or other behavioral changes, as well as technical variation. ### Agreement between personal, community air quality, and in-home exposure measurements is limited #### Personal vs In-Home Monitoring A subset of 49 pre-pandemic participants had in-home monitoring for NO2, PM10 and PM speciation from stationary monitors placed in the participant’s bedroom during the same time period as the personal monitoring, allowing us to assess correlation between personal and in-home monitoring detection levels. In-home measurements of PM10 and NO2 were strongly associated with personal exposures, particularly for NO2 (Pearson correlation: r = 0.7, r=0.96 for PM10 and NO2 respectively, Figure 5A). However, despite the high level of correlation between in-home and personal measurements, PM10 was an average of 47.6% higher when measured with the personal monitor (limits of agreement: 45.6% lower to 300.7% higher, STable 2). For NO2, exposure levels were an average of 8.1% higher when measured with the personal monitor compared to the in-home monitor (95% limits of agreement: 33.4% lower to 75.3% higher). ![Figure 5.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2023/09/23/2023.09.22.23295971/F5.medium.gif) [Figure 5.](http://medrxiv.org/content/early/2023/09/23/2023.09.22.23295971/F5) Figure 5. A) Scatterplots and Spearman correlations comparing personal to community outdoor exposure measurements, colored by season. B) Scatterplots and Spearman correlations comparing personal to in-home exposure measurements, colored by season. C) Detection of PM10 constituents by personal and in-home monitors. Green bars indicate the exposure was detected by both monitors, blue bars indicate the exposure was detected by neither monitor, red bars indicate the exposure was detected by the in-home monitor only, and orange bars indicate the exposure was detected with the personal monitor only. Examining PM constituents by detection (yes/no, Figure 5B), BrC and ETS were more likely to be detected with the personal monitor, despite the fact that the in-home monitor had a lower LOD (0.1 ug/m3) than the personal monitor (0.3 ug/m3). BrC was detected in 79.6% of personal monitoring sessions, compared to 36.8% in-home sessions, and ETS was detected in 83.7% of personal monitoring sessions vs. 4.1% of in-home sessions, suggesting that smoke exposure may be occurring outside of the home or in other rooms of the home, outside of the child’s bedroom. BC was more often detected using the in-home monitor (94.9% vs 26.5%), though this may be driven in part by the lower LOD of the in-home monitor. Together these data suggest that while there is some level of correlation between in-home pollutant levels and personal exposure levels, levels of exposures and even exposure occurrence in general is greatly underestimated using home monitoring. #### Personal vs. Community Monitoring We similarly examined the correlation between community monitoring and person-monitor levels of PM10 and NO2. These analyses found personal exposure levels of PM10 and NO2 were only weakly correlated with the detected outdoor levels (r = 0.20, 0.24 for PM10 and NO2, respectively, Figure 5C). On average, personal exposures to PM10 were 10% higher than community outdoor levels (95% limits of agreement: -68.5% lower to 285.1% higher), and personal NO2 was 0.5% higher than outdoor measurements (95% limits of agreement: -76.6% lower, 323.5% higher). There was no association between personal and community outdoor O3 measurements (r=-0.01). While measured outdoor O3 levels were all within a relatively narrow range (25.3 to 51.7 ppb), personal exposures had greater variation, ranging from 1.5 to 23.3 ppb. On average, personal O3 measurements were 84.7% lower than community outdoor measurements (95% limits of agreement: 96.8% lower to 26.2% lower). Together, these data suggest true personal exposures to PM10, NO2, and O3 are poorly estimated by community monitor measured levels. ### Person-level exposures are associated with asthma exacerbation Examining the relationship between personal exposures and asthma severity, we found exposure levels did not significantly differ between participants with and without well controlled asthma, based on cACT and ACT scores (STable 3). We also evaluated the associations of exposures with lung function measures (STable 4). We did not observe any statistically significant associations between exposures and pre-bronchodilator spirometry or change post-bronchodilator. Community air quality and indoor stationary monitor exposure levels were not significantly associated lung function or asthma control, although indoor measurements were only available on 49 subjects (SFigures 2-4). We next investigated the relationship between personal exposure levels and asthma exacerbation (Figure 6, STable 3). We found participants that reported an unscheduled healthcare visit for asthma in the 60 days prior to their exposure assessment had 1.35, 1.57 and 2.15-times higher levels of PM10 (CI: 1.08 to 1.69; FDR =0.037), BrC (CI: 1.09 to 2.26; FDR =0.040) and ETS (CI: 1.36 to 3.42; FDR =0.009), respectively (STable 3). Similarly, those requiring a course of systemic corticosteroids for asthma in the 60 days prior to their assessment had 1.98 and 2.21-times higher levels of BrC (CI: 1.43 to 2.37; FDR =0.0003) and ETS (CI: 1.25 to 3.91; FDR =0.026), as well as 2.04-times higher endotoxin (CI: 1.14 to 3.68; FDR =0.045). In addition, participants that were hospitalized for asthma in the 18 months prior to enrollment had 2.6-times higher summer O3 exposure (CI: 1.69-4.00; FDR = 0.0001). Community air quality and indoor stationary monitor exposure levels did not significantly differ between subjects with and without exacerbation (SFigure 2). Together, these results show personal pollutant exposures are a strong predictor of asthma exacerbation outcomes. ![Figure 6.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2023/09/23/2023.09.22.23295971/F6.medium.gif) [Figure 6.](http://medrxiv.org/content/early/2023/09/23/2023.09.22.23295971/F6) Figure 6. Box and whisker plots of personal exposures by asthma exacerbation characteristics. ## DISCUSSION Although multiple epidemiologic studies have associated regional spikes in airborne pollutant levels with increases in acute respiratory events, including asthma exacerbations, the precise relationships and degree of effects is likely obscured by variation in personal exposure levels. Here, we leveraged cutting-edge, wearable monitors, capable of measuring breathing zone pollutant exposure levels, to investigate the uniqueness of these measurements and their added value in exploring exposure-outcome relationships. Our findings suggest that community monitoring of PM10, NO2, and O3 is a poor proxy for exposures experienced by children with EP-asthma. Moreover, we find that although in-home monitoring is correlated with personal exposure to PM10 and NO2, in-home detection of some of the most important, asthma-provoking PM constituents is unrelated to the actual breathing zone exposures children experience. Excitingly, we leveraged these unique breathing zone exposure measurements, to show PM10 levels in general, as well as BrC, ETS, and endotoxin levels are all associated with childhood asthma exacerbations. A key assumption underlying the use of community air quality monitoring data in studies investigating the impact of air pollution on asthma outcomes is that all participants in a geographical region have similar exposures that are accurately characterized by outdoor pollution levels. However, similar to other studies,63 in the ENIGMA cohort community outdoor PM10, NO2 and O3 levels did not accurately reflect an individual child’s exposures. In addition, though participants were from a relatively small geographical region, we observed substantial variation in personal exposures, with an approximately 10-fold difference in PM10 and NO2, and 16-fold difference in O3 levels, between participants with the highest and lowest exposures. While PM10 was associated with socioeconomic factors, differences in exposures between participants are also likely driven by behavioral factors, such as the amount of time spent outdoors, their proximity to major roads and other strong outdoor air pollution sources, and differences in indoor microenvironment concentrations at home and in school64. While indoor monitors placed in participants’ bedrooms were associated with personal measures, there were important differences. On average, personal PM10 measurements were approximately 50% higher than in-home measurements, suggesting that indoor stationary monitors substantially underestimate PM10 exposure. In particular, ETS and BrC were more likely to be detected with personal monitors, suggesting tobacco smoke exposure occurred in other areas of the home (outside the child’s bedroom) or outside of the home, limiting the utility of in-home monitors in assessing these exposures. Interestingly, BC was more likely to be detected with in-home monitors. The main source of indoor BC is infiltration of outdoor pollution from diesel combustion, which is more pronounced in homes without air conditioning that rely on open windows for cooling and ventilation during the summer months.65 In addition, many of Denver’s residential neighborhoods flank interstates and highways, which could cause elevated levels of BC in some households.66 While personal monitoring provided a 72-hour snapshot of the exposures experienced by individual participants, personal PM10 and several PM constituents were associated with exacerbation outcomes over a broader timeframe, suggesting that short-term monitoring may provide information about typical exposure levels experienced by a participant over a longer period. Despite this, we observed within participant variability in exposure levels beyond what could be explained by seasonal fluctuations. This variation in exposure measurements within a participant suggests that repeated or longitudinal personal monitoring may be valuable to accurately capture a participant’s exposure levels. Similar to other more recent studies using personal measurements, we did not find associations between personal exposures and short-term changes in lung function or daily asthma control (ACT).67–69 While Delfino *et al*70 observed FEV1 was associated with PM2.5 and NO2 in children with asthma, these findings were only significant among those who did not use bronchodilators. The broad use of asthma control medications among children with EP asthma may explain, in part, why lung function was not associated with personal exposures in the ENIGMA cohort. However, personal PM10 and PM10 constituents, including ETS, BrC and endotoxin, were associated with exacerbation outcomes, including systemic corticosteroid courses and unscheduled healthcare visits for asthma. While previous studies have found associations between PM10 and PM2.5 and asthma exacerbations,71–78 our study provides insights into more specific PM constituents impacting asthma. While numerous studies have confirmed the deleterious effect of ETS exposure on asthma outcomes,79–83 the role of BrC is less fully understood. BrC is emitted from burning biomass, including forests fires, residential heating with coal and wood and cooking, from “biogenic release of fungi, plant debris, and humic matter,” as well as from secondary atmospheric reactions.84, 85 Few studies have investigated the specific role of BrC in respiratory outcomes, although outdoor BrC levels have been associated with increased risk of acute respiratory infection in children.86 In addition, wildfires, a source of BrC, have been associated with increased rates of emergency department visits and hospitalization for asthma, with some evidence suggesting that children are particularly vulnerable to wildfire associated exacerbations.87–93 Endotoxins, lipopolysaccharides and lipo-oligosaccharides from the outer cell wall of Gram-negative bacteria, have been shown to induce innate immune responses and inflammation in mouse studies,94 as well as in controlled human experiments.95 While early life endotoxin exposure has been associated with reduced risk of developing allergies and allergic asthma,96 personal and classroom endotoxin levels have been associated with increases in asthma symptoms and lung function among school age children with asthma97, 98 and endotoxin exposure was associated with doctor and emergency room visits for wheeze in the NHANES study.99 Despite these important findings, some study limitations should be noted. Namely, although our investigation of personal exposures in children with EP asthma, specifically from the Denver metro area, allowed us to assess the level of variability in exposures among asthmatic children in a single geographic region, it may limit the generalizability of our findings to other geographic areas or to children with less severe disease. In addition, since our cohort was of moderate size and longitudinal follow up was not available on all participants due COVID-19 pandemic related study disruptions, power to detect associations between exposures and asthma outcomes was reduced, particularly for exposures with high proportions of measurements below the LOD. Additionally, although our assessment of PM was limited to PM10 in order to collect sufficient sample for constituent analyses, we acknowledge a likely role for PM2.5 (particles less than 2.5 microns in diameter) exposures in driving asthma outcomes, as has been reported70, 100–102. Despite these limitations, our study highlights how personal exposure monitoring can be used to accurately characterize breathing zone pollutant exposure levels, providing a more nuanced understanding of the PM constituents contributing to asthma exacerbation. ## Supporting information Supplement [[supplements/295971_file02.pdf]](pending:yes) STable [[supplements/295971_file03.xlsx]](pending:yes) ## Data Availability All data produced in the present study are available upon reasonable request to the authors ## ACKNOWLEDGEMENTS ENIGMA was funded by the National Heart, Lung and Blood Institute, National Institutes of Health, grant number 5P01HL132821. ## Footnotes * **FUNDING** * ENIGMA was funded by the National Heart, Lung and Blood Institute, National Institutes of Health, grant number 5P01HL132821. * **DISCLOSURES** * Camille M. Moore, Elizabeth A. Secor, Allison M. Schlitz, Kristy L. Freeman, Jamie L. Everman and Tasha E. Fingerlin have no financial disclosures or conflicts of interest to report. Jonathan Thornburg serves as the treasurer for the International Society of Exposure Science. Andrew H. Liu has received grants paid to Children’s Hospital Colorado from ResMed and OM Pharma, consulting fees paid to the University of Colorado from ThermoFisher Scientific, and research equipment from ResMed/Propeller Health and Revenio. Andrew H. Liu has also served on data safety monitoring boards for AstraZeneca. Max A. Seibold received an honorarium for lecturing at the Colorado Allergy and Asthma Society. ## ABBREVIATIONS ACT : Asthma Control Test BC : black carbon BrC : brown carbon cACT : Childhood ACT CASI : Composite Asthma Severity Index EP : exacerbation-prone ETS : environmental tobacco smoke FDR : false discovery rate IQR : interquartile range LOD : limit of detection NO2 : nitrogen dioxide O3 : ozone PM10 : particulate matter less than 10 microns in diameter PM2.5 : particulate matter less than 2.5 microns in diameter ppb : parts per billion * Received September 22, 2023. * Revision received September 22, 2023. * Accepted September 23, 2023. * © 2023, Posted by Cold Spring Harbor Laboratory The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission. ## REFERENCES 1. 1.Zahran HS, Bailey CM, Damon SA, Garbe PL, Breysse PN. Vital Signs: Asthma in Children - United States, 2001-2016. MMWR Morb Mortal Wkly Rep. 2018;67(5):149–55. Epub 20180209. doi: 10.15585/mmwr.mm6705e1. PubMed PMID: 29420459; PMCID: PMC5812476. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.15585/mmwr.mm6705e1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29420459&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 2. 2.Denlinger LC, Heymann P, Lutter R, Gern JE. Exacerbation-Prone Asthma. J Allergy Clin Immunol Pract. 2020;8(2):474–82. Epub 20191122. doi: 10.1016/j.jaip.2019.11.009. PubMed PMID: 31765853; PMCID: PMC6942520. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jaip.2019.11.009&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31765853&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 3. 3.Dougherty RH, Fahy JV. Acute exacerbations of asthma: epidemiology, biology and the exacerbation-prone phenotype. Clin Exp Allergy. 2009;39(2):193–202. doi: 10.1111/j.1365-2222.2008.03157.x. PubMed PMID: 19187331; PMCID: PMC2730743. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1365-2222.2008.03157.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19187331&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000262665400004&link_type=ISI) 4. 4.Miller RL, Schuh H, Chandran A, Aris IM, Bendixsen C, Blossom J, Breton C, Camargo CA, Jr., Canino G, Carroll KN, Commodore S, Cordero JF, Dabelea DM, Ferrara A, Fry RC, Ganiban JM, Gern JE, Gilliland FD, Gold DR, Habre R, Hare ME, Harte RN, Hartert T, Hasegawa K, Khurana Hershey GK, Jackson DJ, Joseph C, Kerver JM, Kim H, Litonjua AA, Marsit CJ, McEvoy C, Mendonca EA, Moore PE, Nkoy FL, O’Connor TG, Oken E, Ownby D, Perzanowski M, Rivera-Spoljaric K, Ryan PH, Singh AM, Stanford JB, Wright RJ, Wright RO, Zanobetti A, Zoratti E, Johnson CC, of program collaborators for Environmental influences on Child Health O. Incidence rates of childhood asthma with recurrent exacerbations in the US Environmental influences on Child Health Outcomes (ECHO) program. J Allergy Clin Immunol. 2023;152(1):84–93. Epub 20230325. doi: 10.1016/j.jaci.2023.03.016. PubMed PMID: 36972767; PMCID: PMC10330473. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jaci.2023.03.016&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36972767&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 5. 5.Barnett SB, Nurmagambetov TA. Costs of asthma in the United States: 2002-2007. J Allergy Clin Immunol. 2011;127(1):145–52. doi: 10.1016/j.jaci.2010.10.020. PubMed PMID: 21211649. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jaci.2010.10.020&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21211649&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000285917300021&link_type=ISI) 6. 6.Belgrave DCM, Granell R, Turner SW, Curtin JA, Buchan IE, Le Souef PN, Simpson A, Henderson AJ, Custovic A. Lung function trajectories from pre-school age to adulthood and their associations with early life factors: a retrospective analysis of three population-based birth cohort studies. Lancet Respir Med. 2018;6(7):526–34. Epub 20180405. doi: 10.1016/S2213-2600(18)30099-7. PubMed PMID: 29628377. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S2213-2600(18)30099-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29628377&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 7. 7.O’Brian AL, Lemanske RF, Jr., Evans MD, Gangnon RE, Gern JE, Jackson DJ. Recurrent severe exacerbations in early life and reduced lung function at school age. J Allergy Clin Immunol. 2012;129(4):1162–4. Epub 20120110. doi: 10.1016/j.jaci.2011.11.046. PubMed PMID: 22236729; PMCID: PMC3319175. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jaci.2011.11.046&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22236729&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 8. 8.O’Byrne PM, Pedersen S, Lamm CJ, Tan WC, Busse WW, Group SI. Severe exacerbations and decline in lung function in asthma. Am J Respir Crit Care Med. 2009;179(1):19–24. Epub 20081031. doi: 10.1164/rccm.200807-1126OC. PubMed PMID: 18990678. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1164/rccm.200807-1126OC&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18990678&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000262050900005&link_type=ISI) 9. 9.Busse WW, Lemanske RF, Jr., Gern JE. Role of viral respiratory infections in asthma and asthma exacerbations. Lancet. 2010;376(9743):826-34. doi: 10.1016/S0140-6736(10)61380-3. PubMed PMID: 20816549; PMCID: PMC2972660. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(10)61380-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20816549&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000281831000034&link_type=ISI) 10. 10.Johnston SL, Pattemore PK, Sanderson G, Smith S, Lampe F, Josephs L, Symington P, O’Toole S, Myint SH, Tyrrell DA, et al. Community study of role of viral infections in exacerbations of asthma in 9-11 year old children. BMJ. 1995;310(6989):1225-9. doi: 10.1136/bmj.310.6989.1225. PubMed PMID: 7767192; PMCID: PMC2549614. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjEzOiIzMTAvNjk4OS8xMjI1IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjMvMDkvMjMvMjAyMy4wOS4yMi4yMzI5NTk3MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 11. 11.Altman MC, Kattan M, O’Connor GT, Murphy RC, Whalen E, LeBeau P, Calatroni A, Gill MA, Gruchalla RS, Liu AH, Lovinsky-Desir S, Pongracic JA, Kercsmar CM, Khurana Hershey GK, Zoratti EM, Teach SJ, Bacharier LB, Wheatley LM, Sigelman SM, Gergen PJ, Togias A, Busse WW, Gern JE, Jackson DJ, National Institute of A, Infectious Disease’s Inner City Asthma C. Associations between outdoor air pollutants and non-viral asthma exacerbations and airway inflammatory responses in children and adolescents living in urban areas in the USA: a retrospective secondary analysis. Lancet Planet Health. 2023;7(1):e33–e44. doi: 10.1016/S2542-5196(22)00302-3. PubMed PMID: 36608946. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S2542-5196(22)00302-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36608946&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 12. 12.Caraballo JC, Yshii C, Westphal W, Moninger T, Comellas AP. Ambient particulate matter affects occludin distribution and increases alveolar transepithelial electrical conductance. Respirology. 2011;16(2):340–9. doi: 10.1111/j.1440-1843.2010.01910.x. PubMed PMID: 21122029; PMCID: PMC3625061. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1440-1843.2010.01910.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21122029&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 13. 13.Han M, Ji X, Li G, Sang N. NO(2) inhalation enhances asthma susceptibility in a rat model. Environ Sci Pollut Res Int. 2017;24(36):27843–54. Epub 20171007. doi: 10.1007/s11356-017-0402-7. PubMed PMID: 28986735. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11356-017-0402-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28986735&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 14. 14.Morrow PE. Possible mechanisms to explain dust overloading of the lungs. Fundam Appl Toxicol. 1988;10(3):369–84. doi: 10.1016/0272-0590(88)90284-9. PubMed PMID: 3286345. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0272-0590(88)90284-9&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=3286345&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1988M776300001&link_type=ISI) 15. 15.Kim HJ, Barajas B, Chan RC, Nel AE. Glutathione depletion inhibits dendritic cell maturation and delayed-type hypersensitivity: implications for systemic disease and immunosenescence. J Allergy Clin Immunol. 2007;119(5):1225–33. Epub 20070301. doi: 10.1016/j.jaci.2007.01.016. PubMed PMID: 17335885. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jaci.2007.01.016&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17335885&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 16. 16.Pfeffer PE, Ho TR, Mann EH, Kelly FJ, Sehlstedt M, Pourazar J, Dove RE, Sandstrom T, Mudway IS, Hawrylowicz CM. Urban particulate matter stimulation of human dendritic cells enhances priming of naive CD8 T lymphocytes. Immunology. 2018;153(4):502–12. Epub 20171128. doi: 10.1111/imm.12852. PubMed PMID: 29044495; PMCID: PMC5838419. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/imm.12852&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29044495&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 17. 17.Pfeffer PE, Mudway IS, Grigg J. Air Pollution and Asthma: Mechanisms of Harm and Considerations for Clinical Interventions. Chest. 2021;159(4):1346–55. Epub 20201024. doi: 10.1016/j.chest.2020.10.053. PubMed PMID: 33461908. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.chest.2020.10.053&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 18. 18.Chauhan AJ, Inskip HM, Linaker CH, Smith S, Schreiber J, Johnston SL, Holgate ST. Personal exposure to nitrogen dioxide (NO2) and the severity of virus-induced asthma in children. Lancet. 2003;361(9373):1939-44. doi: 10.1016/s0140-6736(03)13582-9. PubMed PMID: 12801737; PMCID: PMC7112409. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(03)13582-9&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12801737&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000183359700009&link_type=ISI) 19. 19.Horne BD, Joy EA, Hofmann MG, Gesteland PH, Cannon JB, Lefler JS, Blagev DP, Korgenski EK, Torosyan N, Hansen GI, Kartchner D, Pope CA, 3rd. Short-Term Elevation of Fine Particulate Matter Air Pollution and Acute Lower Respiratory Infection. Am J Respir Crit Care Med. 2018;198(6):759–66. doi: 10.1164/rccm.201709-1883OC. PubMed PMID: 29652174. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1164/rccm.201709-1883OC&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 20. 20.Bielory L, Deener A. Seasonal variation in the effects of major indoor and outdoor environmental variables on asthma. J Asthma. 1998;35(1):7–48. doi: 10.3109/02770909809055403. PubMed PMID: 9513581. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3109/02770909809055403&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9513581&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 21. 21.Burbank AJ, Peden DB. Assessing the impact of air pollution on childhood asthma morbidity: how, when, and what to do. Curr Opin Allergy Cl. 2018;18(2):124–31. doi: 10.1097/Aci.0000000000000422. PubMed PMID: WOS:000427982700008. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/Aci.0000000000000422&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00042798&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 22. 22.Rosas I, McCartney HA, Payne RW, Calderon C, Lacey J, Chapela R, Ruiz-Velazco S. Analysis of the relationships between environmental factors (aeroallergens, air pollution, and weather) and asthma emergency admissions to a hospital in Mexico City. Allergy. 1998;53(4):394–401. doi: 10.1111/j.1398-9995.1998.tb03911.x. PubMed PMID: 9574882. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1398-9995.1998.tb03911.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9574882&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000072987100009&link_type=ISI) 23. 23.Schvartsman C, Pereira LA, Braga AL, Farhat SC. Seven-day cumulative effects of air pollutants increase respiratory ER visits up to threefold. Pediatr Pulmonol. 2017;52(2):205–12. Epub 20160829. doi: 10.1002/ppul.23555. PubMed PMID: 27575889. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/ppul.23555&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27575889&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 24. 24.Tetreault LF, Doucet M, Gamache P, Fournier M, Brand A, Kosatsky T, Smargiassi A. Severe and Moderate Asthma Exacerbations in Asthmatic Children and Exposure to Ambient Air Pollutants. Int J Environ Res Public Health. 2016;13(8). Epub 20160801. doi: 10.3390/ijerph13080771. PubMed PMID: 27490556; PMCID: PMC4997457. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/ijerph13080771&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27490556&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 25. 25.Gergen PJ, Mitchell H, Lynn H. Understanding the seasonal pattern of childhood asthma: results from the National Cooperative Inner-City Asthma Study (NCICAS). J Pediatr. 2002;141(5):631–6. doi: 10.1067/mpd.2002.127510. PubMed PMID: 12410190. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1067/mpd.2002.127510&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12410190&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000179182300015&link_type=ISI) 26. 26.Sunyer J, Spix C, Quenel P, Ponce-de-Leon A, Ponka A, Barumandzadeh T, Touloumi G, Bacharova L, Wojtyniak B, Vonk J, Bisanti L, Schwartz J, Katsouyanni K. Urban air pollution and emergency admissions for asthma in four European cities: the APHEA Project. Thorax. 1997;52(9):760–5. doi: 10.1136/thx.52.9.760. PubMed PMID: 9371204; PMCID: PMC1758645. [Abstract](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToidGhvcmF4am5sIjtzOjU6InJlc2lkIjtzOjg6IjUyLzkvNzYwIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjMvMDkvMjMvMjAyMy4wOS4yMi4yMzI5NTk3MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 27. 27.Peel JL, Tolbert PE, Klein M, Metzger KB, Flanders WD, Todd K, Mulholland JA, Ryan PB, Frumkin H. Ambient air pollution and respiratory emergency department visits. Epidemiology. 2005;16(2):164–74. doi: 10.1097/01.ede.0000152905.42113.db. PubMed PMID: 15703530. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/01.ede.0000152905.42113.db&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15703530&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000227080200004&link_type=ISI) 28. 28.Ding L, Zhu D, Peng D, Zhao Y. Air pollution and asthma attacks in children: A case-crossover analysis in the city of Chongqing, China. Environ Pollut. 2017;220(Pt A):348–53. Epub 20160929. doi: 10.1016/j.envpol.2016.09.070. PubMed PMID: 27692885. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.envpol.2016.09.070&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27692885&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 29. 29.Mazenq J, Dubus JC, Gaudart J, Charpin D, Nougairede A, Viudes G, Noel G. Air pollution and children’s asthma-related emergency hospital visits in southeastern France. Eur J Pediatr. 2017;176(6):705–11. Epub 20170405. doi: 10.1007/s00431-017-2900-5. PubMed PMID: 28382539. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00431-017-2900-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28382539&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 30. 30.Ierodiakonou D, Zanobetti A, Coull BA, Melly S, Postma DS, Boezen HM, Vonk JM, Williams PV, Shapiro GG, McKone EF, Hallstrand TS, Koenig JQ, Schildcrout JS, Lumley T, Fuhlbrigge AN, Koutrakis P, Schwartz J, Weiss ST, Gold DR, Progra CAM. Ambient air pollution, lung function, and airway responsiveness in asthmatic children. J Allergy Clin Immun. 2016;137(2):390–9. doi: 10.1016/j.jaci.2015.05.028. PubMed PMID: WOS:000369235500007. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jaci.2015.05.028&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26187234&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 31. 31.Neophytou AM, White MJ, Oh SS, Thakur N, Galanter JM, Nishimura KK, Pino-Yanes M, Torgerson DG, Gignoux CR, Eng C, Nguyen EA, Hu D, Mak AC, Kumar R, Seibold MA, Davis A, Farber HJ, Meade K, Avila PC, Serebrisky D, Lenoir MA, Brigino-Buenaventura E, Rodriguez-Cintron W, Bibbins-Domingo K, Thyne SM, Williams LK, Sen S, Gilliland FD, Gauderman WJ, Rodriguez-Santana JR, Lurmann F, Balmes JR, Eisen EA, Burchard EG. Air Pollution and Lung Function in Minority Youth with Asthma in the GALA II (Genes-Environments and Admixture in Latino Americans) and SAGE II (Study of African Americans, Asthma, Genes, and Environments) Studies. Am J Respir Crit Care Med. 2016;193(11):1271–80. doi: 10.1164/rccm.201508-1706OC. PubMed PMID: 26734713; PMCID: PMC4910900. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1164/rccm.201508-1706OC&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26734713&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 32. 32.McConnell R, Berhane K, Gilliland F, Molitor J, Thomas D, Lurmann F, Avol E, Gauderman WJ, Peters JM. Prospective study of air pollution and bronchitic symptoms in children with asthma. Am J Respir Crit Care Med. 2003;168(7):790–7. Epub 20030731. doi: 10.1164/rccm.200304-466OC. PubMed PMID: 12893648. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1164/rccm.200304-466OC&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12893648&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000185611700010&link_type=ISI) 33. 33.Breysse PN, Diette GB, Matsui EC, Butz AM, Hansel NN, McCormack MC. Indoor air pollution and asthma in children. Proc Am Thorac Soc. 2010;7(2):102–6. doi: 10.1513/pats.200908-083RM. PubMed PMID: 20427579; PMCID: PMC3266016. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1513/pats.200908-083RM&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20427579&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 34. 34.Hansel NN, Breysse PN, McCormack MC, Matsui EC, Curtin-Brosnan J, Williams DL, Moore JL, Cuhran JL, Diette GB. A longitudinal study of indoor nitrogen dioxide levels and respiratory symptoms in inner-city children with asthma. Environ Health Persp. 2008;116(10):1428–32. doi: 10.1289/ehp.11349. PubMed PMID: WOS:000259730100041. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1289/ehp.11349&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18941590&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000259730100041&link_type=ISI) 35. 35.Gent JF, Triche EW, Holford TR, Belanger K, Bracken MB, Beckett WS, Leaderer BP. Association of low-level ozone and fine particles with respiratory symptoms in children with asthma. Jama-J Am Med Assoc. 2003;290(14):1859–67. doi: DOI 10.1001/jama.290.14.1859. PubMed PMID: WOS:000185752600026. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jama.290.14.1859&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00018575&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 36. 36.Lewis TC, Robins TG, Dvonch JT, Keeler GJ, Yip FY, Mentz GB, Lin XH, Parker EA, Israel BA, Gonzalez L, Hill Y. Air pollution-associated changes in lung function among asthmatic children in Detroit. Environ Health Persp. 2005;113(8):1068–75. doi: 10.1289/ehp.7533. PubMed PMID: WOS:000230941100048. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1289/ehp.7533&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16079081&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000230941100048&link_type=ISI) 37. 37.Samoli E, Butland BK, Rodopoulou S, Atkinson RW, Barratt B, Beevers SD, Beddows A, Dimakopoulou K, Schwartz JD, Yazdi MD, Katsouyanni K. The impact of measurement error in modeled ambient particles exposures on health effect estimates in multilevel analysis: A simulation study. Environ Epidemiol. 2020;4(3):e094. Epub 20200527. doi: 10.1097/EE9.0000000000000094. PubMed PMID: 32656489; PMCID: PMC7319186. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/EE9.0000000000000094&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32656489&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 38. 38.Bell ML, Ebisu K, Peng RD. Community-level spatial heterogeneity of chemical constituent levels of fine particulates and implications for epidemiological research. J Expo Sci Environ Epidemiol. 2011;21(4):372–84. Epub 20100728. doi: 10.1038/jes.2010.24. PubMed PMID: 20664652; PMCID: PMC3176331. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/jes.2010.24&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20664652&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 39. 39.Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, Behar JV, Hern SC, Engelmann WH. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol. 2001;11(3):231–52. doi: 10.1038/sj.jea.7500165. PubMed PMID: 11477521. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/sj.jea.7500165&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11477521&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000170077100008&link_type=ISI) 40. 40.Franklin PJ. Indoor air quality and respiratory health of children. Paediatr Respir Rev. 2007;8(4):281–6. Epub 20071031. doi: 10.1016/j.prrv.2007.08.007. PubMed PMID: 18005895. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.prrv.2007.08.007&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18005895&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000251687900003&link_type=ISI) 41. 41.Lee K, Parkhurst WJ, Xue JP, Ozkaynak AH, Neuberg D, Spengler JD. Outdoor/indoor/personal ozone exposures of children in Nashville, Tennessee. J Air Waste Manage. 2004;54(3):352–9. doi: Doi 10.1080/10473289.2004.10470904. PubMed PMID: WOS:000220030300009. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/10473289.2004.10470904&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00022003&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 42. 42.Janssen NAH, Hoek G, Harssema H, Brunekreef B. Childhood exposure to PM10: relation between personal, classroom, and outdoor concentrations. Occupational and Environmental Medicine. 1997;54(12):888–94. doi: DOI 10.1136/oem.54.12.888. PubMed PMID: WOS:000071260300008. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NToib2VtZWQiO3M6NToicmVzaWQiO3M6OToiNTQvMTIvODg4IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjMvMDkvMjMvMjAyMy4wOS4yMi4yMzI5NTk3MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 43. 43.Ozkaynak H, Xue J, Spengler J, Wallace L, Pellizzari E, Jenkins P. Personal exposure to airborne particles and metals: Results from the particle team study in Riverside, California. J Expo Anal Env Epid. 1996;6(1):57–78. PubMed PMID: WOS:A1996UD68600005. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:A1996UD6&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 44. 44.Quackenboss JJ, Spengler JD, Kanarek MS, Letz R, Duffy CP. Personal exposure to nitrogen dioxide: relationship to indoor/outdoor air quality and activity patterns. Environ Sci Technol. 1986;20(8):775–83. doi: 10.1021/es00150a003. PubMed PMID: 22196701. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1021/es00150a003&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22196701&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1986D440200006&link_type=ISI) 45. 45.Belanger K, Gent JF, Triche EW, Bracken MB, Leaderer BP. Association of indoor nitrogen dioxide exposure with respiratory symptoms in children with asthma. Am J Resp Crit Care. 2006;173(3):297–303. doi: 10.1164/rccm.200408-1123OC. PubMed PMID: WOS:000234962000009. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1164/rccm.200408-1123OC&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16254270&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000234962000009&link_type=ISI) 46. 46.Belanger K, Holford TR, Gent JF, Hill ME, Kezik JM, Leaderer BP. Household Levels of Nitrogen Dioxide and Pediatric Asthma Severity. Epidemiology. 2013;24(2):320–30. doi: 10.1097/EDE.0b013e318280e2ac. PubMed PMID: WOS:000314728000021. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/EDE.0b013e318280e2ac&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23337243&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000314728000021&link_type=ISI) 47. 47.Schachter EN, Rohr A, Habre R, Koutrakis P, Moshier E, Nath A, Coull B, Grunin A, Kattan M. Indoor air pollution and respiratory health effects in inner city children with moderate to severe asthma. Air Qual Atmos Hlth. 2020;13(2):247–57. doi: 10.1007/s11869-019-00789-3. PubMed PMID: WOS:000512982600010. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11869-019-00789-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00051298&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 48. 48.Trenga CA, Sullivan JH, Schildcrout JS, Shepherd KP, Shapiro GG, Liu LJS, Kaufman JD, Koenig JQ. Effect of particulate air, pollution on lung function in adult and pediatric subjects in a Seattle panel study. Chest. 2006;129(6):1614–22. doi: DOI 10.1378/chest.129.6.1614. PubMed PMID: WOS:000238349300036. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1378/chest.129.6.1614&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16778283&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000238349300036&link_type=ISI) 49. 49.Koenig JQ, Mar TF, Allen RW, Jansen K, Lumley T, Sullivan JH, Trenga CA, Larson T, Liu LJ. Pulmonary effects of indoor- and outdoor-generated particles in children with asthma. Environ Health Perspect. 2005;113(4):499–503. doi: 10.1289/ehp.7511. PubMed PMID: 15811822; PMCID: PMC1278493. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1289/ehp.7511&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15811822&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000228158900052&link_type=ISI) 50. 50.Sheehan WJ, Permaul P, Petty CR, Coull BA, Baxi SN, Gaffin JM, Lai PS, Gold DR, Phipatanakul W. Association Between Allergen Exposure in Inner-City Schools and Asthma Morbidity Among Students. Jama Pediatr. 2017;171(1):31–8. doi: 10.1001/jamapediatrics.2016.2543. PubMed PMID: WOS:000392198800012. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamapediatrics.2016.2543&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00039219&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 51. 51.Rodes CE, Lawless PA, Thornburg JW, Williams RW, Croghan CW. DEARS particulate matter relationships for personal, indoor, outdoor, and central site settings for a general population. Atmos Environ. 2010;44(11):1386–99. doi: 10.1016/j.atmosenv.2010.02.002. PubMed PMID: WOS:000276736600002. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.atmosenv.2010.02.002&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00027673&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000276736600002&link_type=ISI) 52. 52.Liu LJS, Box M, Kalman D, Kaufman J, Koenig J, Larson T, Lumley T, Sheppard L, Wallace L. Exposure assessment of particulate matter for susceptible populations in Seattle. Environ Health Persp. 2003;111(7):909–18. doi: DOI 10.1289/ehp.6011. PubMed PMID: WOS:000183498900028. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1289/ehp.6011&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12782491&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000183498900028&link_type=ISI) 53. 53.Williams R, Suggs J, Rea A, Sheldon L, Rodes C, Thornburg J. The Research Triangle Park particulate matter panel study: modeling ambient source contribution to personal and residential PM mass concentrations. Atmos Environ. 2003;37(38):5365–78. doi: 10.1016/j.atmosenv.2003.09.010. PubMed PMID: WOS:000186602000007. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.atmosenv.2003.09.010&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00018660&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 54. 54.Licina D, Tian Y, Nazaroff WW. Emission rates and the personal cloud effect associated with particle release from the perihuman environment. Indoor Air. 2017;27(4):791–802. doi: 10.1111/ina.12365. PubMed PMID: WOS:000403895400009. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/ina.12365&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00040389&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 55. 55.Williams R, Rea A, Vette A, Croghan C, Whitaker D, Stevens C, McDow S, Fortmann R, Sheldon L, Wilson H, Thornburg J, Phillips M, Lawless P, Rodes C, Daughtrey H. The design and field implementation of the Detroit Exposure and Aerosol Research Study. J Expo Sci Env Epid. 2009;19(7):643–59. doi: 10.1038/jes.2008.61. PubMed PMID: WOS:000270953500003. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/jes.2008.61&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00027095&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 56. 56.Jenkins RA, Counts RW. Occupational exposure to environmental tobacco smoke: results of two personal exposure studies. Environ Health Perspect. 1999;107 Suppl 2(Suppl 2):341-8. doi: 10.1289/ehp.99107s2341. PubMed PMID: 10350519; PMCID: PMC1566263. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1289/ehp.99107s2341&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10350519&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 57. 57.Ojima J. Gaseous contaminant distribution in the breathing zone. Ind Health. 2012;50(3):236–8. doi: 10.2486/indhealth.ms1314. PubMed PMID: 22790482. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2486/indhealth.ms1314&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22790482&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 58. 58.Lawless PA, Rodes CE. Maximizing data quality in the gravimetric analysis of personal exposure sample filters. Journal of the Air & Waste Management Association. 1999;49(9):1039–49. doi: /10.1080/10473289.1999.10463877 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/10473289.1999.10463877&link_type=DOI) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000082832900003&link_type=ISI) 59. 59.Graham BL, Steenbruggen I, Miller MR, Barjaktarevic IZ, Cooper BG, Hall GL, Hallstrand TS, Kaminsky DA, McCarthy K, McCormack MC, Oropez CE, Rosenfeld M, Stanojevic S, Swanney MP, Thompson BR. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am J Respir Crit Care Med. 2019;200(8):e70-e88. doi: 10.1164/rccm.201908-1590ST. PubMed PMID: 31613151; PMCID: PMC6794117. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1164/rccm.201908-1590ST&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31613151&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 60. 60.Nathan RA, Sorkness CA, Kosinski M, Schatz M, Li JT, Marcus P, Murray JJ, Pendergraft TB. Development of the asthma control test: a survey for assessing asthma control. J Allergy Clin Immunol. 2004;113(1):59–65. doi: 10.1016/j.jaci.2003.09.008. PubMed PMID: 14713908. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jaci.2003.09.008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=14713908&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000187837900007&link_type=ISI) 61. 61.Liu AH, Zeiger RS, Sorkness CA, Ostrom NK, Chipps BE, Rosa K, Watson ME, Kaplan MS, Meurer JR, Mahr TA, Blaiss MS, Piault-Louis E, McDonald J. The Childhood Asthma Control Test: retrospective determination and clinical validation of a cut point to identify children with very poorly controlled asthma. J Allergy Clin Immunol. 2010;126(2):267–73, 73 e1. Epub 20100710. doi: 10.1016/j.jaci.2010.05.031. PubMed PMID: 20624640. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jaci.2010.05.031&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20624640&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000281203800011&link_type=ISI) 62. 62.Liu AH, Zeiger R, Sorkness C, Mahr T, Ostrom N, Burgess S, Rosenzweig JC, Manjunath R. Development and cross-sectional validation of the Childhood Asthma Control Test. J Allergy Clin Immunol. 2007;119(4):817–25. Epub 20070313. doi: 10.1016/j.jaci.2006.12.662. PubMed PMID: 17353040. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jaci.2006.12.662&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17353040&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000245729500008&link_type=ISI) 63. 63.Liu LJ, Delfino R, Koutrakis P. Ozone exposure assessment in a southern California community. Environ Health Perspect. 1997;105(1):58–65. doi: 10.1289/ehp.9710558. PubMed PMID: 9074882; PMCID: PMC1469853. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2307/3433063&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9074882&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1997WM69800022&link_type=ISI) 64. 64.Matthaios VN, Kang CM, Wolfson JM, Greco KF, Gaffin JM, Hauptman M, Cunningham A, Petty CR, Lawrence J, Phipatanakul W, Gold DR, Koutrakis P. Factors Influencing Classroom Exposures to Fine Particles, Black Carbon, and Nitrogen Dioxide in Inner-City Schools and Their Implications for Indoor Air Quality. Environ Health Perspect. 2022;130(4):47005. Epub 20220421. doi: 10.1289/EHP10007. PubMed PMID: 35446676; PMCID: PMC9022782. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1289/EHP10007&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35446676&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 65. 65.Isiugo K, Jandarov R, Cox J, Chillrud S, Grinshpun SA, Hyttinen M, Yermakov M, Wang J, Ross J, Reponen T. Predicting Indoor Concentrations of Black Carbon in Residential Environments. Atmos Environ (1994). 2019;201:223–30. Epub 20190109. doi: 10.1016/j.atmosenv.2018.12.053. PubMed PMID: 31598090; PMCID: PMC6785191. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.atmosenv.2018.12.053&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31598090&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 66. 66.Vette A, Burke J, Norris G, Landis M, Batterman S, Breen M, Isakov V, Lewis T, Gilmour MI, Kamal A, Hammond D, Vedantham R, Bereznicki S, Tian N, Croghan C, Community Action Against Asthma Steering C. The Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS): study design and methods. Sci Total Environ. 2013;448:38–47. Epub 20121110. doi: 10.1016/j.scitotenv.2012.10.072. PubMed PMID: 23149275; PMCID: PMC4243518. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.scitotenv.2012.10.072&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23149275&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 67. 67.Smargiassi A, Goldberg MS, Wheeler AJ, Plante C, Valois MF, Mallach G, Kauri LM, Shutt R, Bartlett S, Raphoz M, Liu L. Associations between personal exposure to air pollutants and lung function tests and cardiovascular indices among children with asthma living near an industrial complex and petroleum refineries. Environ Res. 2014;132:38–45. Epub 20140416. doi: 10.1016/j.envres.2014.03.030. PubMed PMID: 24742726. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.envres.2014.03.030&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24742726&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 68. 68.Chambers L, Finch J, Edwards K, Jeanjean A, Leigh R, Gonem S. Effects of personal air pollution exposure on asthma symptoms, lung function and airway inflammation. Clin Exp Allergy. 2018;48(7):798–805. Epub 20180410. doi: 10.1111/cea.13130. PubMed PMID: 29526044. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/cea.13130&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29526044&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 69. 69.Maestrelli P, Canova C, Scapellato ML, Visentin A, Tessari R, Bartolucci GB, Simonato L, Lotti M. Personal exposure to particulate matter is associated with worse health perception in adult asthma. J Investig Allergol Clin Immunol. 2011;21(2):120–8. PubMed PMID: 21462802. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21462802&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 70. 70.Delfino RJ, Staimer N, Tjoa T, Gillen D, Kleinman MT, Sioutas C, Cooper D. Personal and ambient air pollution exposures and lung function decrements in children with asthma. Environ Health Perspect. 2008;116(4):550–8. doi: 10.1289/ehp.10911. PubMed PMID: 18414642; PMCID: PMC2291010. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1289/ehp.10911&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18414642&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000254566500041&link_type=ISI) 71. 71.Iskandar A, Andersen ZJ, Bonnelykke K, Ellermann T, Andersen KK, Bisgaard H. Coarse and fine particles but not ultrafine particles in urban air trigger hospital admission for asthma in children. Thorax. 2012;67(3):252–7. Epub 20111209. doi: 10.1136/thoraxjnl-2011-200324. PubMed PMID: 22156960. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToidGhvcmF4am5sIjtzOjU6InJlc2lkIjtzOjg6IjY3LzMvMjUyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjMvMDkvMjMvMjAyMy4wOS4yMi4yMzI5NTk3MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 72. 72.Lin M, Chen Y, Burnett RT, Villeneuve PJ, Krewski D. The influence of ambient coarse particulate matter on asthma hospitalization in children: Case-crossover and time-series analyses. Environ Health Persp. 2002;110(6):575–81. doi: DOI 10.1289/ehp.02110575. PubMed PMID: WOS:000176134900021. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1289/ehp.02110575&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12055048&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000176134900021&link_type=ISI) 73. 73.Khalili R, Bartell SM, Hu X, Liu Y, Chang HH, Belanoff C, Strickland MJ, Vieira VM. Early-life exposure to PM(2.5) and risk of acute asthma clinical encounters among children in Massachusetts: a case-crossover analysis. Environ Health. 2018;17(1):20. Epub 20180221. doi: 10.1186/s12940-018-0361-6. PubMed PMID: 29466982; PMCID: PMC5822480. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12940-018-0361-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29466982&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 74. 74.de PP-RM, Roman R, Limon JM, Praena-Crespo M. Effects of fine particles on children’s hospital admissions for respiratory health in Seville, Spain. J Air Waste Manag Assoc. 2015;65(4):436–44. doi: 10.1080/10962247.2014.1001499. PubMed PMID: 25947213. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/10962247.2014.1001499&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25947213&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 75. 75.Lim H, Kwon HJ, Lim JA, Choi JH, Ha M, Hwang SS, Choi WJ. Short-term Effect of Fine Particulate Matter on Children’s Hospital Admissions and Emergency Department Visits for Asthma: A Systematic Review and Meta-analysis. J Prev Med Public Health. 2016;49(4):205–19. doi: 10.3961/jpmph.16.037. PubMed PMID: 27499163; PMCID: PMC4977771. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3961/jpmph.16.037&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27499163&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 76. 76.Lipsett M, Hurley S, Ostro B. Air pollution and emergency room visits for asthma in Santa Clara County, California. Environ Health Perspect. 1997;105(2):216–22. doi: 10.1289/ehp.97105216. PubMed PMID: 9105797; PMCID: PMC1469790. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1289/ehp.97105216&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9105797&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1997WU34200016&link_type=ISI) 77. 77.Atkinson RW, Anderson HR, Strachan DP, Bland JM, Bremner SA, Ponce de Leon A. Short-term associations between outdoor air pollution and visits to accident and emergency departments in London for respiratory complaints. Eur Respir J. 1999;13(2):257–65. doi: 10.1183/09031936.99.13225799. PubMed PMID: 10065665. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiZXJqIjtzOjU6InJlc2lkIjtzOjg6IjEzLzIvMjU3IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjMvMDkvMjMvMjAyMy4wOS4yMi4yMzI5NTk3MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 78. 78.Anderson HR, Ponce de Leon A, Bland JM, Bower JS, Emberlin J, Strachan DP. Air pollution, pollens, and daily admissions for asthma in London 1987-92. Thorax. 1998;53(10):842–8. doi: 10.1136/thx.53.10.842. PubMed PMID: 10193370; PMCID: PMC1745078. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToidGhvcmF4am5sIjtzOjU6InJlc2lkIjtzOjk6IjUzLzEwLzg0MiI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIzLzA5LzIzLzIwMjMuMDkuMjIuMjMyOTU5NzEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 79. 79.Maier WC, Arrighi HM, Morray B, Llewellyn C, Redding GJ. Indoor risk factors for asthma and wheezing among Seattle school children. Environ Health Perspect. 1997;105(2):208–14. doi: 10.1289/ehp.97105208. PubMed PMID: 9105796; PMCID: PMC1469795. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1289/ehp.97105208&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9105796&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1997WU34200015&link_type=ISI) 80. 80.Lam TH, Chung SF, Betson CL, Wong CM, Hedley AJ. Respiratory symptoms due to active and passive smoking in junior secondary school students in Hong Kong. Int J Epidemiol. 1998;27(1):41–8. doi: 10.1093/ije/27.1.41. PubMed PMID: 9563692. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ije/27.1.41&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9563692&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 81. 81.Butland BK, Strachan DP, Anderson HR. The home environment and asthma symptoms in childhood: two population based case-control studies 13 years apart. Thorax. 1997;52(7):618–24. doi: 10.1136/thx.52.7.618. PubMed PMID: 9246133; PMCID: PMC1758604. [Abstract](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToidGhvcmF4am5sIjtzOjU6InJlc2lkIjtzOjg6IjUyLzcvNjE4IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjMvMDkvMjMvMjAyMy4wOS4yMi4yMzI5NTk3MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 82. 82.Morkjaroenpong V, Rand CS, Butz AM, Huss K, Eggleston P, Malveaux FJ, Bartlett SJ. Environmental tobacco smoke exposure and nocturnal symptoms among inner-city children with asthma. J Allergy Clin Immunol. 2002;110(1):147–53. doi: 10.1067/mai.2002.125832. PubMed PMID: 12110834. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1067/mai.2002.125832&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12110834&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000176870300026&link_type=ISI) 83. 83.Wang Z, May SM, Charoenlap S, Pyle R, Ott NL, Mohammed K, Joshi AY. Effects of secondhand smoke exposure on asthma morbidity and health care utilization in children: a systematic review and meta-analysis. Ann Allergy Asthma Immunol. 2015;115(5):396–401 e2. Epub 20150926. doi: 10.1016/j.anai.2015.08.005. PubMed PMID: 26411971. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.anai.2015.08.005&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26411971&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 84. 84.Laskin A, Laskin J, Nizkorodov SA. Chemistry of atmospheric brown carbon. Chem Rev. 2015;115(10):4335–82. Epub 20150226. doi: 10.1021/cr5006167. PubMed PMID: 25716026. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1021/cr5006167&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25716026&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 85. 85.Sankhyan S, Patel S, Katz EF, DeCarlo PF, Farmer DK, Nazaroff WW, Vance ME. Indoor black carbon and brown carbon concentrations from cooking and outdoor penetration: insights from the HOMEChem study. Environ Sci Process Impacts. 2021;23(10):1476–87. Epub 20211020. doi: 10.1039/d1em00283j. PubMed PMID: 34523653. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1039/d1em00283j&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34523653&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 86. 86.Xu H, Song J, He X, Guan X, Wang T, Zhu Y, Xu X, Li M, Liu L, Zhang B, Fang J, Zhao Q, Song X, Xu B, Huang W. Ambient Anthropogenic Carbons and Pediatric Respiratory Infections: A Case-Crossover Analysis in the Megacity Beijing. Geohealth. 2023;7(8):e2023GH000820. Epub 20230801. doi: 10.1029/2023GH000820. PubMed PMID: 37534336; PMCID: PMC10392781. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1029/2023GH000820&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=37534336&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 87. 87.Henry S, Ospina MB, Dennett L, Hicks A. Assessing the Risk of Respiratory-Related Healthcare Visits Associated with Wildfire Smoke Exposure in Children 0-18 Years Old: A Systematic Review. Int J Environ Res Public Health. 2021;18(16). Epub 20210820. doi: 10.3390/ijerph18168799. PubMed PMID: 34444546; PMCID: PMC8392577. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/ijerph18168799&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34444546&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 88. 88.Gan RW, Ford B, Lassman W, Pfister G, Vaidyanathan A, Fischer E, Volckens J, Pierce JR, Magzamen S. Comparison of wildfire smoke estimation methods and associations with cardiopulmonary-related hospital admissions. Geohealth. 2017;1(3):122–36. Epub 20170331. doi: 10.1002/2017GH000073. PubMed PMID: 28868515; PMCID: PMC5580836. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/2017GH000073&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28868515&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 89. 89.Reid CE, Jerrett M, Tager IB, Petersen ML, Mann JK, Balmes JR. Differential respiratory health effects from the 2008 northern California wildfires: A spatiotemporal approach. Environ Res. 2016;150:227–35. Epub 20160615. doi: 10.1016/j.envres.2016.06.012. PubMed PMID: 27318255. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.envres.2016.06.012&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27318255&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 90. 90.Noah TL, Worden CP, Rebuli ME, Jaspers I. The Effects of Wildfire Smoke on Asthma and Allergy. Curr Allergy Asthma Rep. 2023;23(7):375–87. Epub 20230512. doi: 10.1007/s11882-023-01090-1. PubMed PMID: 37171670; PMCID: PMC10176314. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11882-023-01090-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=37171670&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 91. 91.Aguilera R, Corringham T, Gershunov A, Leibel S, Benmarhnia T. Fine Particles in Wildfire Smoke and Pediatric Respiratory Health in California. Pediatrics. 2021;147(4). Epub 20210323. doi: 10.1542/peds.2020-027128. PubMed PMID: 33757996. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1542/peds.2020-027128&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33757996&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 92. 92.Moore LE, Oliveira A, Zhang R, Behjat L, Hicks A. Impacts of Wildfire Smoke and Air Pollution on a Pediatric Population with Asthma: A Population-Based Study. Int J Environ Res Public Health. 2023;20(3). Epub 20230120. doi: 10.3390/ijerph20031937. PubMed PMID: 36767304; PMCID: PMC9914777. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/ijerph20031937&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36767304&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 93. 93.Hutchinson JA, Vargo J, Milet M, French NHF, Billmire M, Johnson J, Hoshiko S. The San Diego 2007 wildfires and Medi-Cal emergency department presentations, inpatient hospitalizations, and outpatient visits: An observational study of smoke exposure periods and a bidirectional case-crossover analysis. PLoS Med. 2018;15(7):e1002601. Epub 20180710. doi: 10.1371/journal.pmed.1002601. PubMed PMID: 29990362; PMCID: PMC6038982. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pmed.1002601&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29990362&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 94. 94.Thorne PS. Environmental endotoxin exposure and asthma. J Allergy Clin Immunol. 2021;148(1):61-3. Epub 20210514. doi: 10.1016/j.jaci.2021.05.004. PubMed PMID: 34000345; PMCID: PMC9706490. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jaci.2021.05.004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34000345&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 95. 95.Hernandez ML, Herbst M, Lay JC, Alexis NE, Brickey WJ, Ting JP, Zhou H, Peden DB. Atopic asthmatic patients have reduced airway inflammatory cell recruitment after inhaled endotoxin challenge compared with healthy volunteers. J Allergy Clin Immunol. 2012;130(4):869–76 e2. Epub 20120704. doi: 10.1016/j.jaci.2012.05.026. PubMed PMID: 22770265; PMCID: PMC3652253. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jaci.2012.05.026&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22770265&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 96. 96.Stein MM, Hrusch CL, Gozdz J, Igartua C, Pivniouk V, Murray SE, Ledford JG, Marques Dos Santos M, Anderson RL, Metwali N, Neilson JW, Maier RM, Gilbert JA, Holbreich M, Thorne PS, Martinez FD, von Mutius E, Vercelli D, Ober C, Sperling AI. Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children. N Engl J Med. 2016;375(5):411–21. doi: 10.1056/NEJMoa1508749. PubMed PMID: 27518660; PMCID: PMC5137793. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/NEJMoa1508749&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27518660&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 97. 97.Lai PS, Sheehan WJ, Gaffin JM, Petty CR, Coull BA, Gold DR, Phipatanakul W. School Endotoxin Exposure and Asthma Morbidity in Inner-city Children. Chest. 2015;148(5):1251–8. doi: 10.1378/chest.15-0098. PubMed PMID: 26087201; PMCID: PMC4631040. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1378/chest.15-0098&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 98. 98.Rabinovitch N, Liu AH, Zhang L, Rodes CE, Foarde K, Dutton SJ, Murphy JR, Gelfand EW. Importance of the personal endotoxin cloud in school-age children with asthma. J Allergy Clin Immunol. 2005;116(5):1053–7. Epub 20051010. doi: 10.1016/j.jaci.2005.08.045. PubMed PMID: 16275375. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jaci.2005.08.045&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16275375&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000235686700016&link_type=ISI) 99. 99.Thorne PS, Mendy A, Metwali N, Salo P, Co C, Jaramillo R, Rose KM, Zeldin DC. Endotoxin Exposure: Predictors and Prevalence of Associated Asthma Outcomes in the United States. Am J Respir Crit Care Med. 2015;192(11):1287–97. doi: 10.1164/rccm.201502-0251OC. PubMed PMID: 26258643; PMCID: PMC4731700. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1164/rccm.201502-0251OC&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26258643&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 100.100.Kim Y, Park EH, Ng CFS, Chung Y, Hashimoto K, Tashiro K, Hasunuma H, Doi M, Tamura K, Moriuchi H, Nishiwaki Y, Kim H, Yi SM, Kim H, Hashizume M. Respiratory function declines in children with asthma associated with chemical species of fine particulate matter (PM(2.5)) in Nagasaki, Japan. Environ Health. 2021;20(1):110. Epub 20211021. doi: 10.1186/s12940-021-00796-x. PubMed PMID: 34670555; PMCID: PMC8529805. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12940-021-00796-x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34670555&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 101.101.Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet. 2014;383(9928):1581-92. doi: 10.1016/S0140-6736(14)60617-6. PubMed PMID: 24792855; PMCID: PMC4465283. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(14)60617-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24792855&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) 102.102.Liu L, Poon R, Chen L, Frescura AM, Montuschi P, Ciabattoni G, Wheeler A, Dales R. Acute effects of air pollution on pulmonary function, airway inflammation, and oxidative stress in asthmatic children. Environ Health Perspect. 2009;117(4):668–74. Epub 20081128. doi: 10.1289/ehp11813. PubMed PMID: 19440509; PMCID: PMC2679614. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1289/ehp11813&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19440509&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F23%2F2023.09.22.23295971.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000264704500044&link_type=ISI)