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Abstract

Genome-wide association studies (GWASs) have achieved remarkable success in
associating thousands of genetic variants with complex traits. However, the presence of
linkage disequilibrium (LD) makes it challenging to identify the causal variants. To
address this critical gap from association to causation, many fine mapping methods have
been proposed to assign well-calibrated probabilities of causality to candidate variants,
taking into account the underlying LD pattern. In this manuscript, we introduce a
statistical framework that incorporates expression quantitative trait locus (eQTL)
information to fine mapping, built on the sum of single-effects (SuSiE) regression model.
Our new method, SuSiE2, connects two SuSiE models, one for eQTL analysis and one
for genetic fine mapping. This is achieved by first computing the posterior inclusion
probabilities (PIPs) from an eQTL-based SuSiE model with the expression level of the
candidate gene as the phenotype. These calculated PIPs are then utilized as prior
inclusion probabilities for risk variants in another SuSiE model for the trait of interest.
By leveraging eQTL information, SuSiE2 enhances the power of detecting causal SNPs
while reducing false positives and the average size of credible sets by prioritizing
functional variants within the candidate region. The advantages of SuSiE2 over SuSiE
are demonstrated by simulations and an application to a single-cell epigenomic study for
Alzheimer’s disease. We also demonstrate that eQTL information can be used by
SuSiE2 to compensate for the power loss because of an inaccurate LD matrix.

Author summary

Genome-wide association studies (GWASs) have proven powerful in detecting genetic
variants associated with complex traits. However, there are challenges in distinguishing
the causal variants from other variants strongly correlated with them. To better identify
causal SNPs, many fine mapping methods have been proposed to assign well-calibrated
probabilities of causality to candidate variants. We introduce a statistical framework
that incorporates expression quantitative trait locus (eQTL) information to fine
mapping, which can improve the accuracy and efficiency of association studies by
prioritizing functional variants within the risk genes before evaluating the causation.
Our new fine mapping framework, SuSiE2, connects two sum of single-effects (SuSiE)
models, one for eQTL analysis and one for genetic fine mapping. The posterior
inclusion probabilities from an eQTL-based SuSiE model are utilized as prior inclusion
probabilities for risk variants in another SuSiE model for the trait of interest. Through
simulations and a real data analysis focused on Alzheimer’s disease, we demonstrate
that SuSiE2 improves fine mapping results by simultaneously increasing statistical
power, controlling the type I error rate, and reducing the average size of credible sets.
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Introduction 1

Over the past decades, genome-wide association studies (GWASs) have achieved 2

remarkable success in detecting thousands of genetic variants that are associated with 3

complex traits [1]. While GWASs have proven powerful in identifying genomic loci 4

harboring causal variants, they encounter challenges in identifying the underlying causal 5

variants. There is limited statistical power to distinguish causal variants from other 6

variants in strong linkage disequilibrium (LD) through marginal association 7

analysis [2, 3]. 8

Genetic fine-mapping aims at inferring the causal genetic variants responsible for 9

complex traits in a candidate region through disentangling LD patterns. Many fine 10

mapping methods have been devised to assign well-calibrated probabilities of causality 11

to candidate variants, taking into account the underlying LD pattern. For instance, 12

some methods in the early stage estimate the probability of causality for each SNP 13

under the assumption that each risk locus only harbors one causal variant [4, 5]. To 14

avoid this strict assumption, CAVIAR [6] estimates the posterior inclusion probability 15

(PIP) of each variant as a causal factor by jointly modeling the observed association 16

statistics among all risk variants. Because of the heavy computational burden, CAVIAR 17

makes the assumption that the total number of causal SNPs in a region is bounded by 18

at most six, which leads to a major limitation. Under a similar statistical model, 19

FINEMAP [7] enhances the computational efficiency by replacing the exhaustive search 20

algorithm in CAVIAR with a shotgun stochastic search. However, this method is still 21

computationally intensive. SuSiE [8], on the other hand, introduces a novel approach to 22

variable selection in linear regression problems, where genetic fine-mapping is an 23

important application. Building upon Bayesian variable selection in regression (BVSR), 24

SuSiE develops an Iterative Bayesian Stepwise Selection (IBSS) algorithm to generate 25

credible sets (CSs) that contain multiple highly correlated variables. The additive 26

structure of the SuSiE model facilitates more accurate inference and improves 27

computational efficiency, thereby enhancing the overall effectiveness of genetic 28

fine-mapping. 29

In recent years, expression quantitative trait locus (eQTL) studies have revealed an 30

abundance of quantitative trait loci (QTLs) for gene expression [9]. Integrating eQTL 31

information into fine mapping not only improves the accuracy and efficiency of 32

association studies by prioritizing functional variants within the risk genes but also aids 33

in understanding the mechanisms underlying a genetic risk locus [10,11]. Generally, 34

there are two approaches to incorporating eQTL signals into fine mapping. The first 35

approach involves conducting a colocalization analysis to determine whether the same 36

variant is significant in both GWASs and eQTL studies. However, most colocalization 37

methods, such as COLOC [12], eCAVIAR [13], and coloc-SuSiE [14], primarily focus on 38

estimating the probability that a variant is causal in both GWASs and eQTL studies. 39

This differs from our objective of identifying the causal variants associated with 40

complex traits. The second approach incorporates gene expression levels as functional 41

annotations and assigns functional priors to risk variants. Well established fine mapping 42

methods incorporating annotations include PAINTOR [15], PolyFun+SuSiE [16], 43

DAP [10], and SparsePro [17]. However, a significant drawback of the majority of these 44

methods is that they are designed with two distinct modeling stages that employ 45

different model settings for estimating prior probabilities and conducting fine mapping. 46

This disjoint approach can result in potentially suboptimal performance [18]. 47

In this study, we propose a new method of incorporating eQTL information to 48

improve fine mapping results based on the SuSiE framework. Our new method, named 49

SuSiE2, begins by prioritizing risk variants using estimated PIPs from an eQTL-based 50

SuSiE model with expression levels of risk genes serving as the phenotype. These PIPs 51

are then utilized as prior inclusion probabilities in a standard SuSiE model for the trait 52
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of interest. Through simulations conducted on UKBiobank samples, we demonstrate 53

that compared with SuSiE, SuSiE2 improves the power of detecting causal SNPs while 54

reducing false positives regardless of using the in-sample LD matrix or an external 55

reference panel. For real data analysis, SuSiE2 identifies more Alzheimer’s disease (AD) 56

associated SNPs predicted from single-cell epigenomic data. 57

Materials and methods 58

Posterior inclusion probabilities and credible sets 59

Consider a toy example of a multiple regression model between a standardized n-vector 60

y and a standardized n× p matrix X = (x1, ..., xp): 61

y = Xb + e, e ∼ Nn(0, σ
2In),

where b = (b1, ..., bp)
T is a p-vector of regression coefficients, σ2 is the residual variance, 62

In stands for the n× n identity matrix, and Nn represents the n-variate normal 63

distribution. Many regression-based methods have been developed to select the 64

associated variants, however, it can be difficult to infer the true causal variants when 65

the effect variables are highly correlated with some non-effect variables (for example, 66

genetic variants in strong LD). Under this circumstance, a more appropriate strategy is 67

to narrow down a signal to a small set of highly correlated variants instead of an 68

individual variant. 69

To quantify the uncertainty in which variables should be selected, BVSR
methods [19] introduce a prior distribution on b and then calculate the posterior
distribution that gives weights to each possible combination of causal variables. In most
situations, this complicated posterior distribution is summarized with the marginal
posterior inclusion probability (PIP) of each variable:

PIPj := Pr(bj ̸= 0|X, y).

Although PIP provides a simple way to prioritize risk variants, it is somehow less 70

informative and can be insufficient in determining true causal signals. For example, if 71

the top two variants ranked by their PIPs are highly correlated, it is difficult to 72

distinguish if they represent two different signals or if one of them is a non-effect 73

variable correlated with a true causal one. With this consideration, a more appropriate 74

result should provide a list of sets of variables, with each set intended to capture one 75

signal. To describe this goal more formally, SuSiE (Sum of Single-effects regression 76

model) [8] introduces the concept of a credible set of variables as below: 77

Definition 1 In a multiple-regression model, a level ρ credible set is defined to be a 78

subset of variables that has probability ρ or greater of containing at least one effect 79

variable. 80

With this definition 1, the primary aim of the variable selection problem can be restated 81

as the following two aspects: 82

1. Reporting as many credible sets as the data support, each with as few variables as 83

possible. 84

2. Prioritizing each candidate variable within a credible set with a posterior 85

probability for this variable to be an effect variable. 86

The sum of single-effects regression model 87

With the goal of identifying the genetic variants that causally affect some traits of 88

interest, genetic fine mapping can be framed as a variable-selection problem. To pick 89
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the causal variant(s) in the presence of strong LD, one attractive approach is to use 90

BVSR to assign a posterior probability distribution to risk variants. However, 91

traditional BVSR methods still suffer from computational challenges and complicated 92

posterior distributions [7, 20], such as CAVIAR [6] and FINEMAP [7]. The SuSiE 93

method introduced by [8] takes advantage of the convenient analytic properties of a 94

more basic single-effect regression (SER) model [21] which only considers one effect 95

variable with a non-zero regression coefficient. The SER model is described as: 96

y = Xb + e, e ∼ Nn(0, σ
2In),

97

b = λc, c ∼Mult(1,π), λ ∼ N1(0, σ
2
0). (1)

Here, y is the n-vector of the response variable, X = (x1, ..., xp) is a matrix containing 98

n observations of p explanatory variables, b is the p-vector of regression coefficients 99

which can be decomposed as the product of a scalar λ and indicator variables 100

c = (c1, ..., cp)
T ∈ {0, 1}p, π = (π1, ..., πp)

T gives the prior probability that each 101

variable is the effect variable, σ2 and σ2
0 are the hyperparameters for the residual 102

variance and prior variance of the non-zero effect. To avoid introducing an intercept 103

term, y and the columns of X are assumed to have been centered to have zero means. 104

Under the SER model 1, there exists only one non-zero element in the coefficient 105

vector b, determined by the indicator variables c. With fixed hyperparameters σ2 and 106

σ2
0 , the posterior distribution of b = λc can be computed as: 107

c|X, y, σ2, σ2
0 ∼Mult(1,α), (2)

108

λ|X, y, σ2, σ2
0 , cj = 1 ∼ N1(µ1j , σ

2
1j), (3)

where α = (α1, ..., αp)
T is the vector of PIPs, which can be computed with Bayes 109

factors: 110

αj = Pr(cj = 1|X, y, σ2, σ2
0) =

πjBF (xj ,y;σ
2, σ2

0)∑p
j′=1 πj′BF (xj′ ,y;σ2, σ2

0)
. (4)

Here, BF (x,y;σ2, σ2
0) is the Bayes factor for comparing the following univariate linear 111

regression model with the null model (b = 0): 112

y = xb+ e, e ∼ Nn(0, σ
2In), b ∼ N1(0, σ

2
0). (5)

Suppose µ1 = (µ11, ..., µ1p)
T , σ2

1 = (σ2
11, ..., σ

2
1p)

T , then the posterior distribution of b 113

can be completely determined by α, µ1, and σ2
1 , i.e., we can write the SER model as: 114

SER(X, y, σ2, σ2
0) := (α, µ1, σ

2
1). (6)

The SER model offers a simple inference strategy when there exists exactly one effect 115

variable. However, the situation will be more complicated when there are multiple 116

non-zero signals. To detect multiple effect variables while preserving the simplicity of 117

the SER model, the sum of single-effects regression model (SuSiE) is developed by 118

introducing multiple single-effect vectors and combining them with an additive 119

structure: 120

y = Xb + e, e ∼ Nn(0, σ
2In), b =

K∑
k=1

bk,

121

bk = λkck, ck ∼Mult(1,π), λk ∼ N1(0, σ
2
0k), (7)

where b1, ...,bK represent the single-effect vectors each aiming to capture exactly one 122

effect variable. σ2
0 = (σ2

01, ..., σ
2
0K)T are the prior variances of the non-zero effects which 123

can be different for different bk. K is the assumed total number of effect variables. A 124
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key feature of SuSiE is that, given b1, ...,bK−1, estimating bK simply involves fitting a 125

SER model on residuals. This idea leads to the iterative Bayesian stepwise selection 126

(IBSS) algorithm [8] in S1 Algorithm. 127

Different from existing BVSR models, SuSiE introduces a new model structure 128

which naturally leads to an intuitive and fast algorithm for model fitting. Compared 129

with traditional BVSR methods, SuSiE enjoys at least two key advantages: 130

1. SuSiE provides a posterior summary which can be interpreted easily by 131

introducing the concept of ”credible sets”. 132

2. SuSiE improves the computational efficiency, with a computational complexity 133

O(npK). The running time of SuSiE, CAVIAR, and FINEMAP with the in-sample LD 134

matrix and summary statistics has been compared in simulations [22], where SuSiE ran 135

ten times faster than FINEMAP, and about 1,000 times faster than CAVIAR. 136

In the remaining parts of the method section, we will introduce a new framework to 137

incorporate eQTL information into fine mapping based on SuSiE. 138

Integrating eQTL information with fine mapping 139

Under the existence of strong LD, SuSiE assesses the uncertainty in variable selection 140

by generating groups of variables, with each group aiming at capturing one effect 141

variable. However, choosing the true causal variable from the credible set is still a 142

difficult problem. One possible way to infer the effect variable more accurately is to 143

integrate eQTL information into fine mapping, as SNPs associated with complex traits 144

are significantly more likely to be eQTLs [11]. Considering the effect of each risk 145

variable on the gene expression level helps us to prioritize risk SNPs with the posterior 146

probability of being the effect variable, which can replace the prior distribution used in 147

the original SuSiE manuscript: π = (1/p, ..., 1/p)T . 148

This new framework of eQTL-based fine mapping study, named SuSiE2, connects 149

two SuSiE models for eQTL study and genetic fine mapping, respectively. For the first 150

model, we use the gene expression level as the response variable and conduct a regression 151

analysis on the risk region. This eQTL-based SuSiE model can be rewritten as 8: 152

ye = Xbe + ee, ee ∼ Nn(0, σ
2eIn), be =

Ke∑
k=1

be
k,

153

be
k = λe

kc
e
k, cek ∼Mult(1,π), λe

k ∼ N1(0, σ
2e
0k), (8)

where ye is the n-vector of gene expression levels, be is the p-vector of regression
coefficients of risk variants for the gene expression, π is the naive prior inclusion
probability for the eQTL-based SuSiE. Assume that there are in total Ke causal signals
for the gene expression level, we can output from 8 the PIPs for all the single effects,
denoted as α1, ...,αKe . The final PIPs for the eQTL study can be computed as:

PIPe = 1−
Ke∏
k=1

(1−αk).

PIPe represents the probability for each variant to be causal to the gene expression 154

level. Under the assumption that trait-associated SNPs are more likely to be eQTLs, 155

the PIPs from the eQTL-based SuSiE can serve as the prior distribution in the following 156

SuSiE model for the trait of interest to highlight eQTLs in genetic fine mapping: 157

yt = Xbt + et, et ∼ Nn(0, σ
2tIn), bt =

Kt∑
k=1

bt
k,
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158

bt
k = λt

kc
t
k, ctk ∼Mult(1,PIPe), λt

k ∼ N1(0, σ
2t
0k), (9)

where yt is the n-vector of trait of interest, bt is the p-vector of regression coefficients 159

of risk variants for this phenotype, and Kt is the total number of signals for the trait of 160

interest. 161

Suppose from model 9 we detect single effects, with the corresponding PIPs denoted
as β1, ...,βKt , then the final PIPs for the trait of interest can be computed as:

PIPt = 1−
Kt∏
k=1

(1− βk),

which prioritizes the candidate variants for the trait of interest. From model 9 we can 162

also obtain the variants contained in credible sets for the trait of interest after adjusting 163

for the eQTL priors. 164

In the method section above, we describe the SuSiE model and the SuSiE2
165

framework based on individual-level genotype data. We note that SuSiE has been 166

extended to work with summary statistics [22], which makes it competitive with other 167

well-developed fine mapping methods. 168

Results 169

We demonstrate that integrating eQTL with fine mapping via SuSiE2 can indeed 170

increase efficiency and accuracy through simulation studies and a real data study on 171

Alzheimer’s Disease (AD). Compared with the original SuSiE, SuSiE2 can improve the 172

results of fine mapping in the following aspects while controlling type I error rate at an 173

appropriate level: 174

• SuSiE2 can improve the power of including causal variants in at least one credible 175

set. 176

• SuSiE2 can decrease the average size for credible sets. 177

Simulation 178

The study population in our simulations consists of 10,000 randomly selected Europeans 179

from the UKBB dataset, with each sample genotyped at 20,000 SNPs on chromosome 1. 180

Assuming a total of L risk loci associated with the trait of interest on this chromosome 181

segment, we simulated the gene expression levels and the quantitative trait of interest 182

through the following additive linear models: 183

Yel =

Mel∑
i=1

βeliXi + el, el ∼ N(0, σ2
el), βeli ∼ N(0,

1− σ2
el

Mel
), l = 1, 2, ..., L,

184

Yt =

Mt∑
i=1

βtiXi +
L∑

l=1

γlYel + e0, e0 ∼ N(0, σ2
t ), βti ∼ N(0,

1− σ2
t

Mt
). (10)

Here, Yel is the gene expression level for the lth risk locus, Yt is the quantitative trait of 185

interest, Mel represents the number of causal SNPs for the lth risk locus, Mt is the 186

number of causal SNPs for the trait of interest, Xi is the standardized genotype for the 187

ith SNP, σ2
el and σ2

t are the variance of error terms for the ith gene expression level and 188

trait of interest, respectively. The effect sizes of the causal SNPs were assumed to follow 189

normal distributions with zero means and variances chosen to ensure 190

August 21, 2023 6/15

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 3, 2023. ; https://doi.org/10.1101/2023.10.03.23294486doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.03.23294486
http://creativecommons.org/licenses/by/4.0/


V ar(Yel) = V ar(Yt) = 1. For each risk locus, half of the Mel causal SNPs were also 191

contained in the Mt effect variants for Yt. Therefore, the causal SNPs can affect the 192

trait of interest either directly or through their effects on gene expressions, or in both 193

ways. 194

The heritability for the trait of interest was selected from {0.1,0.2,0.3,0.4,0.5}, and 195

the total number of causal SNPs was fixed at 30. These causal SNPs were equally 196

distributed across L risk loci, with L being either 5 or 10. Throughout our simulations, 197

we used the 95% percent credible sets to capture causal variants. We compared the 198

performance of the following three methods: the original SuSiE without eQTL 199

information (SuSiE), the SuSiE2 method that only used eQTL information from one 200

risk locus (SuSiE2 partial), and SuSiE2 that used eQTL information from all the 5 or 10 201

risk loci (SuSiE2 all) with the following three criteria: 202

• Power: the proportion of true effect variables included in at least one credible set. 203

• Type I error rate: the proportion of non-causal variables included in at least one 204

credible set. 205

• Average size: the average size of credible sets detected. 206

We first compared the results with summary statistics and the in-sample LD matrix, 207

with the results summarized in Figure 1. We observed that for every combination of 208

true heritability and number of risk regions, two SuSiE2 methods always improved the 209

power of detecting causal SNPs and also reduced the average size of credible sets, and 210

the improvement of SuSiE2 all was more significant compared with SuSiE2 partial. All 211

three fine mapping approaches controlled the type I error rate at a low level with the 212

95% credible sets, but SuSiE2 all always had fewer false positives. The credible sets we 213

obtained from SuSiE were designed to contain at least one effect variable with 95% 214

probability. However, the target type I error rate here was the proportion of non-causal 215

variables incorrectly detected, which can be largely influenced by the average size and 216

total number of credible sets. This explains why the type I error rate seems to be way 217

lower than the nominal level. When the number of risk loci increased from 5 to 10, the 218

performance of SuSiE2 regarding all the criteria improved more significantly. With 10 219

risk loci, SuSiE2 all improved the power of detecting causal SNPs by 10% while 220

reducing false positives by 50% when utilizing the in-sample LD matrix. Besides, we 221

observed a 40% reduction in the average size of credible sets obtained by SuSiE2 all 222

compared with the original SuSiE. It is worth mentioning that although not as good as 223

SuSiE2 all, SuSiE2 partial achieved better performance compared with the original 224

SuSiE, which indicated that considering only a small proportion of eQTL information 225

can still help improve the results of fine mapping. 226

We also checked the performance of three fine mapping methods when using the LD 227

matrix calculated from an external reference panel of 5,000 Europeans from the UKBB 228

study, with the results summarized in Figure 2. All three methods controlled the type I 229

error rate at a low level. The power of fine mapping studies based on the external 230

reference panel was reduced on average and became less stable compared to the 231

simulation using the in-sample LD matrix. This suggests that accurate information 232

about the correlations between variants plays an important role in identifying the true 233

causal variants. However, integrating the eQTL priors via SuSiE2 improved the 234

performance of fine mapping for all situations. When the number of risk loci was 10, 235

SuSiE2 all achieved better performance with a 50% increase in power and a 30% 236

reduction in the proportion of false positives. This suggests that eQTL information can 237

compensate for the power lost because of inaccurate LD information. 238
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Fig 1. Simulation results of power, type I error rate, and averaged size of
credible sets for three fine mapping methods with the in-sample LD matrix.
This simulation was based on 10,000 UKBB samples and 20,000 SNPs with an in-sample
LD matrix. The solid red dots represent the average values across 40 repetitions.

Application to AD dataset 239

In this section, we applied SuSiE2 to a real dataset on Alzheimer’s disease. The 240

summary statistics we used were from a recent meta-analysis of individuals from 13 241

cohorts, with a total of 1,126,563 individuals (90,338 cases and 1,036,225 controls) 242

included [23]. This meta-analysis identified 3,915 significant (P < 10−8) variants across 243

38 independent loci, including seven loci that had not been reported previously. The 244

sample size generating the summary statistic for each SNP ranged from 216 to 762,917, 245

with a median of 661,401. To make the z-scores of each SNP more comparable, we 246

removed those SNPs with corresponding sample sizes smaller than 500,000. 247

We obtained the gene expression levels for AD risk loci from the ROSMAP 248

dataset [24], which contained the bulk RNA sequencing (RNA-seq) data of 642 249

individuals. Among them, 473 individuals also had genotype data available on 572,266 250

SNPs, which allowed us to conduct an eQTL study for AD risk loci via SuSiE. We used 251

the Michigan imputation server [25] with 1000 Genomes Phase 3 (Version 5) as the 252

reference panel. After imputation, we obtained the genotype data for 473 ROSMAP 253

samples at 13,753,668 SNPs. 254

To evaluate our method, we treated the predicted functional SNPs for Alzheimer’s 255

diseases from a single-cell epigenomic analysis [26] as the validation data. This study 256
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Fig 2. Simulation results of power, type I error rate, and averaged size of
credible sets for three fine mapping methods with an external reference
panel. This simulation was based on 10,000 UKBB samples and 20,000 SNPs with an
external reference panel of 5,000 Europeans from the UKBB study. The solid red dots
represent the average values across 40 repetitions.

developed a machine-learning classifier to integrate a multi-omic framework and 257

identified multiple pairs of AD risk locus and the most likely mediator in both coding 258

and non-coding regions. After removing the APOE locus because of multiple mediators, 259

there were in total 35 pairs of AD risk locus and mediator, 16 in the coding regions and 260

19 in the non-coding regions. 261

Our real data analysis was conducted with the following steps: 262

1. We extracted all the common SNPs within 100kb upstream and downstream of 263

each likely mediator as a target set. 264

2. The LD matrix was calculated for each target set with a reference panel based 265

on Europeans from the UKBB dataset. 266

3. We fitted the eQTL-based SuSiE model with the ROSMAP dataset and 267

calculated the PIP for each candidate SNP in the target set. 268

4. PIPs from step 3 were treated as prior distributions and integrated into the fine 269

mapping study based on summary statistics from the meta-analysis to get SuSiE2
270

results. 271
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Two fine mapping methods we considered were SuSiE2 and the original SuSiE that 272

did not take advantage of the eQTL information. We only considered 20 mediator-risk 273

loci pairs in the common part of the ROSMAP dataset, reference panel, and the 274

meta-analysis dataset. We compared the AD mediators identified by SuSiE and SuSiE2, 275

with the results summarized in Table 1. SuSiE2 successfully identified nine out of 20 276

mediators, while SuSiE only captured five of them. In the coding region, there were in 277

total seven causal SNPs, SuSiE identified two of them, while SuSiE2 detected three of 278

them. In the non-coding region, the number of AD mediators identified by SuSiE was 279

three, while the number of mediators identified by SuSiE2 was six. We also evaluated 280

the properties of generated credible sets (CSs) by two methods, summarized in Table 2. 281

The original SuSiE captured 27 credible sets, with an average size of 9.6, while 282

integrating eQTL information allowed us to identify 29 credible sets and reduced the 283

average size to 8.0. Compared with SuSiE, SuSiE2 also reduced the 75% quantile of the 284

size of credible sets from 13 to 11, which suggests that SuSiE2 may avoid producing 285

extremely large credible sets.

Table 1. Summary of AD mediators detected by SuSiE and SuSiE2.

Method Total Identified (Total) Coding Region Identified (Coding region)

SuSiE 20 5 7 2

SuSiE2 20 9 7 3

286

Table 2. Summary of credible sets identified by SuSiE and SuSiE2.

Method Number of CS Average Size 25% Quantile Median 75% Quantile

SuSiE 27 9.6 2 4 13

SuSiE2 29 8.0 2 4 11

We also calculated the PIP for each mediator by SuSiE and SuSiE2, as shown in 287

Figure 3. From this plot, we observed that SuSiE2 can identify more AD mediators by 288

increasing the estimated PIPs of them, and all the mediators identified by SuSiE were 289

also captured by SuSiE2. Besides, the points of many causal SNPs were distributed 290

around the y = x line, which suggests that the SuSiE regression model may not be very 291

sensitive to the choice of prior probabilities. The numerical results of PIPs estimated by 292

SuSiE and SuSiE2 for every AD mediator are summarized in S1 Table. 293

To illustrate that SuSiE2 enhanced the PIPs for causal mediators, we display the 294

examples of two risk loci in Figure 4. We considered the PIPs for all variants within 295

these loci from the following three categories: eQTL study, SuSiE, and SuSiE2. The 296

PIPs estimated from the eQTL study are used as the prior information by SuSiE or 297

SuSiE2. For the PICALM locus (Figure 4 A), a slightly larger PIP was assigned to the 298

true AD mediator compared with most candidate variants by the eQTL-based SuSiE, 299

which allowed SuSiE2 to capture this mediator in a credible set. However, the original 300

SuSiE failed to include this variant in any credible sets. For the C14orf93 locus (Figure 301

4 B), both SuSiE and SuSiE2 failed to find any signal in the risk locus. The estimated 302

PIPs by SuSiE were stable at a very low level, with the largest PIP smaller than 0.05. 303

In contrast, with the prior information provided by the eQTL study, the signals for 304

some candidate SNPs in this region were enhanced with the strongest PIP larger than 305

0.15. Besides, the PIPs for the remaining SNPs estimated by SuSiE2 were reduced 306

towards zero, which indicated that SuSiE2 performed better in separating causal SNPs 307

from non-causal variants. 308

In conclusion, the real data analysis results on the AD dataset also suggest that 309

incorporating eQTL information in the SuSiE model increased the statistical power of 310
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Fig 3. Estimated PIP for each AD mediator by SuSiE and SuSiE2. There
were in total 20 AD risk loci divided into the following three categories. Five mediators
were detected by both SuSiE and SuSiE2, denoted by the blue dots. SuSiE2 identified
four additional risk loci, denoted by the green dots. The remaining 11 loci could not be
detected by either SuSiE or SuSiE2, corresponding to the red dots.

identifying the true variants while reducing the average size of credible sets. Besides, 311

SuSiE2 achieved a better performance in separating causal SNPs from non-causal SNPs. 312

Discussion 313

Statistical fine mapping has been an important tool in detecting the true causal SNPs 314

for complex traits of interest. Most widely used fine mapping methods are based on the 315

Bayesian framework, and assigning a proper prior distribution to risk variants can 316

improve both the accuracy and efficiency of fine mapping. As an important indicator of 317

association with gene expression level, eQTL information can be incorporated into fine 318

mapping by either conducting a colocalization study or fine mapping with annotations. 319

In this manuscript, we proposed a new framework for integrating eQTL with fine 320

mapping via the SuSiE model. Through the simulation study, we showed that this new 321

framework can increase statistical power while reducing the average size of credible sets. 322

The advantage of SuSiE2 compared with the original SuSiE in improving the statistical 323

power was more apparent when we used an external reference panel. The real data 324

application in AD also suggests that SuSiE2 performed better than other methods in 325

identifying the true AD mediators by prioritizing risk variants based on eQTL 326

information before conducting the association study. 327

A number of issues remain to be addressed in the future. The first one is that the 328

formulation of SuSiE2 may be improved so that we do not have to run SuSiE two times. 329

In other words, we may accomplish the eQTL-adjusted SuSiE within one framework. 330

Second, although our simulation suggests that SuSiE is generally robust to overstating 331

of the total number of causal effects K in the IBSS algorithm [8], SuSiE was not very 332
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Fig 4. Estimated PIPs by SuSiE, SuSiE2 and eQTL-based SuSiE for
PICALM (A) and C14orf93 (B). The PIPs estimated from the eQTL study are
used as the prior information by SuSiE or SuSiE2. For the PICALM locus, PIPs for the
true mediator in this locus are surrounded by the purple circle, and the points
surrounded by an orange triangle correspond to the credible set from SuSiE2 which can
capture the true mediator. For the C14orf93 locus, the true mediator was not included
in the common part of summary statistics and ROSMAP data.

stable to the choice of K in real data applications. A larger K sometimes leads to the 333

finding of new credible sets. Based on our experience, we recommend increasing the 334

parameter K starting from 1 and stopping this process when we fail to find new credible 335

sets. Further investigation of the mechanisms underlying this phenomenon is needed to 336

find the best way to select the parameter and make use of the prior information. Third, 337

as eQTLs may be context and cell-type specific, we may jointly consider eQTLs across 338

multiple conditions and also include other molecular QTL information to more 339

comprehensively capture different mechanisms contributing to diseases. 340

Conclusion 341

In this manuscript, we have introduced SuSiE2, a statistical framework that 342

incorporates eQTL information to fine mapping. By prioritizing variants within the 343

candidate region with eQTL information, SuSiE2 improves the performance of fine 344

mapping by simultaneously increasing statistical power, reducing false positives, and 345

decreasing the average size of credible sets compared with the original SuSiE. We also 346

demonstrate through simulations that eQTL information can compensate for the power 347

loss because of inaccurate LD information. In the real data application, SuSiE2
348

confirms four more functional SNPs associated with AD predicted from single-cell 349

epigenomic data compared with SuSiE. Evaluations of AD risk genes like PICALM and 350

C14orf93 indicate that SuSiE2 enhances the PIPs for causal mediators and achieves 351

superior performance in distinguishing causal SNPs from non-causal variants. 352

Supporting information 353

S1 Algorithm. Iterative Bayesian stepwise selection (IBSS) algorithm [8]. 354
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Algorithm 1 IBSS

Require: data X, y, number of effects K, hyperparameters σ2,σ2
0

1: Initialize posterior means b̄k = 0, k = 1, ..,K
2: repeat
3: for k in 1,...,K do
4: r̄k ← y − X

∑
k′ ̸=k b̄k′ ▷ expected residuals without kth single effect

5: (αk,µ1k,σ
2
k)← SER(X, r̄k, σ

2, σ2
0k)

6: b̄k ← αk · µ1k ▷ · denotes elementwise multiplication
7: end for
8: until convergence return αk,µ1k,σ

2
k

S1 Table. Summary information of AD mediators. We summarize the 355

chromosome, SNP ID, AD risk gene, indicator of the coding region, whether or not this 356

mediator can be identified by SuSiE and SuSiE2, and the estimated PIPs for every AD 357

mediator in this table.

Chromosome SNP ID Gene Region SuSiE SuSiE2 PIP(SuSiE) PIP(SuSiE2)

1 rs4575098 ADAMTS4 non-coding FALSE FALSE 0.17953 0.18719

2 rs13025717 BIN1 non-coding FALSE FALSE 0.01919 0.02976

6 rs1004173 TNFRSF21 non-coding TRUE TRUE 0.10046 0.10046

7 rs6464547 TMEM139 non-coding FALSE FALSE 0.00743 0.00743

10 rs7920721 USP6NL non-coding FALSE FALSE 0.00006 0.00020

10 rs7900536 TSPAN14 non-coding FALSE TRUE 0.11388 0.13001

11 rs2276412 SORL1 coding FALSE FALSE 0.00612 0.00263

11 rs3740688 SPI1 coding TRUE TRUE 0.49861 0.51323

11 rs1237999 PICALM non-coding FALSE TRUE 0.04728 0.14347

14 rs3829409 C14orf93 coding FALSE FALSE 0.03634 0.03447

14 rs10130373 RIN3 non-coding TRUE TRUE 0.02232 0.02281

15 rs2289702 CTSH coding FALSE TRUE 0.02941 0.05366

15 rs653765 ADAM10 non-coding FALSE FALSE 0.00085 0.00048

15 rs72749561 MEX3B non-coding FALSE FALSE 0.00368 0.00361

17 rs3816913 USP6 coding FALSE FALSE 0.02734 0.03049

17 rs28618326 NGFR non-coding TRUE TRUE 0.05928 0.05928

19 rs3764645 ABCA7 coding FALSE FALSE 0.01769 0.02767

19 rs12459419 CD33 coding TRUE TRUE 0.43724 0.43503

19 rs2303696 REX1BD non-coding FALSE TRUE 0.01170 0.02585

20 rs17462136 CASS4 non-coding FALSE FALSE 0.00798 0.00777

The SuSiE column represents whether or not the original SuSiE can identify the corresponding AD
mediator. The SuSiE2 column is similar.
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