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Abstract 1 

Background 2 

Adverse outcomes including myocardial infarction and stroke render coronary artery 3 

disease (CAD) a leading cause of death worldwide. Biomarkers that predict such 4 

adversity enable closer medical supervision and opportunities for improved outcomes.  5 

Methods and results 6 

We present a study of genome-wide DNA methylation profiling in 933 CAD patients 7 

with up to 13 years of clinical follow-up. We discovered 115 methylation sites 8 

associated with poor prognosis and inferred that cellular senescence, inflammation, 9 

and high-density lipoprotein mediated the adversity. We built succinct prognostic 10 

models combining a few methylation sites and clinical features, which could stratify 11 

patients of different risks. Furthermore, we assessed genetic regulation of the 12 

differential methylation by interrogating QTL effects. Prognostic genes such as 13 

FKBP5, UBE2E2 and AUTS2 appeared recurrently in various analyses and were 14 

validated in patients of myocardial infarction and stroke.  15 

Conclusions 16 

Our study provides prognostic models for clinical application and revealed 17 

methylation biomarkers and mechanisms of CAD adverse outcomes.  18 

Key words:  19 

coronary artery disease; prognostic model; machine learning; DNA methylation; 20 

inflammation; death; 21 
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Introduction 1 

Coronary artery disease (CAD) is life-threatening and represents a universal leading 2 

cause of death 1-3. Studies of the last century suggested a 15-year survival rate of 48-3 

70% 4,5. Despite the remarkable amelioration in the recent 30 years in managing its 4 

clinical risk factors and the secondary and tertiary preventions, CAD is associated 5 

with 17.8 million annual deaths worldwide 6,7. Identifying patients with greater risk of 6 

poor prognosis enables closer medical supervision and therefore opportunities for 7 

better clinical outcomes. Numerous genetics-based research reported novel targets 8 

and tools for predicting adverse outcomes  in CAD patients. Indeed, CAD has an 9 

estimated heritability of 0.38-0.66 for incidence 8 and 0.38-0.57 for mortality 9. 10 

However, towards which direction it progresses is multifactorial determined by the 11 

combined effects of genetic and environmental factors, therefore we reason that 12 

considering multiple layers of information, such as genetics and epigenetics, will 13 

better identify patients susceptible to poor prognostic outcomes. 14 

 DNA methylation on CpG (cytosine-phosphate-guanine) dinucleotides, a 15 

stable yet dynamic regulation mechanism reflecting both genetics and environment, 16 

enables exploring their integrated effects on diseases. Epigenome-wide association 17 

studies (EWAS) suggested DNA methylation as a feasible biomarker for CAD. Two 18 

recent large-scale EWAS surveyed multiple cohorts of various ancestries and 19 

collectively reported 85 DNA methylation sites in blood leukocytes to be associated 20 

with incident CAD or myocardial infarction (MI) 10,11. Comprehensive studies also 21 

report association between DNA methylation and the risk factors of CAD including 22 

aging 12, smoking 13, blood lipids 14, inflammation 15, hypertension 16, and diabetes 23 

mellitus (DM) 17. Furthermore, initial EWAS studies identified strong signals that 24 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 9, 2023. ; https://doi.org/10.1101/2023.10.07.23296703doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.07.23296703
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

6

predicted all-cause death of cardiovascular diseases 18,19, albeit its biological 1 

mechanisms remained to be explored. As such, DNA methylation indicates not only 2 

the risk of CAD incidence but also its progression. 3 

 In this study, we conducted a two-stage multicenter EWAS on prognosis of 4 

CAD in 933 patients, profiling blood leukocyte-derived DNA methylation by Illumina 5 

MethylationEPIC BeadChip and interrogating its association with patient outcomes in 6 

up to 13 years of follow-up. We defined the primary endpoint as all-cause death and 7 

the secondary endpoint as major adverse cardiovascular events (MACE), including 8 

death, nonfatal myocardial infarction, coronary revascularization, and stroke. From 9 

differentially methylated probes/sites (DMPs), we inferred mediating phenotypes, 10 

built risk prediction models, assessed the contribution of genetic regulation, and 11 

finally, evaluated how the genes impacted by DMPs were expressed during the 12 

adverse events. Our results show that DNA methylation of leukocytes from peripheral 13 

blood provides robust biomarkers and rich insights into the prognosis of CAD.  14 

Methods 15 

Cohort assembly and baseline information collection 16 

This study was approved by the Medical Research Ethics Committee of 17 

Guangdong Provincial People's Hospital (approval number: GDREC2017071H) and 18 

complied with the Declaration of Helsinki. All patients provided written informed 19 

consents. 20 

We recruited over 5,000 CAD patients from three medical centers in two areas 21 

of China for studying the prognosis of CAD, namely Guangdong Provincial People's 22 

Hospital, First Affiliated Hospital of Sun Yat-sen University, and Xiangya Hospital of 23 
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Central South University 20. We selected 405 patients recruited between January 2010 1 

to December 2017 from Guangdong Provincial People's Hospital to form the 2 

discovery cohort, based on a nested case-control study design. 528 patients recruited 3 

from 2017 to 2018 from all three medical centers were assembled as the validation 4 

cohort. All cohort participants were identified either with a history of coronary artery 5 

bypass graft operation or newly diagnosed by coronary angiography and carotid artery 6 

ultrasonography to have ≥50% obstruction, as assessed by the luminal diameter, in 7 

minimally one main coronary artery. The inclusion criteria were: (1) aged over 30 8 

years old, (2) no history of renal transplantation or dialysis, (3) no cirrhosis, (4) not 9 

pregnant nor breastfeeding, (5) no malignancy, (6) no history of haemodialysis; (7) no 10 

history of thyroid problems, not using antithyroid drugs nor thyroid hormone 11 

medication in the past week, and (8) completed the follow-up surveys. 12 

The cohort participants were admitted to hospitals; after overnight fasting, their blood 13 

samples were drawn at 7AM on the second morning. Clinical laboratory tests were 14 

performed and detailed clinical surveys, including medical history, family history, 15 

smoking status, and medication intake were collected as baseline information. 16 

Echocardiography was used to determine the function and structure of the left 17 

ventricle (LV). All patients were followed up by telephone every six months by the 18 

medical staff team for inquiring about occurrences of all-cause death or major adverse 19 

cardiovascular events (MACE), with the latter defined as nonfatal myocardial 20 

infarction, coronary revascularization, stroke, and death. 21 

DNA extraction from blood leukocytes 22 

Whole blood was collected in EDTA-K2 anticoagulant tubes and immediately 23 

separated into plasma and hemocyte by centrifuging at 1000 g for 10 min at 4°C. 24 
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Genomic DNA was extracted from hemocyte and transferred to cryopreservation 1 

tubes, which were stored at −80°C for subsequent experiments.  2 

Genome-wide DNA methylation profiling and data preprocessing 3 

DNA quality was assessed by ultraviolet spectrophotometer (Thermo Scientific, 4 

NanoDrop 2000). Briefly, about 500 ng of DNA was treated with sodium bisulfite for 5 

converting unmethylated nucleotide C to U, using the EZ DNA Methylation Kit 6 

(Zymo Research). After the conversion, methylation levels of more than 850,000 CpG 7 

sites were quantified using the Illumina Infinium MethylationEPIC BeadChip, which 8 

was run on an Illumina iScan Systems according to the manufacturer’s standard 9 

protocol. DNA methylation profiling was serviced by Genenergy Inc. The 10 

experimental operator was blind to the group information and randomly assigned the 11 

samples to different chips and plates.  12 

Raw signal intensities of DNA methylation were stored in .idat files and imported to 13 

the R environment using the “ChAMP” package 21,22. Analysis was performed 14 

separately for the discovery cohort and the validation cohort. Methylation level of 15 

each probe, i.e., beta value, was defined as Meth/(Meth + Unmeth + 100), where 16 

Meth was signal intensity of the CpG site in methylated form and Unmeth was that in 17 

unmethylated form. Beta values ranged from 0 to 1, with a larger value indicating a 18 

higher level of methylation. Probes were excluded if meeting one of the following 19 

criteria: (1) with detection P value >= 0.01, (2) with beadcount <3 in at least 5% of 20 

samples, (3) DNA methylation occurring to non-CpG dinucleotides, (4) aligning to 21 

multiple locations 23, (5) located on chromosome X or Y. In total, 733,638 probes in 22 

the discovery cohort and 738,366 probes in the validation cohort were retained.  23 
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The qualified probes were normalized with the BMIQ method 24 to correct for signal 1 

bias caused by type-I and type-II probes on the array. Next, we used the method 2 

proposed by Houseman et al. 25 to estimate the relative proportions of blood cells, 3 

including CD8 lymphocytes, CD4 lymphocytes, natural killer cells, B cells, 4 

monocytes, and granulocytes. We also leveraged 224 positive control probes to 5 

evaluate the impact of technical confounders, which we generally referred as batch 6 

effect, on the DNA methylation values. Briefly, we computed the principal 7 

components (PCs) of these positive control probes and assessed the association 8 

between the first 20 PCs and several technical parameters, including the indices for 9 

bisulfite conversion batch, plates, sample wells and chip. Methylation residuals were 10 

then obtained via linear regression, with the beta value of each probe as independent 11 

variable, and age, sex, smoking status, estimated white-blood-cell proportions, and the 12 

top 10 PCs of positive control probes as dependent variables.  13 

Epigenome-wide association analysis 14 

Cox regression-based survival analysis was employed to explore the association 15 

between each methylation residual and the trait, i.e., all-cause death or MACE. We 16 

performed such EWAS separately for the discovery and the validation cohorts. In 17 

each EWAS, we adjusted for age, sex, smoking status, percutaneous coronary 18 

intervention (PCI), arrhythmia, heart failure, hypertension, hyperlipidemia, and 19 

medication intake including β-receptor blocker (BB), angiotensin converting enzyme 20 

inhibitors (ACEI), calcium channel blocker (CCB), proton pump inhibitor (PPI), 21 

clopidogrel, and aspirin. A strict epigenome-wide significance threshold by 22 

Bonferroni correction was set as P < 6.83E-08 and a moderate threshold by Benjamini 23 

& Hochberg correction was set as FDR <0.05. The differentially methylated site was 24 

considered validated when the association showed a consistent direction of effect in 25 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 9, 2023. ; https://doi.org/10.1101/2023.10.07.23296703doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.07.23296703
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

10

both cohorts, with FDR <0.05 in the discovery cohort and P < 0.05 in the validation 1 

cohort. 2 

Characterizing genomic locations of DMPs 3 

Genomic locations of DMPs were annotated by Annovar 26. Overlap with regulatory 4 

elements were computed based on ENCODE Encyclopedia version 5 (ENCODE5) 5 

cCRE catalog 27, including insulators, promoters, distal enhancers, and proximal 6 

enhancers. Enrichment against tissue- and cell type- specific regulatory elements was 7 

performed based on histone modification chromatin immunoprecipitation peaks (ChIP) 8 

(H3K4me1, H3K4me3, H3K27me3, H3K36me3, H3K9me3, and H3K27ac marks) 9 

and regions of 15 chromatin states across 299 cell types and tissues from Roadmap 10 

Epigenomics 28,29 in eFORGE v2.0 (https://eforge.altiusinstitute.org/).  11 

Target gene predictions  12 

We predicted the target genes impacted by the DMPs by two methods. For one, we 13 

used the annotation file provided by Illumina, which assigned each CpG site to its 14 

nearest gene. For the other, we leveraged the activity-by-contact (ABC) model 15 

developed by Nasser et al. 30,31, which identified active enhancers in a particular cell 16 

type and predicted their target genes based on chromatin states and three-dimensional 17 

contacts. To identify the ABC enhancers that overlap with DMPs, we adopted the 18 

GWAS annotation approach by Zhang K et al. 32 by adding ±2500 bp to the genomic 19 

location of DMPs and overlapped them with the ABC enhancers of 131 human cell 20 

types. We adopted the original ABC score thresholds, namely ≥0.015 for distal 21 

element-gene connections and ≥0.1 for proximal promoter-gene connections, to 22 

define DMP – enhancer – target gene connections.  23 
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Construction of prognostic models for death and MACE 1 

Risk prediction models were constructed based on the discovery cohort and tested in 2 

the validation cohort. For building the methylation model of death, 21 DMPs passing 3 

the Bonferroni-corrected epigenome-wide significance threshold were pruned by a 4 

random forest approach (feature pruning) and those retained were fit by the 5 

multivariate Cox regression to derive the final model (weight tuning). For feature 6 

pruning, the parameters mtry and ntree in the random forest models were tuned using 7 

the out of bag error for deriving a minimal overall misclassification rate. mtry refers to 8 

the number of variables tried at each split and ntree refers to the number of trees to be 9 

grown in a forest. The top 10 DMPs with the largest variable importance measure 10 

(VIM), which denoted the contribution of each input feature to the model, were 11 

retained. For the risk model of MACE, all eight DMPs passing the Bonferroni-12 

corrected epigenome-wide significance threshold were retained. In weight tuning, the 13 

retained DMPs were fit by multivariate Cox regression in the R package “survival”. 14 

For deriving robust AUC (The area under the receiver operating characteristic (ROC) 15 

curve) values, we adopted a process of 80:20 data split and 1,000 times cross 16 

validation. The final model was obtained by combining all patients in the discovery 17 

cohort. 18 

We applied two types of models to the multi-center validation cohort for testing their 19 

performances, with one combining CpG sites, sex, and age, and the other combining 20 

CpG sites, sex, age, HDLC, Fibrinogen, and LVEF. Prediction risk scores for five-21 

year survival were computed, and Wilcoxon test was used to assess whether the 22 

scores between the two groups of patients, i.e., with and without the events of death or 23 

MACE, were significantly different. The sensitivity and specificity of these two 24 
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models were computed using the ConfusionMatrix function from the R package 1 

“caret”. 2 

Several clinical features were also assessed for their capability in predicting CAD 3 

prognostic outcomes, alone or in combination with other clinical features and the 4 

selected methylation sites, using the R package “survival”. 5 

Pleiotropic association analysis of DMPs and eQTL 6 

Summary-data based Mendelian Randomization (SMR) analysis 33 and the 7 

Heterogeneity in Dependent Instruments (HEIDI) test were employed to identify 8 

pleiotropic relationships between the DMPs and gene expression 9 

(https://yanglab.westlake.edu.cn/software/smr/#Download). GWAS summary 10 

statistics for DNA methylation in Asian populations, and therefore information of 11 

methylation quantitative trait loci (meQTL), were obtained from Peng et al 34. The 12 

association strength beta theoretically ranges between -1 and 1 for maximally 13 

negative to maximally positive associations. The information of cis-eQTL were 14 

downloaded from eQTLGen (https://www.eqtlgen.org/). Allele frequencies were 15 

obtained by referring to the East Asians in the 1000 Genomes Project reference panel 16 

(phase3, version5) 35. 69 DMPs with at least one cis-meQTL (P <1.0E-08) were 17 

selected for computing causal relationships with cis-regulated gene expression. The 18 

CpG-gene expression associations with a Bonferroni-corrected P value (P < 0.05/69 = 19 

7.25E-04) were further selected for the HEIDI test (PHEIDI >0.05) to distinguish 20 

pleiotropy from linkage. 21 
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Genome-wide association study of death and MACE 1 

We performed genome-wide association studies (GWAS) on death and MACE in 2 

1,551 CAD patients recruited from Guangdong Provincial People’s Hospital, Xiangya 3 

Hospital of Central South University, and the First Affiliated Hospital of Sun Yat-sen 4 

University. These patients were genotyped by Illumina Infinium GSA-24 v1.0 bead 5 

chip on 700,078 single-nucleotide genomic positions, which, after genotype 6 

imputation against the East Asian populations in the 1000 Genomes Project, 7 

generated 3,435,397 high-quality single nucleotide variants (SNVs). Details about 8 

cohort enrollment, baseline characteristics, data quality control, and genotype 9 

imputation were described previously 20. Logistic regression was employed for the 10 

GWAS via the PLINK software (version 2.0). The first 10 principal components, sex, 11 

age, smoking status, percutaneous coronary intervention (PCI), arrhythmia, heart 12 

failure, hypertension, hyperlipidemia, and medication intake including β-receptor 13 

blocker (BB), angiotensin converting enzyme inhibitors (ACEI), calcium channel 14 

blocker (CCB), proton pump inhibitor (PPI), clopidogrel, and aspirin were included as 15 

covariates. 16 

Differential gene expression analysis in MI and stroke 17 

We obtained from Kuppe et al 36 single-nucleus RNA sequencing data from 19 18 

patients with acute MI and four non-transplanted heart donors as controls. A total of 19 

191,795 nuclei from 31 tissue samples, including ten major cardiac cell types, were 20 

obtained. We performed differential gene expression analysis between the MI patients 21 

and controls, as well as among three tissue zones, namely myogenic, ischemic, and 22 

fibrotic zones. We also assessed differences between groups by cell types. Wilcoxon 23 

tests implemented in the FindMarkers function of the R package “Seurat” were used 24 
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37. Genes passing the Bonferroni-corrected P value of 0.05 were considered 1 

differentially expressed. Time-series expression analysis based on Fuzzy C-means 2 

clustering was used to demonstrate the relative expression changes of prognostic 3 

genes.  4 

We obtained bulk RNA sequencing of peripheral blood from patients of MI 38 and 5 

patients of ischemic stroke 39. Differential gene expression analysis was performed 6 

between patients and controls using the R package “limma” 40. 7 

Statistical tests 8 

Baseline demographic and clinical characteristics were presented as mean ± standard 9 

deviation for continuous variables and counts (%) for categorical variables. Cox 10 

regression-based survival analysis was employed for assessing association between 11 

the features and outcomes. Linear regression was used to explore the relationships 12 

between DMPs and six inflammatory markers, four blood lipids and two left 13 

ventricular indices. Enrichment analysis of biological pathways and traits in GWAS 14 

Catalogue database were carried out by R package “enrichR” and terms with a P 15 

value smaller than 0.05 was considered as significant. Unless stated, P values derived 16 

from multiple tests were corrected by methods of FDR or Bonferroni correction. 17 

Wilcoxon test was used to assess if the difference of continuous variables between 18 

two groups were statistically significance. For counts, chi-square tests were used.  19 

Results 20 

Baseline characteristics of the study population  21 

We adopted a two-stage multicenter design for studying DNA methylation 22 

related to CAD prognosis (Figure 1a). We assembled over 5,000 CAD patients from a 23 
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large medical center in China and based on the nested case-control study design, 1 

selected 405 patients to form the discovery cohort. As such, a total of 217 deaths and 2 

247 MACE events were recorded in up to 13 years of follow-up, while 158 patients 3 

experienced no adversity. For the validation cohort, we chose a forward study design 4 

and enrolled 528 CAD patients from three medical centers in China. We followed the 5 

patients in the validation cohort for about 3 years and observed 25 deaths and 41 6 

MACE events. 7 

The baseline characteristics of the patients at the time of enrollment were 8 

expounded in Supplementary data online, Table S1 and Figure S1. Consistent with 9 

epidemiological observations, our CAD patients were mainly men aged over 60 years 10 

(73%). We documented their basic demographic information, medical history, 11 

biomedical measurements after overnight fasting, and medication intake during the 12 

ascertained periods. The measurements were comparable between the two cohorts (P > 13 

0.05), except for a few, most of which were included as covariates in our statistical 14 

tests. Overall, the two cohorts displayed similar patient characteristics. The follow-up 15 

times and event times are displayed in Supplementary data online, Figure S1. 16 

EWAS identified differentially methylated CpGs for death and MACE  17 

We extracted DNA from leukocytes in peripheral blood and performed 18 

genome-wide methylation profiling via the Illumina Infinium MethylationEPIC 19 

BeadChip. After stringent quality control (see Supplementary data online, Figure S2), 20 

we obtained 733,737 and 738,021 high-quality CpG probes from the discovery and 21 

the validation cohorts, respectively.  22 

 Next, we employed Cox regression for EWAS on the high-quality DNA 23 

methylation sites against the survival of all-cause death or MACE (see Supplementary 24 
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data online, Figure S3a-S3b and Table S2-S4). In the discovery cohort, after 1 

correcting for sex, age, smoking status, percutaneous coronary intervention, heart 2 

failure, hypertension, arrhythmia, hyperlipidemia, and medications, a total of 554 3 

differentially methylated CpGs (DMPs) passed the moderate significance threshold 4 

(FDR adjusted P, i.e., Q < 0.05, Figure 1b). In the validation cohort, 105 of the 554 5 

DMPs were replicated, defined by P < 0.05 and consistent direction of effect. 6 

Remarkably, 21 DMPs in the discovery cohort remained significant after the 7 

epigenome-wide Bonferroni correction (P < 6.83E-08), and six of them were 8 

replicated in the validation cohort (P < 0.05). Similarly, we performed EWAS on the 9 

secondary endpoint, MACE. 30 out of the 95 DMPs were validated, among which 10 

five passed the Bonferroni-corrected threshold.  11 

 Overall, 115 DMPs were detected in both cohorts as associated with adverse 12 

outcomes of CAD, with most showing increased methylation (Figure 2a, 13 

Supplementary data online, Figure S3 and Table S5). Notably, 60% DMPs were 14 

reported in EWAS Catalog 41 and EWAS Atlas 42 to connect to a variety of traits and 15 

diseases, including Crohn's disease and inflammatory bowel disease (25 DMPs), 16 

smoking (16 DMPs), aging (8 DMPs), and C-reactive proteins (6 DMPs) 15. 17 

Associations with body mass index 17,43, atherosclerotic plaque 44, and death risk 45 18 

were also observed.  19 

 These 115 DMPs tend to reside in non-coding regions, particularly distal 20 

enhancers (see Supplementary data online, Figure S4a-S4b). Overlap with histone 21 

modification ChIP peaks and the 15 chromatin states from Roadmap (Methods) 22 

revealed that these DMPs were strongly enriched in enhancers specific to blood 23 

monocytes, adipocytes, myoepithelial cells, and fibroblasts. Furthermore, the left 24 

ventricle and right atrium also appeared on the top of the list (Q < 0.05, see 25 
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Supplementary data online, Figure S4c-S4d). These results suggest that the DMPs 1 

were prone to occur in regions characteristic of heart traits. Note that our DNA 2 

methylation were derived from blood leukocytes; however, the DMPs tend to locate 3 

in enhancers characteristic of not only blood but also tissues and cells of non-blood 4 

origin yet known to play critical roles in CAD. Given that both DNA methylation and 5 

RNA transcription in blood were distinct from solid organs 46, our observation 6 

suggested that methylation in leukocytes indeed carried pathophysiological features 7 

and therefore suitable to serve as biomarkers  8 

 A main function of methylation is to regulate gene expression. By annotating 9 

DMPs to the closest genes, we discovered 100 prognostic genes, which were highly 10 

enriched for apoptotic pathways, stress response, inflammation response, and vascular 11 

processes (Figure 2b). Furthermore, these genes were enriched for CAD and immune 12 

traits as recorded in the GWAS Catalog (Figure 2c).   13 

Pathways and mediating phenotypes of DMPs 14 

 We also interrogated target genes by querying the connections of enhancers to 15 

target genes via the Activity-by-Contact (ABC) model, which leveraged chromatin 16 

states and three-dimensional contacts (Methods). For linking DMPs to enhancers, we 17 

adopted a liberal approach in Boix et al. (Methods) for connecting GWAS loci to 18 

enhancers, by which we extended the DMPs by adding 2500 bp to both flanking 19 

regions. Next, we assessed if the 5 Kb regions overlapped with any enhancers, which 20 

in turn were connected to genes via the ABC model. In this way, 83 of the 115 DMPs 21 

(72.1%) were connected to 806 genes (see Supplementary data online, Table S6). 22 

Consistent with the closest gene annotation, these genes were enriched for 23 

inflammation and cellular senescence (P < 0.05). Notably, three methylation sites, 24 

cg25114611, cg25500196, and cg25563198, were each predicted to interact with > 50 25 
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genes. These big gene clusters were strongly enriched in stress-induced senescence 1 

and inflammation response (Q < 0.05) (see Supplementary data online, Figure S5). 2 

Furthermore, all three DMPs were located on super-enhancers active in CAD relevant 3 

tissues, such as blood, lymphoid, adipose tissue, heart ventricle, and aorta 47.  4 

 Theoretically, the ABC target genes entail cell type-specific functions, due to 5 

enhancers’ selective activity in different cells. Among the blood cells, the target genes 6 

displayed an enrichment for JAK-STAT and interleukin (IL) pathways (IL-2, IL-7, 7 

IL-9, and IL-15) in monocytes and T helper cells, whereas an enrichment for IL-17 8 

pathway was found active in more diverse cell types, including monocytes, 9 

macrophages, CD4+ T helper cells, and CD19+ B cells (see Supplementary data 10 

online, Table S7). We also extended the analysis to all 131 human cell types and 11 

tissues in the ABC model and found these immune pathways active in 24% of the 12 

tissues and cell, including those closely related to CAD, e.g., coronary artery, adipose, 13 

liver, epithelium, and T cells (see Supplementary data online, Figure S6), suggesting 14 

the adverse outcomes involved robust immune response pathways. There also 15 

appeared to be a marginal enrichment of lipid response in T cells and mitochondrial 16 

processes in monocytes and dendritic cells (P < 0.05). 17 

 We verified the connection of the DMPs to inflammation and lipids in clinical 18 

measurements (see Figure 2d and Supplementary data online, Table S8). In both the 19 

discovery and the validation cohorts and out of the 115 DMPs, 43 DMPs displayed 20 

association with systemic immune-inflammation index (SII) as defined by neutrophil 21 

count × platelet count / lymphocyte count 48, 37 DMPs associated with a chronic low-22 

grade inflammation index fibrinogen 49, and 15 DMPs associated with a marker for 23 

acute inflammation prothrombotic status platelet-lymphocyte ratio (PLR) 50. Several 24 

other inflammation markers were also investigated; however, the associations were 25 
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comparably weaker and non-consistent. For lipids, a strong connection of 29 DMPs to 1 

high-density lipoprotein cholesterol (HDLC) was observed. Interestingly, few 2 

connections were found for low-density lipoprotein cholesterol (LDLC), total 3 

cholesterol, or triglycerides (TG). We also examined left ventricular ejection fraction 4 

(LVEF) and left ventricular mass index (LVMI), as low LVEF and high LVMI were 5 

indicative of LV remodeling and therefore increased risk of death or MACE in CAD. 6 

25 and 15 DMPs were respectively associated with LVEF and LVMI, and 7 

reassuringly, most of these associations displayed opposite directions for both traits.  8 

Prognostic models for death and MACE in CAD 9 

Risk prediction models help to identify CAD patients with greater risk of developing 10 

adverse outcomes. We constructed models based on DMPs that displayed epigenome-11 

wide significance of association in the discovery cohort (n=405). We leveraged a 12 

random forest approach to select DMPs that contributed the most to the classification 13 

accuracy, and derived precise weights by the multivariable Cox regression-based 14 

survival analysis (Methods, see Supplementary data online, Figure S7). As such, we 15 

constructed prognostic models for death with 10 CpGs and for MACE with 8 CpGs, 16 

which we termed the CG prognostic models (Table 1). This model for death achieved 17 

an area under the curve (AUC) of 0.70 in the discovery cohort, close to or better than 18 

using traditional risk factors including sex (AUC = 0.52), chronological age (AUC = 19 

0.72) and their combination (AUC = 0.72). Combining sex, chronological age, and 20 

the 10 CpGs improved the prediction power (AUC = 0.80) (Figure 3a). We also built 21 

prognostic models based on the mediating phenotypes. Although not all the clinical 22 

features were equally powerful in predicting the adverse outcomes (see 23 

Supplementary data online, Figure S8a-S8b), we found that the ensemble model 24 

combining the 10 DMPs, sex, age, fibrinogen, HDLC, and LVEF achieved an AUC of 25 
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0.83 (Figure 3b). When applying the models to the validation cohort (n=528), which 1 

was assembled from three medical centers and independent of the discovery cohort in 2 

which the models were built, we observed about 11% drop in both sensitivity and 3 

specificity. Still, the ensemble model could well stratify CAD patients of different 4 

risks of death in five years (P < 0.0001 (see Figure 3c-3d and Supplementary data 5 

online, Table S9).  6 

 Similarly, the CG prognostic model for MACE performed the best when 7 

combining the 8 CpG sites with sex, age, fibrinogen, HDLC, and LVEF (AUC = 0.77) 8 

(Figure 3e-3f) and achieved a good patient stratification of five-year risk in the 9 

validation cohort (see Figure 3g-3h and Supplementary data online, Table S10). 10 

Age is known as a strong risk factor for CVD. Observing the chronological 11 

age predicted closely to the CG models, we explored the performance of several DNA 12 

methylation clocks, including GrimAge 51, PhenoAge 52, Hannum Clock 53, and 13 

Horvath Clock 54. DNA methylation clocks have been shown to better represent one’s 14 

aging status. Indeed, most clock models achieved better prediction than the 15 

chronological age models for death and MACE (see Supplementary data online, 16 

Figure S8c-S8d) and performed equally well or even better than the CG prognostic 17 

models. As these clocks comprised dozens to hundreds of CpG sites, one to two 18 

orders of magnitude more than the maximal 10 CpG sites in our models, our CG 19 

prognostic models are more succinct and specific.  20 

 Note that among our CAD patients with adverse outcomes, a vast majority had 21 

the events occurred within the first 5 years of the ascertained period, therefore our 22 

models mostly captured the risk of adversity in a relative near term.  23 
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Contribution of genetic regulation to CAD prognosis 1 

Methylation can be regulated genetically by quantitative trait loci (meQTL), thus 2 

providing a tool for investigating how genetics influences CAD prognosis. We 3 

queried the 115 DMPs against a meQTL dataset derived from 3,523 East Asians 4 

(Methods). Compared with all CpG sites on the Infinium methylationEPIC beadchip, 5 

the DMPs were enriched for both cis-meQTL, defined as within 1 Mb flanking 6 

regions (Hypergeometric P = 2.12E-08), and trans-meQTL, defined as >5 Mb or 7 

SNP-CpG pair located on different chromosomes (Hypergeometric P = 3.55E-26). 8 

Briefly, 70 DMPs were subjected to the regulation of 14,374 unique cis-meQTLs and 9 

52 DMPs to 1,612 unique trans-meQTLs, with weak associations in most cases. 10 

Compared with trans, DMPs in cis relations tended to have more meQTLs. 11 

Altogether 92 of the 115 DMPs (80%) were regulated genetically (Figure 4a-4d).  12 

 We next assessed how these meQTLs performed in genetic association tests. 13 

We genotyped 1,551 CAD patients using Illumina GSA array, who were recruited 14 

from the three medical centers in China and partially overlap with our methylation 15 

cohort. We derived 3,448,646 high-quality single nucleotide variants (SNVs) after 16 

imputation and quality control, and performed genome-wide association studies 17 

(GWAS) with death or MACE via logistic regression (Methods). Among the 14,374 18 

cis-meQTLs paired with the DMPs, 8,362 were genotyped and therein fewer than 5% 19 

SNPs displayed nominal association (P < 0.05) (see Supplementary data online, 20 

Figure S9a-S9b). Such weak associations would be missed by GWAS, whereas our 21 

EWAS analysis recovered them. The fact that 10s to 1000s of meQTLs regulating one 22 

single DMP, each with a weak strength, suggested that the trickling of little genetic 23 

signals had mounted to significant epigenetic outcomes, which resembled the 24 

polygenic model in complex traits. As such, the most important DMPs could be 25 
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regulated by many meQTLs. Indeed, we observed that the DMP having most cis-1 

meQTLs was cg20015729, with a remarkable 1,842 cis-meQTLs spanning 678.84 Kb, 2 

and closest to the gene Ubiquitin conjugating enzyme E2 E2 (UBE2E2). Similarly, 3 

cg16500036 was associated with over 1,000 cis-meQTLs, and closest to the gene 4 

Activator of transcription and developmental regulator (AUTS2). DMPs having most 5 

trans-meQTLs were cg25563198 and cg25114611, both closest to the gene FKBP 6 

Prolyl Isomerase 5 (FKBP5) (Figure 4e-4f) 7 

 Pleiotropy at the nucleotide level was frequently observed in genetic studies 55. 8 

We were interested in learning the SNVs that simultaneously regulated DMP 9 

methylation and gene expression, i.e., SNV with a dual role of meQTL and eQTL. 10 

Therefore, we leveraged the pleiotropic association model in SMR (Methods) to 11 

integrate meQTLs from Peng et al and eQTLs from eQTLGen. Briefly, 6,796 cis-12 

meQTLs connected to 56 DMPs were identified as or closely located to eQTLs (P 13 

<1.0E-6), which regulated the expression of 242 genes. To further distinguish 14 

pleiotropy from linkage, we performed a HEIDI test against the null hypothesis that 15 

the SMR association was due to pleiotropy. As such, we revealed that 1,785 cis-16 

meQTLs were indeed eQTLs (PHEIDI >0.05), ruling out the possibility that the 17 

pleiotropic associations were caused by genotypes in linkage disequilibrium (LD). 18 

These pleiotropic meQTLs/eQTLs were linked to 29 DMPs and 71 genes, forming 80 19 

CpG-gene pairs (see Supplementary data online, Table S11).  20 

It is worth noting the SNV rs10235487 (see Supplementary data online, Figure 21 

S9c). As a cis-meQTL, it regulated cg16500036, a common feature in the CG 22 

prognostic models of death and MACE. This CpG site was located on an enhancer 23 

predicted by the ABC model to interact with AUTS2, therefore its increased 24 

methylation level would theoretically decrease the expression of AUTS2. Meanwhile, 25 
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as an eQTL, this SNV negatively correlated with the expression of AUTS2 (PSMR = 1 

4.50E-09, PHEIDI > 0.05). Collectively, these pieces of evidence pointed to a strong 2 

connection of SNV rs10235487 to increased methylation of cg16500036 on an 3 

enhancer of AUTS2, which subsequently results in decreased expression of AUTS2, 4 

leading to poor CAD outcomes.  5 

Prognostic genes in acute MI and stroke 6 

Our convergent findings presented above indicated that changes of methylation 7 

perturbed expression of the key genes involved in regulating CAD progression (see 8 

Supplementary data online, Table S5). To further investigate their effects, we 9 

examined expression of the 100 prognostic genes in patients of MI or stroke, two 10 

major adverse outcomes of CAD. 11 

Bulk RNA sequencing of peripheral blood between MI patients and controls 12 

were obtained. In addition, a recent study reported single-nuclei profiling of gene 13 

expression and chromatin accessibility with spatial and time resolution, in which three 14 

zones of the MI lesion tissues were interrogated. We reanalyzed these two datasets 15 

and found that our prognostic genes displayed relatively small expression changes in 16 

MI, whether in tissue or blood, as most expression changes were within 30% (Fig. 5a-17 

5b). This likely reflects the nature of these genes being more sentinel rather than 18 

violent players during the actual occurrence of the adverse events. A closer look 19 

showed that 27 of the 100 prognostic genes changed their expression by 30% or more 20 

in the 3 physiological zones: myogenic, representing non-ischemic or normal tissues; 21 

ischemic, the lesion site; and fibrotic, representing lesion sites with advanced disease 22 

progression (see Supplementary data online, Figure S10a and Supplementary data 23 

online, Table S12). 24 
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 We also examined expression of the prognostic genes in different cell types 1 

(Figure 5c and Supplementary data online, Figure S10b). Notably, FKBP5, the gene 2 

closest to the DMPs cg03546163 (a common marker in CG prognostic models for 3 

death and MACE), cg25114611 and cg25563198 (having the largest number of trans-4 

meQTL and ABC target genes), elevated its expression in MI by four folds in nearly 5 

all cell types, and its expression levels were ever higher along the disease progression. 6 

Conversely, AUTS2 nearest to cg16500036 (a common marker in the CG prognostic 7 

models for death and MACE, and serving a dual role as meQTL and eQTL), 8 

decreased its expression by 52% and 26% in immature innate lymphoid cells and 9 

smooth muscle myoblast cell in MI, and decreased gradually in immature innate 10 

lymphoid cells along the disease progression. UBE2E2 nearest to cg20015729 (a 11 

marker in the CG prognostic model for death), displayed highest expression in 12 

adipocytes of the epicardial fat from the left ventricle; furthermore, we observed its 13 

expression was decreased by 20% in immature innate lymphoid cells and native cells 14 

of MI, and along the disease progression, it first decreased then elevated in several 15 

cell types, including fibroblasts of the cardiac tissue, immature innate lymphoid, and 16 

native cells, suggesting this gene may participate in cardiac repair after acute 17 

myocardial injury.  18 

 As for stroke, in a dataset where gene expression in the peripheral blood from 19 

patients of acute ischemic stroke was studied, we found 14 prognostic genes 20 

displaying differential expression as compared to the healthy controls (Q <0.05) 21 

(Figure 5d). Therein, FKBP5 was among those having the greatest expression 22 

changes.  23 
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Therefore, there appears to be coherent evidence for the strongest signals, such 1 

as those linked to FKBP5, AUTS2, and UBE2E2. We summarized them and 2 

constructed the DMP – gene regulation models (Figure 5e). 3 

Discussion 4 

In this study, we presented comprehensive EWAS on more than 733,000 DNA 5 

methylation sites distributed genome-wide against the survival time of adverse 6 

outcomes in 933 CAD patients. We identified 115 CpG sites whose methylation 7 

patterns were characteristic of patients with future adverse events. From a spectrum of 8 

analyses on these DMPs, we obtained three main observations. 9 

 First, we learned that 72% of the DMPs were located on enhancers and 10 

associated with genes involved in stress response, senescence, inflammation, and 11 

vessel tube regulation. An additional investigation leveraging clinical measurements 12 

revealed finer sub-categories, from which strong associations of the DMPs were 13 

observed with: (1) three inflammation indices, namely fibrinogen, SII, and PLR, all 14 

connected to platelets; (2) heart functions, namely LVEF and LVMI; and (3) HDLC. 15 

As platelets and cholesterol were essential components of thrombosis, our results 16 

suggested that early thrombo-inflammation and heart contraction functions mediated 17 

the adverse outcomes in CAD. Indeed, prognostic models based on fibrinogen, LVEF, 18 

or LVMI, each achieved AUC 0.65 or above. Interestingly, HDL is known in reverse 19 

cholesterol transport, interacts with platelets and exerts an antithrombotic function by 20 

suppressing the coagulation cascade and stimulation of clot fibrinolysis 56. In our 21 

analyses, DMPs were associated strongly with HDLC but little with other lipid 22 

categories; furthermore, HDLC displayed stronger power than other lipid categories 23 

in predicting adverse outcomes. As such, our study suggested that the ability to 24 
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remove cholesterol, rather than its accumulation, was more relevant to the adverse 1 

outcomes. A recent study discovered that LDLC, compared to the inflammation index 2 

C-reactive protein, was less effective in predicting future cardiovascular events and 3 

death 57. Our study suggests that HDLC, not LDLC, may be a more relevant predictor. 4 

Therefore, our methylation study of CAD adverse outcomes may inspire new research 5 

for clinical translation.  6 

 Second, we observed a significant genetic component in the regulation of 7 

CAD adverse outcomes. Strikingly, 80% of the DMPs could be mapped to known 8 

meQTLs. In addition, important prognostic genes, which repetitively appeared as 9 

most significant in various analyses, own the largest number of meQTLs for their 10 

DMPs. For example, UBE2E2 and AUTS2, each had a DMP (cg20015729 and 11 

cg16500036) associated with more than 1,000 cis-meQTLs. FKBP5 had two DMPs, 12 

with one (cg25563198) associated with 267 cis-meQTLs and 273 trans-meQTLs, and 13 

the other (cg25114611) associated with 270 trans-meQTLs. Interestingly, our analysis 14 

showed that each of these meQTLs conferred a very weak GWAS signal; however, 15 

when combined, they collectively regulated the important DMPs. Indeed, the most 16 

important DMPs were regulated under significantly more meQTLs. Such genetic 17 

regulation of DNA methylation resembles the polygenic model in GWAS studies of 18 

many complex traits 58. Furthermore, we discovered that pleiotropic effects were 19 

general. In total, 55% of the meQTLs (n=6,796) that regulated the adverse outcome 20 

DMPs were in LD with known eQTLs. In fact, 15% cis-meQTLs (n=1,785) were 21 

themselves eQTLs, as assessed by the SMR and HEIDI tests. These observations 22 

suggested that a coupled genetic regulation of methylation and gene expression could 23 

be a robust mechanism.  24 
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 Third, most prognostic genes displayed subtle changes during the actual 1 

adverse outcomes. This can be attributed to the nature of our study, that the 2 

biomarkers we searched mainly served as early alarms. These biomarkers represented 3 

proceeding events months to years before the adverse outcomes actually occurred. 4 

That said, however, several prognostic genes did display drastic expression changes 5 

during the adverse events and occurred repetitively as the most significant findings 6 

along various analyses. These genes include FKBP5, AUTS2 and UBE2E2. FKBP5 is 7 

an immunophilin protein that binds to immunosuppressive drugs. In our analysis, 8 

FKBP5 had numerous DMPs associated with inflammation markers and heart 9 

functions. One of them, cg25114611, has been reported in acute MI 59, death risk 45, 10 

inflammatory bowel disease 60, Crohn's disease 61, maternal BMI 62 and diabetes 11 

mellitus 63. FKBP5 expression was reported to be significantly altered in dilated 12 

cardiomyopathy after heart transplantation and suggested to serve as a prognostic 13 

marker 64. In our analysis of MI and stroke, FKBP5 appeared as a most highly 14 

regulated gene and involved in pathways of cellular senescence. Its elevation in MI 15 

tissue was most drastic in innate immune lymphoid cells and adipocytes of the 16 

epicardial fat of the left ventricle. These results align with the recent finding that 17 

DNA demethylation led to increased expression of FKBP5, which in turn promoted 18 

NF-kB signaling in immune cells, resulting in a proinflammatory response and 19 

increased cardiovascular risk 65. Genetic variation in AUTS2 was reported in blood 20 

pressure 66, body mass index 66, type 2 diabetes 67, and mild heart defects 68. UBE2E2 21 

was associated with type 2 diabetes 69, RR interval in electrocardiogram 70, and fat 22 

distribution 71. Functional analysis indicated that loss of function of UBE2E2 in 23 

mouse primary adipose progenitor cells impaired adipocyte differentiation 71. Such 24 
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ample connections to cardiometabolic diseases strongly support the notion that these 1 

prognostic genes played critical roles in the CAD progression.  2 

 Leveraging the DNA methylation markers and the biological insights from our 3 

analyses, we constructed succinct prognostic models for predicting death and MACE 4 

in CAD patients. To facilitate clinical application, we purposefully selected 5 

maximally 10 CpG sites; furthermore, we incorporated simple demographic 6 

information such as chronological age and sex, and a few clinical features that were 7 

relatively easy to obtain, including fibrinogen, LVEF, and HDLC. Our ensemble 8 

models achieved AUC of 0.83 for predicting death and 0.77 for predicting MACE. 9 

Furthermore, they achieved robust performance in CAD patients independently 10 

assembled from three medical centers, proving their potential for clinical translation.  11 

 There are several limitations in our study. First, most of the adverse events 12 

occurred to our CAD patients were within the first 5 years of ascertainment, therefore 13 

our study captured short-term to intermediate signals. Given a longer interrogation 14 

timespan, or a study with adverse events occurred in a longer time span, the DMPs 15 

predicting longer-term adverse events could appear. Second, the number of patients 16 

experienced adverse outcomes in the validation cohort was relatively small, i.e., there 17 

are 248 in the discovery cohort and only 41 in the validation cohort. This limited the 18 

power of replication. Indeed, 70-80% DMPs from the discovery cohort could not be 19 

replicated in the validation cohort, and therefore removed from the bioinformatic 20 

analysis and model construction. Third, although 850K EPIC array could assess CpG 21 

methylation genome-wide, many CpG sites were not probed and therefore leaves a 22 

large room for future discovery of prognostic markers. 23 
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 To conclude, our study displays the value of leveraging DNA methylation of 1 

peripheral blood in predicting future adverse events in CAD patients. Further studies 2 

are warranted to investigate the roles of the methylation sites, genes, pathways, and 3 

mediating phenotypes implicated in our study for a mechanistic understanding of the 4 

CAD adverse outcomes.  5 
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Figure Legends 1 

Figure 1. Epigenome-wide association studies on DNA methylation and CAD 2 

adverse outcomes.  (a) Overall study design. Patients in the discovery cohort were 3 

enrolled from one medical center, whereas patients in the validation cohort were 4 

recruited from three medical centers in the China. Baseline characteristics were 5 

collected during the enrollment. DNA methylation of peripheral blood leukocytes was 6 

measured by Illumina MethylationEPIC BeadChip on ~ 850,0000 sites. Differentially 7 

methylated sites associated with death or MACE were identified, prognostic risk 8 

models were built, and biological mechanisms were inferred. This graph was created 9 

via https://www.biorender.com/. (b) EWAS results of death and MACE based on the 10 

discovery cohort were presented in Manhattan plot. Red dash line marks the 11 

Bonferroni corrected P value threshold.  12 

Figure 2. Epigenome-wide association studies of DNA methylation reveals 13 

differentially methylated CpGs associated with CAD adverse outcomes. (a) 14 

Genomic distribution of the 115 DMPs consistently associated with death and MACE 15 

in both the discovery and the validation cohorts. Bars represent P values from the 16 

discovery cohort. On the bottom of each circle, hypermethylated sites are marked in 17 

purple and hypomethylated sites in green. (b) Pathway enrichment of the genes 18 

connected to DMPs against the KEGG database. (c) Diseases or traits enriched among 19 

the genes connected to DMPs against the GWASCatalog database. (d) Association of 20 

the DMPs with three categories of clinical measurements: inflammation indices, lipids, 21 

and heart functions. Measurements were recorded in both the discovery (upper) and 22 

the validation (lower) cohort. WBC: whole plasma cell count, LMR: lymphocyte-23 

monocyte ratio, NLR: neutrophil-lymphocyte ratio, PLR: platelet-lymphocyte ratio, 24 

FIB: fibrinogen, SII: systemic immune-inflammation index, LDLC: low-density 25 
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lipoprotein cholesterol, HDLC: high-density lipoprotein cholesterol, CHOL: total 1 

cholesterol, TRIG: triglycerides, LVEF: left ventricular ejection fraction, LVMI: left 2 

ventricular mass index. 3 

Figure 3. Prognostic models for CAD adverse outcomes. (a-b) ROC curves of the 4 

prognostic models of death constructed from the discovery cohort. The CG model 5 

consists of 10 CpG sites. The Ensemble model is composed of CG + Sex + Age + FIB 6 

+ HDLC + LVEF. (c) Predicted risk of death in the validation cohort, by applying the 7 

model of CG + Sex + Age. (d) Predicted risk of death in the validation cohort, by 8 

applying the Ensemble model. (e-f) ROC curves of the prognostic models of MACE 9 

constructed from the discovery cohort. Features are the same as those for the model of 10 

death, except that the CG model consists of 8 CpG sites. (g) Predicted risk scores of 11 

MACE in the validation cohort, by applying the model of CG + Sex + Age. (h) 12 

Predicted risk of MACE in the validation cohort, by applying the Ensemble model. 13 

PLR: platelet-lymphocyte ratio, FIB: fibrinogen, SII: systemic immune-inflammation 14 

index, HDLC: high-density lipoprotein cholesterol, LVEF: left ventricular ejection 15 

fraction, LVMI: left ventricular mass index. 16 

Figure 4. Genetic regulation of DMPs associated with CAD adverse outcomes. 17 

meQTLs associated with the 115 DMPs are listed for (a) cis-meQTL and (b) trans-18 

meQTL. For each DMP, the number of associated meQTLs was shown. (c) The bar 19 

plots display the proportion of CpGs having meQTLs. (d) Association strength, beta, 20 

between the DMPs and the meQTLs. EPIC: all CpGs in the Infinium 21 

methylationEPIC Beadchip. DMP: 115 CpGs associated with CAD adverse outcomes. 22 

(e) Genomic distribution of the 1,842 cis-meQTLs associated with cg20015729, 23 

which was located on the UBE2E2 gene. (f) meQTLs for two DMPs located on the 24 

promoter of the gene FKBP5: cg25563198 associated with 267 cis-meQTLs and 273 25 
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trans-meQTLs within chromosome 4; cg25114611 associated with 270 trans-meQTLs 1 

within chromosome 4. Linkage disequilibrium between the meQTLs, as measured by 2 

R^2, was indicated by the triangle plots.  3 

Figure 5. Expression of the prognostic genes in myocardial infarction (MI) and 4 

stroke. Differential gene expression in the MI patients compared to healthy controls 5 

in (a) MI lesion tissues and (b) peripheral blood. (c) Expression of the prognostic 6 

genes FKBP5, AUTS2 and UBE2E2 in various cell types in three locations of the MI 7 

tissues: myogenic (i.e., nonischemic zone), ischemic, and fibrotic (i.e., advanced MI 8 

zone). (d) Differential gene expression in the peripheral blood of stroke patients 9 

compared to the healthy controls. In all volcano plots of gene expression, prognostic 10 

genes inferred from our DNA methylation study were labeled. (e) A collection of 11 

evidence for the CpG sites associated with the prognostic genes FKBP5, AUTS2, and 12 

UBE2E2. 13 
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