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HIGHLIGHTS 

 

• Circulating miRNA profiles in individuals with newly diagnosed Type 1 Diabetes Mellitus (T1DM) 

can distinguish two subgroups: Cluster A and Cluster B. 

 

 

• miR-409-3p, miR-127-3p, and miR-382-5p are increased in the plasma of individuals in Cluster B. 

 

 

• Individuals in Cluster B showed lower IAA titers, a reduced prevalence of HLA risk genotype, and 

an improved glycaemic profile during the follow-up period. 

 

 

• Immunomic profiling revealed a reduced frequency of pro-inflammatory immune cells and a higher 

frequency of exhausted T lymphocytes among individuals in Cluster B. 
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SUMMARY 

 

Previous research has indicated that circulating microRNAs are linked to the onset and 

progression of type 1 diabetes mellitus (T1DM), making them potential biomarkers for the disease. 

In this study, we employed a multiplatform sequencing approach to analyze circulating microRNAs 

in an extended cohort of individuals recently diagnosed with T1DM from the European INNODIA 

consortium. Our findings revealed that a specific set of microRNAs located within the T1DM 

susceptibility chromosomal locus 14q32 distinguishes two distinct subgroups of T1DM individuals. 

To validate our results, we conducted additional analyses on a second cohort of T1DM individuals, 

independently confirming the identification of these two subgroups, which we have named Cluster 

A and Cluster B. Remarkably, Cluster B T1DM individuals, who exhibited increased expression of 

14q32 miRNAs, displayed a different peripheral blood immunomics profile, possessed a lower 

T1DM risk HLA genotype, and showed better glycaemic control during follow-up visits compared to 

Cluster A individuals. Taken together, our findings suggest that this specific set of circulating 

microRNAs located in the 14q32 locus can effectively identify T1DM subgroups with distinct 

characteristics and different clinical outcomes during follow-up. 

 

Keywords: Type 1 Diabetes; heterogeneity; endotype; biomarkers; microRNAs; plasma. 
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GRAPHICAL ABSTRACT 
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INTRODUCTION 

Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease caused by immune-mediated 

destruction and dysfunction of insulin-producing pancreatic beta-cells, resulting in chronic 

hyperglycaemia, lifelong insulin therapy, and the occurrence of diabetic vascular complications 1. 

Prodromic stage, disease onset and progression are characterised by marked heterogeneity, 

leading to an incomplete understanding of T1DM pathogenesis and variable success of 

interventional therapies 2. Age at T1DM diagnosis recapitulates profound differences in genetic 

predisposition 3,4, islet autoantibody appearance 5,6, disease clinical onset and presentation 7, and 

beta-cell functional decline progression 8,9, with younger individuals showing a severe clinical 

presentation (i.e. T1DM onset with diabetic ketoacidosis) and a more rapid decline of C-peptide 

during disease progression. A marked heterogeneity among different individuals is also evident in 

the characteristics of immune-cell infiltrates in pancreatic islets 10–12 and in circulating islet 

autoantibodies, with a substantial number of individuals lacking any of the presently-known 

autoantibodies at the time of diagnosis 13. In light of this heterogeneity and the high multifactorial 

nature of T1DM, the existence of multiple distinct subgroups/phenotypes has been hypothesized 14. 

The most significant discoveries are linked to the identification of T1DM Endotype 1 (T1DME1) and 

T1DM Endotype 2 (T1DME2), which were characterized by differences in pancreatic immune cell 

infiltration 15–17, as well as other phenogroups distinguished by the first time appearance of islet 

autoantibodies throughout the natural progression of T1D development (i.e. IAA-first, GADA-

first)18,19. Overall, these studies demonstrated the existence of potentially distinct subgroups of 

T1DM individuals; however, it is currently unclear how the identification of these subgroups can be 

beneficial for a specific interventional therapy and how to easily identify them in the clinical 

practice. Nevertheless, the classification of individuals with T1DM into distinct disease subgroups 

still remains of high interest and could be beneficial for a precision medicine approach20. This 

classification could be also crucial for the success of interventional immunotherapies20. Hence, it is 

imperative to find easily accessible and measurable biomarkers which are strongly needed to 

detect and further characterise putative T1DM subgroups21. The analysis of circulating biomarkers 
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coupled to unsupervised, data-driven -omics methodologies may help in the unbiased stratification 

of T1DM individuals, thus to the identification of novel disease endotypes. 

MicroRNAs (miRNAs) are a class of small non-coding RNAs, firstly identified in Caenorhabditis 

elegans 22,23, and reported to have a critical role in the regulation of gene expression 24. They have 

been associated to the pathogenesis of T1DM 25 by mediating the function and dysfunction of beta-

cells26,27 as well as immune cells28–31. Notably, miRNAs also represent an abundant class of blood-

based circulating biomarkers32,33; as a matter of fact, circulating miRNAs have been documented as 

mediators of intercellular communication over long distances in multiple organisms, thus exerting 

influence on the functional behaviour of recipient cells34. Hence, the interception of these 

intercellular messages holds the potential to yield valuable insights into the status of specific 

diseases and facilitate the characterization of disease dysfunctions that remain incompletely 

understood35. 

Numerous investigations have assessed circulating miRNAs in the plasma or serum of individuals 

with T1DM. Currently, certain miRNAs have consistently shown repeated associations with disease 

onset (i.e. miR-24-3p36–43, miR-146a-5p37–39,44,45, miR-375-3p37,40,46–49), while some have also been 

linked to disease progression (i.e. miR-375-3p37,50, miR-24-3p38,50), particularly in relation to the 

decline in beta-cell function. While there have been certain specific and promising repeated 

associations observed between circulating miRNAs and T1DM, it is important to note that many of 

other findings have not been consistently confirmed in multiple studies. This underscores the 

variability in miRNA measurements, which may be attributed to the heightened heterogeneity 

among cohorts of T1DM individuals, pre-analytical variables that can impact sample collection, and 

the performance of miRNA analytical platforms. Additionally, to date, an unsupervised and 

unbiased analysis of circulating miRNAs in T1DM individuals, with the aim of stratifying them into 

multiple subgroups based solely on their circulating expression levels, has not yet been attempted. 

In light of the limited overlap among different reports and the lack of a miRNA-based unsupervised 

classification of T1DM individuals, we employed two different high-throughput sequencing 

platforms to comprehensively and unbiasedly investigate the circulating expression profile of 
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miRNAs51 within two large cohorts of recently diagnosed T1DM individuals (within 6 weeks from 

diagnosis) who were recruited and followed up as part of the INNODIA consortium project52. This 

approach has allowed us to detect and validate two distinct subgroups of T1DM individuals 

characterised by different expression levels of a set of miRNAs belonging to the 14q32 

chromosomal locus and reporting differences in glycaemic control, HLA, and peripheral blood 

immune cells profiles.  
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RESULTS 

 

T1DM individuals, data collection and miRNAs study design 

Circulating microRNAs profiling from blood-derived plasma was performed in two independent 

cohorts (initial and validation cohort) of individuals enrolled within 6 weeks from clinical diagnosis 

of stage 3 T1DM in the European consortium INNODIA Natural history study 

(https://www.innodia.eu)52. The schematic of the study design is reported in Figure 1. 

The study population of the initial cohort considered for the small RNAs study (here referred to as 

“100s cohort”) consisted of n=115 recently diagnosed T1DM individuals (sex: 58F/57M; age: 

12,4±7,7 years) (mean duration: 4,5 ± 1,5 weeks) (Table 1). T1DM individuals were followed-up to 

12 months post-diagnosis and subjected to 4 visits (V1: baseline; V2: 3 months; V3: 6 months; V4: 

12 months) (Table S1A) where the main demographic data, HLA genotype, diabetes related 

clinical characteristics, and clinical site of recruitment, were measured and collected (Table 1, 

Table S1A and S2). Plasma-EDTA samples for miRNAs analysis were collected at baseline visit 

(visit 1 or V1) using a standardised protocol adopted by all clinical sites involved in the study51. 

Whole blood samples from a subset of T1DM individuals from the 100s cohort (67/115) were 

collected at V1, processed to isolate Peripheral Blood Mononuclear Cells (PBMCs), and analysed 

for circulating immunomic profile, in order to define specific immune cell subsets potentially 

associated to miRNA expression patterns or T1DM subgroups. Circulating miRNAs from n=115 

T1DM individuals were analysed using two different library preparation strategies on all plasma 

samples, followed by short reads sequencing with Illumina platforms. Specifically, we used: i) a 

RNA extraction-free targeted strategy adopting the HTG Edge-Seq miRNA Whole Transcriptome 

Sequencing (referred to as "targeted-seq"), and ii) a previously standardised untargeted 

approach51 with QIAseq-miRNA/Small RNA Sequencing (referred to as "untargeted-seq"). Hence, 

each plasma sample was analysed using both methods. Additionally, a subset of plasma samples 

from n=6 T1DM individuals were run in duplicate for each platform, yielding a total of n=121 

samples analysed. 
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The study population of the validation cohort (referred to as “147s cohort”) consisted of n=147 

T1DM individuals (sex: 55M/92F; age: 11,9 ± 7,9 years) (mean duration: 3,9 ± 1,7 weeks) (Table 1 

and Table S3A). Plasma samples of T1DM individuals from 147s cohort were analysed using the 

untargeted-seq approach and results were further validated through ddPCR for selected miRNAs 

of interest. 

 

Circulating miRNAs profile analysis of 100s cohort T1DM individuals using a dual-

sequencing approach 

Small RNA-seq technologies have enhanced the detection of miRNAs from plasma samples53. 

However, the limited RNA content in plasma, variations in RNA extraction methods, differences in 

cDNA library preparation protocols and in sequencing approaches have introduced biases into the 

analytical workflow, resulting in inconsistent findings across various studies54,55. 

Therefore, to ensure the identification of miRNAs that were consistently detected by both targeted- 

and untargeted-seq methodologies, we performed a cross-validation of the results obtained from 

both platforms. This approach allowed us to establish a set of circulating miRNAs that exhibited 

concordant expression patterns and could therefore be effectively employed for stratifying T1DM 

individuals at baseline or potentially predicting disease progression during the follow-up period. 

In the targeted-seq, two plasma samples failed to generate libraries, resulting in a total of 

n=119/121 samples sequenced. Overall, sequencing quality metrics including Q30, total yield, and 

total reads passing filter met the acceptance criteria (Figure S1A-B). The mean total read counts 

for each sample was 4.7 ± 0.88 × 106 reads (Figure S1C-D), while the mean read counts aligned 

to miRNAs for each sample was 3.2 ± 0.67 × 106 (Figure S1E). 

In the untargeted-seq, all plasma samples successfully generated cDNA libraries (n=121/121), as 

shown by the correct sized cDNA fragments analysed by capillary electrophoresis (Figure S2A-B). 

The quality controls of the untargeted-sequencing metrics returned high quality parameters that 

met the acceptance criteria, including the Phred score (Figure S2C). The mean total read counts 

for each sample was 7.5 ± 2.1 × 106 reads (Figure S2D-E), while the miRNAs mean read counts 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 9, 2023. ; https://doi.org/10.1101/2023.10.08.23296650doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.08.23296650
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

 

was 2.6 ± 1.3 × 106 (Figure S2F). Overall, a total of n=114 unique T1DM individuals were 

successfully profiled for circulating miRNAs using both sequencing approaches. 

Then, we applied a cross-validation strategy to obtain a reliable set of data (Figure 2A). Overall, 

we obtained raw data counts of 2083 miRNAs for the targeted-seq and 2422 miRNAs for the 

untargeted-seq. After low counts filtering, a total of 892 and 753 miRNAs were retained in the 

targeted- and untargeted-seq dataset, respectively (Figure 2A). A total of 402 unique miRNAs 

were commonly detected in both sequencing methods. Next, we selected only those miRNAs that 

had a positive and significant Pearson’s correlation coefficient for each corresponding miRNA pairs 

between targeted- and untargeted-seq (Figure 2B and Figure S3). By employing this strategy, we 

successfully obtained two datasets comprising a total of n=248 plasma-derived miRNAs each, that 

exhibited consistent and concordant expression patterns following cross-validation. Utilizing the 

expression datasets obtained through the cross-validation approach, we checked the internal 

platform reproducibility by inspecting the distance matrices of the technical replicates. The analysis 

of the replicates demonstrated a good internal reproducibility, as the sample duplicates clustered 

together in both sequencing platforms. (Figure 2C and Figure S4) 

The Coefficient of Variation (CV) was calculated for each miRNA read counts across all samples 

analysed in both platforms. The distribution pattern of CV values showed overlap between targeted 

sequencing (CV median: 88.1%; 95%CI: 80.8-100.1%) and untargeted sequencing (CV median: 

68.7%; 95%CI: 63.7-79.6%). However, there was a tendency towards lower CV values in 

untargeted sequencing compared to targeted sequencing, as observed in Figure 2D. The 

comparison of miRNA expression levels ranking between targeted- and untargeted-seq 

demonstrated a significant correlation (Figure 2E), indicating a robust performance in miRNA 

recognition by both platforms. When we specifically examined the 20 most highly expressed 

miRNAs in the plasma of T1DM patients, we observed a similar top-ranking order between the two 

platforms, although some exceptions were noted. For example, in the targeted-seq (Figure 2F), 

miR-451a was the most expressed miRNA, while in the untargeted method we detected miR-16-5p 

as the most expressed one (Figure 2G). Overall, the miRNAs expression ranking observed in this 

study was consistent with  previous findings reported in other studies56,57. 
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Circulating miRNome analysis stratifies T1DM individuals in two subgroups 

In order to identify potential subgroups within T1DM individuals using miRNA measurements at 

baseline, we employed a top-down approach. We conducted unsupervised hierarchical clustering 

analyses separately for both the targeted and untargeted sequencing datasets (Figure 3A and 

3B). To determine the number of clusters that optimally define distinct patient subgroups, we 

applied the silhouette method58 on both platforms. This gave us best score for k = 2 (Figure S5). 

Thus, by pruning the obtained hierarchical tree with k = 2, two distinct groups of T1DM individuals 

were optimally identified for both targeted-seq (Figure 3A) and untargeted-seq (Figure 3B). The 

Principal Component analysis (PCA) confirmed the observed division of T1DM individuals into two 

subgroups for both platforms (Figure 3C and Figure 3D). 

The two clusters, denoted as Cluster-A and Cluster-B, comprised n=87 and n=22 T1DM 

individuals, respectively, resulting in a total of n=109 individuals consistently assigned to their 

respective clusters across both sequencing platforms (Figure 3E). The analysis of the clinical site 

of sample collection (Figure S6A-B), the total number of miRNA reads detected in each analytical 

platform (Figure S6C-D), and the haemolysis rate assessed through the erythrocyte-enriched miR-

451a (Figure S6E-F) did not exhibit significant differences between the two clusters. Hence, these 

findings suggest that these pre-analytical/analytical variables are not major contributors to the 

observed clustering.  
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Cluster A and Cluster B T1DM individuals showed differences in IAA titres and in T1DM 

high-risk genotype at baseline 

To examine the key clinical parameters potentially associated with Cluster-A and Cluster-B at 

baseline (visit 1), we firstly fit a logistic regression model including age, sex, BMI (or BMI-SDS), 

number of autoantibodies/titres, and key metabolic outcomes (Figure 4A). In this model, IAA titres 

at baseline were significantly associated with T1DM subgroups. Of note, the odds ratio of having a 

higher IAA titre was significantly lower in Cluster B T1DM individuals compared to Cluster A 

(p=0.0085), Log2 OR: -0.04. 95% CI: -0.009,-0.08; univariate logistic regression analysis) (Figure 

4A and 4B). Age, sex, BMI (or BMI-SDS), number of autoantibodies, GADA, IA-2A, ZnT8A titres, 

and other key metabolic outcomes were not significantly associated to these subgroups at baseline 

(Figure 4A and Table S1B). The frequency of T1DM individuals who showed a diabetes onset 

with ketoacidosis (DKA) (35,5% of total T1DM individuals in 100s cohort) also did not significantly 

differ between Cluster A (36% with DKA at diagnosis) and Cluster B (46% with DKA at diagnosis) 

individuals (Figure S7A and Table S1B). 

HLA risk genotype data, available for 106/109 T1DM individuals, showed that the high-risk HLA 

genotype DR3-DQ2 [DRB1*03:01-DQA1*05:01-DQB1 *02:01] was more common in individuals 

from Cluster-A than in those from Cluster-B (A: 51.8% versus B: 28.6%, p=0.05, χ²-test); a similar 

trend was observed for the DR3/DR4 genotype, although not significant (A: 28.2% versus B: 9.5%, 

p=0.07, χ²-test) (Figure 4C). 

 

Peripheral blood immunomic profiles of Cluster-A and Cluster-B T1DM individuals showed 

association with pro-inflammatory and exhausted immune cell phenotype 

To look for further potential differences in circulating immune cell subsets between Cluster-A and 

Cluster-B individuals at baseline, we performed peripheral blood immunomic profile analysis in a 

subset of T1DM individuals (67/109) belonging to Cluster A and Cluster B (A=48; B=19) (Figure 

5A and 5B). High-parameter flow cytometry analysis identifed a total of n=150 different immune 

cell subpopulations (Figure 5C) of which 14 were significantly associated with Cluster A or Cluster 

B (Figure 5D and Table 2). Of note, in Cluster B we observed a major significant reduction in the 
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frequency of immune cell subpopulations commonly associated to a proinflammatory context, such 

as CD8+ CD161+ CD27+ MAIT T cells (decreased in Cluster B versus A, FC=0.44, p=0.0032 

(Figure 5E) and CD4+Th17 T cells (decreased in Cluster B versus A FC=0.77, p=0.024)(Figure 

5F), and of those showing the expression of the early activation marker KLRG1, namely CD8+ 

CD57-KLRG1+ (decreased in Cluster B versus A FC=0.76, p=0.020) and CD8+KLRG1+ 

(decreased in Cluster B versus A, FC=0.83, p=0.026). Moreover, in Cluster B we observed a 

significant increase of CD8+CCR7+CD95+CD45RA+ (CD8 Tscm) (Figure 5G) and other immune 

cell subsets showing the expression of the exhaustion marker TIGIT1 (Figure 5H). 

Overall, these data indicate a different signature of circulating immune cell subpopulations between 

the two clusters of T1DM individuals, suggesting a more proinflammatory phenotype in Cluster A 

and an exhausted phenotype of several immune cell subpopulations in Cluster B. 

 

Cluster B T1DM individuals have a reduced insulin requirement at follow-up 

Next, we investigated whether T1DM individuals in Cluster A and Cluster B had different clinical 

characteristics during the 12 months of follow-up. Using univariate logistic regression model, we 

found that individuals in Cluster B were more likely to require a lower insulin dose per kg at 3 and 6 

months after diagnosis (Figure 6A and 6B), while no differences were observed at 12 months after 

diagnosis (data not shown). The profile of insulin requirements of T1DM patients in Cluster B, 

during the follow-up, showed a lower insulin requirement at 3 and 6 months after diagnosis 

compared to Cluster A, while returning at similar levels at 12 months after diagnosis (Figure 6C). 

These results are independent of the clinical site, as no major differences were found in insulin 

dosing between the clinical centres involved in the study (Figure S7B). Stimulated C-peptide 

(MMTT AUC) measured at 3, 6 and 12 months showed no significant differences between the two 

clusters, along with Insulin dose-adjusted HbA1c (IDAA1c) and fasting glucose which did not differ 

between the two clusters at any visit during follow-up (Figure 6D, 6E and 6F). Interestingly, in 

T1DM individuals from Cluster A, insulin dose and IDAA1c were strongly associated with 

stimulated C-peptide at V2, as expected, whereas this was not observed in patients from Cluster B 

(Figure 6G and 6H). A similar result was identified at V3, suggesting that the observed difference 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 9, 2023. ; https://doi.org/10.1101/2023.10.08.23296650doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.08.23296650
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 

 

in insulin dose between the two clusters cannot be fully explained by differences in beta cell 

function alone. Collectively, these results indicate that additional factors (e.g. peripheral insulin 

sensitivity) may play a crucial role in this context. 

 

A set of microRNAs belonging to the chromosomic locus 14q32 drives T1DM individuals 

separation into Cluster A and Cluster B 

To comprehensively characterise which set(s) of miRNAs were more relevant for dividing T1DM 

individuals into Cluster A and Cluster B, we performed a differential miRNA expression analysis 

between the two clusters. To do this, we analysed the targeted and untargeted seq datasets 

separately, and then validated the results by selecting only those miRNAs that were significantly 

differentially expressed with FDR <0.01 on both platforms (Figure 7A). In total, we observed 

n=197 significantly differentially expressed miRNAs between Cluster A and Cluster B. Specifically, 

n=151 miRNAs were upregulated and n=46 miRNAs were downregulated in Cluster B compared to 

Cluster A T1DM individuals (FDR <0.01) (Figure 7A). 

By ranking the miRNAs from the most upregulated to the most downregulated in Cluster B, we 

observed a significant enrichment of miRNAs originating from the chromosomal locus 14q32. 

Specifically, miR-409-3p [chr14: 101065300-101065378 (+), GRCh38] emerged as the most highly 

upregulated miRNA in Cluster B (Log2 FC: 3.99, B vs A; FDR<0.01), followed closely by miR-127-

3p [chr14: 100882979-100883075 (+)] (Log2 FC: 3.92, B vs A FDR<0.01) (Figure 7B). Notably, 

four out of the five most upregulated miRNAs in Cluster B were derived from the 14q32 locus, 

including miR-409-3p, miR-127-3p, miR-431-5p, and miR-382-5p (Figure 7B). 

 

To investigate the presence of modules or groups of closely related miRNAs that may contribute to 

distinguishing the two clusters or correlate with clinical parameters at baseline or follow-up, we 

conducted a miRNA network analysis. We employed a weighted miRNA correlation network 

analysis (WMCNA) to identify distinct miRNA modules. This analysis was performed on both 

sequencing datasets, and a consensus hierarchical tree model was constructed to identify 

common miRNA modules across the two analytical platforms. The results of the topological overlap 
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matrix from each dataset, along with the module assignment, are presented in Figure 7C. We 

used a minimum of 3 miRNAs per module and a dissimilarity threshold of 0.1; we identified a total 

of 8 well-defined eigengene modules of miRNAs, color-coded for easy reference (Figure 7C). To 

identify the most interconnected and relevant miRNAs within each module, we selected the top 5 

hub miRNAs and calculated the eigenMiRNA value as a surrogate measure of module expression 

(Figure 7D). Notably, we observed that the yellow module almost exclusively consisted of miRNAs 

from the 14q32 locus, which were predominantly upregulated in Cluster B compared to Cluster A. 

Among these miRNAs, miR-409-3p exhibited the highest level of interconnectedness (Figure 7E). 

Subsequently, we examined the correlation between the eigenMiRNA module values and available 

clinical parameters for each sequencing dataset. The correlation plot analysis, showed in Figure 

7F, summarizing the significant correlations obtained from both sequencing datasets between 

modules and clinical parameters at baseline or follow-up. Notably, the yellow module (MeYellow) 

exhibited a significant association with IAA titers at baseline and with insulin dose per kg at follow-

up visits after three (V2) and six months (V3). Additionally, the yellow module displayed a 

significant inverse correlation with the change in C-peptide levels between visits V2 and V3 

(Figure 7H-K). The correlation analysis between the yellow module and clinical parameters 

recapitulates the previously observed differences between Cluster A and Cluster B T1DM 

individuals. Indeed, those miRNAs showing the highest connectivity in the yellow module (i.e. miR-

409-3p, miR-382-5p and miR-127-3p) differed significantly between T1DM patients from Cluster A 

and Cluster B in both sequencing platforms (i.e. miR-409-3p targeted, Cluster A:7.4 ± 0.95 vs 

Cluster B: 11,03 ± 1,0; miR-409-3p untargeted, Cluster A: 6,7 ± 1,088 vs Cluster B: 10.9 ± 1,1, 

p<0.0001; miR-382-5p targeted, Cluster A: 7.6 ± 0.9 vs Cluster B: 11.0 ±0.9; miR-382 untargeted, 

Cluster A: 6.9 ± 0.8 vs Cluster B: 6.9 ± 0.8, p<0.0001; miR-127 targeted: Cluster A: 7.6 ± 0.9 vs 

Cluster B: 11.8 ± 1.0; miR-127 untargeted, Cluster A: 5.5 ± 0.9 vs Cluster B: 9.2 ±1.0, p<0.0001 

log2 reads counts) (Figure 7L) and were therefore selected for a droplet-digital PCR validation 

analysis. 
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Droplet Digital PCR validation of miR-409-3p, miR-382-5p and miR-127-3p as classifiers of 

Cluster A and Cluster B T1DM individuals 

The present findings underscore the discriminatory potential of miR-409-3p, miR-382-5p, and miR-

127-3p in distinguishing T1DM individuals from Cluster A and Cluster B. Moreover, we 

demonstrated their high interconnectedness within a distinct network module (MEyellow), which 

almost exclusively comprised 14q32 miRNAs. Hence, using droplet digital PCR (ddPCR) we 

further analysed miR-382-5p, miR-409-3p, and miR-127-3p in plasma samples of T1DM patients 

derived from Cluster A and Cluster B of 100s cohort. The results confirmed a significantly higher 

expression level of miR-382-5p, miR-409-3p, and miR-127-3p in Cluster B individuals compared to 

Cluster A (Figure 8A-C). ROC curve analysis demonstrated the high specificity and sensitivity of 

these miRNAs in assigning T1DM individuals to the identified clusters. Given the significant 

correlation between the miRNAs in the MEyellow module and insulin requirements at follow-up, we 

replicated the analysis using the absolute quantification dataset obtained from droplet digital PCR. 

Notably, all three miRNAs exhibited a significant inverse correlation with the insulin dose per kg at 

visits V2 (Figure 8D) and V3 (Figure 8E). 

 

14q32 miRNAs distinguish Cluster A and Cluster B T1DM individuals in the 147s validation 

cohort 

To further validate the identification of Cluster A and Cluster B subgroups in T1DM individuals, we 

conducted an analysis on an additional cohort consisting of n=147 T1DM individuals from the 

INNODIA consortium (Table 1, Table S3A and Table S4). This cohort was enrolled and followed 

up in a similar manner to the initial 100s cohort. As an internal control, we included a set of plasma 

samples from eight T1DM individuals of the second cohort, which were run in duplicate. 

Additionally, we included n=2 batch control plasma samples from the initial cohort to test the inter-

platform reproducibility. 
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Validation cohort samples analysis was performed using the small RNA-seq pipeline previously 

described (untargeted-seq), followed by ddPCR analysis of relevant miRNAs. The sequencing 

metrics, as shown in Figure S8, confirmed the validity of the sequencing run also in this second 

cohort. 

In the 100s cohort, we have successfully identified a robust set of 248 miRNAs using a cross-

validation approach involving two distinct platforms. To ensure the reproducibility of our findings, 

we applied the same rigorous filtering process to the validation cohort. As a result, we were able to 

detect a total of 226 out of the initial 248 miRNAs in this independent dataset. To assess the 

reliability of our small RNA-seq method, we conducted correlation analyses on both internal 

replicates (Pearson R > 0.77, P < 2.2×10-16) (Figure S8E) and inter-cohort replicates (Pearson R > 

0.70, P < 2.2×10-16) (Figure S8F); these analyses yielded positive results, further validating the 

robustness of our approach. 

Next, we analysed this dataset by applying a hierarchical clustering analysis pipeline as done on 

100s cohort; interestingly, we observed a distribution of T1DM individuals into two clusters (Figure 

9A), in line with the findings from the initial cohort and resembling the previously identified Cluster 

A and Cluster B subgroups (Cluster A=105 T1DM individuals; Cluster B=42 T1DM individuals). 

Additionally, the principal component analysis endorsed the classification of T1DM individuals into 

distinct groups (Figure 9B), supporting the reliability of miRNAs in classifying T1DM individuals 

into these two clusters. Differential expression analysis revealed an enrichment of 14q32 miRNAs 

that were upregulated in Cluster B compared to Cluster A (Figure 9C-9F). The upregulation of 

miR-409-3p, miR-382-5p, and miR-127-3p in Cluster B compared to Cluster A was also confirmed 

using ddPCR (Figure 9G-I), providing additional support to the analysis of the sequencing dataset. 

Next, we investigated the clinical differences between Cluster A and Cluster B T1DM individuals in 

the 147s cohort. In line with 100s cohort findings, we did not observe differences in age, sex, BMI 

(or BMI-SDS), number of autoantibodies, GADA, IA-2A, ZnT8A titres, and other key metabolic 

outcomes (Table S3B). Surprisingly, we did not find any significant differences in terms of IAA 

titers at baseline or insulin dose at follow-up visits, although a trend was evident for both 

parameters (Figure S9A, S9B). However, we observed a significant reduction in MMTT AUC 
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glucose at the follow-up visit V2 in Cluster B T1DM individuals (Cluster A: 13.5±3.3; Cluster B: 

11.5±2.9 mmol/l, p=0.0045), indicating a better glycaemic control compared to Cluster A T1DM 

individuals at follow-up (V2) (Figure S9B, S9C). Importantly, this reduction in MMTT AUC glucose 

in Cluster B T1DM individuals was independent of beta-cell functional parameters (Figure S9B) 

and consistent with the observations made in the initial cohort. 

In summary, these findings demonstrate that miR-409-3p, miR-382-5p, and miR-127-3p can be 

utilized to stratify newly diagnosed T1DM individuals into two distinct subgroups characterized by 

different glycaemic control at follow-up visits after diagnosis. 
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DISCUSSION 

Numerous studies have consistently demonstrated the association between specific circulating 

microRNAs (miRNAs) or sets of miRNAs and various aspects of type 1 diabetes mellitus (T1DM), 

including its onset, progression, and the decline of beta cell function over time36–44,46–49,59–62. Within 

this field, there is a growing appreciation that circulating miRNAs may serve as helpful and reliable 

biomarkers for T1DM. However, none of the previous studies have taken an unbiased approach to 

utilize circulating microRNAs for stratifying individuals with T1DM shortly after disease onset, with 

the aim of identifying novel disease subgroups. Notably, identifying distinct disease subgroups 

associated with specific phenotypes may shed light on the heterogeneity of T1DM and potentially 

aid in the stratification of individuals and their assignment to specific interventional 

immunotherapy63. 

In the current study we sought to characterise circulating miRNAs in a large cohort of T1DM 

individuals using a multiplatform sequencing approach coupled to the analysis of two cohorts of 

T1DM individuals belonging to the European INNODIA study consortium52. It is important to 

highlight that within the consortium, plasma samples were collected and processed uniformly and 

consistently, following a standardized operating procedure51 adopted by multiple clinical centres 

and specifically designed to minimize pre-analytical biases that could potentially impact the stability 

and expression of circulating miRNAs64. This quality-controlled approach was implemented to 

ensure the generation of reliable and accurate miRNAs sequencing dataset(s). As a result, the 

present study possesses a significant advantage in terms of sample collection and the initial 

screening of miRNAs. Moreover, in the analysis of the initial cohort, two different sequencing 

approaches were utilized, further strengthening the validity and robustness of the findings. This 

comprehensive approach enhances the confidence in the observed miRNA profiles and their 

potential implications. 

Using this approach, we have discovered a panel of three miRNAs (miR-409-3p, miR-382-5p, miR-

127-3p) that can effectively differentiate between two distinct groups of individuals with T1DM 

shortly after disease onset, referred to as Cluster A and Cluster B.  
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At the initial visit (visit 1), which occurred approximately 4 weeks after disease onset where the 

miRNA profiles were analysed, we observed that Cluster B individuals displayed significantly lower 

levels of IAA titres and a lower prevalence of the high-risk T1DM genotype HLA-DR3. In children, 

the appearance of IAA as the first autoantibody was associated with an increased risk of 

developing future multiple autoantibodies and of T1DM onset65. Moreover, IAA and DR3/DR4 HLA 

risk haplotype have been previously associated to a rapid progression from stage 2 to stage 3 T1D 

and also to a rapid decline of beta-cell function66. These findings suggest a more severe phenotype 

of T1DM in Cluster A in respect to Cluster B individuals despite the absence of age differences at 

diagnosis between the two subgroups, which has been reported to be associated to disease 

severity. These results were partially replicated in the validation cohort (147s cohort), where we 

observed a tendency (although not significant) for increased IAA titres at baseline among Cluster A 

individuals. Furthermore, at visit 2 and visit 3 (3- and 6-months after onset), we observed a notable 

improvement in the glycaemic profile among individuals in Cluster B compared to Cluster A, 

underscoring a less severe phenotype of Cluster-B subjects during follow-up. This improvement 

was consistently observed in both the 100s and 147s cohorts. Specifically, individuals in Cluster B 

exhibited lower insulin dose per kilogram (in 100s cohort) and a reduced area under the curve 

(AUC) for glucose during the mixed meal tolerance test (MMTT) (in 147s cohort) when compared 

to those in Cluster A. These findings suggest that Cluster B T1D individuals had better glycaemic 

control with more favourable glucose metabolism and are concordant with the less severe 

phenotype observed in Cluster B individuals at baseline. Interestingly, in both T1DM cohorts, we 

did not detect any differences in beta-cell functional profiles between Cluster A and Cluster B, 

measured by fasting or MMTT-stimulated C-peptide, during baseline or follow-up visits. These 

observations indicate the possible presence of variations in insulin sensitivity between the two 

clusters of individuals. However, it is important to note that, in these T1DM cohorts, direct 

measurements of insulin sensitivity were not performed at baseline, and the follow-up visits were 

influenced by the administration of insulin therapy, potentially impairing a reliable insulin sensitivity 

measures even if using insulin sensitivity surrogate markers. Due to these limitations, additional 
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focused analyses are necessary to gain a better understanding of the role of insulin sensitivity in 

delineating the distinctions between the two T1D clusters. 

To gain further insights into specific differences between Cluster A and Cluster B, we had the 

valuable opportunity to investigate the peripheral blood immune cell profiles (immunomics) in a 

subset of T1DM individuals (n=67/115) from the 100s cohort and to establish a connection 

between their cluster membership and immune cell characteristics at baseline. Of note, Cluster A 

individuals exhibited a more pro-inflammatory phenotype with a prominent increased frequency of 

MAIT CD8+ and Th17 Tconv. This implies an increased activation or dysregulation of immune cells 

in Cluster A, promoting inflammation and potentially contributing to the progression of T1DM. 

Intriguingly, IL-17 and MAIT T cells, both increased in Cluster A individuals, were previously 

associated to inflammatory-based insulin resistance mechanisms by disrupting insulin signalling in 

multiple target tissues67,68. On the other hand, Cluster B individuals showed increased frequency of 

several immune cell subpopulations exhibiting a partial exhausted phenotype (i.e. increased 

frequency of CD8+ TIGIT+ T cells) and increased frequency of CD8+ T stem cells memory (Tscm) 

cells. The role of inhibitory receptors is well known, with TIGIT expression representing a hallmark 

of T cell exhaustion69,70; notably, TIGIT also characterises partially exhausted CD8+ T cells 

accumulating in teplizumab-responder T1DM individuals after treatment71,72. In addition, CD8+ T 

cell exhaustion also characterizes T1DM individuals experiencing a slow progression of the 

disease after onset73.  

On the other hand, the function of Tscm cells in autoimmune diseases is still to be fully deciphered. 

Overall, Tscm play a crucial role in promoting antitumor and immune reconstitution because of 

their enhanced stem cell-like self-renewal capacity and can serve as a reservoir of effector T-cells. 

Circulating Tscm showed increased frequency in T1DM individuals, thus potentially promoting 

autoimmunity74,75. Hence, their precise role in Cluster B T1DM individuals should be further 

analysed. Collectively, these findings suggest that Cluster A and Cluster B are characterised by 

distinct immune system features, in line with differences observed between the two clusters. 

Further research is needed to fully comprehend the underlying mechanisms and clinical 

implications of these immune cell subpopulations in Cluster A and Cluster B individuals. 
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In both analysed T1DM cohorts (100s, n=109 T1D subject; 147s, n=147 T1D individuals), the 

levels of circulating miR-409-3p, miR-382-5p, and miR-127-3p were significantly elevated in the 

plasma of individuals belonging to Cluster B compared to Cluster A. These miRNAs are the top 

ones that mostly influenced Cluster A and Cluster B separation, thus emphasizing their potential 

role in distinguishing the two T1D clusters. Notably, these miRNAs are part of the 14q32 

chromosomal locus76. Intriguingly, miRNA network analysis showed that these three miRNAs were 

the most interconnected among others within a specific module (ME Yellow). Remarkably, 13 out 

of 14 miRNAs present in this module were derived from the 14q32 locus. These findings highlight 

the significance of this locus, which has been previously indicated as a susceptibility region for 

T1D77. Furthermore, network analysis revealed the presence of additional modules containing 

miRNAs that have been previously associated with T1D, beta-cell function, or diabetic 

complications in multiple studies. For example, the magenta module comprised miRNAs from the 

let-7 family, which have been linked to microvascular complications in diabetes78,79; the red and 

turquoise modules contained miRNAs associated with T1D, inflammation, and beta-cell function, 

such as miR-93-5p80, miR-25-3p36, and miR-106b-3p81 in the red module and miR-151a-3p82, miR-

24-3p36–43, and miR-146a-5p82–86 in the turquoise module. Among these, miR-25-3p displayed the 

highest degree of interconnectedness within the red module, while miR-151a-3p held this 

distinction in the turquoise one. Interestingly, both miRNAs have previously been linked to 

metabolic impairment and beta-cell function in T1D36,82. Overall, these findings provide additional 

support to the validity and robustness of our analysis, as the observed interconnected miRNAs in 

these modules align with established associations in T1D, inflammation and beta-cell dysfunction. 

Chromosome 14q32 locus hosts one of the largest polycistronic miRNAs cluster in mammals. In 

humans, it contains 54 miRNA genes included between DLK1 and DIO3 genes region. This locus 

is subjected to paternal or maternal differential methylation thus expressed from maternal or 

paternal inherited chromosome rather than showing a biallelic expression. Hence, the entire 

miRNAs cluster along with MEG3, RTL1as and MEG8 are maternally expressed, while DLK1, 

RTL1 and DIO3 are paternally expressed87. While it is challenging to definitively determine the 

origin of the differential expression of circulating miRNAs, several studies have demonstrated that 
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miRNAs from the chromosome 14q32 locus, including miR-409 and miR-127, exhibit high 

expression and enrichment in human islets compared to other tissues88. Furthermore, they are 

specifically expressed in beta-cells rather than alpha-cells89–91; indeed, among the top 10 miRNAs 

that show higher enrichment in beta-cells compared to alpha-cells, 8 of them are derived from 

chromosome 14q3291. 

In addition, it has been shown that these miRNAs are differentially expressed in islets of type 2 

diabetic donors and regulated by a differential methylation pattern in the MEG3 Differentially 

Methylated Region (DMR)90. Of note, 14q32 miRNAs are critical to beta-cell function and were 

reported to regulate a set of target genes encoding specific T1D autoantigens (i.e. miR-409 – 

PTPRN2 and GAD2 genes)92.  

The putative association between 14q32 miRNAs and their involvement in T1DM pathogenesis is 

further bolstered by the observation of a specific single nucleotide polymorphism (SNP) that has 

been previously identified as associated with T1DM in a Genome-wide Association Study 

(GWAS)77. The presence of this SNP (rs941576), which has been linked to T1DM, provides 

additional evidence supporting the potential role of the 14q32 locus in the development and 

progression of the disease. 

Additional evidence supporting the role of the 14q32 miRNAs in T1DM derives from studies 

conducted in the Non-Obese Diabetic (NOD) mouse model. In a previous study30, we 

demonstrated that miR-409-3p expression is decreased in the plasma of diabetic NOD mice in 

comparison with non diabetic normoglycaemic NOD mice, and this reduction is also observed in 

the pancreas-infiltrating lymphocytes of the same mice. Moreover, a reduced expression of miR-

409-3p was also observed in the plasma of recent onset (<2 years from diagnosis) T1D individuals 

compared to non-diabetic controls30. Interestingly, we found a similar reduction in miR-409-3p 

expression in Cluster A T1D individuals compared to Cluster B. This reduction in miR-409-3p 

expression is in line with the more severe phenotype observed in Cluster A individuals, both at 

baseline and during follow-up visits. These findings suggest that miR-409-3p may play a significant 

role in T1DM pathogenesis and could serve as a potential biomarker for disease severity. The 
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consistent reduction of miR-409-3p expression in both the NOD mouse model and T1DM 

individuals strengthens the validity of our present observations. 

In summary, the results of this study provide evidence supporting the use of miR-409-3p, miR-382-

5p, and miR-127-3p as effective markers for stratifying newly diagnosed individuals with T1DM into 

two distinct subgroups which display different immune-related characteristics at baseline and 

different levels of glycaemic control over time. Hence, this stratification can be taken into 

consideration to verify the responsiveness of T1DM individuals of Cluster A and Cluster B to 

multiple immunotherapies, thus implementing a tailored precision medicine approach to treat 

T1DM. 

 

Limitations of the study 

We acknowledge limitations of this study. Firstly, the sample size used for the association study 

between T1DM subject clusters (A or B) and peripheral blood immunomics was relatively small, 

consisting of n=67 individuals, while a large number of immune cell subpopulations (n=150) were 

analyzed. Consequently, we did not perform multiple testing corrections to avoid type 2 errors. 

Therefore, these results should be considered preliminary and exploratory, requiring further 

validation in additional studies. 

Secondly, in 147s cohort we acknowledge a sex dysbalance, being females more prevalent than 

males; moreover, several analyses in this cohort are still pending due to the ongoing INNODIA 

study. These include genotyping and immunomics. Nevertheless, the confirmation of the two 

clusters in this independent cohort supports the findings of the 100s cohort regarding miR-409-3p, 

miR-127-3p, and miR-382-5p.  

Finally, although the circulating miRNAs were validated using droplet digital PCR (ddPCR) in two 

different T1DM cohorts, comprising a total of 256 T1DM individuals analyzed, we have yet to 

determine the cellular origin of these miRNAs and then formulate mechanistic insights of these 

findings. Hence, additional analyses are required to elucidate their origin and the potential 

molecular mechanisms involved in their dysregulation, which may occur in one or multiple target 

organs.  
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Figure Titles and Legends 

 

Figure 1. Schematic of the miRNA study design. 

The study design involved the analysis of two cohorts of Type 1 Diabetes (T1DM) individuals: an 

initial screening cohort, the INNODIA 100s cohort (A), consisting of n=115 T1DM individuals, and a 

validation cohort, the INNODIA 147s cohort (B), consisting of n=147 T1DM individuals. All 

individuals were followed-up with programmed visits at 3- (visit 2), 6 (visit 3) and 12 months (visit 4) 

after clinical diagnosis of T1DM. In both cohorts, blood samples were collected at baseline (visit 1) 

and processed within 2 hours of blood draw. The collected blood samples underwent two 

consecutive centrifugation steps to separate plasma from contaminant cells and platelets. The 

plasma samples were then aliquoted (200 μL) and stored at -80°C in a centralized biobank. For the 

INNODIA 100s cohort, the plasma samples were subjected to miRNA profiling using two different 

sequencing platforms: HTG-miRNA Edge Seq and Small RNA-seq. The profiling was followed by 

validation using droplet digital PCR. For the validation cohort, the plasma samples were analyzed 

using small RNA-seq, and subsequently validated using droplet digital PCR. 

 

Figure 2. Cross-validation strategy and performance analysis of the dual-platform 

sequencing approach for plasma samples of T1DM individuals from the 100s cohort. (A) 

Summary of the analytical pipeline for the datasets obtained from the sequencing cross-validation 

approach using two different platforms on the same set of plasma samples, depicted as a box 

diagram. (B) Correlation analysis using Pearson’s R values on variance-stabilised read counts 

(rlog transformation from DESeq2 package) reported in the y axis, for each commonly detected 

miRNA (n=402) across the two platforms. Each dot represents a miRNA, and its position on the x 

axis indicates the descending rank of its correlation value between the two platforms, with grey 

background indicating its 95% confidence interval. Blue dots represent miRNAs with a positive 

correlation (R-value > 0) and a P-value ≤ 0.05 (n=248), while red dots represent miRNAs with a 

zero or a negative correlation (n=154, lower confidence limit ≤ 0). (C) Sample distance matrix for 
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targeted-seq and untargeted-seq, showing the distance values of technical replicate pairs (n=5 for 

targeted-seq; n=6 for untargeted-seq) calculated on the n=248 common and concordant miRNAs. 

The colour scale represents the sample distance calculated as 1- Pearson’s R on rlog transformed 

reads count, ranging from dark blue (low values indicating similar sample pairs) to white (high 

values indicating dissimilar sample pairs). (D) Coefficient of Variation of miRNA expression 

(reported as read counts on linear scale) across samples analyzed using targeted-seq and 

untargeted-seq, focusing on the 248 miRNAs. Each dot represents the coefficient of variation of 

each given miRNA across all samples analysed in each platform. (E) Correlation of miRNA 

expression ranking between targeted-seq (x-axis) and untargeted-seq (y-axis), evaluated using 

Spearman’s Rho value for the n=248 miRNAs. (F) Top 20 miRNA ranked expression in targeted-

seq, reported as the average normalized reads across all analysed samples. (G) Top 20 miRNA 

expression ranking in untargeted-seq, reported as the average normalized reads across all 

analysed samples. Violin plots in (F) and (G) report the median values (lines) and quartiles (dotted 

lines). 

 

Figure 3. MiRNAs clustering analysis and identification of two distinct T1DM individuals 

subgroups. (A) Unsupervised hierarchical clustering analysis performed on all patients (columns) 

using Pearson’s R  distance on log2 normalized counts (after the addition of  a pseudo-count) and 

complete-linkage as agglomeration method in targeted-seq (A) and in untargeted-seq (B). The 

heatmap displays the clustering results, with miRNAs as rows and patients’ information on diabetic 

ketoacidosis (DKA), sex, age, and the expression of miR-451a (an indicator of haemolysis rate). 

MiRNA expression is represented as scaled Z-score values ranging from red (+6) to blue (-6). (C) 

Principal Component Analysis (PCA) of the targeted-seq dataset, showing the elliptical grouping of 

samples based on miRNA expression. (D) Principal Component Analysis (PCA) of the untargeted-

seq dataset, showing the elliptical grouping of samples based on log2 miRNA expression. (E) Venn 

diagram showing the number of T1DM individuals analyzed using both platforms and consistently 

identified as belonging to either Cluster-A or Cluster-B by both analytical sequencing 
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methodologies. There were n=87 T1DM individuals in Cluster A and n=22 T1DM individuals in 

Cluster-B. Additionally, n=5 T1DM individuals were not consistently identified by both platforms. 

Figure 4. Clinical differences between Cluster A and Cluster B T1DM individuals at baseline 

(visit 1). (A) Forest plot presenting the effect estimates (represented by single dots) and 95% 

confidence intervals (indicated by bars) for Cluster B across selected clinical variables collected at 

visit 1. The measure of the strength and direction of the relationship between selected clinical 

variables and the likelihood of belonging to the Cluster B are presented as log odds ratio. The log 

odds raio is obtained using univariate logistic regression analysis. Blue bars indicate statistically 

significant effects (P ≤0.05). (B) Comparison of IAA titres at baseline visit 1 in T1DM individuals 

belonging to Cluster A (n=87) versus Cluster B (n=22); statistical analysis performed using the 

Mann-Whitney U test (P ≤0.05). (C) T1DM risk HLA haplotype distribution in Cluster A and Cluster 

B individuals; the frequency of the risk genotype was calculated based on available genotype data 

(107/109 individuals). Chi-square tests were conducted to evaluate the statistical significance of 

frequency differences between Cluster A and Cluster B (P ≤0.05). 

Figure 5: Blood immunomic profile at baseline visit in Cluster A and Cluster B T1DM 

Individuals. (A) Schematic illustration of blood immunomics Analysis of T1DM Individuals at 

Baseline. The analysis includes the collection of samples and the assessment of n=150 peripheral 

blood immune cell subsets in a total of n=67 individuals. (B) Venn Diagram showing the number of 

T1DM individuals in the INNODIA 100s Cohort with shared analysis of both miRNomics and 

immunomics. Among the T1DM individuals, n=67 individuals had complete data available for both 

miRNomics and immunomics analyses. (C) Heatmap and clustering analysis of immune cell subset 

frequency in Cluster A and Cluster B T1DM individuals. The immune cell subsets demonstrating 

significant differential frequencies between Cluster A and Cluster B are further illustrated in (D) and 

listed in Table 2. For representative purpose, the proportions of immune cells were residualised 

with a linear model for the processing effect (same day/overnight) to remove the effect of the 

covariate and then scaled to Z-score. (E-H) Beta regression models of the proportions for selected 

and relevant immune cell populations. The beta regression depicts the proportions of MAIT CD8+ 
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T cells, Th17 Tconv cells, CD8+ Tscm cells, and CD8+ Temra TIGIT+ cells populations in Cluster 

A and Cluster B. P values (P ≤ 0.05) were calculated using a beta regression model correcting for 

the processing effect; mean and standard deviation (SD) of the proportions of immune cells after 

residualisation for the processing effect are shown. 

Figure 6. Cluster B T1D individuals showed reduced insulin requirement at follow-up visits. 

(A) Forest plot presenting the effect estimates (represented by single dots) and 95% confidence 

intervals (indicated by bars) for Cluster B across selected clinical variables collected at (A) visit 2 (3 

months) and (B) visit 3 (6 months). The measure of the strength and direction of the relationship 

between selected clinical variables and the likelihood of belonging to the Cluster B are presented 

as log odds ratio. The log odds raio is obtained using univariate logistic regression analysis.Blue 

bars indicate statistically significant effects (P ≤0.05). (C) Insulin daily dose/kg profile over time 

from visit 1 (baseline) to visit 4 (12 months) in Cluster A (orange) and Cluster B T1DM individuals; 

data are reported as median and 95%CI. (D) Area under the curve of c-peptide in mixed meal 

tolerance test (MMTT) performed at visit 2, visit 3 and visit 4 in Cluster A and Cluster B T1D 

individuals. (E) HbA1c-adjusted by insulin dose (IDAA1c) at visit 1, visit 2, visit 3 and visit 4in 

Cluster A and Cluster B T1DM individuals. (F) Fasting glucose at visit 1, visit 2, visit 3 and visit 4 in 

Cluster A and Cluster B T1DM individuals. Data in (C) to (F) are reported as median and 95%CI. 

(G) Simple linear regression analysis between AUC C-peptide and insulin daily dose/kg in Cluster 

A (orange dots) and Cluster B (blue dots) at visit 2 (V2). (H) Simple linear regression analysis 

between AUC C-peptide and IDAA1C in Cluster A (orange dots) and Cluster B (blue dots) at visit 2 

(V2). (I) Simple linear regression analysis between AUC C-peptide and insulin daily dose/kg in 

Cluster A (orange dots) and Cluster B (blue dots) at visit 3 (V3). (J) Simple linear regression 

analysis between AUC C-peptide and IDAA1C in Cluster A (orange dots) and Cluster B (blue dots) 

at visit 3 (V3). Linear regression analyses report slope (β) values, R2, and corresponding P values 

(P ≤ 0.05).  

Figure 7. Relevance of microRNAs from the chromosome 14q32 locus in the stratification of 

T1DM individuals into Cluster A and Cluster B. (A) Summary of the analytical pipeline used to 
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determine differentially expressed miRNAs between Cluster A and Cluster B, identified in both 

targeted and untargeted sequencing datasets. (B) Bar plot showing the top 20 differentially 

expressed miRNAs (up- or down-regulated) in Cluster B vs Cluster A T1DM individuals. Data 

represents the mean log2 fold change values of Cluster B vs Cluster A individuals obtained from 

separate analyses of targeted and untargeted datasets. Statistical analysis was performed using 

the Wald test (DESeq2), considering FDR-adjusted P values ≤ 0.01. (C) Targeted- and untargeted-

seq consensus clustering dendrogram of miRNAs with module colors. The top 5 highly 

interconnected miRNAs assigned to each module are reported below the hierarchical tree model. 

(D) Scheme illustrating the modules, composition of miRNAs within each module, and the strength 

of connections among miRNAs. Line thickness in each module indicates the level of 

interconnectedness among miRNAs. (E) Correlation plot based on Spearman Rho values (scale 

colors from blue to red) obtained between selected clinical parameters at baseline or follow-up 

visits and eigenvalues of the top 5 miRNAs for each module. Only significant correlations (P ≤ 

0.05) in both targeted and untargeted-seq are shown, calculated using Spearman’s Rho test. (F-K) 

Scatter plots depicting significant and relevant correlations between eigenvalues of the MEyellow 

module and clinical parameters for each T1DM subject in the targeted (F-H) and untargeted (I-K) 

datasets. Specifically, insulin daily dose/kg at visit 2 (F, I), at visit 3 (G, J), and changes in area 

under the curve of C-peptide between visit 2 and visit 3 (H, K). Spearman’s Rho test (p ≤ 0.05) was 

performed, reporting for each graph rho and P values. (L) Comparison of expression levels of miR-

409-3p, miR-382-5p, and miR-127-3p in Cluster A vs Cluster B T1DM individuals in targeted- and 

untargeted-seq. Values are presented as log2 read counts. Statistical analysis using the Wald test 

(DESeq2) with FDR-adjusted P ≤ 0.01. 

Figure 8. Droplet Digital PCR validation of miR-382-5p, miR-409-3p, and miR-127-3p. (A) 

Stem-loop Reverse Transcriptase and TaqMan-based droplet digital PCR analysis of circulating 

miR-382-5p in Cluster A and Cluster B T1DM individuals of the 100s cohort. (B) Stem-loop 

Reverse Transcriptase and TaqMan-based droplet digital PCR analysis of circulating miR-409-3p 

in Cluster A and Cluster B T1DM individuals of the 100s cohort. (C) Stem-loop Reverse 

Transcriptase and TaqMan-based droplet digital PCR analysis of circulating miR-127-3p in Cluster 
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A and Cluster B T1DM individuals of the 100s cohort. Logistic regression and ROC curve analysis 

for each of the three miRNAs are also presented. Statistical analysis was performed using the non-

parametric Mann-Whitney U test (p ≤ 0.05). Logistic regression and ROC curves provide 

information on specificity, sensitivity, area under the curve, and corresponding P values (p ≤ 0.05). 

(D, E) Simple linear regression analyses between miR-382-5p, miR-409-3p, and miR-127-3p, and 

visit 2 (V2) insulin daily dose/kg (D) and visit 3 (V3) insulin daily dose/kg (E). Linear regression 

analyses report slope (β) values, R2, and corresponding P values (P ≤ 0.05). 

 

Figure 9. Confirmation of Distinct Clustering of T1D Individuals into Cluster A and Cluster B 

through circulating microRNA Analysis of the 147s cohort samples. (A) Unsupervised 

hierarchical clustering analysis performed on all patients (columns) using Pearson’s R distance on 

log2 normalized counts (after the addition of  a pseudo-count) and complete-linkage agglomeration 

method. The heatmap displays the clustering results, with miRNAs as rows and patients’ 

information on diabetic ketoacidosis (DKA), sex, age, and the expression of miR-451a (an indicator 

of hemolysis rate). MiRNA expression is represented as scaled Z-score values ranging from red 

(+6) to blue (-6). (B) Principal Component Analysis (PCA) of the untargeted-seq dataset of 147s 

T1DM individuals cohort, showing the grouping of samples based on miRNA expression (orange 

dots: Cluster A individuals; blue dots: Cluster B individuals). (C) Bar plot showing the top 20 

significantly upregulated or downregulated miRNAs in Cluster B vs Cluster A T1DM individuals. 

Data represents the average log2 fold change values of Cluster B vs Cluster A individuals obtained 

from the analysis of the untargeted datasets. Statistical analysis was performed using the Wald 

test (DESeq2), considering FDR-adjusted P values ≤ 0.01. miR-409-3p, miR-382-5p and miR-127-

3p are reported in bold. (D-F) Comparison of expression levels of miR-382-5p (D), miR-409-3p (E), 

and miR-127-3p (F) in Cluster A vs Cluster B T1DM individuals in untargeted-seq of 147 cohort 

samples. Values are presented as log2 values of normalised read counts. (G-I) Stem-loop Reverse 

Transcriptase and TaqMan-based droplet digital PCR analysis of circulating miR-382-5p (G), miR-

409-3p (H) and miR-127-3p (I) in Cluster A and Cluster B T1DM individuals of the 147s cohort. 
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Logistic regression and ROC curve analysis for each of the three miRNAs are also presented. 

Statistical analysis was performed using the non-parametric Mann-Whitney U test (P ≤ 0.05). 

Logistic regression and ROC curves provide information on specificity, sensitivity, area under the 

curve, and corresponding P values (P ≤ 0.05). 
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TABLES 

Table 1. Baseline clinical characteristics of 100s and 147s cohort of T1DM individuals. Mean 
values ± standard deviation are reported for continuous variables; n or n% for categorical values. 
Number of T1DM individuals with available measurements for each specific variable is reported in 
brackets. BMI-SDS is exclusively reported for T1DM individuals below 18 years of age (100s 
cohort, n=99)(147s cohort, n=126) at the moment of diagnosis. 

Demographics 100s cohort 147s cohort 

Baseline (Visit 1) Baseline (Visit 1) 

Age (years) 12.51 ± 7.70 [115] 12,03 ± 7,82 [147] 

Sex (Female/Male) 58/57 55/92  

BMI (Kg/m2) 23.12 ± 2.82 [16] 22,26 ± 2,99 [21] 

BMI_SDS 0.15 ± 1.09 [99] 0,38 ± 1,12 [126] 

Disease duration (weeks) 4.08 ± 1.53 [115] 3,91 ± 1,76 [142] 

Fasting C-peptide (pmol/L) 277.64 ± 203.54 [115] 270,03 ± 194,79 [145] 

HbA1c (mmol/mol) 77.45 ± 19.44 [112] 76,01 ± 19,26 [143] 

Insulin dose (units/kg/day) 0.52 ± 0.27 [113]  0,59 ± 0,40 [144] 

IAA (% positive) 76 [88] 77,55 [114] 

IA2A (% positive) 72,1 [83] 78,23 [115] 

GADA (% positive) 76 [88] 77,55 [114] 

ZnT8A (% positive) 66 [76] 70,75[104] 
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Table 2. Immune cell subset proportions differentially represented in Cluster B vs Cluster A. 
The proportions of immune cell subsets were compared between Cluster B and Cluster A, and the 
results are presented in this table. To facilitate the comparison, the proportions were transformed 
using the method described by Smithson & Verkuilen93, which rescales the dependent variable to 
the interval (0, 1). The data were analysed using a beta regression model, with correction for the 
blood processing protocol (same day/overnight). Immune cell populations with a P-value ≤ 0.05, 
indicating statistical significance, were identified as significantly different between the two groups of 
patients. The immune cell subsets are listed in order from the most increased to the most 
decreased in Cluster B compared to Cluster A. The fold change (FC) values indicate the 
magnitude of the difference. Please note that the direction of change (increased or decreased) 
refers to Cluster B in relation to Cluster A. 

Immune cell subset Cluster A 
Cluster 

B 
P value 

FC (Cluster B 

vs Cluster A) 

     CD8+ TSCM 0,0039 0,0074 0,0042 1,90 

Th1-Th2-like Tfh 0,0010 0,0017 0,00008 1,69 

KLRG1- TIGIT+ CD8+ Temra 0,0613 0,0981 0,0374 1,60 

ICOS+ PD1- Tfh 0,0215 0,0326 0,026 1,51 

ICOS+ PD1+ Tfh 0,0764 0,1143 0,0137 1,50 

CD8 pE2 0,0708 0,1042 0,0217 1,47 

DN  0,0469 0,0615 0,0407 1,31 

CD8 TEMRA 0,1916 0,2505 0,02 1,31 

KLRG1- TIGIT+ CD8+ Tem 0,0948 0,1169 0,0256 1,23 

Th1 Tconv 0,1977 0,2378 0,0248 1,20 

gdT cells (CD3+) 0,0442 0,0528 0,0088 1,19 

TIGIT+ Tconv Tem 0,1052 0,1214 0,026 1,15 

TIGIT+ Tconv Tcm 0,2682 0,2936 0,0069 1,09 

Treg CD4+ 0,0659 0,0710 0,0112 1,08 

KLRG1+ CD8+ mem 0,6829 0,5637 0,0264 0,83 

Th17 Tconv 0,1583 0,1213 0,0241 0,77 

CD57- KLRG1+ CD8+ mem 0,4674 0,3565 0,0208 0,76 

CD8+ MAIT  0,0127 0,0056 0,0412 0,44 
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STAR METHODS 

 

Key Resource Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

BIOLOGICAL SAMPLES   

Human plasma samples INNODIA 

consortium 

N/A 

   

CHEMICALS, PEPTIDES, AND RECOMBINANT 

PROTEINS 

  

Ethanol, 200 proof Sigma Aldrich SHBL.2095/SHBK9944-

5 

Library Dilution Buffer HTG 307900/308171 

10 mM Tris pH 8.5 Elution Buffer QIAGEN 163034340 

2N NaOH HTG 308142 

2N HCI HTG 307876 

Nuclease-Free Water (10x50 mL) QIAGEN 129114 

b-Mercaptoethanol Sigma-Aldrich M7522 

Tris EDTA buffer, for molecular biology, DNAse, 

RNAse, Proteasefree ready to use, pH 8.0 

Acros Organics AC327345000 

   

CRITICAL COMMERCIAL ASSAYS   

Plasma/Serum RNA Purification Mini Kit NORGEN 55000 

QIAseq miRNA Library Kit (96) QIAGEN 331505 

QIAseq miRNA 96 Index IL (96) QIAGEN 331565 

PhiX Control v3 ILLUMINA FC-110-3001 
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NovaSeq 6000 SP Reagent Kit (100 cycles) ILLUMINA 20027464 

NovaSeq XP 2-Lane Kit ILLUMINA 20021664 

Thermo Qubit DSDNA HS Assay LIFE 

TECHNOLOGIES 

Q32854 

Kit per DNA ad elevata intensità AGILENT 5067-4626 

NovaSeq 6000 S1 Reagent Kit v1.5 (100 cycles) ILLUMINA 20028319 

HTG Lysis Buffer 
 

HTG 307914 

MDx Proteinase K Invitrogen 2036707 

HTG Plasma Lysis Buffer HTG 308251 

EdgeSeq Drawer Reagents HTG 308312 

Human Brain RNA Ambion 2077661-A-2 

Hemo KlenTaq enzyme New England 

Biolabs 

10009977 

Deoxynucleotide (dNTP) Solution Set New England 

Biolabs 

10014675 

5X Hemo KlenTaq Reaction Buffer New England 

Biolabs 

0031801 

PCR, H20 HTG 308124 

HTG Sequencing Tag Pack HTG 308065 

MIDx Ampure XP HTG 308183 

Bulk, Trizma Hydrochloride Solution (pH 8_0) 

Dilution, HTG EdgeSeq 

HTG 308062 

MDX, I-tm (Md. BIO) Lonza RNBH 1710/RNBH3183 

KAPA Biosystems q PCR Kit KAPA Biosystem 005098 

MDx 12.5 PM PhiX HTG 308076 

HTI (Hybridization Buffer) ILLUMINA 20373892/20384289/ 

20391454 
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Nextseq 500/550 Buffer cartridge v2 ILLUMINA 20399134/20383558 

NextSeq 500/550 High Output Reagent Cartridge 

v2 

ILLUMINA 20396441 

NextSeq 500/550 High Output now cell Cartridge 

v2 

ILLUMINA 20387266/20398769 

ILM Seq Read 1 Primer Mix Assy HTG 308246 

ILM Seq Index Primer Mix Assy HTG 308245 

TAQMAN PREAMP MASTER MIX (2X) INVITROGEN 4488593 

TAQMAN(R) MICRORNA RT KIT  INVITROGEN 4366597 

TAQMAN MICRORNA ASSAY INVITROGEN cat.#4440887 ID 002332 

TAQMAN MICRORNA ASSAY INVITROGEN cat.#4440887 ID 000452 

TAQMAN MICRORNA ASSAY INVITROGEN cat.#4440887 ID 000572 

TAQMAN MICRORNA ASSAY INVITROGEN cat.#4440887 ID 000564 

ddPCR™ EvaGreen Supermix BIORAD 1864034 

ddPCR Smx for Probes (no dUTP), 5 x 1ml BIORAD 1863024 

DG8 Cartridges and Gaskets BIORAD 1864007 

ddPCR Plates 96-Well, Semi-Skirted (25 plates) BIORAD 12001925 

PIERCEABLE FOIL HEAT SEAL (no.100) BIORAD 1814040 

Droplet Gen Oil for Probes, 10 x 7 ml BIORAD 1863005 

   

SOFTWARE AND ALGORITHMS   

Graphpad Prism v9.0.2 GraphPad Software 

(Boston, MA) 

https://www.graphpad.co

m/ 

2100 Expert Software (vB.02.11)  Agilent N/A; RRID:SCR_014466 

   

Illumina Experiment Manager 

Software (v1.19.1) 

ILLUMINA N/A; RRID:SCR_021202 
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BaseSpace v. 1.1.0.64  ILLUMINA N/A; RRID:SCR_011881 

GeneGlobe Data Analysis Center  QIAGEN N/A 

ExpressionSuite Software (v1.3)  THERMO FISHER N/A; RRID:SCR_021095 

R/Bioconductor   

   

OTHER   

Vacutainer Safety-Lok butterflies  BD Biosciences 367282 

NovaSeq Xp Flow Cell Dock ILLUMINA 20021663 

Vacutainer K2 EDTA  BD Biosciences 368861 

DNA LoBind Tubes 0.5 mL  Eppendorf 0030 108.035 

DNA LoBind Tubes 1.5 mL  Eppendorf 0030 108.071 

DNA LoBind Tubes 2.0 mL  Eppendorf 0030 108.058 

96 Fast PCR Plate half skirt  SARSTEDT 72.1981.202 

MicroAmp 96 Optical Adhesive Film 100 cover Thermo Fisher 4311971 

Strip 8 flat caps (Xtra-Clear)  STARLAB I1400-0900 

StarTub Reagent Reservoir (PVC)  STARLAB E2310-1000 

96 PCR Plate without skirt  SARSTEDT 72.1978.202 

SimpliAmp™ Thermal Cycler LIFE 

TECHNOLOGIES 

A24811 

Qubit Assay Tube Set  Thermo Fisher Q32856 

Centrifuge MiniSpin  Eppendorf 5452000010 

Ministar centrifuge  VWR 521-2319 

NovaSeq 6000 System  ILLUMINA 20012850 

DynaMag-96 Side Magnet  INVITROGEN 12331D 

DynaMag-2 Magnet  INVITROGEN 12321D 

QUBIT 3.0 spectrofluorometer  INVITROGEN  

2100 Bioanalyzer Instrument  Agilent  
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IKA MS3 S36 Agilent vortex IKA  Agilent  

HTG EdgeSeq Processor HTG  

HTG EdgeSeq Processor HTG  

SimpliAmp Thermal Cycler LIFE 

TECHNOLOGIES 

 

StepOnePlus APPLIED 

BIOSYSTEM 

 

NextSeq ILLUMINA  
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Clinical Cohorts 

 

INNODIA 100s cohort 

For circulating small RNA sequencing analysis, an initial cohort composed of 115 individuals with 

newly diagnosed (<6 weeks, 4.5 ±1.5 weeks) type 1 diabetes were enrolled in INNODIA natural 

history study. T1DM individuals [all positive for at least one autoantibody (GADA, IA-2A, ZnT8A) 

and aged between 1-45 years] enrolled in this study were selected based on sample availability 

and even gender distribution (sex: 58F/57M; age at diagnosis: 12,4±7,7 years) (complete clinical 

characteristics in Table 1 and TableS1). T1DM individuals were followed-up to 24 months with 

programmed visits at 3- (V2), 6- (V3), 12- (V4) and 24-months (V5) after diagnosis. For circulating 

small RNAs study, we considered visits up to 12-months for the statistical association analysis with 

clinical parameters due to thei uncompleteness at V5 at the moment of small RNa measurement.  

Plasma samples for small RNAs sequencing were collected at baseline (V1, <6 weeks from 

diagnosis) through a standardised protocol51 adopted by all clinical sites involved in the multicentric 

consortium.  

Specifically, blood samples were collected in K2 or K3-EDTA tubes and processed within 2 hours 

from blood draw. An initial centrifuge was performed at 1800g for 10 minutes at 15-25°C. Plasma 

was collected avoiding touching the white blood cells interphase and further centrifuged at 2000g 

for 20 minutes at 10°C to remove contaminant cells and platelets. Multiple 200 μL plasma aliquots 

were then stored at -80°C and then transferred to a central biobank located in Cambridge (UK) 

until final transfer to the analytical laboratory. 

 

INNODIA 147s clinical cohort 

An independent cohort composed by n=147 newly diagnosed (V1<6 weeks: 3.9±1.8 weeks) T1DM 

individuals [sex: 92/55 (M/F); age at diagnosis: 11,89 ± 7,86] was also enrolled in INNODIA 

consortium to perform the same analyses described for the 100s cohort. All individuals were 

positive for at least one autoantibody (GADA, IA-2A, ZnT8A) and aged between 1-45 years. All 

individuals were followed-up with programmed visits at 3- (V2), 6- (V3) and 12-months (V4) after 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 9, 2023. ; https://doi.org/10.1101/2023.10.08.23296650doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.08.23296650
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

44 

 

diagnosis (Table 2 ad Table S3). Plasma samples at baseline visit 1 were collected following the 

SOP reported above. 

 

Ethics 

The study followed the guidelines of the Declaration of Helsinki for research on human individuals, 

and the study was approved by the local ethical committees of the participating clinical sites (see 

Table S2 and S4). Participants gave written informed consent. 

 

HTG EdgeSeq miRNA whole transcriptome assay (Targeted-seq) 

HTG EdgeSeq miRNA whole transcriptome assay method is an RNA extraction-free approach, and 

exploit quantitative nuclease protection assay (qNPA) chemistry with a subsequent Next 

Generation Sequencing (NGS) platform to allow semi-quantitative analysis of a panel of n=2102 

targeted miRNAs (including n=13 housekeepings, n=5 negative process controls, n=1 positive 

process control and n=2083 targeted miRNAs) from 15 µl of plasma. In PCR-based library 

preparation, each sample is used as a template for PCR reactions for specially designed primers 

(tags), which share common sequences complementary to 5’-end and 3’-end “wing” sequences of 

the probes and common adapters required for cluster generation on NGS platform (Illumina 

NextSeq550). Libraries were prepared and cleaned-up with HTG EdgeSeq AMPure cleanup of 

Illumina Sequencing Libraries. Following libraries preparation, their concentration has been 

evaluated through HTG EdgeSeq KAPA Library quantification, and each library has been 

normalized and pooled using HTG EdgeSeq RUO library calculator. Then, pooled libraries were 

denatured in 2 N NaOH and sequenced (final concentration 4 pM) onto Illumina NextSeq550 

platform (High Output kit v2 cat. FC-404-2005). Data were returned from the sequencer as 

demultiplexed FASTQ files. Resulting reads  were aligned referring to miRbase v20 using HTG 

Parser software.  

 

QIAseq Small RNA sequencing (Untargeted-seq) 
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Total RNA extraction was performed from 200 µL of plasma through Serum/Plasma Norgen kit 

(cat. 55000, Thorold, ON L2V 4Y6, Canada). Small RNA-derived cDNA libraries were prepared 

using QiaSeq miRNA library kit (cat. 331505, Qiagen). QiaSeq strategy assign Unique Molecular 

Index (bound to reverse transcription primers) during reverse transcription step to every mature 

miRNA molecule, to enable unbiased and accurate miRNome-wide quantification of mature 

miRNAs by NGS. Then, libraries quality control (QC) was performed quantifying their concentration 

through QUBIT 3.0 spectrofluorometer (Qubit™ dsDNA HS Assay Kit, cat. Q32854, Thermofisher 

Scientific) and assessing their quality using capillary electrophoresis in Bioanalyzer 2100 (Agilent 

High Sensitivity DNA kit cat. 5067-4626, Thermofisher Scientific). High quality of libraries was 

evaluated considering electropherograms showing a peak comprised between 175 and 185 bp. 

Following QC, all libraries were normalized until 2 nM and pooled, denatured in 0.2 N NaOH and 

further sequenced (final concentration 175 pM) on Illumina NovaSeq 6000 platform [NovaSeq 6000 

SP Reagent Kit (100 cycles) cat. 20027464, NovaSeq XP 2-Lane Kit cat. 20021664, Illumina] using 

the XP protocol applying 75x1 single reads. 

Data were returned from BaseSpace Sequence Hub as demultiplexed FASTQ files. Resulting raw 

reads were deduplicated by leveraging Unique Molecular Identifiers (UMIs) present in the library, 

then mapped to miRbase v21 and piRNABank using QIAseq miRNA Quantification V1 Legacy 

pipeline from QIAGEN GeneGlobe Data Analysis Center portal 

(https://ngsdataanalysis2.qiagen.com/QIAseqmiRNA). Briefly, resulting reads were mapped 

referring to miRbase v21 and piRNABank using QIAGEN Gene Globe data analysis center 

software, which identified a wide repertoire of small RNA species e.g. piRNA (PIWI interacting 

RNA), tRFs (transfer RNA fragments), rRNA (ribosomal RNA), miRNA (microRNA). 

All these  procedures (samples collection and time, RNA extraction, Small RNAs library 

preparation and sequencing) were also conducted on 147s cohort as already described for 100s 

cohort, with minor modifications. In details, Small RNAs libraries were barcoded with unique dual 

indexes (UDI) (cat.# 331615 and cat.# 331625). 

 

Primary analysis of miRNA expression 
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Reads assigned to miRNAs were standardized into Counts Per Million (CPM) and filtered through 

edgeR package of R (BioConductor), maintaining only those miRNAs expressed in at least 70% of 

individuals with at least 15 CPM for HTG EdgeSeq and 10 CPM for QIAseq. Following low counts 

filtering, Median of Ratios normalization was performed through DESeq2 package of R 

(BioConductor) and normalised counts were used for subsequent analyses. Consistently detected 

miRNAs in both sequencing platforms were selected, keeping only those having a positive Pearson 

correlation estimate between the two approaches (R>0 and p-value<0.05). 

 

Circulating miRNAs Unsupervised hierarchical clustering analysis 

Unsupervised hierarchical clustering was independently applied to both miRNA expression 

datasets. The analyses were performed on log2 transformed data (after the addition of a pseudo-

count), with hclust function of stats R package (complete-linkage agglomeration method and 

Pearson’s distance as distance metric). In order to determine the optimal cutting threshold 

silhouette method was applied. 

Then, both dendrograms were split in two branches (cutree function of stats package of R with 

K=2) and named according to their size (Cluster A the major and Cluster B the minor). Only 

patients consistently identified as members of the same Cluster in both expression datasets were 

kept. 

The association among patients’ clinical data and their branch membership was evaluated with 

logistic regression (glm function from stats package of R) and p-values < 0.05 were considered 

significant. The direct association between individual miRNA expression (log2-transformed, adding 

a pseudo-count) and each numerical clinical parameter was evaluated using Spearman’s 

correlation test. The same analysis was performed on Small RNAs sequencing dataset, obtained 

from the 147s cohort, by considering the same miRNAs used for the analyses in the 100s cohort. 

 

HLA genotyping 

HLA typing was performed at v1 for n=107 out of n=109 T1DM individuals classified as Cluster A 

or Cluster B individuals through AXIOM Genotyping Array. HLA aplotype prevalence differences 
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between Cluster A and Cluster B was assessed using chi-square test, considering significant P 

values ≤ 0.05. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 9, 2023. ; https://doi.org/10.1101/2023.10.08.23296650doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.08.23296650
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

48 

 

PBMC (cryopreserved) multi-dimensional flow cytometry (Multi-FACS) immunomics 

Immunomics profile of peripheral blood from n=67 out of 115 individuals was investigated at 

baseline through Cytek Aurora flow cytofluorometer. 

Samples were processed in five batches (between 12 to 16 samples per batch, consisting of a 

mixture of samples from each of the five INNODIA immune laboratories) together with two 

unrelated control samples in each batch using 0.54-2.8x106  PBMCs per sample. PBMCs were first 

stained using Live/dead blue for 15 min at room temperature, washed with FACS buffer (PBS with 

0.2% BSA and 2mM EDTA), and incubated with Fc receptor blocker (TruStain FcX Fc; BioLegend) 

for 10 min at room temperature. Without wash, samples were stained in a 37˚C waterbath for 15 

min using mastermix 1 (containing antibodies against CXCR3. CD117, CD294/CRTH2, and 

CD161). Samples were further stained in waterbath for 15 min using mastermix 2 (containing 

antibodies against CXCR5, ICOS, CCR7, and CCR6), followed by 30 min at room temperature 

using mastermix 3. Finally, samples were washed using FACS buffer, then fixed and resuspended 

in PBS containing 1% paraformaldehyde (Alfa Aesar). Single colour controls were made using 

PBMC for all colours except for CD294, CD117, CD161, and TCRgd where BD mouse or rat comp 

beads were used instead due to low cell expression. Single colour controls were subjected to the 

same buffer and fixed as the multi-colour stained samples. SpectroFlo QC beads were run daily 

and single colour controls were acquired in the reference library, which was subsequently used for 

live unmixing during sample acquisition on a Cytek Aurora cytometer. Flow data were analysed 

using FlowJo software using the Boolean gating scheme shown in Figure S10. 

In order two find differences in the proportion of immune cell populations between the two cluster 

of patients (Cluster A, Cluster B), a Beta regression analysis was performed, using the betareg 

function (version 3.1.4)94. From the 109 patients assigned to the same Cluster by the two different 

sequencing platforms, 67 were also present in the immunomics cohort. Among these overlapping 

patients, n=48 belongs to Cluster A and n=19 to Cluster B. As first step of the analysis, proportions 

of immune cell population were transformed according to Smithson & Verkuilen93 to rescale the 

dependent variable in the interval (0,1), avoiding values of 0;1. Indeed, beta regression model 

cannot deal with values of 0 and 1. The Beta regression model was corrected for the time between 
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blood draw and PBMCs isolation (same day vs. overnight). Immune cell populations with a P 

value≤0.05 related to the cluster were detected as significantly different in proportions between the 

two groups of patients. For representative purpose only, immune cell proportions were residualized 

for the time between blood draw and PBMCs isolation. For each immune cell population, a linear 

model was fit with the proportion as dependent variable and the time between blood draw and 

PBMCs isolation as independent variable. The residuals of the models represent the information 

on immune cell proportions that is not explianed from the timing of PBMC’s isolation. 

 

MiRNAs differential expression analysis 

Normalised reads of the two sequencing datasets were used to detect any differentially expressed 

miRNAs between Cluster A and Cluster B groups in both sequencing platforms, accounting for age 

and sex as covariates with DESeq2 package of R (BioConductor) using Wald test and Benjamini-

Hoechberg adjusted P value ≤0.01 (considered as significant) 
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Weighted miRNA correlation network analysis (WMCNA) for the identification of miRNA 

modules 

Co-expression modules from the two different sequencing platforms were identified using the 

WGCNA package. Normalized expression values from the 248 common correlated miRNAs were 

transformed in log2 scale for the analysis (after the addition of one pseudo-count). Similarities 

between nodes were computed using the biweight midcorrelation, setting the max p-outliers 

parameter at 0.1 and using a weighted signed network. The following step was the identification of 

the Beta parameter (for both platforms) to compute adjacencies between nodes, by applying the 

approximate scale-free topology criterion. This criterion assumes that few highly connected nodes 

(hubs) link the rest of the less connected nodes to the system. Given the power-law distribution of 

the connectivity (sum of the adjacencies of a node with all the other nodes of the system), the 

goodness of the scale free-topology assumption for Beta values was measured through the R2 of 

the model regressing the log10 of probability of the connectivity and the log10 of the connectivity. 

High values of the R2 of the model are related to a straight line fitting the model, suggesting the 

assumption of the scale free topology. Moreover, the slope of the model should be close to -1. 

Candidate values of Beta ranging from 5 to 25 were manually inspected to choose the optimal 

ones for both platforms. Regarding the HTG-Seq platform, the scale free topology was met at a 

value of Beta equal to 24, which is the first value with an R2 close to 0.8 and with a slope of -0.82. 

On the other hand, regarding the Untargeted platform, the first value of Beta with an R² of the 

model of at least 0.8 was 11. However, the slope of the regression model for this value was very 

far from -1 (-0.40), suggesting that the number of nodes with a high connectivity does not decay as 

expected. Moreover, two values of Beta were very different for the two sequencing strategies (11 

and 24) resulting in two networks with very different architectures. For this reason, the optimal 

value of Beta in the untargeted platform was determined as the first value of Beta with at least an 

R2 of the model of 0.8 and a regression slope of at least -0.7. The first value which satisfies these 

two criterions for the untargeted platform was Beta equal to 20. Once estimated the Beta 

parameters, similarities matrices were converted into adjacencies matrices by elevating similarities 

at the corresponding Beta value. The next step was the identification of the Topological Overlap 
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Matrix (TOM) for both sequencing platforms from the adjacency matrices. The topological overlap 

of two nodes is a measure of similarity which defines how well the two nodes are interconnected. 

At this point the information from the two sequencing platforms, managed in a separate way during 

the previous phases of network construction, was merged in a consensus TOM. For the estimation 

of the consensus TOM, the two TOMs were first scaled at the 95th quantile. The scaling step is 

crucial, because the consensus TOM was estimated as the minimum-wise component between the 

two TOMs. The consensus TOM, which contains the minimum-wise information about nodes 

interconnectivity from both platforms, was then transformed into a dissimilarity matrix (1-

TOMcons). The hclust algorithm (hierarchical clustering), with average agglomeration method, was 

used to detect the modules, using the dissimilarity TOM as distance matrix. Minimum module size 

equal to 3 and deep split equal to 2 were set as parameters for the deepsplit function to cut the 

dendrogram for modules identification. At this point each miRNA was assigned to a module, with 

the grey one representing un-assigned miRNAs. The last step was the merging of very similar 

modules, to limit the redundancy in the information held. Modules EigenMiRNAs (MEs) were 

computed as the first principal component of the miRNAs expression values (normalized and log2 

scaled) present in the module for both sequencing platforms. Similarity between MEs was 

computed with Pearson’s correlation coefficient, and then the dissimilarity was estimated and used 

for the hierarchical clustering of MEs. A cut height of 0.1 was used to merge closely related 

module. The final output of the WGCNA algorithm was a list of labels which identifies each miRNA 

as belonging to a specific module (after merging of closely related ones). Each module was 

summarized by a ME, computed as previously stated. 

Once defined the modules through WMCNA, the aim of the analysis was the identification of a 

subset of miRNAs (n=5) for each module, which are the most representative. The centrality 

(hubness) of a miRNA within its module was defined using the intramodular connectivity as metric. 

The intramodular connectivity is the sum of the adjacencies of a miRNA with all the other miRNAs 

present in the module. The higher the intramodular connectivity, the higher the centrality of the 

node in the module. However, given the different values of Beta for the two sequencing platforms 

in the module’s estimation step (24 HTG-Seq, 20 Untargeted), the intramodular connectivity must 
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be normalized in order to be comparable between them. Thus, for each module and sequencing 

platform, the intramodular connectivity of the node was divided by the maximum value of its own 

module. Then, the normalized intramodular connectivity of the nodes among sequencing platforms 

were summed up, and miRNAs were ranked based on this value. The 5 miRNAs with the highest 

values were defined as the most representatives for the module. Modules eigenMiRNAs of these 

subsets of most representative miRNAs were then computed for both sequencing platforms and 

correlated with clinical parameters using Spearman’s Rho correlation. Correlations with a p-

value<0.05 were considered as significant. 

 

Droplet Digital PCR 

Validation of selected miR-409-3p, miR-127-3p and miR-382-5p identified through differential 

expression analysis and WMCNA was performed through Custom Taqman reverse transcription 

and subsequent droplet digital PCR (ddPCR) detection. 

In details, their  expression was analysed in all plasma samples of 100s and 147s T1DM cohort 

using TaqMan miRNA assay primers (Life technologies, CA, USA) through a standardised 

protocol. RNA (the same used for small RNA sequencing) was reverse transcribed employing 

Custom RT primers pool and preamplified using Custom Preamp primers pool. Briefly, 5 µL each 

RT or TM primer was diluted in a total volume of 500 µL Tris-EDTA 1X and used for RT or 

preamplification reaction. Then, 3 μL of RNA were added to 6 μL of custom primers pool, 0.30 μL 

100 mM dNTPs, 3 μL of 50 U/μL Multiscribe RT, 1.50 μL 10× RT Buffer, 0.19 μL 20 U/μL RNase 

Inhibitor and 1.01 μL H2O. The reaction product was incubated at 16 °C for 30 min, 42 °C for 30 

min and then at 85 °C for 5 min. Afterwards, the synthesised cDNA was preamplified using Custom 

Preamp primer pool; the reaction included: 2.5 μL of cDNA from each sample, 12.5 μL 2× TaqMan 

Preamp Master Mix, 3.75 μL 10× Custom Preamp primers and 6.75 μL H2O. The reaction was 

incubated at 95 °C for 10 min, at 55 °C for 2 min and at 72 °C for 2 min, then for 12 cycles at 95 °C 

for 15 s and 60°C for 4 min and, finally, at 99 °C for 10 min. Then, droplet digital PCR was 

performed on a BioRad QX200 system using a Probes assay (BioRad, Mississauga, ON, Canada). 

Each PCR reaction contained 11 μL of QX200 super mix, 1.1 μL of each 20X TaqMan assay, 5.9 
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μL of H2O and 4 μL of template cDNA in a final volume of 22 μL. The PCR reactions were mixed, 

centrifuged briefly and 20 μL transferred into the sample well of a DG8™ cartridge. After adding 70 

μL of QX200™ droplet generation oil into the oil wells, the cartridge was covered using a DG8™ 

gasket, and droplets generated using the QX200™ droplet generator. Droplets were carefully 

transferred into PCR plates using a multi-channel pipette and the plate sealed using PCR plate 

heat seal foil and the PX1™ PCR plate sealer. PCR was performed in a C1000 touch thermal 

cycler (BioRad, Mississauga, ON, Canada). The PCR protocol was 95°C for 10 min; 40 cycles of: 

95°C for 30 s, optimal annealing temperature (56°C for miR-409-3p and miR-382-5p; 54°C for miR-

127-3p; 98°C for 10 min; 4°C for 30 min. PCR plates were transferred into a QX200™ droplet 

reader to count positive and negative droplets. Thresholds to separate positive from negative 

droplets were set manually for each miRNA using the histogram function and reads analysed using 

QuantaSoft™ Analysis Pro software (Version 1.2, BioRad, Mississauga, ON, Canada). 

 

Quantification and statistical analysis 

Sample size for circulating miRNAs analysis were determined according to our experience from 

previous works. Mann Whitney U test was performed between two groups when the variables did 

not follow a Gaussian distribution. Coefficient of Variation of miRNAs expression in Targeted- and 

Untargeted-seq was calculated on read counts using GraphPad 10.0. 

Differences in clinical parameters between individuals belonging to Cluster A and Cluster B were 

determined with the univariate logistic regression using the glm function from the stats package in 

R software. Data were modelled using the Cluster A as dependent variable and the clinical 

parameter as independent variable. Clinical parameters with a P-value associated to the coefficient 

≤0.05 were considered as significantly different between the clusters. The association between 

clinical parameters in each cluster of individuals was performed using a simple linear regression 

analysis, reporting β-values, R2 and P- values. Correlation analyses were performed using 

Spearman Rho Test or Pearson’s R test. 

Statistical analyses were performed using R project (version 4.2.2) or GraphPad Prism (version 9 

or 10). 
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Figure 7 
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Figure 9 
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