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Remote Photoplethysmography (rPPG): A
State-of-the-Art Review

Pireh Pirzada , Adriana Wilde , Gayle H Doherty and David Harris-Birtill

Abstract—Peripheral oxygen saturation (SpO2) and heart rate
(HR) are critical physiological measures that clinicians need to
observe to decide on an emergency intervention. These measures
are typically determined using a contact-based pulse oximeter.
This approach may pose difficulties in many cases, such as with
young children, patients with burnt or sensitive skin, cognitive
impairments, and those undergoing certain medical procedures
or severe illnesses. Remote Photoplethysmography (rPPG) allows
for unobtrusive sensing of these vital signs in a variety of
settings for health monitoring systems. Several research studies
have been conducted to use rPPG for this purpose; however,
there is still not a commercially available, clinically validated
system that overcomes the concerns highlighted in this paper.
We present a state-of-the-art review of rPPG-related research
conducted including related processes and techniques, such as
regions of interest (ROI) selection, extracting the raw signal,
pre-processing data, applying noise reduction algorithms, Fast
Fourier transforms (FFT), filtering and extracting these vital
signs. Further, we present a detailed, critical evaluation of
available rPPG systems. Limitations and future directions have
also been identified to aid rPPG researchers in further advancing
this field.

Index Terms—Remote Photoplethysmography (rPPG), Remote
Sensing, Heart Rate, Blood Oxygenation, Signal Processing,
Computer Vision, Remote Health Monitoring, Digital Health.

I. INTRODUCTION

HEART Rate (HR) and blood oxygen saturation (SpO2)
are physiological signs that are used as critical indicators

of human health [1]. Also called vital signs, these typically
become the first clinical alerts to a significant change in a
person’s health. This is due to the existence of many complex
relationships between these signs and the components of
underlying circulatory and neuro-hormonal systems [1].

The first of these signs, HR, is a measure of cardiac
activity, critically important in the assessment of emergent
ill-health [2]. For example, a decrease in HR may be the
result of an increase in intracranial pressure [3], whereas an
increase may reflect hypovolemic shock [4], both medical
emergencies [3], [4]. Normal values for HR in resting state
lie between 60-100 BPM, with lower values being referred to
as ‘bradycardia’, and higher ones, ‘tachycardia’ [5], [2].

The second of these signs, SpO2, is a broad measure of
the levels of blood oxygenation, which can be defined as
the percentage of Haemoglobin (Hb) in the blood carrying
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oxygen. When a person breathes in, oxygen enters the lungs
and then transfers across the alveolar membrane and into
the bloodstream [6]. The function of the circulatory system
is to transfer this oxygen to all of the organs and cells of
the body [7]. Once the oxygen has been off-loaded, the Hb
becomes deoxygenated haemoglobin (also known as deoxy-
Hb) [7], eventually returning to the heart which then sends it
on to the lungs to acquire more oxygen, and so the process
continues [2]. An abnormal change in SpO2 can have a
serious effect on a person’s organs and is often associated with
disease, typically of the lungs and/or of the heart [7]. These
include pneumonia [8], [9], asthma [10], Chronic obstructive
pulmonary disease (COPD) [11], [12], drug overdose [13],
hypoxia [13], respiratory [14] or heart diseases [15]. A SpO2

value below 94% is considered to be abnormal for most
people and indicates a significant respiratory illness, whilst
some individuals with stable chronic lung disease may have
a reading of 88-94% [16]. Monitoring changes in SpO2 can
help identify complications including respiratory failure [14].

A. Measuring HR and SpO2

Pulse oximetry is a widely used method for measuring HR
and SpO2 [17], [18], [19]. It is based on the photoplethys-
mography (PPG) principles first introduced by Hertzman in
1937 [20]. PPG measures blood flow by calculating changes
in the dispersion of light [21], [22]. This technique uses
a Red and Infrared (IR) light-emitting diode (LED) and a
photodetector, with a person’s finger in between. This setup
allows two wavelengths of light to travel through the finger
to a photodetector, which detects light not absorbed by the
finger. The light absorption is governed by Beer’s law [23],
whereby light is absorbed proportionately to the concentration
of the light-absorbing material, such as Hb and deoxy-Hb,
which means that the higher their concentration, the more
light is absorbed. Lambert’s law also applies, whereby light
absorbed is proportionate to the distance of the light path. This
means that more light is absorbed when it travels through
a longer path. As light-absorbing materials, Hb and deoxy-
Hb differ: Hb absorbs more IR light than deoxy-Hb while
deoxy-Hb absorbs more red light, as shown in Fig. 1. Pulse
oximeter LEDs emit light at 660 nm (red) and 940 nm
(Infrared) wavelengths [24]. Fig. 1 shows that at 650 nm
deoxy-Hb absorbs more light than Hb, while at 940 nm the
opposite is true. These physical properties are used by a pulse
oximeter to measure the varying absorbance at each of the
wavelengths [23].

Understanding these vitals can give important information
about a person’s health and its result and performance impact
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Fig. 1. The optical extinction spectra of oxy-Hb and deoxy-Hb within the
blood. Figure generated using data by Prahl [25].

clinical decisions [26]. Another form of measuring HR is
via an electrocardiogram (ECG), used to characterise the
cardiac rhythm in detail. However, this requires being fixed on
location, typically using gel patches or chest straps [27], which
might require shaving body hair. The extra adherent tape is
applied to keep the electrode pad in place. This can irritate the
skin and cause allergic reactions [28], [29], especially in long-
term monitoring [29]. Whereas, SpO2 is currently assessed
either by a simple method such as a pulse oximeter finger
probe placed around the tip of the finger or by more invasive
procedures such as Arterial Blood Gas (ABG) measurement
where a needle is used to draw blood from an artery in the
wrist [30]. Using the ABG method of getting true SpO2 can
be painful and carries significant risks of infection [30], [16].
In the case of neonatal where regular sampling is required,
it has a high risk of blood loss [31]. In addition to that, this
process is also time-consuming [32].

A pulse oximeter device uses a clip that is mounted on a
person’s fingertip1 or uses a strap form for example where
it is wrapped on a baby’s foot2. Monitoring HR and SpO2

is also possible in other forms such as a wrist band3 [33],
[34] or a smartwatch4, a clip that can be attached to an
ear5 [35], or stick to the forehead6 [36]. Generally, a pulse
oximeter clip which is mounted on a finger is the most
common, accessible and cheaper form of measuring the vitals
(clinical or commercial) [31], [37], [18], [19]. It is a simple
and common device used in a medical setting, with relatively
low intrusiveness [38], [37], [18], [19]. Recently, physicians
worldwide have suggested using portable pulse oximeters
for self-evaluating health vitals [39]. It plays a vital role in
indicating shortness of breath related to COVID-19 [39]. It
is not only widely used in clinics and hospitals [40] such as
ICU but also for sports [41], [42] and within homes [43], [44],
[45] due to the wide availability of commercial pulse oximeter
devices. Commercial pulse oximeter devices even come with

1Finger pulse oximeter (Accessed 25/4/2023), https://bit.ly/3KqORCo
2Baby’s foot pulse oximeter (Accessed 25/4/2023), https://bit.ly/3y4duCu
3Wrist pulse oximeter (Accessed 25/04/2023), https://bit.ly/3rXsDlp
4AppleWatch6 (Accessed 25/4/2023), https://www.apple.com/uk/

apple-watch-se/
5Ear pulse oximeter (Accessed 25/4/2023), https://bit.ly/38z4ASH
6Forehead pulse oximeter (Accessed 25/04/2023), https://bit.ly/3vn0KFq

facilities that allow Bluetooth connection and their applications
to enable pairing to smartphones, record vitals and store the
vital history of a person [46], [47], [48], [49].

B. Limitations of contact-based pulse oximetry

Although effective, pulse oximetry poses several problems
as a monitoring tool including being open to significant
error [30], [16]. The pulse oximeter clip has to be phys-
ically mounted on the finger of a person, which can be
difficult to manage for adults or for patients with any form
of incapacity [50] for example burnt skin [51], cognitive
challenges [50], [51], during surgery [51], young children [31],
sensitive skin [28] and in those with severe illness of any
cause [28]. It can also be challenging to work with children
or adults with physical incapacity [50]. In addition to that,
it may be cumbersome to wear for long periods of time [52],
restricting movement if wire-based pulse oximeter devices are
used [36] and providing a constant physical reminder that their
health is being monitored [28], [48].It also carries an increased
risk of cross-infection [53].

Moreover, this presents a potential hazard with a high risk
of choking among infants when using devices with wires [54].
Along with that, pulse oximeters have also been reported to
have an increase in errors when using nail varnish [7], [50],
pigmentation of skin [7], [50], access movement[7], [50], in
cases where abnormal Hb and Carboxyhaemoglobin (COHb)
is present and intravascular dyes; it also reduces accuracy
for SpO2 that is below 83% [7]. Previous research shows
that different skin pigmentation especially those with darker
skin such as black or brown (i.e. with higher values in the
Fitzpatrick scale7) had an increased error rate [57], [58]. For
example, one study found a substantial bias in pulse oximeter
devices used with people with darker skin pigmentation (IV-
VI type from Fitzpatrick scale) had a higher error rate (5.1%
±9.2%) in comparison to white skin pigmentation (I-III type
from Fitzpatrick scale) (1.9% ±10.2%) for SpO2 [59], [60].
Another study reported an increased error rate of 3.56 ±2.45%
among darker skin pigmentation participants compared to
white skin pigmentation participants with an error rate of 0.37
±3.20% SpO2 [61]. Also, in a research study with anaemic
participants during hypoxemia, it was observed that the error
rate for the anaemic participants was 15% compared to 6.4%
among non-anaemic participants [59], [40]. Different stud-
ies have been conducted where participants applied different
colours of nail paint. Past studies reported conflicting results
that is, some studies discovered that nail paint reduces SpO2

values [62], [63], whereas others found no effect of applying
nail paint [64], [65]. One study stated that black, blue, and
green nail paint decreased SpO2 reading by 3 to 6%, whereas
blue nail paint decreased it from 97% to 87% [62].

7The Fitzpatrick Scale ranges from I (epidermal melanin around 3% volume
as the lowest in scale) to VI (epidermal melanin 43% volume as the
highest in scale)[55]. Type I-III: Pale to Fair White skin pigmentation, Type
IV-V: Light and Dark Brown skin pigmentation, and Type VI: Black skin
pigmentation[56].
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C. Remote Photoplethysmography (rPPG)

rPPG is the measurement of the flow of blood by optical
means, typically involving measurement of changes in the
transmission or scattering of light created by blood flow in
a part of the body [54]. These changes are also reflected on
the face via subtle changes on the skin where the pulse flashes
lighter and darker over time. This phenomenon is not visible
to the naked eye; however, it can be detected by measuring
the reflectance of light over a period of time from skin pixel
intensity extracted from Region of Interests (ROIs) using a
camera-based system [51].

rPPG system measures the HR by analysing the skin pixel
intensity of the heartbeats over time; the skin flashes darker
and lighter as more and less blood flows through the region.
It measures SpO2 by using the optical absorption differences
across the visible and near-infrared wavelength regions be-
tween Hb and deoxy-Hb [23], [66]. Various techniques from
different research systems have been evaluated, critiqued with
their gaps, summarised and presented in this research paper.

II. RESEARCH MOTIVATION

Current contact-based methods have limitations which can
be prohibitive for people with certain incapacities, severe
illnesses, or burns as mentioned in section I-B which can
be mitigated by developing and optimising rPPG systems.
rPPG is an alternative method to measuring vital sign data
such as HR and SpO2 over contact-based methods such
as pulse oximetry. rPPG helps overcome the limitations of
pulse oximetry which are stated in section I-B. It has the
potential to revolutionise vital sign measurement by providing
a more convenient and non-invasive approach to capturing
physiological information from the human body without the
need for physical contact. rPPG research field is expanding
rapidly, but it predominantly concentrates on monitoring HR,
neglecting the crucial aspect of simultaneously tracking HR
and SpO2. An essential dimension of advancing these systems
involves comprehending their performance in various settings,
including laboratories, clinics, and homes. Unfortunately, there
is currently no comprehensive review paper available that
elucidates the rPPG (remote photoplethysmography) process
for both HR and SpO2 and offers an in-depth analysis of the
existing gaps within rPPG systems. This absence of informa-
tion underscores the importance of identifying limitations and
outlining future directions for researchers interested in further
advancing rPPG research.

III. RPPG PROCESS

Previous research studies have used a variety of different
equipment and set-up to capture data from participants to ob-
tain vital signs. Thermal camera [67], [68], [69], [70], Charge-
Coupled Device (CCD) camera [71], [72], other affordable
web cameras or those built-in laptops [73], [74], [75], [76],
[77], [78], [79], [80], [81], MS Kinect V2 [82], [83], [66],
Kinect Azure [84], GoPro camera with a drone [85] and
smartphone [86], [87], [88], [89], [90], [91], [92], [93], [94]
cameras have been previously used to obtain a person’s vital

signs. Table V and Table IV show different studies conducted
with various equipment and the vital sign under observation.

The most common steps followed in an rPPG system are
detailed below:

1) Face identification and ROI detection
2) Signal extraction
3) Reducing noise from signal
4) Applying Fast Fourier Transform (FFT)
5) Applying frequency filter
6) Extracting vital sign
7) Reliability check

A. Face and ROI Detection

The first step involves identifying the person’s face from
the frame. The research stationed participants in front of the
camera in a static position to acquire face image frames. The
participants are required to be in a specific location with no or
minimal movement. In the case of minimal movement, ROIs
were selected manually [95], [96], [97] whereas to cater to
head movement or rotation of the head to some degree, various
algorithms were used, among which Viola and Jones [98],
[99] were common. One of the major reasons researchers
used this library was due to its availability in the OpenCV.
Researchers used a neural network-based classifier to detect
ROI [100], [101], [102], a statistical model to match a person’s
face to an image frame [103] and different algorithms to track
features points for head movement in image frames [104]. To
cater to the movement problem and identify the correct ROI,
one way would be to detect face and ROI for every single
frame. However, the Viola-Jones bounding box is not very
accurate and can report false positives and negatives [104]
along with additional computation power in the case of real-
time applications [104]. Kanade-Lucas Tomasi (KLT) was
used by different researchers to track feature points from
a face to update ROI location [100], [105], [106], [107],
[108]. Different parts of the body have been used as ROI to
obtain vitals [56], [109], [110], [111], such as the entire face,
forehead, and palm, as shown in Table V.

B. Signal Extraction

Once the ROI has been identified and extracted. The next
step is to extract the raw signal from the ROI image data
over a specific time period. The raw signal from a colour
image includes channels RGB and these values obtained
from each channel of the image frame are averaged over
all pixels at a time period. For example, red channel pixels
averaged for ROI image data for a time period of 60 seconds
(sR(t), sG(t), sB(t)) where s is the signal obtained over time
t for RGB channels. This process is known as spatial pooling,
and it helps average the noise contained in each pixel [51],
[28], [112], [113], [114].

C. Reducing Noise

After the raw signal has been obtained, the signal (S)
containing data from all channels [S = sr, sg, sb] is passed
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through a Blind Source Separation (BSS), for example, Inde-
pendent Component Analysis (ICA) or Principal Component
Analysis (PCA) algorithm. This is applied as the signal can
contain additional noise due to skin pigmentation, light source
or any movement. Applying BSS helps extract a clearer signal
from the raw signal input [51], [28], [112], [113], [115].

D. FFT and filter
FFT is then applied to a raw signal to convert it into

a frequency domain and apply a filter to remove unwanted
frequencies. This is to increase SNR to enhance the quality
of the obtained signal [116], [117]. The most common filter
is a bandpass filter to remove low and high frequencies, for
example, 0.65Hz and 3.5 Hz [51], [28], [112], [113], [118],
[119], [120].

E. Extracting Vital
Finally, vital sign data is to be extracted from the signal [51],

[28], [112], [113], [121], [122], [123], [124], [125], [126]. A
peak is identified from the signal to obtain HR vital data.
Where HR is calculated by multiplying the frequency value
on that peak by sixty (60) to convert it into BPM, and for
Respiratory Rate (RR), it is multiplied by the ratio of the
number of peaks over a time period. Researchers used different
methods to obtain SpO2 from the pulse signal, which is
mentioned in section V-B.

F. Reliability Check
Only two research papers defined unique methods using

SNR ratio, and previous estimates within a history window
to perform consistency and reliability check to ensure history-
based reliability of the vital sign data [127], [66].

IV. METHODOLOGY

In order to identify relevant published work, we conducted
a literature review. PubMed, MedlinePlus, ACM, IEEE Xplore
and Springer Articles were searched using the following key-
words: (“remote”, “non-contact”) and (“heart rate monitoring”,
“blood oxygenation level”, “rPPG”). Literature was identified
that fit the criteria detailed in Table I. The date range for the
review was January 1990 – October 2022 (Figure 2). This
was refined further by developing stringent exclusion criteria
(also in Table I). A second round was made based using the
same criteria, to include more recent research (October 2022
– September 2023). Through this round, 57 additional papers
were identified.

V. LITERATURE REVIEW FINDINGS: PREVIOUS WORK
WITH ITS LIMITATIONS

This section provides details of the previous research on
an rPPG system, its performance, conditions, and limitations.
It was found that most of the research focuses only on HR,
whereas very few focus on SpO2 and only a limited number
of studies focus on both. The system performance metrics
(Root Mean Square Error (RMSE), r-correlation and Standard
Deviation Error (σ)) of previous work are listed in Table III
for HR and Table II for SpO2. Previous research conditions
and their participant information are in Table V and Table IV.

Fig. 2. Research articles identified for the literature review based on the
criteria defined in Table I.

TABLE I
INCLUSION AND EXCLUSION CRITERIA FOR RPPG LITERATURE REVIEW

# Inclusion Criteria Exclusion Criteria
1 Measures HR

and/or SpO2 (or
both) and discusses
methods/techniques of
measuring these vital
sign data.

Articles that did not fit the inclusion criteria
such as those that focused on measuring blood
pressure and health monitoring such as activ-
ity monitoring.
Articles focused on security, perception, man-
agement, face detection and/or advantages of
remote health monitoring technologies.
Articles focusing on economic, post-operative
health monitoring involving carers.
Articles with incomplete or missing informa-
tion regarding experiment setup, participant
information and its evaluation.

2 Measures remotely us-
ing camera-based tech-
nology with participants
in a conscious state
within a lab, clinic or
home setting.

Contact-based monitoring such as wearable
(any form of pulse oximetry), wireless sensors
or radars.
Driver state or accident monitoring.

3 Measures humans HR
and/or SpO2 who were
able to consent for
themselves.

Measures animals or rodents HR.
People who cannot consent for themselves.

4 Studies were published
in English.

Articles that did not fit the inclusion criteria
(Languages other than English).

TABLE II
PREVIOUS SYSTEMS EVALUATION MEASURES FOR SpO2 PERFORMANCE

METRICS OF ROOT MEAN SQUARE ERROR (RMSE)

Year Author Participants RMSE
2021 Mathew et al [86](Model1 PD) 14 3.07
2021 Mathew et al [86](Model1 PU) 14 2.16
2022 Casalino et al [128](Still) 10 1.879
2022 Casalino et al [128](talking) 10 1.188
2022 Casalino et al [128](slight rotation) 10 1.881
2022 Casalino et al [128](some rotation) 10 1.063
2016 Van Gastel et al [129] (Still) 4 1.33
2016 Van Gastel et al [129] (some movement) 4 1.64
2022 Pirzada [66] (various movement) 40 2.5
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TABLE III: Lab-based HR systems performance: Standard Deviation
Error (σ), Root Mean Square Error (RMSE), and r correlation

Year Author σ RMSE r

2010 Poh et al. [73] (Sitting still) 2.29 2.29 0.98
2010 Poh et al. [73](with slight movement) 4.59 4.36 0.95
2010 Poh et al. [73] reported by Hassan et al. [113] 12.82 21.08 0.34
2010 Poh et al. [73] reported by Waqar et al. [104] 14.57 17.70 0.33
2011 Poh et al. [74] 0.83 2.29 1.00
2011 Poh et al. [74] reported by Hassan et al. [113] 12.66 14.01 0.44
2011 Poh et al. [74] reported by Waqar et al. [104] 18.12 18.02 0.14
2013 Monkaresi et al. [130](ICA) 25.54 35.31 0.53
2013 Monkaresi et al. [130](ICA+KNN) 4.33 4.33 0.97
2013 Monkaresi et al. [130](ICA+KNN+Regression) 13.70 13.69 0.58
2013 Holton et al. [131] 7.08 7.73 0.84
2013 De Haan et al. [72] 2.6 1.1 0.97
2013 De Haan al. [72] reported by Waqar et al. [104] 21.65 21.99 -0.05
2014 Hsu et al. [132] - 7.31 0.77
2014 Li et al. [133] VideoHR database 0.72 1.27 0.99
2014 Li et al. [133] MAHNOB-HCI database -3.30 7.62 0.81
2014 Li et al. [133] reported by Hassan et al. [113] 9.53 12.47 0.53
2015 Yan et al. [134] - 1.2 0.94
2015 Lee et al. [135] (low dynamic brightness) - 1.8 -
2015 Lee et al. [135] (high dynamic brightness) - 4.7 -
2015 Tran et al. [136] - 5.72 -
2015 Kumar et al. [137] (still) - 15.74 -
2015 Kumar et al. [137] (reading) - 55.34 -
2015 Kumar et al. [137] (watching video) - 97.51 -
2015 Kumar et al. [137] (talking) - 67.08 -
2015 Lam et al. [138] - 8.9 -
2015 Lam et al. [138] reported by Hassan et al. [113] 8.54 10.34 0.66
2016 Haque et al. [139] - 3.85 4.65
2016 Haque et al. [139] reported by Hassan et al. [113] 3.43 5.96 0.86
2017 Al-Naji et al. [85] - 0.65 -
2017 Bousefsaf et al. [140] - 4.81

(min=2.34 and max=7.38)
0.78

2017 Qi et al. [141] 3.65 5.0 0.74
2019 Qi et al. [142] (Still) - 7.21 0.76
2019 Qi et al. [142] (head movement) - 8.70 0.69
2019 Qi et al. [142] (active HR) - 17.88 0.47
2021 Wang et al. [143] - 8.03 0.27
2021 Huang et al. [144] (MAHNOB-HCI dataset) 6.31 6.42 0.84
2021 Huang et al. [144] (UBFC-rPPG dataset) 6.45 7.24 0.73
2022 Zheng et al. [145] (low illumination) 5.64 7.63 0.85
2022 Zheng et al. [145] (average illumination) 4.55 6.28 8.75
2022 Zheng et al. [145] (high illumination) 3.54 5.09 0.86
2022 Zheng et al. [145] (unbalanced illumination) 4.96 7.33 0.84
2022 Zheng et al. [145] (slight head movement) 5.95 7.03 0.85
2022 Pirzada et al. [66] (various movement) 0.018 7.8 0.85
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TABLE IV: Previous Systems, FPS, ROI and Tracking detail

Year Author FPS ROI ROI Tracking Resolution Channels vital
2007 Garbey et

al. [68]
30 Blood vessel on or

around Face
Tandem Tracker
(TT) for face
and Measurement
Tracker (MT) for
vessels

640×480 Thermal Sig-
nal Data

HR

2010 Poh et al. [73] 15 Entire face OpenCV 640×480 R,G,B HR
2010 Poh et al. [74] 15 Entire face OpenCV[146] 640×480 R,G,B HR and

RR
2011 Lewandowska

et al. [97]
20 Entire face and fore-

head
Manual 640×480 R,G,B HR

2012 Kwon et
al. [147]

30 Entire face OpenCV 640×480 R,G,B HR

2012 Scalise et
al. [148]

15 Forehead Manual 320 × 240 R,G,B HR

2012 Pursche et
al. [149]

30 Forehead, mouth and
area around eyes and
nose

not reported 640x480 R,G,B HR

2012 Wei et
al. [150]

30 Entire face OpenCV 640x480 R,G,B HR

2013 Aarts et
al. [53]

15/30 Entire face Manual 300 × 300 R,G,B HR

2013 Yu et al. [151] 25 Area between eyes
and lips (cheeks
combined)

Location and size es-
timated by distance
between eyes

720 x 576 R,G,B HR

2013 Monkaresi et
al. [130]

30 Entire face or mid-
dle region with 60%
width and full height
of the face

Robust face tracking 640 × 480 R,G,B HR

2013 Holton et
al. [131]

15 Entire face Not reported 640 × 480 R,G,B HR

2013 De Haan et
al. [72]

Not
reported

Entire face (where
facial hair pixels are
removed)

Face detector
by Voila and
Jones [152]

1024 × 752 R,G,B HR

2014 Hsu et
al. [132]

29.97 Entire face OMRON OKAO
face detection

1920 × 1080 R,G,B HR

2014 Jiang et
al. [153]

15 Entire face Not reported 400 x 400 R,G,B (G se-
lected)

HR

2015 Yan et
al. [134]

15 Forehead Manual 1280 × 720 R,G,B HR

2015 Lee et
al. [135]

Not
reported

Region under eyes to
nose

Not reported 1280 x 720 R,G,B (G se-
lected)

HR

2015 Tran et
al. [136]

10 Entire face Voila and
Jones [152] and
KLT tracker [154]

640 × 480 R,G,B (G se-
lected)

HR

2015 Bal et al. [37] 30 Entire face Cascade classifier by
Viola and Jones[152]

640 × 480 R,G,B HR and
SpO2

2016 Haque et
al. [139]

61 Entire face Viola Jones 780 × 580 R,G,B HR

2017 Al-Naji et
al. [85]

60 Entire face Voila and
Jones [152]

1920 × 1080 R,G,B (G se-
lected)

HR and
RR

Continues on next page
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TABLE IV – Continued from previous page
Year Author FPS ROI ROI Tracking Resolution Channels vital
2018 Al Naji et

al. [82]
30 Chest Kinect skeleton

tracker
1920 × 1080 R,G,B,IR,

Depth
HR and
RR

2019 Waqar et
al. [104]

15 Face cheeks (40×40
pixel)

Face feature tracker
by Saragih et
al.[155]

640×480 R,G,B HR

2021 Huang et
al. [144]

30 Area under eyes and
above lips (cheeks
combined)

Dlib and Kernel Cor-
relation Filter (KCF)
tracking

640 x 480 R,G,B (G se-
lected)

HR

2021 Mathew et
al. [86]

30 Palm and back of
hand

Not reported Not reported R,G,B SpO2

2021 Ryu et
al. [156]

30 Forehead, cheeks
and nose

Linear Support Vec-
tor Machine (LSVM)
and prediction model
to obtain facial land-
marks

640 × 480 R, G, B HR

2022 Casalino et
al. [128],
[157]

30 Forehead and cheeks OpenCV and
KLT [154]

640 × 480 R, G, B SpO2

2022 Zheng et
al. [145]

40 Forehead Multi-Task
Convolutional
Neural Network
(MTCNN) [158]
and local model
(CE-CLM)[159]

1280 × 720 R, G, B (G
selected)

HR

2022 Pirzada et
al. [66]

Variable dynamic selection
based on SNR
(Forehead, lips,
cheeks, right–left
cheeks with the
nose)

OpenCV 1920 × 1080
(colour) and
512 × 424

R, G, B, IR,
Depth

HR and
SpO2

TABLE V: Previous Systems and Experiment Detail (n: number of
participants)

Year Author Participants Equipment Experiment Conditions
2007 Garbey et al. [68] n=34 Thermal Camera Controlled lighting and re-

stricted participant movement
2010 Poh et al. [73] n=12

Male:10, Female:2
Ethnicity: Asians,
Africans and Caucasians
Age Group: 18 to 31
years

Camera embedded in a
Mac laptop

Resting with restricted (or no)
movement and indirect natural
light

2011 Poh et al. [74] n=12
Male:8, Female:4
Ethnicity: Caucasians

Camera embedded in
laptop

Resting with restricted (or no)
movement and indirect natural
light

2011 Lewandowska et
al. [97]

n=10
Male:10, Female:2
Ethnicity: Caucasians
AgeGroup: 20 to 64
years

Logitech webcam Resting with no movement and
with indirect natural light

Continues on next page
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TABLE V – Continued from previous page
Year Author Participants Equipment Experiment Conditions
2012 Kwon et al. [147] n=10

Male:8, Female:2
iPhone4 camera Resting state no movement and

with indirect natural light
2012 Scalise et

al. [148]
n=7 infants
Male:3, Female:4

Digital camera Resting state indoors with indi-
rect natural light

2012 Pursche et
al. [149]

n=Not Reported Webcam Resting state with restricted (or
no) movement and with indirect
natural and florescent light

2012 Wei et al. [150] n=20
Male:11, Female:9
AgeGroup: 20 to 80
years

Webcam Resting state with restricted
movement and with indirect
natural and spotlight

2013 Yu et al. [151] n=1 Digital camera Resting and active HR with
some movement and fluores-
cent and indirect natural light

2013 Aarts et al. [53] n=19 infants
Age: 25 to 42 weeks

Digital camera Resting state indoors with indi-
rect natural light

2013 Monkaresi et
al. [130]

n=10
Male:8, Female:2
Ethnicity: Cau-
casian(80%) and
Asian(20%)

Logitech webcam Resting and active state with re-
stricted movement with fluores-
cent and indirect natural light

2013 Holton et
al. [131]

n=18
Male:16, Female:2
AgeGroup:22 to 62
years
Ethnicity: Caucasian,
African and Asian

Logitech Pro Webcam Resting state with restricted
movement with fluorescent and
indirect natural light

2013 De Haan et
al. [72]

n=117 CCD camera Resting state with studio lights

2014 Hsu et al. [132] N=4
Male:4
Ethnicity:Asian
AgeGroup: 22 to 25

SONY XDR-XR500
video camera

Experiment Conditions

2014 Jiang et al. [153] n=15
Male:12, Female:3
AgeGroup:25 to 35
years

LG G2 phone Ambient light with restricted
movement

2015 Bal et al. [37] n=2 healthy (for HR)
n=7 PICU (for HR)
n=6 (for SpO2) n=3
PICU (for SpO2)

Lenovo T430 laptop we-
bcam

Resting state with some move-
ment and indirect natural or flu-
orescent light

2015 Yan et al. [134] n=15
Male:7 and Female:8
AgeGroup: 20 to 35
years

CCD camera Resting and indirect natural
light

2015 Lee et al. [135] n=10
Male:8 and Female:2

Canon 6D camera with
focal lens length fixed to
EF 50mm F1.4 USM

Resting with restricted move-
ment where the light source is
from a screen showing video

2015 Tran et al. [136] n=10
Male:7, Female:3
AgeGroup: 20 to 35

Logitech C920 webcam Resting with some movement
and ambient light (low and
bright)

Continues on next page
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TABLE V – Continued from previous page
Year Author Participants Equipment Experiment Conditions
2016 Haque et

al. [139]
n=27
Male:12, Female:15

Digital camera Controlled natural light source
indoors and light from LCD
screen

2017 Al-Naji et al. [85] n=15
Male:10, Female:5
AgeGroup:2 to 40

Drone UAV (3DR solo)
with a GoPro camera

Natural light (outdoors) at a dif-
ferent time of the day. Rest-
ing state in three phases where
participant was talking or with
some head movement and with
no movement.

2018 Al Naji et al. [82] n=10
Male:5, Female:5
(healthy participants)
AgeGroup:1 to 6 years
children and a 36 year
old

KinectV2 Resting state (on bed) in a
bright and dark environment

2019 Waqar et
al. [104]

n=16 Logitech webcam Natural light and ambient light
(bulb and projector light) with
movement upto 45 degree

2021 Huang et
al. [144]

n=35
Male:16, Female:19
AgeGroup:24 to 32

Logitech camera Lab based but other experiment
conditions not reported

2021 Mathew et
al. [86]

n=14
Male:6, Female:8
AgeGroup:21 to 30
years

Smartphone camera Restricted movement and light
source available in the setup
area

2021 Ryu et al. [156] n=13
Male:5, Female:8
AgeGroup:23 to 28
years
Ethnicity: Asian

Built camera of Lenovo
laptop

Restricted movement with
some head motion and ambient
light

2022 Zheng et al. [145] n=40
AgeGroup: 20 to 40
years

Sony HDR CX-45 Resting state with some head
movement allowed and con-
trolled (intensity of light ad-
justed for participants) multiple
LED sources

2022 Casalino et
al. [128], [157]

n=10
Male: 8, Female: 2

Digital camera Six types of head movements
with natural light

2022 Pirzada et al. [66] n=40
Male: 15, Female: 25

Kinect V2 Participant movement allowed
in front of the camera. They
were laughing, talking and a
few moving to approx. 45 de-
grees.
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A. Remote HR Measurement

rPPG was introduced and demonstrated by using a thermal
camera to record and analyse face data [67], [68]. This was
to extract information about cardiac pulse, blood flow, and
breathing rate. The researchers tracked the face movement
and used a blood vessel (blood vessel registration) as ROI to
extract a thermal signal. After extracting the thermal signal
and removing noise, a Fourier Transform was applied to
obtain a pulse signal. The performance of the system was
reported to be 88% [67]. However, the research does not
state RMSE, r-correlation or Mean Absolute Error (MAE)
values. In addition to that, the research data was gathered in
a controlled illumination environment where the participants’
movement was restricted (still state). The system might not
perform well in a real-life scenario as illumination may vary
and participants are not restricted from movement. Along with
that, this thermal equipment is expensive [104], [69] which can
be difficult to deploy on smaller budgets [104], [69].

Another study was also conducted utilising a thermal cam-
era that used the forehead as ROI to measure and analyse
signal data to generate HR. During data acquisition, if the par-
ticipant changed the head position in any direction, the system
failed to capture data from the defined ROI [69]. Researchers
used the Auto-Regressive Moving Average (ARMA) model
to obtain HR from the signal [160]. The biggest drawback
is that even if the signal provides a reasonable result, the
participant’s movement in real-life can fail the system since
it only tracks the forehead. In the case of a headscarf or
longer hair, it is also highly likely to produce a reading that
is not accurate. Along with that, a person’s Body Temperature
(BT) and environmental temperature could impact the signal
extracted from a thermal video. Again, the expensive thermal
equipment would also make it infeasible to deploy on a limited
budget [104], [69], [161].

Remote HR measurement has also been accomplished using
a CCD camera. Researchers used thirty (30) mean seconds of
image data captured from the camera and analysed the change
in brightness on participants’ face regions from the cheeks.
After analysing the signal data obtained from participants,
HR peak was identified [71]. Another research used a CCD
camera to remote measure HR. It focused on participants’
movement and noise from light using chrominance rPPG to
remove specular reflection variation. They used a combination
of red and green channels to extract signals from defined
ROI [72]. Once again, both these studies were conducted in
a controlled setting which used specific lighting. Deploying
this system in a real-life scenario could impact the results
(inaccurate readings) due to various types of illumination
present in realistic environments. CCD camera used in this
research is also expensive and bulky [104], [71].

One of the early investigations to obtain HR used a laptop
camera to acquire face colour images consisting of RGB
channels. ICA, FFT and a frequency filter were applied to
the channel data (RGB) to obtain the pulse signal. The second
component (green channel) was found to typically produce the
strongest pulse signal in this research study [73], [162]. This
research was further refined by adding signal preprocessing

such as detrending and smoothing the signal data. The system
was updated to select a component with the highest peak
after applying FFT and filter, which was further smoothed by
moving average filter [74]. However, the study was conducted
within a lab setting (in a controlled environment) with only
a limited number of participants (n=12). In addition to that,
restricted movement within a controlled environment does not
replicate realistic environments. The face tracker used in the
study detected multiple or no faces which the system handled
by using the previous face captured; however, this method can
fail in a real-life setting as it may not capture the real vital
reading over time (using the previous face for a certain time)
resulting in inaccurate HR readings.

Different researchers used various ROIs from face images
obtained from participants to measure HR remotely. Face
ROIs included full face, forehead, lips, eyes or nose and
cheeks, which varied in pixel size. These ROIs may contain
regions which cannot provide information related to HR for
example eyes, teeth, beards etc., which can impact the overall
performance of results. In the case, where only the mouth area
is focused to obtain HR, it can impact the error rate when a
person is talking or laughing as teeth do not provide a pulse
signal to obtain HR. To cater to this problem, researchers [100]
introduced neural networks for skin classification [163] to
determine skin colour from the face image. This ROI (skin
pixel) was labelled and tracked using a mean-shift tracker,
which iteratively shifts points of data to the average of points
of data nearby [108]. The HR was obtained after applying
FFT and utilised a data adjustment scheme which resulted in
obtaining HR in a short time. This work was further extended
using multiple video data, which reduced the error rate [164].
However, these data do not cater to the different light sources
and movement of participants and the system has not been
validated in a real-life scenario.

Researchers most commonly used PCA [148], [97], [165],
[166], ICA [167], [100], [168], [169], [170], [153], [171],
[172], FastICA [53], [173], [151], [133], [138], [105],
[174], [100], [168], [170], [153], [175], [176], Robus-
tICA [149], Joint Approximation Diagonalization of Eigen-
matrices (JADE) [147] and also Laplacian Eigenmap (LE)
algorithms [150] for extracting source signals from RGB
channels to obtain HR. One of the research used LE to extract
signal sources from the face data obtained from participants.
LE is also a dimensionality reduction technique but is non-
linear to find the internal structure of the data. The research
revealed better results in comparison to other dimensionality
reduction techniques. However, this has not been tested on a
larger dataset obtained from realistic environments. In addition
to that, the subject movement was still restricted in this
research study.

A research study used Eulerian video magnification to
measure changes in the face region of the participants. The
data was obtained in the form of a video that was spatially
decomposed into various frequency bands to which temporal
filtering was applied and finally amplified by a factor. This
was implemented on data where participants were in a still
state [177]. Recent studies followed a similar approach to es-
timate HR and RR from video data as well [178], [179]. Since
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in real life, a person would be in motion, it is not possible to
extract HR signal using this method. In addition to that, this
method may not work well when there is high noise present
in the signal. Research conducted also used machine learning
techniques to measure remote HR [180], [181], [182], [183],
[184], [185], [186]. Where the researcher [130] expanded on
the work done by Poh et al. [73]. However, the accuracy drops
for participants in motion and under different light sources.
To counter this, the researchers [130] created a study set up
to include more movement among participants. Compared to
Poh et al. [73], instead of choosing a single pulse component
to identify a peak, Monkaresi et al. [130] used a machine
learning approach to select the pulse component among all
channels (RGB components).

This approach also included applying power spectrum anal-
ysis, k-Nearest Neighbour (KNN) and linear regression to each
component extracted after applying ICA to obtain features
and classify them. KNN outperformed linear regression for
selecting pulse signal components to obtain HR. However,
generalising the model among the participants can bear dif-
ferent results or not perform well when new participants are
introduced to the system on which it has not been trained yet
and may therefore fail in a real-life scenario. Furthermore, the
study was conducted in a controlled environment with specific
light conditions.

To cater to challenges associated with different illumina-
tion and participant movement, Li et al. [133] suggested a
technique based on Normalised Least Mean Square (NLMS)
adaptive filtering and face tracking using the Viola-Jones
face detector [152] to overcome these challenges. NLMS
is an extension of the Least Mean Square (LMS) adaptive
filter, which is used to simulate the selected filter. NLMS
was used on raw signals to improve the data impacted by
different light variations. To identify and locate face landmarks
Discriminative Response Map Fitting (DRMF) the method was
used in the initial image frame. KLT [154], [187] algorithm
was then used to continue tracking the ROI. Researchers
used the MAHNOB-HCI [188], [189], [190], [191] dataset
for research studies to test their techniques. The results from
their research exceeded the accuracy of previous studies.
However, the database contains data obtained in a controlled
environment with only slight movement in a lab setting. ROI
tracking also fails when participants move at an extensive
angle and participants’ facial expressions created noise which
then shows high variations in the obtained signal. Different
researchers have used datasets collected from lab setups to test
and validate their methods; However, these have not been vali-
dated in realistic environments [192]. Various datasets include
PURE [193], MAHNOB-HCI [194], [195], COHFACE [196],
MMSE-HR [197], BH-rPPG [198], MPSC-rPPG Dataset[199]
and UBFC-RPPG [200] and ARPOS dataset [66], [201].

Another study [140] suggested a method to select the most
suitable ROI pixels. The researchers segmented the face region
into various sub-regions on the basis of lightness dispersal. The
most suitable sub-regions were then chosen and grouped by as-
sessing their SNR [140]. Another study focused on improving
signal quality by reducing noise obtained from participants’
face data by applying the block-based spatial-temporal on the

face data. The spatial-temporal quality dissemination of the
face ROI was then calculated depending on SNR. Adaptive
ROIs were obtained by computing mean shift clustering and
adaptive thresholding SNR maps, which then increased the
accuracy of estimating HR [202], [203]. However, the system
validation is limited to only controlled lab-based environments
and needs to be stress tested for realistic environments. An-
other study conducted using Kinect V2 used skeleton tracking
to obtain HR and RR by monitoring the chest region movement
with and without a blanket over a participant (infant). This was
to monitor cardiopulmonary irregularities such as bradycardia
to process unclear ROI under well-lit and dark light conditions
with different sleeping positions. In case of abnormalities
were detected, an alarm would be triggered to notify the
carer [82]. However, the system may fail if a participant is
sleeping on their stomach. Another constraint is the reliability
of movement features to obtain the vital, which can create
inaccurate observations for different types of motions such
as walking, talking or micro facial gestures. These voluntary
movements can impact the reliability of the vital data obtained.
A robot with a video camera incorporated has also been used
to obtain HR. The aim was to design a robot for older adults to
do some exercise and measure their vital [193]. However, the
accuracy drops with movement and is not inexpensive which
can be difficult to deploy on budget, especially for those within
the middle to lower-income households around the world.

Studies conducted restrict participants from any internal
or external movement. External movement includes a person
moving their head or even walking around in the room,
whereas internal movement is the motion of facial attributes
such as talking where the mouth region is moving (moving
lips) etc. In a real-life situation, these movements would be
expected, which can increase noise when calculating vital
signs. Research focusing on the head motion of participants
from a video has been addressed by researchers [96], [204],
[205], [105], [206], [207], [208], [209], [210], [211], [212],
[213], [214], [215], [216], [217], [218], [219], [220], [221],
[222], [223]. Where one of the researchers suggested tracking
velocities of feature points on the face using Viola-Jones
face detector and then tracking ROI by using KLT [96].
While another research focused only on a single ROI, specif-
ically the forehead [224], [225], [226], this was as micro
expressions below the eye line are prone to more motion as
compared to forehead [225]. Researchers have also addressed
this movement-based HR monitoring by using Face Quality
Assessment (FQA), where low-quality image frames can be
discarded, so the noise is not contributing to the final obtained
values. FQA considers four parameters, including resolution,
luminance, sharpness, and face trajectory, to determine if the
face image requires to be removed. To track face feature
points Good Feature Tracking (GFT) method was used on the
image data obtained. Landmarks from the face were obtained
using the Supervised Descent Method (SDM) combined with
GFT to obtain face feature points and track movement and
hence provided improved signal quality to obtain HR [139].
However, these motions were restricted and conducted in a
controlled manner within a lab setting. The research systems
were deployed by the researchers on specific hardware (lab-
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based systems with enough RAM and Graphics Processing
Unit (GPU)) to apply these techniques with controlled guided
participation which does not necessarily reflect a real-life en-
vironment. People from lower to middle-income backgrounds
also cannot take advantage of the system requiring expensive
hardware [227], [228]. In addition to that tracking, a specific
ROI such as only the forehead from the face can fail where a
participant’s full face is not in front of the camera. In addition
to that various research methods focusing on measuring HR
need to be validated within realistic environments to check
how different factors such as illumination, facial hair (such
as beard), makeup and FPS impact signal data used to obtain
vital sign data [229], [230], [231], [232]. To increase SNR
it has been suggested to use a monochromatic camera with
a green range filter. This study also used weighted average
on the various face ROI. A deformable face fitting algorithm
and KLT tracking [154], [233] algorithm tracked and extracted
face features [137]. However, the RMSE obtained from this
research is very high as mentioned in Table III which shows
that it is not a feasible method to apply in a real-life system.
A recent study proposed a method that uses Eulerian Video
Magnification (EVM), Quality Assessment (QA) of signal, and
Adaptive Chirp Model Decomposition (ACMD) to obtain HR.
They validated the system in different illuminations and with
some head motion [145]. Different researchers also looked
into ambient, natural and varying illumination [234], [235],
[236]; However, once again, the setup was within a controlled
setting where participants were at a distance of 0.6m from the
camera. The participant diversity information was not revealed
in the research paper. In addition to that, only the forehead is
selected as ROI which would fail if the participant is not facing
the camera. Only one study was found that was conducted in
participants’ home environments, involving different camera-
to-subject distances, and shared its open dataset. However, it
reported a higher error rate, particularly among individuals
with darker skin pigmentation (Fitzpatrick scale IV and above)
and those in an active state [66].

B. Remote SpO2 Measurement

Only a few studies published presented methods to obtain
SpO2. A new method to cancel aliased frequency components
induced by fluorescent light flickering has previously been
proposed based on autoregressive (AR) modelling and pole
cancellation, which improved the effectiveness of the method
under fluorescent illumination [237]. The research was con-
ducted on patients undergoing kidney dialysis (in a resting
state with minimal movement) [237]. However, movement
and illumination change increased noise, in turn impacting
system accuracy. The research also does not provide RMSE,
r-correlation or σ for SpO2. While using a webcam, another
research measured SpO2 and HR by using an algorithm
for noise removal based on Dual-Tree Complex Wavelet
Transform (DTCWT) to fix motion artefacts and artificial
illumination [37].

Researchers also used R, G, and B channels to obtain SpO2

by assessing the pulse signal at two wavelengths of 660nm
and 940nm [157]. This was obtained by comparing red and

blue wavelength bands. However these researches [37], [157],
[128], only used a 0.5m range, which is short for a realistic
scenario [37], [157], [128].

The ARPOS research presented an innovative approach
to measuring SpO2, by utilising extinction spectra of oxy-
haemoglobin and deoxy-haemoglobin. They used a ratiometric
measurement technique, dividing the recorded pixel intensity
between two distinct spectral ranges, red (600–700 nm) and
infrared (800–900 nm) to obtain this vital data. The error rate
from this research was impressively found to be consistent
over all participants for different skin pigmentation in resting
and active states of ±2%. However, this needs to be clinically
validated to stress test the system before this relying on this
technique.

Another research used hand palms to measure SpO2 by
applying spatial averaging, obtaining R, G, and B time series
and applying Convolutional Neural Network (CNN) structure.
However, using palms under a camera is not very practical
as people in real-life would be required to keep their hands
still under a camera. In addition to that, hands are also a less
exposed part of the body compared to that of the face, which
would make it difficult to deploy it in a real-life scenario [86],
[238].

Different equipment has been used for the purpose of
rPPG, which includes a CCD camera, smartphone, laptop’s
webcam, drone with camera and Kinect as mentioned above.
Each device has its own characteristics such as resolution,
dimensions, processing power, data type collected and cost
etc. Low and high-resolution digital cameras, and smartphone
cameras capture RGB channels have been used in most studies
to obtain vital values; whereas thermal camera allows for
capturing thermal data of a participant. However, expensive
equipment such as thermal [104], [69] or CCD equipment [71]
(as defined in the previous section V-A) would not make it
feasible to deploy on a limited budget. Smartphones need to be
continuously held in hand, which can be tiring and impractical
for a longer period of time or due to any incapacity.

VI. LIMITATIONS OF EXISTING RPPG SYSTEMS

There are several limitations in the existing rPPG research
systems that researchers can focus on improving which are
listed below:

A. Equipment limitations

Thermal and CCD cameras used in these research studies
can be very expensive [104], [69], [227], [228], [161], [239] to
use especially for middle to lower income countries. Another
problem with using a thermal camera is that it can generate
temperature from the body and also the environment, which
can impact the data acquired from a participant, such as
thermal noise [104]. Furthermore, ambient sensing of oxygen
saturation through multispectral imaging has been explored
but such systems require specialist scientific equipment which
can be expensive to measure SpO2 [240], [241], [242], [243],
[244].

The equipment employed in these studies has primarily been
limited to laboratory settings, utilising specialised hardware
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with ample RAM and GPU resources. However, this lab-based
approach may not readily translate to real-world environ-
ments, potentially causing system failures. In clinical or home
settings, individuals may be positioned at varying distances
from the equipment, making it essential for the system to
deliver accurate readings under diverse circumstances. This
becomes especially critical in triage settings where versatile
performance is essential.

Most of the research studies except the ARPOS research
conducted among participants’ homes used specific hardware
to acquire data where FPS from a camera was 15, 30 or 60
as shown in Table IV. This means the signal obtained from
each channel (RGB) always had a constant FPS of 15, 30 or
60. The system (code) and equipment (computer and camera)
were set up by the researcher in all studies and had enough
processing power, RAM, graphics card and storage space to
collect this data. However, people in a real-life scenario may
not have access to expensive scientific equipment where the
RAM, graphics card and GPU may impact the FPS and in
turn, impact the number of samples in a signal obtained for
each channel and if the system does not cater to this, it may
impact error rate of the system. ARPOS research found that
FPS impacts signal quality that is used to obtain vital data
obtained data from realistic scenarios [66].

B. Controlled Environments

rPPG studies have predominantly been conducted within
controlled environments where only one study evaluated their
system in participants’ homes. While it is important to initially
test and validate these systems in controlled environments,
it is equally crucial to evaluate their performance in real-
world scenarios, particularly within clinical settings. Clinical
environments encompass a wide range of heart rate and
respiratory conditions, involving diverse participants. This
real-world validation against clinical standards is vital for
ensuring the effectiveness and reliability of such systems.
Researchers need to ensure they share evaluation measures
when discussing the results of their research systems to ensure
further progression in the rPPG field.

Currently, there is no rPPG system that is currently com-
mercially available that can monitor these vital signs remotely
unobtrusively and has been clinically validated. It is crucial
for such systems to be validated in real-life environments
including labs, homes and clinics to stress these systems.
Furthermore, the effectiveness of these systems for monitoring
health in clinical settings has yet to be fully validated. It is
crucial that rPPG systems demonstrate the ability to promptly
identify patients at the highest risk of health deterioration,
highlighting the significant advantages of utilising such remote
technology in healthcare.

C. ROI Selection and Occlusion

Moreover, relying solely on a single Region of Interest
(ROI), like the forehead or cheeks, can prove ineffective in
measuring vital signs. This limitation becomes evident when
the chosen ROI is obscured from the camera’s view, for
instance, when a person wears a headscarf or has long hair that

conceals the forehead, or when the individual is positioned
at an oblique angle to the camera. Therefore, it is crucial
to subject a system to comprehensive testing across diverse
settings to validate its performance and evaluate its error rate.

Tracking people can also be occluded by objects, other
people or both from the camera’s view to send data to the
system which is common for front-viewing cameras utilised by
the systems [245]. Due to occlusion, a user’s skeleton cannot
be identified [245]; however, existing research has identified
several methods to help solve this issue which includes API
tracking of multiple people’s positions in an environment
where occlusion occurs [246], [247], [245], location-aware
wearable haptics [248], sound localisation [249], using API, a
toolkit to track and multiple cameras within an environment to
track multiple peoples and joints using depth data [245] and
using shadow and skeletal fusion data to track people within
an environment [250]. Occlusion needs to be further studied
related to the rPPG systems.

D. Participant Diversity and Experiment Conditions

Most of the research mentioned in Table V and Table II
have a limited number of participants with a narrow range
of skin pigmentations. Specifically, when examining studies
related to SpO2, only one of them featured a substantial
participant group of 40 [66], while the remaining studies
included fewer than 15 participants, as indicated in Table II.
For HR measurement, a similar trend emerges with most
studies having a limited number of participants. Only three
studies stood out with a larger number of participants [145],
[66], [72]. Among these, two studies involved 40 participants
each [145], [66]. However, only one of these studies collected
vital sign data within realistic home environments, encom-
passing both HR and SpO2 measurements [66]. The third
study [72], which included a substantial number of participants
of 117, only focused on measuring HR and was conducted in a
controlled environment resembling a studio setup with limited
movement and utilising expensive equipment [72]. Whereas
the rest of the research studies in the Table V had a much
lower number of participants with restricted experimented
conditions. Furthermore, an important aspect is that, most
of the studies neglected to measure oxygenation levels at a
distance, as shown in Table IV.

All the research considered only one participant at a time
except a few studies which included 2, 3 or even 6 participants
measuring at a time [51], [66]. Measuring multiple participants
simultaneously is still a feature required, especially when
multiple people are within an environment. All the research
studies mentioned above had participants closer to the camera
(up to a distance of 0.5 from the camera) and only two studies
considered measuring HR up to 4m [82], [66]. Most of the
studies also do not disclose participant characteristics. A wider
range of demographics such as various skin pigmentation and
ethnicity need to be included in the research studies so it’s not
only validated and made available for one specific group of
people but can benefit everyone.

In a real-time situation, participants’ environments may
vary such as triage environments in clinics, care homes or
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people’s homes and different factors such as face rotation,
facial expression, varied distance from the camera, illumi-
nation, beards, skin pigmentation etc. can be present which
can impact the system’s obtained data. Parameters related to
makeup and beard were only limited to two studies, however
with only a small number of participants [136], [66] and
one study also does not analyse or segment results based on
these parameters [136]. These experiments are important to be
conducted within different age groups, skin pigmentation and
different environmental parameters.

E. Dataset

Most of the studies did not share open data and code from
their research. Only a limited number of public databases
are available; however, they also are conducted within a lab
environment with restricted parameters such as light, move-
ment and not realistic distance from the camera. There is
a lack of publicly available data sets collected from a real-
life environment, so the system evaluation measures can be
tested on those to evaluate their system [51], [66]. Only one
dataset was found collected from the home environments of
participants but this does not include participants with black
skin pigmentation [201]. Studies conducted restrict partici-
pants from micro facial gestures or physical movement during
vital data acquisition. In addition to that, if the error rate is
not evaluated for realistic environments with natural movement
or for example during undergoing treatment, it can result in
failure to accurately measure vitals due to the presence of
noise. Therefore, it is essential to measure vital sign data
in real-life environments [51], [66]. Face tracking will also
impact ROI selection when movement takes place, depending
upon the lighting, and exposure length of the camera, it
could potentially create blurry frames, and it is important to
analyse data with noise to ensure the system will be able
to perform as required in a real-life environment [51]. It
would be more beneficial if video streams of Colour, IR
and Depth Videos would be made available open source so
researchers can analyse the realistic data including various
movements, illumination, environments, skin pigmentation and
other factors with their respective timestamps to analyse their
algorithms.

VII. BIAS IN RPPG SYSTEMS

Discussing rPPG systems presents several challenges, par-
ticularly because they rely on camera-based technology fo-
cused on capturing facial data. These challenges become
especially noticeable due to the diversity of participants’ skin
pigmentation. rPPG systems must be accurate, as they fall
under medical technology upon which people may depend
once they become commercially available. Therefore, rigorous
validation and extensive testing across a diverse range of
participants are imperative. Many publicly available databases
primarily emphasise individuals with lighter skin pigmen-
tation, typically categorised under the Fitzpatrick scale I-
III. Neglecting diversity can pose a significant disadvantage
when deploying rPPG systems; making it beneficial only for
a specific group of people. One study [137], as shown in

Table III, demonstrated a higher error rate in such cases.
In contrast, a recent study, ARPOS [66], showcased a lower
error rate and introduced effective techniques across white and
darker skin pigmentations. However, the study’s dataset did not
include any black participants.

Another critical observation from this review is the limited
consideration given to participants who wear makeup, such
as lipsticks or concealers, or those with facial hair, ranging
from light to heavy beards. These factors can significantly
influence the accuracy of data readings in rPPG systems.
Only two studies were found which stated participants wearing
makeup[66], [251]. Both research studies found makeup in
Colour and IR impacted the accuracy of the rPPG systems
and suggested further rigours testing. However, the ARPOS
study only had one participant wearing lipstick [66] whereas
the other research study only had participants wearing founda-
tion [251]. Consequently, it becomes important to rigorously
validate these systems, accounting for these various biases, and
further evaluating their performance across different genders
and age groups.

VIII. SUMMARY

This paper presents an in-depth literature review on rPPG-
related research that can measure HR and/or SpO2 of peo-
ple at a distance. Various processes, techniques, participant
characteristics, equipment and experiment conditions used in
the research studies were discussed. The performance and
evaluation measures of previous research and its limitations
were presented in this paper as well. Various equipment that
was utilised included a thermal, CCD, web camera, Kinect V2,
and camera installed in robots, drones and smartphone cameras
have been detailed in this paper. The common process for
extracting these vital signs usually involves ROI selection, ex-
tracting raw signals, preprocessing data, applying algorithms,
FFT, filtering and identifying vitals. The review found that
most research studies focused on measuring HR, a few on
SpO2 and only a very limited number of research focused on
measuring both vital sign data in a remote manner.

Most of the research studies for measuring HR had low
participants and only a couple had a higher number of partici-
pants (as shown in Table V and discussed in section VI-D); but
were conducted in a very controlled setup or lab environments
which cannot be replicated in real-life scenarios. In addition
to research data being gathered mostly in a controlled environ-
ment or a lab setting; it also restricted participants from micro
facial gestures or physical movement of their arms or face
rotations as in a real-life situation people cannot be expected
to be very still for multiple minutes when their vitals are being
measured as natural movement is normal (such as talking,
rotation and movement due to facial expressions) which can
increase noise in the data.

There is only one real-life scenario database publicly
available collected to validate rPPG systems [66]. Previous
research needs to consider various factors when designing an
rPPG system including varying camera-to-subject distances,
fluctuating frames per second (FPS), computational resource
requirements, diverse environments, illumination conditions
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and participant diversity. Furthermore, it is crucial to validate
and test for performance under conditions involving natural
movements during vital sign measurements that may lead
to inaccurate results. This issue becomes particularly critical
when considering real-world deployments such as clinics and
hospitals.

In conclusion, the field of rPPG has made significant
progress in recent years. This review has highlighted various
aspects of these methods for measuring HR and SpO2. Several
important findings and research challenges were been identi-
fied. rPPG has enormous potential for various applications in
both clinical and non-clinical settings. However, addressing
the identified research challenges is crucial for advancing this
field and ensuring the accuracy and reliability of these systems
in real-world scenarios. This review serves as a valuable
resource for researchers seeking to explore and contribute to
this evolving field.
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