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Abstract 

Background This study developed a deep learning model to predict improvement of left 

ventricular ejection fraction in patients with heart failure. 

Methods An internal database comprising clinical, laboratory and echocardiographic features 

obtained from the First Affiliated Hospital of Harbin Medical University was used to 

construct and train the deep learning model. 

Results A total of 422 cases were included in this study. 122 (28.9%) were patients with 

HFimpEF, 300 (71.0%) were patients with HFrEF. Multivariable analyses showed that 

smaller baseline left atrial anterior-posterior diameter (LAD) and left ventricular end-diastolic 

diameter (LVEDD), higher baseline interventricular septal thickness at diastole (IVSD) and 

levels of prealbumin were the independent clinical predictors of LVEF improvement. Deep 

learning model demonstrated an overall predict accuracy of 96% in the validation set and 89% 

in the training set. 

Conclusions Independent predictors of LVEF improvement were smaller baseline LVEDD, 

LAD, higher baseline IVSD and baseline levels of prealbumin. Our deep learning model had 

shown acceptable performance in predicting improvement of left ventricular ejection fraction 

in patients with heart failure. 

Keywords: heart failure; left ventricular ejection fraction; heart failure with improved 

ejection fraction; deep learning 
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Nonstandard Abbreviations and Acronyms 

CNN= Convolutional neural networks 

DL= Deep learning 

HFimpEF= Hearth failure with improved ejection fraction 

HFmrEF= Heart failure with mildly reduced ejection fraction 

HFpEF= Heart failure with preserved ejection fraction 

HFrEF= Heart failure with reduced ejection fraction 

IVSD= Interventricular septal thickness at diastole 

LAD= Left atrial diameter 

LVEDD= Left ventricular end diastolic diameter 

LVEF= Left ventricular ejection fraction 
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Introduction 

Heart failure (HF) is a complex clinical syndrome in which various structural and/or 

functional abnormalities of the heart result elevated ventricular pressure and decreased 

cardiac output with corresponding signs and symptoms
1
. With high prevalence, rapid 

progression and poor prognosis, HF is a highly lethal and incurable clinical disease and a 

serious global public health problem. 

Ventricular remodeling plays a key role throughout the course of HF, and the more severe the 

ventricular remodeling, the worse the prognosis for cardiovascular disease. Previous studies 

have found that, after pharmacological and device therapy, the process of adverse ventricular 

remodeling caused by activation of the renin-angiotensin-aldosterone and adrenergic nervous 

systems in patients with HF is reversible. The symptom manifests reductions in end-diastolic 

volumes, increased left ventricular ejection fraction (LVEF) and normalization of left 

ventricular volume and shape associated with improvement in both systolic and diastolic 

function. In particular, the improvement of LVEF can be up to 10% or more, from which the 

concept of heart failure with improved ejection fraction (HFimpEF) came, with differences in 

pathophysiological manifestations, clinical characteristics, and prognosis from other HF 

categories. 

According to the 2022 American College of Cardiology and the American Heart Association 

and the Heart Failure Society of America (ACC/AHA/HFSA)
2
, HF can be classified into four 

categories:  

 heart failure with reduced ejection fraction (HFrEF) with an EF ≤40%,  

 heart failure with preserved ejection fraction (HFpEF) with an EF ≥50%,  
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 heart failure with mildly reduced ejection fraction (HFmrEF) with an EF 

between 41 and 49%,  

 and heart failure with improved ejection fraction (HFimpEF) with previous EF 

≤40% and a follow-up EF of more than 40%. 

In recent years, deep learning algorithms have been widely implemented in the medical field 

to assist in diagnosis. Deep learning-based clinical profile can accelerate the diagnosis of 

HFrEF, HFpEF and HFmrEF patients
3
. However, the challenging remains in the diagnosis of 

HFimpEF requires multiple echocardiograms or cardiac magnetic resonance and laboratory 

data. Previous assessment addresses the differences in clinical characteristics between 

participants with HFrEF, HFpEF and HFmrEF. Until recently, there is some lack of methods 

about fast prediction of HFimpEF. The aim of this study was to design a deep learning-based 

trained model to assist in HFimpEF diagnosis.  

Methods 

Study population 

The participants in the study are HF patients hospitalized in the Department of Cardiology of 

the First Affiliated Hospital of Harbin Medical University who had no less than two 

echocardiograms at baseline and during the follow-up period, between January 2014 to 

December 2022. Baseline data of the first admission from HF patients were obtained from 

Electronic Health Record system of the First Affiliated Hospital of Harbin Medical 

University.  

Enrollment criteria is 18 years of age or older, and the diagnostic criteria of HF follows the 

2018 Chinese Guidelines for the Diagnosis and Treatment of Heart Failure
4
, having 
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symptoms of dyspnea, fatigue or decreased activity tolerance, having signs of fluid retention 

(such as pulmonary congestion and peripheral edema), having echocardiogram abnormalities 

in cardiac structure and/or function, showing elevated natriuretic peptide levels (BNP>35 

ng/L or/and N-terminal pro-BNP >125 ng/L), reviewing echocardiography after discharge. 

Patients with hypertrophic, restrictive, or invasive cardiomyopathy and congenital or 

rheumatic heart disease, patients who had heart transplantation during follow-up were 

excluded.  

Echocardiograms reviewed within 3~12 months after discharge were collected, features 

including LVEF, LAD and left ventricular end-diastolic diameter (LVEDD). Based on the 

initial records and the check LVEF results, the patients have been divided into 2 groups: 

LVEF persistently ≤40% (HFrEF) and LVEF recovered to ＞40% (HFimpEF). 

Data selection 

This study was approved by the First Affiliated Hospital of Harbin Medical University 

Medical Ethics Committee (2023JS19). Baseline data included demographic, clinical, 

laboratory data and echocardiographic features. Demographic and clinical information 

included age, sex, BMI, heart rate, pulse, New York Heart Association class (NYHA), HF 

etiologies, physical examination, comorbidities, smoking history, operation history, and etc. 

Laboratory data included erythrocyte, leukocyte, hemoglobin, platelet count (PLT), alanine 

aminotransferase (ALT), aspartate transaminase (AST), prealbumin, triglyceride (TG), total 

cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein 

cholesterol (VLDL-C), high-density lipoprotein cholesterol (HDL-C), lipoprotein(a)[Lp(a)], 

fasting blood glucose, creatinine, uric acid, blood potassium, creatine kinase MB (CKMB), 
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high-sensitivity cardiac troponin (hs-cTnI), BNP, NT-proBNP. Echocardiography measured 

by biplane Simpson method was used to assess LVEF, LVEDD, left atrial anterior-posterior 

diameter (LAD), interventricular septal thickness at diastole (IVSD). 

Deep learning model development 

Data preprocessing 

Our deep learning model was trained on the NVIDIA GeForce GTX 1080 graphics 

processing unit (GPU) with 8 GB display memory (VRAM). Data preprocessing is used to 

improve the quality of raw data, facilitate deep learning model training, and promote the 

accuracy of the model. Before preprocessing, data need to be checked, and missing values 

will be refilled and normalized. The process is listed as below: 

 Detect the missing value of data,  

 remove the variables with missing data exceeding 1/3 of the sample size,  

 fill in the missing data of the remaining variables with the median interpolation 

method, 

 and normalize the 1D data to eliminate dimensional inconsistency. 

Deep learning model 

Two-dimensional (2D) convolutional neural networks (CNNs) are extensively used to 

classify medical signals. Convolutional and pooling layers are used to concentrate 1D linear 

signals to discover certain disease characteristics. The two Conv2D layers are first introduced 

into the model. Through Conv2D layer, the original feature vector of HFimpEF is convoluted 

to form reasonable features which can be learned by other classifiers. Then the Batch 

Normalization layer is used to prevent the overfitting. ReLU activation function transfers the 
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linear mapping into non-linear spaces. After that, max pooling layer is used to reduce the 

dimension of feature maps. Finally, the full connection layer consolidates all features and 

activate the classification with Softmax function to correctly classified data. The dropout 

layer was designed to randomly drop some connections between layers to prevent overfitting, 

and the dense layer was designed for output. As is shown in Figure 1, the network structure 

consists of 2 convolutional layers, 1 max pooling layer, 1 dropout layer and1 full connection 

layer. 

Model training setup 

The deep learning model should be trained before prediction. The original data are randomly 

distributed into training and validation data sets. From the training data set, 10% were 

randomly selected during the training process for 10-fold validation. The validation set is 

used to adjust the hyper-parameter and evaluate the generalization performance of the trained 

model. Adam is used as the optimizer. The initial learning rate is set to 1e-2. The mini-batch 

size is set to 32. The max epoch is set to 50 with early stopping and the dropout ratio is set to 

0.2. The models take a series of samples as its inputs and give its classification result as 

output. 

Statistical analysis 

SPSS version 25.0 has been used in statistical analysis. Values were presented as mean and 

standard deviation for continuous variables, and as numbers and percentages for categorical 

variables. Demographic, clinical, laboratory and echocardiographic features were compared 

between two groups with standard statistical methods including independent samples t-test 

for continuous variables and chi-square or Fischer’s exact test for categorical variables. 
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Logistic regression model was used to analyze the predictive factors of LVEF improvement. 

P value of <0.05 was considered statistically significant. For evaluation of the 2D CNN 

model, confusion matrix, accuracy, precision, recall and F1 score commonly applied in the 

evaluation of deep-learning models, were used. 

Results 

Study participants 

A total of 1855 HF patients with echocardiogram were comprised in the study. After selection 

and exclusion, the internal data set finally included 422 patients containing 300 patients 

(70.1%) with HFrEF and 122 patients (28.9%) with HFimpEF (Figure 2).  

Baseline Characteristics 

The baseline characteristics are presented in detail in Table 2. Overall, average age is 

(65.3±13.9) years and 65.2% patients are males. Average body mass index is (25.3±4.8) 

kg/m
2
. Briefly, hypertension was reported in 42.4% of patients, diabetes mellitus in 29.3%, 

dilated cardiomyopathy in 19.8% and coronary heart disease in 67.4% of patients of the study 

population. Average LVEF was (31.7±6.3) %, average LAD was (44.7±5.8) mm, median 

LVEDD was 43mm and median IVSD was 9.4mm.  

Comparing these baseline characteristics, the most significant differences are that patients 

with HFimpEF have more patients with hypertension and acute myocardial infarction, less 

patients with dilated cardiomyopathy and combined lower limb edema, better functional class, 

higher hs-cTnI, CKMB and prealbumin levels and lower erythrocytes, potassium, LDL-C, 

and AST levels than HFrEF. Comparison of echocardiograms shows that patients with 

HFimpEF have lower baseline LAD and LVEDD values, higher IVSD values than HFrEF. 
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There is no significant difference in baseline LVEF between the two groups. Compared with 

baseline echocardiograms, patients with HFimpEF have significantly higher LVEF. The mean 

LVEF of HFimpEF increased from (33.5±5.5) % to (47.2±5.7) %. LAD and LVEDD values 

on review echocardiograms of patients HFimpEF decreased. On the contrary, an increasing in 

LVEDD is observed in the HFrEF group. 

Predictors of LVEF Improvement  

In the univariate analyses, hypertension, acute myocardial infarction, dilated cardiomyopathy, 

NYHA class III/IV, baseline LVEF, LAD, LVEDD and IVSD, hemoglobin, erythrocyte, 

prealbumin, uric acid, potassium, and LDL-C were associated with the improvement of LVEF. 

In the multivariable analyses after adjustment of gender and age, smaller baseline LAD and 

LVEDD, higher baseline IVSD and prealbumin levels were the independent clinical 

predictors of LVEF improvement (Table 2). 

Deep Learning Predictive Modeling 

Of 422 patients, 380 patient data have been finally randomized into a training data set and an 

internal validation data set with 42 patients. The whole model training takes 7s. Our model 

has a high precision level in HFimpEF prediction with an 89% in the training set and a 96% 

in the validation set (Figure 3). Validation accuracy is obviously higher than training accuracy, 

indicating that our model does not occur any adverse fitting. Furthermore, our model 

achieved high performance in accuracy, sensitivity, specificity, precision, and F1 score (Table 

3).  

Discussion 

Most of studies about deep learning-based assessment models in HF have been developed in 
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patients with conventional HF categories, but there has been no studied in the HFimpEF 

patients. To our knowledge, this is the first study evaluating LVEF improvement based on 

deep learning algorithm, and indeed, our 2D CNN model showed good performance in 

HFimpEF model prediction through clinical profiles only. Our system provides an automatic 

interpretation that exhibits high accuracy in detecting HFimpEF. However, because of the 

limited amount of data available for patients with HFimpEF, our system could only provide a 

proof of concept for deep learning model development to aid in HFimpEF prescreening. To 

improve our system, further research and data collection are required. In addition, the model 

not only avoids premature device therapy, but also avoids invasive, expensive, and 

time-consuming clinical operations, reduces the burden on the patient and simplifies the 

process. Furthermore, this model may be able of aiding in the clinical decision making in 

prognosis determining by going through available patient information with less 

reexaminations. However, the system still has room to improve. 

Similar to another study by Park et al., of 422 patients, the prevalence of HFimpEF was 

28.9%
5
. We have found that the number of patients with comorbid hypertension in HFimpEF 

is higher than that in HFrEF. Previous study included 3,124 HF patients found that 

hypertension was associated with a 10% improvement in LVEF at 2.7 years follow-up
6
. In 

other studies, showed less comorbid hypertension in patients with HFimpEF
7
. The heart is the 

main target organ damaged by hypertension. Long-term higher-pressure load stimulates 

cardiomyocyte hypertrophy and deformation, leading to left ventricular dilatation and 

ventricular wall thickening, which further leads to diastolic dysfunction. A subset of patients 

further developing systolic dysfunction in the presence of chronic volume and pressure 
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overload, and other patients with end-stage systolic heart failure will have more severe 

ventricular remodeling and less likely to have improved LVEF. We analyze if there is relevant 

with timely treatment of hypertension and target organ damage and conclude that target organ 

damage may occur if not timely treatment. 

We found that the number of patients with comorbid dilated cardiomyopathy in HFimpEF is 

fewer than that in HFrEF. Dilated cardiomyopathy is characterized by biventricular or left 

ventricular enlargement and ventricular wall thinning, and myocardial structural and 

functional abnormalities accompanied by left ventricular systolic hypoplasia, which is a 

common etiology of HFrEF. A recent study by Fomin et al. found that myocardial gene 

mutations are the most common cause of dilated cardiomyopathy and a key path mechanism 

of the disease
8
. That patients with dilated cardiomyopathy are less susceptible to reverse 

remodeling may be associated with myocardial gene mutations and myocardial fibrosis. It 

was previously believed that dilated cardiomyopathy patient has a poor prognosis, with 

progressive reduction in LVEF and deterioration of cardiac function will ultimately lead to 

death. It has been found that some patients with dilated cardiomyopathy have significant 

improvement in LVEF after standardized drug therapy, as well as in long-term prognosis, 

after standardized medication therapy
9
. 

Our results showed that patients with HFimpEF have lower LDL-C levels, which may be 

related to the inflammatory effect of LDL-C. Abnormal lipid level is either a key factor in the 

development of cardiovascular disease or one of the important indicators that affect the 

prognosis of patients with chronic heart failure. As an important indicator in blood lipids, 

elevated LDL-C promotes an inflammation response in the vascular lining and damages 
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vascular endothelial cells
10

. The relationship between lipids and the prognosis of heart failure 

is still not understood. Other studies have suggested that elevated levels of LDL-C and TC 

associated to higher incidence of HF and lower survival rates. 

In our study we also showed that improvement in LVEF were statistically significant to 

smaller baseline LVEDD and LAD. Diverse studies showed that smaller LVEDD and LAD is 

independent predictors of LVEF improvement in patients with HF
11,12

. 

Our study found that another predictor of LVEF improvement was higher baseline 

prealbumin. Prealbumin offers important prognostic information in patients with HF. 

Jonathan et al. reported that the patients with prealbumin levels below 15mg/dl had higher 

morality and readmission rates, which confirms strong association with a poor prognosis in 

HFrEF
13

. In contrast, our results substantiate that a higher prealbumin level significantly 

relates to the improvement of LVEF. The underlying mechanism of this association is not 

well understood, higher prealbumin levels may reflect the nutritional status of a patient. 

There is no study have analyzed the association of prealbumin levels and LVEF 

improvement. 

Over the past few years, an increasing number of studies concentrate on deep learning models, 

and most of them are based on visualizations such as ECG, echocardiogram and cardiac 

magnetic resonance to train models
14

. Currently, studies have been conducted domestically 

and worldwide to analyze diverse types of clinical data such as electrocardiograms and 

echocardiograms, which based on deep learning to classify and evaluate the three traditional 

types of heart failure and risk stratification
3,15

. However, until recently, there is no research 

about constructing a prediction model for HFimpEF concerning deep learning. Alkhodari et 
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al. utilized deep learning to construct a convolutional neural network and formulated a 

classification model for HFrEF, HFpEF, and HFmrEF (303 cases) using clinical data. 

Furthermore, the convolutional neural network model derived on deep learning set up in this 

study predicted a 93% accuracy, the best result of any other models
3
. Based on Alkhodari et 

comparing the performance of the models. We have observed that the model has been 

optimized after adjusting the number of neurons in the convolutional layer was 64 and 128, 

respectively. Moreover, the present study has a larger sample size of 422 cases and faster 

training of the model compared to the study of Alkhodari et al. 

Studies showed that the process of reverse remodeling, in patients with dilated 

cardiomyopathy and new-onset heart failure after initiating optimal drug therapy, may take up 

to 2 years, and improvement in LVEF would be longer
16,17

. Based on previously published 

data, the incidence of reverse remodeling ranged from 19% to 45% among patients with 

HFrEF
18-21

. CRT is the preferred treatment option to improve LVEF and prolongs survival. As 

CRT implantation is risky and expensive, the best drug therapy recommended by the 

guidelines is mostly used. According to the current guidelines, implantable 

cardioverter-defibrillator (ICD) implantation is recommended when LVEF is still less than 35% 

after at least 3 months of optimal drug therapy
22

. However, in patients with delayed reversal 

of heart failure, the timing of ICD implantation is hard to determine. 

Patients with delayed improvement in cardiac function and architecture are supposed to be 

actively considered for guideline-guided pharmacologic therapy and avoid untimely ICD 

implantation. On the contrary, for patients who have highly fibrotic myocardium with little or 

no potential for reversal should be advised to themselves and their families as soon as 
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possible. 

In terms of study limitations, first, smaller number of non-consecutive enrollments of the 

patients could have potential influence of selection bias. So increasing the amount of training 

data set might improve the accuracy of deep learning-predicted results. Second, indicators 

filtered out by preprocessing may be more predicative of the model construction. Third, 

baseline and reviewed echocardiograms were not measured by the same physician and are 

inevitably biased. Fourth, as our data did not include pharmacologic profile of HF patients, it 

is necessary to add medicine therapy in assessment of HFimpEF. 
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Table 1. Baseline characteristics. 

Variable 

Total 

（n=422） 

HFimpEF Group 

（n=122） 

HFrEF Group 

（n=300） 

p  

Age 65.3±13.9 67.0±13.5 64.6±14.0 0.073  

Male 276(65.5%) 83(78.1%) 193(64.4%) 0.531  

Smoke 194(46.3%) 48(40.0%) 146(48.8%) 0.101  

Alcohol 125(29.8%) 32(26.7%) 93(31.1%) 0.369  

BMI (kg/m
2
) 25.3±4.8 25.2±4.9 25.3±4.8 0.662  

SBP (mmHg) 131.8±22.7 134.9±22.4 130.5±22.7 0.803  

DBP (mmHg) 83.0±14.7 82.9±15.3 83±14.5 0.135  

Heart rate (bpm) 91.7±24.0 91.6±25.7 91.8±23.4 0.386  

NYHA II 27(6.4%) 8(6.6%) 19(6.4%) 0.009 

NYHA III 101(24.0%) 37(30.6%) 64(21.4%) 0.046 

NYHA IV 275(65.5%) 64(52.9%) 211(70.6%) 0.001 

Baseline echocardiographic parameters 

LVEF (%) 31.7±6.3 33.5±5.5 30.9±6.4 0.182  

LVEDD (mm) 43.0(41.0, 48.0)     57(53, 61.5) 62(58, 68) ＜0.001 

LAD (mm) 44.7±5.8 43.1±4.8 45.3±6.1 0.015  

IVSD (mm) 9.4(8.5, 10.4) 10(8.8, 10.7) 9.2(8.5, 10.2) 0.002  

Reviewed echocardiographic parameters 

LVEF (%) 35.7±9.7 47.2±5.7 30.8±6.5 0.005  

LVEDD (mm) 60.0(55.0, 67.0) 55.0(51.0, 59.0) 63.0(57.0, 69.0) ＜0.001 
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LAD (mm) 44.0(40.0, 48.0) 41.0(38.0, 45.0) 45.0(41.0, 50.0) ＜0.001 

Hypertension 178(42.4%) 64(52.9%) 114(38.1%) 0.006  

Diabetes mellitus 123(29.3%) 40(33.1%) 83(27.8%) 0.280  

DCM 83(19.8%) 16(13.2%) 67(22.4%) 0.032  

CHD 283(67.4%) 88(72.7%) 195(65.2%) 0.137  

AMI 57(13.6%) 25(20.7%) 32(10.7%) 0.007  

OMI 103(24.6%) 28(23.1%) 75(25.2%) 0.662  

Atrial fibrillation 106(25.2%) 34(28.1%) 72(24.1%) 0.391  

CRI 93(22.1%) 30(24.8%) 63(21.1%) 0.405  

Pneumonitis 77(18.3%) 28(23.1%) 49(16.4%) 0.105 

Respiratory failure 13(3.1%) 40(33.1%) 83(27.8%) 0.043  

Anemia 45(10.7%) 30(24.8%) 63(21.1%) 0.494  

Laboratory data 

Hemoglobin (g/L) 137.7(124.6, 151.0) 136.0(119.0, 150.0) 139.0(127.3, 151.0) 0.081  

Leukocyte (10
9
/L) 7.3(6.1, 9.0) 7.4(6.2, 8.6) 7.2(6.0, 9.0) 0.995  

Erythrocyte (10
12

/L) 4.5(4.1, 5.0) 4.4(4.0, 4.9) 4.6(4.1, 5.0) 0.046  

PLT (10
9
/L) 195.0(163.0, 236.0) 199.0(167.8, 243.0) 193.0(159.8, 232.5) 0.112  

ALT (U/L) 23.5(14.9, 35.0) 21.0(13.3, 34.0) 24.2(15.4, 35.8) 0.082  

AST (U/L) 26.2(19.7, 37.0) 24.3(18.2, 32.9) 26.8(20.7, 39.6) 0.004  

Albumin (g/L) 38.1±4.5 37.6±4.7 38.3±4.4 0.509  

Prealbumin (mg/L) 182.0(144.0, 223.0) 242.1(190.6, 299.3) 214.0(179.0, 262.9) 0.030  

Uric acid (μmol/L) 412.8(333.0, 510.3) 397.2(323.1, 461.6) 420.8(333.8, 530.9) 0.083  
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Blood potassium 

(mmol/L) 

4.2(3.9, 4.6) 4.5(4.2, 4.9) 4.7(4.3, 5.0) 0.040  

Urea (mmol/) 7.0(5.8, 9.1) 9.6(6.9, 12.4) 9.1(7.1, 13.1) 0.350  

Creatinine (μmol/L) 85.4(70.5, 110.5) 106.7(86.3, 144.3) 111.6(84.6, 149.9) 0.834  

Glucose (mmol/L) 6.1(5.1, 7.8) 8.1(6.1, 12.3) 7.8(6.1, 11.1) 0.929  

TC (mmol/L) 3.9(3.3, 4.7) 3.6(3.2, 4.4) 3.9(3.1, 4.5) 0.293  

TG (mmol/L) 1.2(0.9, 1.6) 1.2(0.9, 1.6) 1.2(0.9, 1.6) 0.943  

HDL-C (mmol/L 1.0±0.3 1.1±0.3 1.0±0.3 0.505  

LDL-C (mmol/L) 2.5(2.0, 3.1) 2.1(1.7, 2.9) 2.4(1.9, 2.9) 0.019  

VLDL-C (mmol/L) 0.2(0.2, 0.3) 0.2(0.2, 0.3) 0.2(0.2, 0.4) 0.886  

Lp(a) (mmol/L) 142.9(72.1, 267.0) 228.8(100.2, 373.4) 167.5(75.3, 273.1) 0.364  

hs-cTnI (ng/ml) 1.4(0, 26.9) 19.8(0.7, 132.9) 9.7(0, 35.8) 0.001  

CKMB (U/L)  2.4(1.3, 9.0) 1.9(1.2, 3.0) 1.8(1.3, 2.9) 0.048  

BNP (pg/ml) 

991.0(420.2, 

1964.6) 

790.6(461.4, 1656.6) 

1099.5(422.7,1752.

9) 

0.263  

NT-proBNP (pg/ml) 

3911.0(2045.5,7565

.5) 

3702.5(2285.5,8143.8

) 

4595.5(2395.5,796

2.0) 

0.182  

Leg edema 126(30.1%) 26(21.7%) 100(33.4%) 0.017  

CRT 13(3.1%) 0 13(4.3%) 0.020  

PCI 20(4.8%) 0 20(6.7%) 0.003  

CABG 6(1.4%) 0 6(2.0%) 0.117  

ALT: alanine aminotransferase;AMI: Acute myopathy infarction;AST: aspartate transaminase; 

BNP: B-type natriuretic peptide; BMI: body mass index; CABG: Coronary artery bypass 
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grafting; CHD: Cardiovascular heart disease; CKMB: creatine kinase MB; CRI: Chronic 

renal insufficiency; CRT: Cardiac resynchronization therapy; DBP: diastolic blood pressure; 

DCM: Dilated cardiomyopathy; HDL-C: high-density lipoprotein cholesterol; IVSD: 

Interventricular septal thickness at diastole; LAD: Left atrial diameter; LDL-C: low-density 

lipoprotein cholesterol; Lp(a): lipoprotein(a); LVEDD: Left ventricular end diastolic diameter; 

LVEF: Left ventricular ejection fraction; NT-proBNP: N-terminalpro-B-type natriuretic 

peptide; NYHA: New York Heart Association; OMI: Old myopathy infarction; PCI: 

Percutaneous coronary intervention; PLT: platelet count; SBP: systolic blood pressure; TC: 

total cholesterol; TG: triglyceride; VLDL-C: very low-density lipoprotein cholesterol. 
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Table 2. Multivariate analysis of variables associated with LVEF improvement. 

Variable OR (95%CI)        p 

Age 1.815 (0.996~3.306) 0.052 

Sex 0.995 (0.974~1.017) 0.66 

Baseline LAD 1.081 (1.007~1.16) 0.031 

Baseline LVEDD 0.945 (0.904~0.988) 0.013 

Baseline IVSD 1.245 (1.033~1.501) 0.021 

prealbumin 1.004 (1~1.009) 0.036 
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Table 3. Predictive performance of the deep learning model 

 Accuracy Precision Recall F1 Score 

HFimpEF 

0.89 

0.98 0.94 0.96 

HFrEF 0.94 0.98 0.96 
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Figure 1. The Structure of Convolutional neural networks. The two convolutional layers are 

first introduced, then the Batch Normalization (BN) layer is used to prevent the overfitting. 

ReLU activation function transfers the linear mapping into non-linear spaces. After that, max 

pooling layer is used to reduce the dimension of feature maps, and the full connection layer 

consolidates all features and activate the classification with Softmax function to correctly 

classified data. The dropout layer was designed to randomly drop some connections between 

layers to prevent overfitting. 
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Figure 2. The Selection Flow Chart. A total of 1855 HF patients with echocardiogram were 

comprised in the study. After selection and exclusion, the internal data set finally included 

422 patients containing 300 patients (70.1%) with HFrEF and 122 patients (28.9%) with 

HFimpEF. 
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Figure 3. Accuracy-loss curve of training process. (A) Accuracy curve, and (B) loss curve of 

the training and validation data sets. The horizontal axis represents the number of epochs, and  

the vertical axis represents accuracy and loss rate, the blue line represents the validation 

results on the training set and the red line represents the validation results on the validation 

set. 
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