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ABSTRACT 

Background: Diffuse midline gliomas (DMG) are aggressive pediatric brain tumors. MRI is the 

standard non-invasive tool for DMG diagnosis and monitoring. We developed an automatic 

pipeline to segment subregions of DMG and select radiomic features to predict patient overall 

survival (OS). 

Methods: We acquired diagnostic and post-radiation therapy (RT) multisequence MRI (T1, 

T1ce, T2, and T2 FLAIR) and manual segmentations of 53 (internal cohort) and 16 (external 

cohort) DMG patients. We pretrained a deep learning model on an adult brain tumor dataset, 

and finetuned the model on our internal cohort to segment tumor core (TC) and whole tumor 

(WT). PyRadiomics and sequential feature selection were used for feature extraction and 

selection based on the segmented volumes. Two machine learning models were trained on our 

internal cohort to predict patient 1-year survival from diagnosis. One model used only diagnostic 

features (baseline study) and the other used both diagnostic and post-RT features (post-RT 

study). 

Results: For segmentation, Dice score (mean [median]±SD) was 0.91 (0.94)±0.12/0.74 

(0.83)±0.32 for TC and 0.88 (0.91)±0.07/0.86 (0.89)±0.06 for WT of internal/external cohorts. 

For OS prediction, accuracy was 77%/81% for the baseline study and 85%/78% for the post-RT 

study of internal/external cohorts. Our results suggest post-RT features are more discriminative 

and reliable compared with diagnostic features. Smaller post-RT TC/WT volume ratio indicates 

longer OS. Our model predicts with high accuracy which patients have short OS. 

Conclusions: We demonstrated how a fully automatic approach to compute imaging 

biomarkers of DMG from multisequence MRI can accurately and non-invasively predict overall 

survival for impacted pediatric patients. 
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KEYPOINTS 

This is the first fully automatic deep learning/machine learning MRI study to predict DMG 

survival. 

Post-radiation therapy features are more discriminative and reliable than diagnostic features. 

Smaller post-radiation therapy tumor core/whole tumor volume ratio indicates better prognosis. 

 
IMPORTANCE OF STUDY 

Previous studies on pediatric DMG prognostication relied on manual tumor segmentation, which 

is time-consuming and has high inter-operator variability. There is a great need for non-invasive 

prognostic imaging tools that can be universally used. Such tools should be automatic, 

objective, and easy to use in multi-institutional clinical trials. We developed a fully automatic 

imaging tool to segment subregions of DMG and select radiomic features to predict patient 

overall survival (OS). Our acquired 4 sequences of MRI for each patient, at both diagnostic and 

post-radiation therapy from 2 institutions, were more comprehensive than previous studies. The 

proposed method achieved high accuracy in DMG segmentation and survival prediction, 

especially for patients having short OS. The proposed method will be the foundation of 

increasing the utility of MRI as a tool for predicting clinical outcome, stratifying patients into risk-

groups for improved therapeutic management and monitoring therapeutic response with greater 

sensitivity and an opportunity to adapt treatment. 
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Introduction 
 
Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPG), are aggressive 

central nervous system (CNS) pediatric tumors located in the brainstem, thalamus, spinal cord 

and cerebellum.1 As one of the most devastating pediatric cancers, DMG represents about 10–

15% of all pediatric CNS tumors, with an estimated 300 new cases diagnosed annually in the 

USA.2 Most DMGs occur between the ages of 5 and 10 years, with a peak at 7 years.3 There is 

currently no curative therapy for DMG and radiation therapy (RT) remains the standard treatment 

with only transitory benefits.4 Despite numerous clinical trials of new agents and novel therapeutic 

approaches over the last few decades,5 disease outcomes remain dismal with a median overall 

survival (OS) of less than 1 year, a 2-year OS rate of less than 10%,6 and a 5-year OS rate of 

less than 1%.7  

Magnetic resonance imaging (MRI) is the standard noninvasive tool for DMG diagnosis 

and monitoring of tumor response to therapy. For DIPG, typical MRI findings include a T1-

hypointense and T2-hyperintense lesion involving greater than 50% of the pons.8 MRI features 

have been used to predict H3K27M mutation status9 and correlate with patient prognosis.10-15 

However, the features utilized in these studies were either simple without high-dimensional image 

features10,11,13-15 or only based on texture analysis.12 The statistical analysis that most of these 

studies relied on tend to identify inconsistent and inconclusive biomarkers among different studies 

and datasets. For example, a study of 357 pediatric DIPG demonstrated that although many MRI 

features, such as tumor size, enhancement and necrosis etc., were strongly associated with 

survival on univariable analysis, very few were significantly associated with survival on 

multivariable analysis.11 These findings suggest only relying on statistical analysis of conventional 

MRI findings may not be sufficient to predict OS in DMGs. 
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Machine learning has been widely used to predict survival or discriminate between certain 

groups in studies of other brain tumors such as glioblastoma multiforme (GBM) and pediatric low-

grade gliomas.16-19 For DMG, machine learning-based regression models were proposed to 

correlate with patient prognosis based on extracted MRI radiomic features.20,21 However, these 

studies only focused on imaging data from diagnosis, and the tumors were segmented manually 

which is generally believed to be time-consuming and has high inter-operator variability. Studies 

have demonstrated that semiautomated DMG volume measurements are more accurate, 

prognostically-relevant, and consistent than manual measurements.14,15 In addition to diagnostic 

scans, it is also important to consider longitudinal data at post-treatment timepoints.10 

With new therapeutic strategies currently under investigation for DMG, including 

epigenetic therapy and immunotherapy,22 there is a great need for non-invasive prognostic 

imaging tools that can be universally used to accurately identify which patients are at risk for the 

most rapid deterioration, and thereby assist clinical trial eligibility and therapy planning. Such tools 

should be automatic, objective, and easy to use in multi-institutional clinical trials. With the vast 

advancements in deep learning techniques, there has been tremendous success in automatic 

segmentation of brain tumors from MRI, including adult and23,24 pediatric brain tumors,25,26 

including our previous work focused on the segmentation of pediatric DMG27,28. These 

advancements have the potential to create a fully automatic, image-based radiomic analysis and 

DMG prognostic tool. 

In this work, we developed a novel imaging tool to process and analyze DMG patient’s 

MRI data with the goal of predicting their 1-year OS. One year is the median OS of our internal 

cohort and it is also close to the median OS reported on larger DIPG studies (11 months).11 

Therefore, accurate prediction of patient’s 1-year OS could have profound impact on the clinical 

management of DMG. The proposed tool is fully automatic, including multisequence MRI 

preprocessing, deep learning-based segmentation of subregions of DMG, radiomic feature 

extraction and selection, and machine learning-based OS prediction. The proposed method was 
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trained and validated on an internal cohort from Children’s National Hospital (CNH) to investigate 

the accuracy of OS prediction in 1) a baseline study using MR images obtained only at diagnosis, 

and 2) a post-RT study using MR images obtained at both diagnosis and post-RT. The method 

was further tested on an external DMG dataset collected from Children’s Brain Tumor Network 

(CBTN). 

 

Materials and Methods 

Study Cohort 

For this 2-center retrospective study, institutional review board approval was obtained at both 

participating institutions. Our internal cohort includes 53 pediatric and adolescent patients 

diagnosed with DMG between 2005-2022 (F=29, M=24) at CNH. The median patient age at 

diagnosis is 6.5 years with a range of 3.2–25.9 years. The median OS is 12 months with a range 

of 3.3–132 months from diagnosis (1 patient is still alive).  

The external cohort includes 16 pediatric patients diagnosed with DMG between 2005-

2022 (F=9, M=7), collected through CBTN from Children’s Hospital of Philadelphia (CHOP). The 

median age at diagnosis is 9.4 years with a range of 3.8–18.2 years. The median OS is 9.6 months 

with a range of 1.3–27.1 months from diagnosis. 

 

MRI Data 

Both institutions used similar scanners and protocols which varied among patients and timepoints 

because of retrospective data collection. For each patient, 4 MRI sequences at diagnosis and/or 

post-RT were collected including T1-weighted (T1), contrast-enhanced T1 (T1ce), T2-weighted 

(T2), and T2-weighted-Fluid-Attenuated Inversion Recovery (T2 FLAIR). The collected MRIs were 

acquired at 1.5 or 3 T magnet, with 2D or 3D acquisition, using scanners from GE Healthcare, 

Siemens AG, and Toshiba. T1 and T1ce MRIs included T1 SE, T1 FSE, T1 MPRAGE, and T1 

SPGR. T2 MRI included T2 SE, T2 FSE, T2 FRFSE and T2 propeller. T2 FLAIR MRI included 
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those with and without post-gadolinium. Slice thickness ranges of 0.5–6 mm and matrix ranges 

of (256–512)´(256–512). All images were collected in the DICOM image format. 

Manual segmentation of DMG was used as the ground truth for training our deep learning 

segmentation model. It was performed under the supervision of 2 expert neurooncologists using 

ITK-SNAP29. Inter-expert variability was resolved through consensus. Because necrosis/cyst is 

not consistently identifiable for DMG, 2 labels were created: tumor core (TC) and whole tumor 

(WT). TC includes the Gd-enhancing tumor appeared as enhancement on T1ce MRI, and the 

necrotic/cystic core appeared as hypointense on T1ce MRI. WT includes TC and the peritumoral 

edematous/infiltrated tissue which is defined as the abnormal hyperintense signal on the T2 

FLAIR MRI.  

 

Automatic DMG Segmentation 

Despite the tremendous success of deep learning-based automatic segmentation for adult GBMs, 

directly using these methods on rare pediatric brain tumors remains challenging30. While GBMs 

and DMGs share several clinical properties, they have distinctive characteristics as well, 

especially in their location in the brain and radiologic presentation. Our approach was to transfer 

knowledge learnt from GBM segmentation to DMG segmentation. 

The Brain Tumor Segmentation (BraTS) challenge is an ongoing annual event that has 

been held since 2012. We acquired imaging data of 1,251 GBM patients that was publicly 

available from the BraTS 2021 challenge.31 For each patient, 4 MRI sequences (T1, T1ce, T2, 

and T2 FLAIR) and manual segmentations of subregions of GBM were provided. 

The winning method of the BraTS 2020 challenge was nnU-Net24,a popular and robust 

semantic deep-learning segmentation method. It analyzes the training data and automatically 

configures a matching U-Net32-based segmentation pipeline. Figure 1 shows the model 

architecture of our transfer learning-based approach using nnU-Net. It includes a pretraining 

phase, which trained nnU-Net using the BraTS 2021 challenge dataset. Because nnU-Net 
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automatically determines the segmentation pipeline based on the specific dataset, we first had 

the segmentation pipeline planned based on the DMG dataset, and then used the planned 

pipeline to prepare the BraTS dataset and perform pretraining. The pretrained network weights 

were then used as initialization to finetune the model using the DMG dataset, which was 

preprocessed to be compatible with the BraTS format. Preprocessing was performed in an 

automatic fashion and included N4 bias correction33, rigid registration to the SRI-24 Atlas34, and 

skull stripping35. The output of the model was the predicted TC and WT volumes, which were used 

as input to the radiomic feature extraction step. 

 

Figure 1. Model architecture of our DMG segmentation method. 

 

Many DMG cases do not have or have very small TC volumes. While small TC volumes 

are unlikely to affect OS prediction, they may cause misleading segmentation evaluation. We 

therefore imposed a postprocessing step on the predicted TC volumes before calculating the 

evaluation metrics. TC/WT denoted the ratio of TC volume over WT volume. The predicted 

volumes were first cleaned by removing small (i.e., <130 voxels) disconnected regions, followed 
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by setting the TC volume to be 0 if TC/WT<4%. This postprocessing was determined by 

optimization on the BraTS-PEDs 2023 dataset.36,37  

 

Experiments and Evaluation for Tumor Segmentation  

45/53 CNH patients with manual segmentations were used for training and validation of the 

segmentation model. Scans at diagnosis and post-RT of the same patient were counted for the 

purpose of segmentation. This yielded a total of 82 cases from the 45 patients. Specifically, 41/82 

scans were acquired at diagnosis, 34/82 scans were acquired within 1-month post-RT, and the 

rest of 7 scans were acquired 2–4 months post-RT. 

The 82 DMG cases were randomly divided into 5 splits, and 5-fold cross-validation was 

performed to obtain the predicted TC and WT volumes. Dice coefficient and volume similarity (VS) 

were used as evaluation metrics to compare the predicted and ground truth segmentations. VS 

is defined as VS=1-VD, where VD (volume distance) is calculated as the absolute volume 

difference divided by the sum of the compared volumes38. Comparison between predicted and 

ground truth in small or absent TC volumes tend to produce extreme metrics (e.g., Dice score=0 

or 1). To void bias to small volumes, we did not evaluate segmentation performance if 0<TC/WT<4% 

for both predicted and ground truth segmentations. If TC/WT=0 for both, the metrics were set to 

be 1. 

After 5-fold cross-validation, we trained a final model with all 82 cases and used it to 

predict TC and WT volumes for the rest 8/53 internal patients without manual segmentations and 

16 external patients, of which 14 with manual segmentations were used in the external test set. 

 

Radiomic Feature Extraction 

Based on automatically segmented DMG volumes, we used the open-source PyRadiomics 

software39 to extract radiomic features including 13 shape features and 91 gray level features. 

Please refer to Supplemental Appendix S1 for a complete list of features.  The gray level features 
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included: 18 first order features, 22 gray level co-occurrence matrix (GLCM) features, 16 gray 

level size zone matrix (GLSZM) features, 16 gray level run length matrix (GLRLM) features, 5 

neighboring gray tone difference matrix (NGTDM) features, and 14 gray level dependence matrix 

(GLDM) features. In addition, we added 2 clinical features (i.e., sex and age), and 2 shape 

features of interest: brain volume and relative tumor volume (DMG volume divided by the brain 

volume). Because gray level features are susceptible to inter-scanner variation due to different 

acquisition protocol40, image gray levels were normalized by removing the mean and scaling to 

unit variance before the features were calculated.  

The baseline study employed 401 features including 37 shape features and 4 sets of 91 

gray level features (1 set for each MRI sequence). The shape features included sex, age, brain 

volume, 14 shape features (i.e., 13 from PyRadiomics and relative DMG volume) for WT, 10 

shape features for TC, and 10 shape features for the ratio between TC and WT (TC/WT). Because 

many DMG cases did not have TC volume, 4 features (elongation, flatness, surface area to 

volume ratio, and sphericity) having measurements of TC in the denominator of their calculation 

were excluded, because their definitions were not valid with 0 volume. The gray level features 

were calculated based on WT volumes. 

The post-RT study employed 1,576 features including 120 shape features and 1,456 gray 

level features. The shape features included sex, age, skull-stripped brain volumes at diagnosis 

and post-RT, 28 WT shape features (14 at diagnosis and 14 post-RT), changes of 14 WT shape 

features (post-RT values minus values at diagnosis), relative changes of 14 WT shape features 

(changes divided by values at diagnosis), 20 TC shape features (10 at diagnosis and 10 post-

RT), changes of 10 TC shape features, 20 TC/WT shape features (10 at diagnosis and 10 post-

RT), and changes of 10 TC/WT shape features. We did not consider relative changes of TC and 

TC/WT features because measurements related to TC at diagnosis could be 0, which would make 

the definition of relative change invalid. The gray level features included 4 sets of 91 gray level 
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features at diagnosis, 4 sets of 91 gray level features post-RT, changes of 4 sets of 91 gray level 

features, and relative changes of 4 sets of 91 gray level features. 

 

Feature Selection 

On the training data, feature selection was performed prior to prediction to avoid overfitting. In the 

first step, feature filtering was performed using the Mann-Whitney U test comparing feature values 

between short OS (<365 days) and long OS (≥365 days). 69 features with p<0.05 were selected 

for the post-RT study. For the baseline study, because there was only 1 feature with p<0.05, we 

selected 40 (i.e., 10% of 401) features with the smallest p-values.  

As a common requirement for many machine learning models, the selected feature values 

in the previous step were standardized by removing the mean and scaling to unit variance. 

Sequential feature selection (SFS) was then performed to select the optimal number of 

discriminative features for each study. Let n be the desired number of features. The algorithm 

added 1 feature at an iteration to form a feature subset in a greedy fashion until n was reached. 

At each iteration, the algorithm went through each feature not currently in the feature subset and 

chose the feature to add such that the new feature subset achieved the best accuracy in the 

leave-one-out cross-validation. For leave-one-out cross-validation, we trained a linear support 

vector machine (SVM) to classify between short OS and long OS using all subjects in our internal 

cohort except for 1, which was used for testing. This process was repeated iteratively until all 

patients were tested. We employed the linear kernel for the SVM model because it is less prone 

to overfitting than non-linear kernels for a small dataset. The number of selected features was 

limited to less than 10% of the number of patients to avoid overfitting the model to the training 

data.  

 

Experiments and Evaluation for OS Prediction 
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Images at diagnosis of 52/53 CNH patients were used for training and validation in the baseline 

study. 26/52 patients had long OS, i.e., survival greater than 1 year from diagnosis. One patient 

did not have images of all 4 MRI sequences at diagnosis, but the post-RT images were used for 

training the segmentation model. Images at diagnosis and within 3 months post-RT of 41/52 

patients were used for training and validation in the post-RT study. 19/41 patients had long OS. 

After feature selection using leave-one-out cross-validation, the final SVM model was 

trained with all internal patients with the selected features. Validation of the final model on the 

internal dataset was reported. The final model was used to predict OS based on the same 

selected features on the external dataset. For the baseline study, 16 external patients (7 had long 

OS) were tested. 9/16 external patients who had post-RT imaging (<3 months) were tested in the 

post-RT study. 5/9 patients had long OS. 

 

Results 

Segmentation Results 

Table 1 shows performance of the proposed automatic DMG segmentation method evaluated on 

the internal and external datasets. Machine learning-based brain tumor segmentation algorithms 

need to be evaluated on out-of-distribution data to access generalizability, reflective of tumor 

heterogeneity41. Metrics of WT segmentation for the external cohort (0.86 mean Dice score and 

0.91 mean volume similarity) were similarly well as those obtained for the internal cohort (0.88 

mean Dice score [Student’s t-test p=0.44] and 0.93 mean volume similarity [p=0.28]). This 

suggests our method can be successfully generalized for segmenting WT volume of images from 

outside sources. On the other hand, metrics of TC segmentation for the external cohort (0.74 

mean Dice score and 0.81 mean volume similarity) were less accurate than those obtained for 

the internal cohort (0.91 mean Dice score [p=0.002] and 0.93 mean volume similarity [p=0.006]).  

It is worth mentioning the median Dice score (0.83) and volume similarity (0.99) of TC 

segmentation for the external cohort were improved from the mean. This indicates the model 
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performed well on TC segmentation for most external cases (12/14). We noticed that 2 cases 

generating poor metrics (Dice<0.2) showed significant under-segmentation of TC volumes. Figure 

2 shows qualitative segmentation results on the diagnosis and post-RT images of a DMG patient. 

The Dice scores for this case were 0.92 (diagnostic TC), 0.92 (diagnostic WT), 0.97 (post-RT TC), 

and 0.93 (post-RT WT). 

 

Table 1. Mean (median) and standard deviation of Dice coefficient and volume similarity 

calculated by comparing predicted tumor core (TC) and whole tumor (WT) volumes and those 

segmented manually. Results shown include validation on the internal cohort (82 cases) and 

testing on the external cohort (14 cases). 

Evaluation dataset TC Dice WT Dice TC vol. similarity WT vol. similarity 

Internal cohort 0.91 (0.94) ± 0.12 0.88 (0.91) ±  0.07 0.94 (0.99) ± 0.10 0.93 (0.96) ± 0.07 

External cohort 0.74 (0.83) ± 0.32 0.86 (0.89) ± 0.06 0.81 (0.99) ± 0.34 0.91 (0.93) ± 0.07 
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Figure 2. Qualitative segmentation results on the diagnosis and post-RT images of a DMG patient 

from the internal cohort. The figure shows 4 MRI sequences after preprocessing, the ground truth 

(GT) segmentation, and the predicted (Pred) segmentation generated by our method (red: TC, 

red + green: WT).  

 

OS Prediction Results  

Table 2 shows results of the proposed OS prediction method. Because identifying patients with 

higher risk (i.e., OS<365 days) is more important, we adjusted model parameters to maximize 

accuracy or sensitivity. In general, the results suggest that adding post-RT data improved 

prediction accuracy and sensitivity over the baseline. The evaluation metrics on our external 

cohort were comparable to those obtained on the internal cohort, demonstrating good 

generalization of our machine learning predictive model.  
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Table 2. Results of the proposed OS prediction method. OS<365 days is considered positive. 

 Internal cohort (52 subjects) External cohort (16 subjects) 

Study Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

Baseline max accuracy 77% 81% 73% 81% 89% 71% 

Baseline max sensitivity 62% 92% 31% 75% 100% 43% 

 Internal cohort (41 subjects) External cohort (9 subjects) 

Post-RT max accuracy 

(also max sensitivity) 

85% 100% 68% 78% 100% 60% 

  

The number of selected features for the baseline and post-RT studies is 5 and 4, respectively. 

We list below the selected features for each study, along with their p-values of Mann-Whitney U 

test between short and long OS computed on our internal cohort. The features are listed in the 

order of their relevance to OS prediction. 

Selected 5 features for the baseline study: 

- Information measure of correlation (Imc1) on T2 FLAIR (p=0.118): quantifies the 

complexity of the texture and is related to GLCM. 

- High gray level zone emphasis on T1 (p=0.231): measures the distribution of the higher 

gray level values and is related to GLSZM. 

- The median gray level value on T2 FLAIR (p=0.173) 

- Skewness on T2 (p=0.061): measures the asymmetry of the distribution of gray level 

values about the mean value. 

- The 10th percentile of gray level value on T2 FLAIR (p=0.217) 

Selected 4 features for the post-RT study: 

- The ratio of maximum 2D diameter (coronal plane) between post-RT TC and post-RT WT 

(p=0.017). The maximum 2D diameter is the largest pairwise Euclidean distance between 

tumor surface mesh vertices on a 2D plane. 
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- The 10th percentile of gray level value on post-RT T1ce (p=0.027). 

- The ratio of minor axis length between post-RT TC and post-RT WT (p=0.002). The minor 

axis length is the second-largest axis length of principal component analysis performed 

on the volume. 

- Root mean squared on post-RT T1ce (p=0.006): is the square-root of the mean of all the 

squared gray level values. 

Figure 3 shows the comparison between short OS and long OS for the selected features of the 2 

studies. A visual example of radiomics is shown in Fig. 4. 

 

 

Figure 3. Comparison between short OS and long OS for the selected features of the baseline 

and the post-RT studies. Data of both internal and external cohorts were considered. 
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Figure 4. MRI of patients who survived 21 months (A) and 3 months (B) from our internal cohort. 

Diagnostic T2 FLAIR shows there is more heterogeneous intensity distribution in WT of patient A 

than B. Post-RT T1ce shows the TC/WT ratio of patient A is smaller than that of patient B. 

 

Discussion 

To our best knowledge, this study is first in reporting a fully automatic, machine learning-based 

classification model to prognosticate DMG survival using MRI features. Our automatic DMG 

segmentation method generated accurate TC and WT segmentations. The mean Dice scores of 

0.91 for TC and 0.88 for WT of cross-validation on the internal cohort were comparable to those 

reported for adult GBM segmentation using state-of-the-art deep learning models.42,43 Although 

worse than the internal cohort, TC segmentation for the external cohort (mean Dice=0.74) is still 
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comparable to the 0.62–0.74 Dice scores reported in a recent study of automatic segmentation 

of subregions of pediatric brain tumors26.  

Based on manual segmentation, a recent study presented a machine learning-based 

regression model to correlate MRI radiomic features with DIPG prognosis.20 The study employed 

T1ce and T2 MRI acquired at diagnosis, and found heterogeneous tumor pixel intensity or texture, 

such as the GLCM features, conferred a better prognosis. A similar pattern was found in our 

baseline study, where GLCM Imc1 of WT on T2 FLAIR was larger for the long OS group compared 

with the short OS group, although the difference was not significant (Fig. 3).  

While diagnostic features were considered in the post-RT study, all the selected features 

in the post-RT study were related to post-RT measurements, and they were more discriminative 

in terms of statistical test (p<0.05) compared with those for the baseline (p>0.05). Shape features 

which are independent of scanner variation, were selected for the post-RT study whereas no 

shape feature was selected for the baseline. These results suggest post-RT features may be 

more discriminative and reliable compared with diagnostic features. This is verified by the 

improved prediction accuracy for our internal cohort, although results for the external cohort are 

comparable. Radiomic analysis allowed us to calculate complex shape features, such as the 2 

selected ones in the post-RT study, which correlated to post-RT TC volume but is more 

discriminative as it was identified by our feature selection method. Based on our results, smaller 

or non-existent post-RT TC/WT ratio indicates longer OS. For both baseline and post-RT studies, 

our method produced high sensitivity and low specificity for both internal and external cohorts. It 

indicates the model predicts with high accuracy which patients have short OS. 

Our study is not without limitations. Both of our internal and external cohorts represent 

small datasets, especially for the post-RT studies. The findings of this study need to be further 

verified with a larger DMG dataset. Better DMG segmentation and OS prediction models may be 

achieved by training on larger data and the fully automatic nature of the proposed method is well 

suited for multi-institutional collaboration. Radiomics are susceptible to bias and variation due to 
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numerous inter-scanner factors such as different acquisition protocols. Additional feature 

harmonization methods besides what was performed in our study could be used to remove 

scanner effects in brain MRI radiomic features.40,44  

 

Conclusions 

In this multi-institutional study, we demonstrated that a fully automatic approach to compute 

imaging biomarkers of diffuse midline gliomas from multisequence MRI can accurately and non-

invasively predict overall survival for impacted pediatric patients. The proposed method can be 

used as the foundation of increasing the utility of MRI as a tool for predicting clinical outcome, 

stratifying patients into risk-groups for improved therapeutic management and monitoring 

therapeutic response with greater sensitivity and an opportunity to adapt treatment. 
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