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Abstract 1 

The structural network damages in amyotrophic lateral sclerosis (ALS) patients are evident but 2 

contradictory due to the high heterogeneity of disease. We hypothesized that patterns of structural 3 

network impairments would be different in ALS subtypes by a data-driven method using 18F-FDG 4 

PET/MR hybrid imaging. 50 patients with ALS and 23 healthy controls (HCs) were collected PET, 5 

structural MRI and diffusion tensor imaging data by a 18F-FDG PET/MR hybrid. Two ALS subtypes 6 

were identified as the optimal cluster based on gray matter volume and standardized uptake value ratio. 7 

Network metrics at the global, local and connection levels were compared to explore the impaired 8 

patterns of structural network in the identified subtypes. Compared with HCs, the two ALS subtypes 9 

displayed a pattern of a locally impaired structural network centralized in the sensorimotor network and 10 

a pattern of an extensively impaired structural network in the whole brain. When comparing the two 11 

ALS subgroups by a support vector machine classifier based on the decreases in nodal efficiency of 12 

structural network, the individualized network scores were obtained in every ALS patient and 13 

demonstrated a positive correlation with disease severity. We clustered two ALS subtypes by a data-14 

driven method, which encompassed different patterns of structural network impairments. Our results 15 

imply that ALS may possess the intrinsic damaged pattern of white matter network and thus provide a 16 

latent direction for stratification in clinical research. 17 

Keywords amyotrophic lateral sclerosis; PET/MR hybrid; subtype; structural network; diffusion tensor 18 

imaging 19 

Abbreviations 20 

AAL, Automated anatomical labeling; ALS, Amyotrophic lateral sclerosis; ALS-bi, ALS with 21 

behavioral impairment; ALS-cbi, ALS with cognitive and behavioral impairment; ALS-ci, ALS with 22 
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cognitive impairment: ALSFRS-R, ALS Functional Rating Scale-Revised; BNA, Brainnetome Atlas; 1 

DeltaFS, Progression rate from disease-onset to baseline; dNE, Nodal efficiency of DTI-based brain 2 

network; EISN, Extensively impaired structural network; FTD, Frontotemporal dementia; GMV, Gray 3 

matter volume; HC, Healthy control; INS, Individualized network score; LISN, Locally impaired 4 

structural network; LOOCV, Leave-one-out cross validation; NBS, Network-based statistics; sMRI,    5 

Structural MRI; SUVR, Standardized uptake value ratio; SVM, Support vector machine; WM,        6 

White matter 7 
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1. Introduction 1 

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that mainly involves 2 

upper and lower motor neurons. Although muscle weakness, atrophy and fasciculation are the most 3 

predominant symptoms of ALS, the high heterogeneity in clinical manifestations is also remarkable. 4 

ALS can be categorized into familial and sporadic subtypes, bulbar-onset and limb-onset subtypes, as 5 

well as fast-progression, intermediate-progression and slow-progression subtypes (van Es et al., 2017). 6 

On the basis of cognition level, ALS can be divided into ALS with normal cognition, ALS with 7 

cognitive impairment (ALS-ci), ALS with behavioral impairment (ALS-bi), ALS with cognitive and 8 

behavioral impairment (ALS-cbi), and ALS with frontotemporal dementia (ALS-FTD) (Strong et al., 9 

2017). Taken together, these classifications are all based on clinical characteristics. 10 

Recently, cluster analysis, as a data-driven method, has been used to identify subtypes of Alzheimer’s 11 

disease (Noh et al., 2014; Ten Kate et al., 2018) and behavioral variants of FTD (Whitwell et al., 2009) 12 

with neuroimaging data. However, cluster analysis with MRI and PET data has not been used in ALS 13 

patients to date. In ALS patients compared to healthy controls (HCs), reductions in gray matter volume 14 

(GMV) in the bilateral precentral gyri were observed using FreeSurfer software with structural MRI 15 

(sMRI) data (Kwan et al., 2012), and decreases in the standardized uptake value ratio (SUVR) in the 16 

frontal, motor, and parietal cortices were demonstrated by PET with 18F-fluorodeoxyglucose (FDG) 17 

(Matías-Guiu et al., 2016; Pagani et al., 2014; Sala et al., 2019). Considering that a single-modal metric 18 

provides limited information, a combination of GMV and SUVR was hypothesized to be a complex 19 

data-driven marker that could reflect the characteristics of disease in more detail. Although sMRI and 20 

18F-FDG PET have been combined to collect neuroimaging data in ALS patients (Buhour et al., 2017), 21 

these data were acquired at different times and thus inevitably with errors of image registration. 22 
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Fortunately, with the advantage of simultaneous data collection, PET/MR hybrid scans are not subject 1 

to registration errors and can achieve the integration of multimodal metrics. In previous studies of ALS 2 

patients using 11C-PBR28, the imaging data were collected by an integrated PET and MRI system, 3 

which was not a PET/MR hybrid in the true sense (Alshikho et al., 2016; Ratai et al., 2018). In ALS 4 

patients, PET/MR hybrid scans using 18F-DPA714 and 11C-JNJ717 have been reported (Van Weehaeghe 5 

et al., 2020). In patients with ALS or behavioral variants of FTD plus motoneuron disease, a significant 6 

increment in glucose metabolism in the midbrain/pons and medulla oblongata was found in comparison 7 

to controls by 18F-FDG PET/MR (Zanovello et al., 2022). 8 

Due to the remarkable involvement of motor neurons, previous studies on brain connectivity in ALS 9 

patients mainly focused on structural connectivity with diffusion tensor imaging (DTI) data. By graph 10 

theory, previous observations have exhibited decreases in the global efficiency of structural network 11 

(Fortanier et al., 2019; Zhang et al., 2019) and in nodal topological centralities in the frontal, parietal 12 

and temporal lobes when comparing ALS patients to controls (Li et al., 2021). By network-based 13 

statistics (NBS), an impaired structural subnetwork was revealed in ALS patients with a typical 14 

involvement of primary and secondary motor connections (Buchanan et al., 2015; Verstraete et al., 15 

2011). Furthermore, ALS patients with bulbar onset and spinal onset both showed the most severely 16 

damaged connections mainly involving bilateral precentral gyri and paracentral lobules, but the spinal-17 

onset group displayed a more widespread pattern of affected connections compared to controls (van der 18 

Burgh et al., 2020). However, ALS patients with different disease durations showed consistent 19 

involvement of the motor network and limited extramotor involvement (van der Burgh et al., 2020). 20 

Although the extension of structural connectivity damage alone is already known to be correlated with 21 

measures of disease severity in ALS, it is still necessary to explore the different patterns of structural 22 
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network impairments in the data-driven subtypes for the high heterogeneity in clinical manifestations in 1 

ALS. Due to by the data-driven method not by the clinical features, exploring the impaired pattern of 2 

structural network in the data-driven subtypes could be a latent facilitation for stratified therapy in 3 

ALS. 4 

Here, using 18F-FDG PET/MR hybrid data, we hypothesized that ALS subtypes can be identified by 5 

cluster analysis based on GMV and SUVR. Next, we assessed the individual patterns of impaired 6 

structural network in the identified ALS subtypes by graph theory at the global, local and connection 7 

levels. Furthermore, we observed changes in GMV and 18F-FDG metabolism in the clustered subtypes 8 

for a deep evaluation of the white matter (WM) connectome. Finally, we explored potential biomarkers 9 

for the phenotypes of ALS based on significantly different metrics of structural network. 10 
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2. Methods 1 

2.1 Participants 2 

Patients with clinically definite (36), probable (10) or possible (4) ALS according to the revised El 3 

Escorial (Brooks et al., 2000) (50; 28 men and 22 women; mean age at symptom onset 49.70 ± 8.68 4 

years; mean age at PET/MR scan 51.10 ± 8.98 years) were recruited from Chinese PLA Hospital from 5 

July 1, 2020 to April 30, 2022. With the exception of 1 patient with a family history of ALS, all other 6 

patients had no family history of ALS or FTD. Among the 40 ALS patients who accepted genetic 7 

detection with consent, all had normal number of GGGGCC repeat expansions in the C9orf72 gene and 8 

33 displayed negative results of whole-exome sequencing. The 7 ALS patients with missense mutations 9 

were showed in Table S1. Furthermore, age-, sex- and education level-matched HCs (23; 10 men and 10 

13 women; mean age at PET/MR scan 48.87 ± 10.81 years) were enrolled. All individuals or their legal 11 

guardians signed informed consent forms. All the participants were Han Chinese, right-handed, 12 

younger than 75 years old, without other neurological or psychiatric diseases, and without 13 

contraindications for PET and MRI examination. 14 

2.2 Clinical assessments 15 

All ALS patients and HCs were evaluated at length before the PET/MR scan. Dysfunction was 16 

measured with the ALS Functional Rating Scale-Revised (ALSFRS-R) (Cedarbaum et al., 1999). The 17 

progression rate from disease-onset to baseline (DeltaFS) was calculated using the following formula: 18 

48 – (total ALSFRS-R at initial visit) /symptom duration (months) (Kimura et al., 2006). Fast, 19 

intermediate and slow ALS progressors were defined as DeltaFS ≥ 1.0, DeltaFS < 1.0 ~ ≥ 0.5, and 20 

DeltaFS < 0.5, respectively (Lu et al., 2015; Zhang et al., 2022). The neuropsychological evaluations 21 

included the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and 22 

Edinburgh Cognitive and Behavioral ALS Screen (ECAS) Chinese version (Ye et al., 2016). On the 23 

basis of the revised Strong criteria (Strong et al., 2017), ALS patients were diagnosed with normal 24 

cognition (28), ALS-ci (8), ALS-bi (5), ALS-cbi (4), and ALS-FTD (5). In the current study, ALS 25 

patients with normal cognition were called ALS-cn, and ALS-ci, ALS-bi, ALS-cbi and ALS-FTD were 26 

called ALS-plus. Two senior neurologists completed all the neuropsychological evaluations. 27 

2.3 PET/MR scan 28 

PET/MR scans with 18F-FDG were carried out by two senior nuclear medicine technicians in the 29 

Department of Nuclear Medicine, First Medical Center, Chinese PLA General Hospital, using a 30 
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PET/MR hybrid scanner (Siemens, Biograph mMR). Before the PET/MR scan, T2-weighted images 1 

were collected to exclude the subjects with brain lesions. For the included participants, at least 6 hours 2 

of fasting and 30 minutes of rest in a quiet and dark environment were required before the intravenous 3 

injection of 18F-FDG (4.44–5.55 MBq/kg). Fifty minutes after the injection, a PET/MR scan was 4 

carried out. During the scan, a 16-channel head coil was used, and foam padding minimized head 5 

motion. The participants were asked to remain relaxed and keep their eyes open without falling asleep. 6 

18F-FDG PET data were collected with the List model and further reconstructed by Poisson-ordered 7 

subset expectation-maximization algorithms with three iterations. Twenty-one subsets were obtained 8 

using a Gaussian filter of 2 mm full-width at half-maxima (FWHM) and 344 × 344 voxels. Next, DTI 9 

data were collected using a single-shot echo planar imaging (EPI) sequence in the axial plane. The EPI 10 

parameters were as follows: repetition time (TR) = 9,900 ms, echo time (TE) = 91 ms, acquisition 11 

matrix = 128 × 128, field of view (FOV) = 256 mm × 256 mm, and slice thickness = 2 mm with no 12 

gaps. A total of 70 contiguous slices were acquired for b values of 0 and 1,000 s/mm2 using gradients 13 

along 30 different diffusion directions. Finally, high-resolution sMRI data were obtained from sagittal 14 

T1-weighted images (T1WI; 192 continuous slices), which were acquired by a magnetization-prepared 15 

rapid gradient echo (MPRGE) sequence with the following scan parameters: TR = 1,900 ms, TE = 2.43 16 

ms, inversion time (TI) = 1,100 ms, FOV = 256 mm × 256 mm, acquisition matrix = 512 × 512, flip 17 

angle = 9°, and slice thickness = 1 mm with no gaps. 18 

2.4 Image processing 19 

To obtain the GMV at cortical vertices in each hemisphere, T1WI was processed through the recon-all 20 

command in the FreeSurfer software package 21 

(https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki). Then, the Brainnetome Atlas (BNA) 246 22 

(Fan et al., 2016) with 210 cortical regions and 36 subcortical regions was projected on native 23 

fsaverage to obtain the statistical GMV in each cerebral region according to the official scripts 24 

(http://www.brainnetome.org/resource/). Finally, the GMV in each cerebral region was divided by the 25 

mean GMV across all cerebral regions to obtain a normalized value. 26 

To calculate the SUVR in the cerebral regions, T1WI for each subject was aligned to 18F-FDG PET 27 

images. Then, the aligned T1WI was transformed into the ICBM152 template in Montreal Neurological 28 

Institute (MNI) space using the FMRIB Linear Image Registration Tool (FLIRT) 29 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT) (Jenkinson and Smith, 2001) and FMRIB Nonlinear 30 
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Image Registration Tool (FNIRT) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT). These derived 1 

transformation matrices were applied to the BNA246 and automated anatomical labeling (AAL) 90 2 

(Tzourio-Mazoyer et al., 2002) to obtain cerebral parcellations in native space. After smoothing using a 3 

2 mm kernel on 18F-FDG PET images, the SUVR of each cerebral region was normalized to the mean 4 

SUVR across all cerebral regions. 5 

Regarding DTI, preprocessing procedures comprised correction of eddy current and motion artifacts, 6 

diffusion tensor estimation, and fractional anisotropy (FA) calculation. Specifically, an affine alignment 7 

of each DTI to the b0 image was applied to correct eddy current distortions and motion artifacts using 8 

the eddy_correct command in the FDT toolbox of FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT). The 9 

diffusion tensor estimation and FA calculation were performed with the dtifit command in the FDT 10 

toolbox of FSL (Fan et al., 2016; Jenkinson and Smith, 2001). 11 

2.5 Cluster analysis 12 

As a data-driven clustering approach, nonnegative matrix factorization (NMF) can explore clusters of 13 

features in participants by an unsupervised strategy and was currently adopted to reveal ALS subtypes 14 

on NMF (v.0.23.0) in R (v.4.1.2) (Gaujoux and Seoighe, 2010). Features of each participant were 15 

characterized by the sum of SUVR and GMV values in the same cerebral region (Fig. 1a). Notably, the 16 

factors of age at PET/MR scan, sex ratio, and education years were removed by regression analysis 17 

before the calculation of GMV and SUVR in the cerebral regions. Next, the obtained GMV and SUVR 18 

values were further normalized by the min-max scaling method. ALS patients were clustered into 19 

different numbers of subtypes (cluster_n = 2, 3, …, 10) with various cophenetic correlation coefficients 20 

by similar inherent features. Based on the best fit (i.e., highest value of the cophenetic correlation 21 

coefficient), the optimal cluster (cluster_n = 2) was determined (Fig. 1b). With the optimal cluster, 22 

nonsignificant features by NMF were deleted from the feature selection (Fig. 1c). Using the remaining 23 

features, ALS patients were reclustered into two subgroups (Fig. 1d). 24 
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 1 

Figure 1. Cluster analysis procedure using 18F-FDG PET/MR imaging 2 

A, Based on 18F-FDG PET and sMRI data, standardized uptake value ratio (SUVR) and gray matter volume 3 

(GMV) values in cerebral regions were extracted for every ALS patient and summed for each cerebral region to 4 

compose the features of the cluster analysis. B, The optimal number of clusters (cluster_n = 2) was obtained on 5 

account of the highest cophenetic correlation coefficient. C, With the optimal cluster, nonsignificant features by 6 

nonnegative matrix factorization (NMF) were deleted from the feature selection for the cluster analysis. D, Using 7 

the remaining features, ALS patients were reclustered into 2 subtypes, each displaying a spatially scattered 8 

distribution based on three principal components 9 

2.6 Calculation of structural network measures 10 

For brain WM network construction, the T1WI of each subject was aligned to the b0 image in native DTI 11 

space. Then, the aligned T1WI was transformed into the ICBM152 template in MNI space using FLRIT 12 

and FNIRT. The inverse transformation matrix was applied to warp the BNA246 and AAL90 from MNI 13 

space into native space. After the above procedures, we obtained two parcellations of each subject to 14 

separately define network nodes in native space. DTI tractography was performed through a deterministic 15 

tractography method with fractional anisotropy (FA) < 0.2 and angle > 45° as terminate parameters using 16 

the Diffusion Toolkit (https://www.trackvis.org/dtk/). An edge was defined if there was at least one 17 

streamline between two regions. The corresponding fiber number represents the weight of the edge. As 18 

a result, we constructed two fiber-number-weighted WM networks, which were two symmetric matrices 19 

of 246 × 246 and 90 × 90 for each subject. Measures of structural network, including the network global 20 
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efficiency, network local efficiency and small-worldness (Lp, Cp, γ, λ and σ) at the global level as well 1 

as the nodal efficiency at the local level, were all derived by GRETNA software 2 

(http://www.nitrc.org/projects/gretna/) (Wang et al., 2015).  3 

The NBS (Zalesky et al., 2010) approach was used to detect structural connection differences between 4 

groups from a subnetwork perspective. In particular, we first detected the significant nonzero 5 

connections within each group by statistical methods. A nonzero connection was defined as a 6 

connection present in more than half of the subjects in the group. Next, nonzero connections within the 7 

two compared groups were combined into a connection binary mask. The network of each participant 8 

was clipped by the Hadamard product with the binary mask. Finally, a toolbox 9 

(https://www.nitrc.org/projects/nbs) was used to identify the changed subnetworks in the context of 10 

pairwise comparisons. A primary threshold (P = 0.01 for ALS vs. HC; P = 0.05 for other group 11 

comparisons) was first applied to a two-sample one-tailed t test to compute a set of suprathreshold 12 

links. The components and number of these links were estimated for significance using a 13 

nonparametric permutation approach with 5,000 permutations. A value of P < 0.05 was considered 14 

significant, and Bonferroni corrections were used for group comparisons. 15 

2.7 Support vector machine 16 

Due to the regional characteristics of the structural network being sensitively represented by the nodal 17 

efficiency of the DTI-based brain network (dNE), we further aimed to create a new biomarker-based 18 

individualized network to recognize the clustered ALS subtypes. A support vector machine (SVM) 19 

classifier was trained to predict two clustered subtypes using the leave-one-out cross validation 20 

framework by a toolbox (https://www.csie.ntu.edu.tw/~cjlin/libsvm/), and an individualized network 21 

score (INS) was defined as the distance to the decision hyperplane in the feature space (Li et al., 2020). 22 

To this end, ALSFRS-R scores and DeltaFS were used to test whether INS was associated with clinical 23 

significance. 24 

2.8 Statistical analyses 25 

Differences in clinical features were compared by the Kruskal–Wallis test among the three groups and 26 

by the Wilcoxon rank-sum test between the two groups. Furthermore, data shown as percentages were 27 

compared in groups by chi-square tests. 28 

For group comparisons of the global metrics of structural connectivity, dNE, GMV and SUVR, factors 29 

of age at PET/MR scan, sex ratio, and education years were previously removed by regression analysis. 30 
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Next, the Kruskal–Wallis ANOVA test and subsequent post hoc pairwise comparisons were performed 1 

following pairwise comparisons. A value of P < 0.05 was considered significant. The false discovery rate 2 

(FDR) correction was used in the comparisons of dNE, GMV and SUVR. The Spearman correlation with 3 

FDR correction was applied between the significantly changed dNE and GMV or SUVR, while the 4 

Spearman correlation with Bonferroni correction was used between the INS and clinical characteristics. 5 

The Dice coefficient was used to analyze the percentage of labels with significantly different metrics in 6 

the cognition-related networks (Yeo et al., 2011). 7 
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3. Results 1 

3.1 Clinical profiles of identified ALS subtypes 2 

ALS patients and HCs were matched for age (Wilcoxon test, p = 0.73) and sex (chi-square test, p = 3 

0.32). The identified two ALS subtypes were named locally impaired structural network (LISN) 4 

subtype and extensively impaired structural network (EISN) subtype. The demographic and clinical 5 

characteristics of the two ALS subgroups and HCs are summarized in Table 1.  6 

No difference was found between patients with LISN and EISN subtype and HCs either in age at 7 

symptom onset (49.75 ± 8.22 vs. 49.57 ±10.08, p = 0.86), age at PET/MR scan (51.00 ± 10.31 vs. 8 

51.03 ± 8.45 vs. 48.87 ± 10.81, p = 0.90), education (9.29 ± 5.01 vs. 10.14 ± 3.39 vs. 11.57 ± 4.78, p = 9 

0.20) and duration (16.53 ± 14.91 vs. 16.92 ± 10.36, p = 0.14), or in the distribution of gender (16 F 10 

(44.44 %) vs. 6 F (42.86 %) vs. 13 F (56.52 %), p = 0.60), gene (p = 0.81), site of onset (30 Limb-onset 11 

(83.33 %) vs. 12 Limb-onset (85.71 %), p = 0.83) and the percent of patients with definite ALS, 12 

probable ALS and possible ALS (p = 0.80). Notably, the LISN subgroup showed significantly higher 13 

ALSFRS-R scores and slower DeltaFS than the EISN subgroup (p < 0.05). 14 

The scores of MMSE, MoCA and ECAS total were found no significant differences in subgroups 15 

comparisons (p > 0.05, FDR correction). The ECAS subscores of three subgroups were displayed in 16 

Table 2. None of them showed significant difference in subgroups comparisons (p > 0.05, FDR 17 

correction). Furthermore, percent of patients with ALS-cn and with ALS-plus showed no significant 18 

difference in the comparison of LISN and EISN subgroups (p > 0.05). 19 

  20 
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Table 1. Demographic and clinical characteristics of participants 1 

Characteristic 

Mean (SD) 

LISN EISN HC p value 

No. 36 14 23 - 

Age at symptom onset, y 49.75 (8.22) 49.57 (10.08) - 0.86 

Age at PET/MR scan, y 51.00 (10.31) 51.03 (8.45) 48.87 (10.81) 0.90 

Male, No. (%) 20 (55.56) 8 (57.14) 10 (43.48) 

0.60 

Female, No. (%) 16 (44.44) 6 (42.86) 13 (56.52) 

Gene-positive, No. (%) 5 (13.89) 2 (14.29) - 

0.81 Gene-negative, No. (%) 23 (63.89) 10 (71.43) - 

Gene-not sequenced, No. (%) 8 (22.22) 2 (14.29) - 

Bulbar-onset, No. (%) 6 (16.67) 2 (14.29) - 

0.83 

Limb-onset, No. (%) 30 (83.33) 12 (85.71) - 

Duration a, m 16.53 (14.91) 16.92 (10.36) - 0.14 

Definite ALS, No. (%) 25(69.44) 11(78.57) - 

0.80 Probable ALS, No. (%) 8(22.22) 2(14.29) - 

Possible ALS, No. (%) 3(8.33) 1(7.14) - 

ALSFRS-R score 39.31 (7.41) 33.93 (7.98) - 0.03 

DeltaFS 0.90 (1.64) 1.15 (0.82) - 0.04 

Fast progressors, No. (%) 12 (33.33) 6 (42.86) - 

0.00 Intermediate progressors, No. (%) 4 (11.11) 7 (50.00) - 

Slow progressors, No. (%) 20 (55.56) 1 (7.14) - 

Education, y 9.29 (5.01) 10.14 (3.39) 11.57 (4.78) 0.20 

MMSE b 27.11 (13.99) 20.33 (11.36) 29.50 (8.50) 0.03 (0.0502) e 

MoCA c 23.60 (12.32) 19.4 (10.79) 28 (8.07) 0.02 (0.0502) e 

ECAS total d 57 (9.50) 103 (27.53) 98.50 (28.41) 0.12 (0.1218) e 

ALS-cn, No. (%) 22 (61.11) 6 (42.86) - 

0.24 

ALS-plus, No. (%) 14 (38.89) 8 (57.14) - 

ALS, amyotrophic lateral sclerosis; ALS-cn, amyotrophic lateral sclerosis with normal cognition; ALS-plus, 2 
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amyotrophic lateral sclerosis with cognitive impairment, behavior impairment, cognitive and behavior impairment, 1 

and frontotemporal dementia; ALSFRS-R, ALS Functional Rating Scale-Revised; DeltaFS, progression rate from 2 

disease-onset to baseline; ECAS, Edinburgh Cognitive and Behavioral ALS Screen; EISN, extensively impaired 3 

structural network; HC, healthy control; LISN, locally impaired structural network; MMSE, Mini-Mental State 4 

Examination; MoCA, Montreal Cognitive Assessment; PET/MR, positron emission tomography/magnetic 5 

resonance. 6 

a time interval between the symptom onset and the PET/MR scan. b Two patients with LISN subtype and 1 patient 7 

with EISN subtype could not or refused to complete this test. c Four patients with LISN subtype and 4 patients with 8 

EISN subtype could not or refused to complete this test. d Five patients with LISN subtype and 6 patients with 9 

EISN subtype could not or refused to complete this test. e p value of Kruskal–Wallis ANOVA, the FDR 10 

correction p value in the bracket. 11 

Table 2. Group comparisons of ECAS subscores of participants 12 

 Mean (SD) 

LISN (n = 36) EISN (n = 14) HC (n = 23) p value a 

ALS specific (0-100) 72.61 (14.66) 69.13 (16.56) 78.05 (9.58) 0.63 (0.80) 

Language (0-28) 21.1 (3.58) 21.13 (3.44) 22.64 (2.65) 0.29 (0.67) 

Fluency (0-24) 17.87 (4.41) 16 (6.76) 18.27 (4.07) 0.99 (0.99) 

Executive function (0-48) 33.68 (9.62) 32 (11.24) 37.14 (6.98) 0.66 (0.80) 

ALS nonspecific (0-36) 23.94 (5.31) 24.63 (6.32) 27.23 (4.67) 0.08 (0.29) 

Visuospatial (0-12) 11.74 (0.96) 11.13 (1.64) 11.82 (0.50) 0.69 (0.80) 

Memory (0-24) 12.13 (5.45) 13.5 (6.21) 15.41 (4.55) 0.04 (0.27) 

ALS, amyotrophic lateral sclerosis; EISN, extensively impaired structural network; HC, healthy control; LISN, 13 
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locally impaired structural network. 1 

a p value of Kruskal–Wallis ANOVA, the FDR correction p value in the bracket. 2 

3.2 Alterations of structural network 3 

Globally, the small-worldness (Lp, Cp, γ, λ and σ) showed no significant difference in all group 4 

comparisons (p > 0.05). For the network global and local efficiency, there were significant differences 5 

(p < 0.05, FDR correction) (Table 3) in the comparisons of LISN, EISN and HC groups. Compared 6 

with HC, the network global and local efficiency in the LISN subgroup showed no significant changes 7 

(p > 0.05), and that in the EISN subgroup were significantly lower (p < 0.05) (Table 3) but presented 8 

no correlations with ALSFRS-R scores and DeltaFS (p > 0.05). In the comparisons of ALS and HC 9 

groups, the network global and local efficiency were both not significantly different (p > 0.05, FDR 10 

correction) (Table 3). 11 

Table 3. Group comparisons of global measures of structural network with BNA 12 

 

LISN, EISN, 

vs. HC 

LISN vs. HC 

p      t 

EISN vs. HC 

p      t 

EISN vs. LISN 

p      t 

ALS vs. HC 

p            t 

NGE 0.00 (0.02) a 0.08   2.14 0.00 b  3.34 0.78   1.78 0.02 (0.15) c  -2.34 

NLE 0.01 (0.047) a 0.18   1.76 0.01 b  2.91 0.23   1.64 0.046 (0.16) c -2.03 

ALS, amyotrophic lateral sclerosis; BNA, Brainnetome Atlas; EISN, extensively impaired structural network; HC, 13 

healthy control; LISN, locally impaired structural network; NGE, network global efficiency; NLE, network local efficiency. 14 

a p value of Kruskal–Wallis ANOVA, the FDR correction p value in the bracket. b Values of measures in the latter 15 

group are higher than that in the former group. c p value of Wilcoxon rank-sum test, the FDR correction p value in 16 

the bracket. 17 

Locally, compared with HC, labels with decreases in dNE exhibited a distribution pattern centralized in 18 

the sensorimotor network in the LISN subgroup but a widespread involvement of the frontal, parietal 19 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23297955doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23297955
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

and temporal lobes as well as subcortical regions in the EISN subgroup (p < 0.05, FDR correction) 1 

(Fig. 2a; Table S2). Labels with increases in dNE were absent in all group comparisons. 2 

 3 

Figure 2. Distribution patterns of labels with decreases in dNE and changes in SUVR with the BNA 4 

A, Distribution pattern of labels with decreases in dNE. Color represent P values of the labels. B, Distribution 5 

pattern of labels with decreases and increases in SUVR. Color represent P values of the labels. C, Labels with 6 

related decreases in dNE and SUVR in the EISN subgroup. The volumes of the red balls represent the Spearman r 7 

values of the labels. ALS indicates amyotrophic lateral sclerosis; dNE, nodal efficiency of the DTI-based brain 8 

network; EISN, extensively impaired structural network; HC, healthy control; LISN, locally impaired structural 9 

network; SUVR, standardized uptake value ratio. 10 

a p < 0.05, FDR correction. b Labels with related decreases in dNE and SUVR in the EISN subgroup 11 

NBS identified different structural subnetworks with significant decreases in connections when 12 

comparing the LISN subgroup and EISN subgroup with HC (p < 0.05, Bonferroni correction) (Fig. 3). 13 

The impaired structural subnetwork in the LISN vs. HC comparison mainly contained links 14 

interconnecting the bilateral precentral gyri and postcentral gyri with the subcortical regions (Fig. 3a), 15 
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while that in the EISN vs. HC comparison displayed a complicated composition with links 1 

interconnecting the widespread cerebral regions (Fig. 3b). Furthermore, in the EISN vs. LISN 2 

comparison, 3 impaired structural subnetworks were observed (Fig. 3c), which included connections 3 

within the bilateral frontal regions in component 1, connections in the right hemisphere in component 4 

2, and connections in the left hemisphere in component 3. 5 

 6 

Figure 3. The impaired structural subnetworks in group comparisons based on the BNA 7 

The impaired structural subnetworks in LISN vs. HC (A), EISN vs. HC (B), EISN vs. LISN (C), and ALS vs. HC 8 

(D) comparisons (p < 0.05, Bonferroni correction) by network-based statistics (NBS). Color represent p values of 9 

the edges constituting the impaired subnetworks. ALS indicates amyotrophic lateral sclerosis; EISN, extensively 10 

impaired structural network; HC, healthy control; LISN, locally impaired structural network 11 

3.3 GMV and SUVR changes 12 

GMV of cerebral regions all showed no significant changes in the LISN vs. HC, EISN vs. HC, EISN 13 

vs. LISN and ALS vs. HC comparisons (p > 0.05, FDR correction). Compared with HC, 18F-FDG 14 

hypometabolism was only distributed in the left lateral occipital cortex in the LISN subgroup but was 15 
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widely distributed in the bilateral orbital gyri and superior frontal gyri, left inferior frontal gyrus, and 1 

right middle frontal gyrus in the EISN subgroup. In addition, patients with the LISN subtype showed 2 

18F-FDG hypermetabolism only in the left superior parietal lobule, while patients with the EISN 3 

subtype displayed 18F-FDG hypermetabolism in the bilateral lateral occipital cortices and precuneus 4 

and left fusiform gyrus, paracentral lobule, superior parietal lobule and thalamus when compared with 5 

HCs (p < 0.05, FDR correction) (Fig. 2b; Table S3). Notably, although 18 patients with ALS-cn showed 6 

normal 18F-FDG metabolism in the general observation, 5 of them were clustered into the EISN 7 

subgroup. Among the 10 ALS-cn patients with 18F-FDG hypometabolism in the general observation, 9 8 

patients were clustered into the LISN subgroup (Table S4). 9 

3.4 Decreases in dNE and SUVR 10 

In the EISN subgroup, labels with positively related decreases in dNE and SUVR (p < 0.05, FDR 11 

correction) were demonstrated in the right superior frontal gyrus, middle frontal gyrus, inferior frontal 12 

gyrus, middle temporal gyrus, and inferior parietal lobule (Fig. 2c; Table S5). 13 

As Table S6 shows, the percentage of labels with decreases in dNE and SUVR in the cognition-related 14 

networks (Yeo et al., 2011) was zero or low in the LISN vs. HC comparison and was high in many of 15 

the cognition-related networks in the EISN vs. HC comparison. In particular, the percentage of labels 16 

with decreases in dNE was over half in the somatomotor network, dorsal attention network, ventral 17 

attention network, frontoparietal network and default network, while the percentage of labels with 18 

decreases in SUVR was more than half in the limbic network, frontoparietal network and default 19 

network when comparing the EISN subgroup to HC. 20 

3.5 INS in patients with ALS 21 

As Fig. 4 shows, the INS in every ALS patient was obtained by an SVM classifier based on the 22 
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decreases in dNE in the EISN vs. LISN comparison. In all ALS patients, a positive correlation was 1 

found between the INS and ALSFRS-R scores (r = 0.37, p < 0.05, Bonferroni correction), and a 2 

negative correlation was observed between the INS and DeltaFS (r = -0.44, p < 0.05, Bonferroni 3 

correction). 4 

 5 

Figure 4. INS for ALS patients using SVM 6 

One support vector machine (SVM) classifier by dNE was trained to identify EISN and LISN using the leave-one-7 

out cross validation framework. Individualized network scores (INS) were defined as the distance to the decision 8 

hyperplane in the feature space. A positive correlation between INS and ALSFRS-R scores and a negative 9 

correlation between INS and disease progression rate were revealed. ALS indicates amyotrophic lateral sclerosis; 10 

ALSFRS-R, ALS Functional Rating Scale-Revised; DeltaFS, progression rate from disease-onset to baseline; 11 

EISN, extensively impaired structural network; LISN, locally impaired structural network; LOOCV, leave-one-out 12 

cross validation 13 
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3.6 Validation with the AAL 1 

The distinct patterns of structural network impairments in clustered subtypes based on the BNA were 2 

similarly validated with the AAL. With the AAL, the small-worldness (Lp, Cp, γ, λ and σ) showed no 3 

significant difference in all group comparisons (p > 0.05). Compared with HC, the network global and 4 

local efficiency in the LISN subgroup showed no significant changes (p > 0.05), and that in the EISN 5 

subgroup was significantly lower (p < 0.05) (Table S7) but presented no correlations with ALSFRS-R 6 

scores and DeltaFS (p > 0.05). Compared with HC, labels with decreases in dNE exhibited the similar 7 

distribution patterns in the LISN and EISN subgroups (p < 0.05, FDR correction) (Fig. S1a). Labels 8 

with increases in dNE were absent in all group comparisons. NBS displayed an impaired structural 9 

subnetwork involving connections in the sensorimotor network in the LISN vs. HC comparison (Fig. 10 

S2a), and an impaired structural subnetwork with links interconnecting the widespread cerebral regions 11 

(Fig. S2b). 12 

Similarly, GMV of cerebral regions showed no significant reductions in all group comparisons (p > 13 

0.05, FDR correction). Compared with HC, 18F-FDG hypometabolism and hypermetabolism were all 14 

absent in the LISN subgroup but exhibited a similar distribution pattern in the EISN subgroup (p < 15 

0.05, FDR correction) (Fig. S1b). Labels with positively related decreases in dNE and SUVR (p < 0.05, 16 

FDR correction) were mainly observed in the bilateral superior frontal gyrus, right middle frontal gyrus 17 

and inferior frontal gyrus in the EISN subgroup (Fig. S1c; Table S8). The percentages of labels with 18 

decreases in dNE and SUVR in the cognition-related networks are shown in Table S6 and are similar to 19 

those based on the BNA. 20 

  21 
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4. Discussion 1 

By cluster analysis based on GMV and SUVR, we identified two ALS subtypes as the optimal cluster, 2 

the LISN subtype and EISN subtype. Because the two ALS subtypes are identified by a data-driven 3 

method, we speculate that ALS possesses an intrinsic pattern of WM damages. 4 

Compared to HC, the network global and local efficiency were found to be lower in the EISN subgroup 5 

but not in the LISN subgroup. The EISN subgroup exhibited global network alterations, which is in 6 

line with the reports of decreases in global efficiency (Fortanier et al., 2019; Zhang et al., 2019) and 7 

local efficiency (Basaia et al., 2020) in ALS patients compared to controls. However, previous studies 8 

also found no significant differences in network efficiency between the ALS and HC groups (Buchanan 9 

et al., 2015; Dimond et al., 2017). The discrepancy may be due to the different patient inclusion criteria 10 

and in support of the divergence of structural network impairments found in our study. In addition, the 11 

network global and local efficiency represent the integration and segregation ability of information 12 

transfer. Thus, the clustered EISN subtype is supposed to encompass global dysconnectivity in WM 13 

networks. 14 

At the regional scale, decreases in dNE were centralized in the sensorimotor network in the ALS vs. 15 

HC and LISN vs. HC comparisons, while exhibited a widespread distribution in the EISN vs. HC 16 

comparison. The network efficiency of one node quantifies the efficiency of parallel information 17 

transfer by that node in the network. Thus, our findings showed that the declined ability of information 18 

transfer in the LISN subtype was limited within the sensorimotor network but was widespread in 19 

almost the whole brain in the EISN subtype. Previously, degeneration of the sensorimotor network has 20 

been reported in ALS patients by widespread precentral and postcentral FA reductions (Rose et al., 21 

2012). Thus, the decreased nodal efficiency in the sensorimotor network may result from the disruption 22 
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of WM integrity. In addition, decreases in dNE in the bilateral frontal and temporal cortexes, right 1 

gyrus rectus, paracentral lobule and caudate were also reported in ALS patients compared to HCs (Li et 2 

al., 2021). Our results also demonstrated decreases in dNE in regions beyond the sensorimotor network 3 

in ALS patients. Furthermore, in the EISN vs. HC comparison, a few subregions of the right frontal, 4 

parietal and temporal cortices displayed positively correlated decreases in dNE and 18F-FDG 5 

hypometabolism. The decline in dNE represents the reduced efficiency of information transfer and is 6 

supposed to produce the correlated 18F-FDG hypometabolism in the impaired brain regions. 7 

Our findings by NBS support the view that WM changes make up subnetwork of impaired connectivity 8 

and further uncover the diversely impaired structural subnetwork in the clustered ALS subtypes. The 9 

composition of the impaired structural subnetwork in the LISN subgroup was highly consistent with 10 

the previously reported impaired motor subnetwork centered on the precentral and paracentral nodes 11 

(Basaia et al., 2020; Fortanier et al., 2019) when compared with HC. However, alterations involving the 12 

connections within and among the sensorimotor network, basal ganglia, frontal, temporal, and parietal 13 

areas were found in ALS-cn, ALS-ci/bi and ALS-FTD patients but with a more widespread disruption 14 

in ALS-FTD patients when compared to controls (Cividini et al., 2021). The largest connected 15 

component in ALS-cn patients was centralized around the motor system, while that in ALS-ci patients 16 

included frontal and temporal connections and that in ALS-bi patients included motor, temporal, 17 

frontal, and parietal connections (van der Burgh et al., 2020). Thus, the impaired structural subnetwork 18 

with extensive connections in the whole brain in the EISN subgroup implied the damages of cognition. 19 

For ALS patients, neuropsychological tests are the preliminary selection for the evaluation of cognitive 20 

and behavioral levels by clinicians. Those patients with abnormal neuropsychological assessments 21 

should accept a further 18F-FDG PET scan, which provides more clues for the evaluation of cognitive 22 
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and behavioral impairment. Normal neuropsychological evaluation and 18F-FDG metabolism generally 1 

imply no cognitive and behavioral impairment in ALS patients. However, in our cohort, 5 ALS-cn 2 

patients with normal 18F-FDG metabolism in the general observation were clustered into the EISN 3 

subgroup, while 9 ALS-cn patients with 18F-FDG hypometabolism in the general observation were 4 

clustered into the LISN subgroup. As we know, the neuropsychological evaluation inevitably contains 5 

subjectivity from ALS patients and their relatives or caregivers and could be affected or limited by the 6 

dysarthria and dysfunction of upper limbs in ALS patients. The results of 18F-FDG metabolism in the 7 

general observation may encompass some errors. Thus, compared with the categorization based on the 8 

clinical features, our cluster analysis reflects clues for cognitive assessment in ALS patients from a 9 

data-driven perspective. Due to the remarkable percentage of labels with decreases in dNE  and 18F-10 

FDG hypometabolism in cognition-related networks (Yeo et al., 2011) in the EISN subgroup, the 11 

clustered EISN patients with ALS-cn and normal 18F-FDG metabolism are expected to have risks of 12 

developing cognitive and behavioral impairment. Correspondingly, the clustered LISN patients with 13 

ALS-cn and 18F-FDG hypometabolism in the general observation are supposed to have unimpaired 14 

cognition, according to the low percentage of labels with 18F-FDG hypometabolism and the decreases 15 

in dNE in the cognition-related networks in the LISN subgroup. 16 

Based on the decreases in dNE in the EISN vs. LISN comparison, we constructed a classifier to obtain 17 

an INS for every ALS patient. The positive relation between INS and ALSFRS-R scores and the 18 

negative relation between INS and disease progression rate in all ALS patients, indicated that more 19 

decreases in dNE indicated more severe disease. Thus, the decreases in dNE may be a potential 20 

biomarker for the phenotypes of ALS. Furthermore, ALS has no effective treatment or cure thus far, 21 

which may result from the high heterogeneity of clinical features. Based on the clustered subtypes by a 22 
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data-driven method and the decreases in dNE related to disease severity, our findings could contribute 1 

to a latent direction for stratified research about medicine or remedy in the future. 2 

This study has limitations. First, the sample size was relatively small, but the results are encouraging 3 

and deserve further investigation in a larger cohort as well as validation in another independent cohort. 4 

Second, the structural networks were constructed by an atlas-based pipeline, not by a high-resolution 5 

vertex-level pipeline that may encompass the potential advantages. However, we have made a 6 

validation with the AAL. Finally, as a cross-sectional observation, the follow-up of clinical features and 7 

PET/MR examination were expected to uncover the progression of clustered subtypes. 8 
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5. Conclusions 1 

We demonstrate for the first time that the subtypes of ALS patients can be clustered by a data-driven 2 

analysis using PET/MR hybrid data. The two subtypes identified as the optimal cluster encompass 3 

different patterns of structural network impairments. The demonstration that decreases in dNE are 4 

correlated with disease severity implies a new possibility in the selection of biomarkers for the 5 

phenotypes of ALS. Our findings can provide objective information for ALS, thus facilitating clinical 6 

evaluation and providing the latent direction for stratified therapies. 7 

  8 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23297955doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23297955
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

 

Ethics approval and consent to participate 1 

The study was approved by the Medical Ethics Committee of the Chinese PLA General Hospital, 2 

Beijing, China (S2020-027-01). All participates provided a written informed consent. 3 

Data Availability 4 

The datasets used during the current study are available from the corresponding authors on reasonable 5 

request. 6 

Declaration of Competing Interest 7 

None. 8 

Funding 9 

This work was supported by the National Natural Science Foundation of China (No. 81671761 and 10 

81871425); Fundamental Research Funds for the Central Universities (No. 2017XTCX04); Open 11 

Research Fund of the State Key Laboratory of Cognitive Neuroscience and Learning (No. 12 

CNLYB2001). 13 

Author contributions 14 

Feng Feng: Investigation, Resources, Formal analysis, Writing - Original Draft. Guozheng Feng: 15 

Resources, Formal analysis, Software, Writing - Original Draft. Jiajin Liu: Investigation, Resources, 16 

Writing - Original Draft. Weijun Hao: Investigation. Weijie Huang: Investigation. Xiao Bi: 17 

Investigation. Mao Li: Investigation. Hongfen Wang: Investigation. Fei Yang: Investigation. 18 

Zhengqing He: Investigation. Jiongming Bai: Investigation. Haoran Wang: Investigation. Guolin 19 

Ma: Investigation. Baixuan Xu: Conceptualization, Methodology, Writing - Review & Editing, 20 

Supervision. Ni Shu: Conceptualization, Methodology, Writing - Review & Editing, Funding 21 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23297955doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23297955
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

acquisition, Supervision. Xusheng Huang: Conceptualization, Methodology, Writing - Review & 1 

Editing, Supervision.  2 

Acknowledgements 3 

We thank all participants and their relatives for their contributions to this research. 4 

References 5 

Alshikho, M. J., N. R. Zürcher, M. L. Loggia, P. Cernasov, D. B. Chonde, D. Izquierdo Garcia, J. E. 6 

Yasek, O. Akeju, C. Catana, B. R. Rosen, et al., 2016. Glial activation colocalizes with structural 7 

abnormalities in amyotrophic lateral sclerosis. Neurology 87, 2554-2561. 8 

Basaia, S., F. Agosta, C. Cividini, F. Trojsi, N. Riva, E. G. Spinelli, C. Moglia, C. Femiano, V. Castelnovo, 9 

E. Canu, et al., 2020. Structural and functional brain connectome in motor neuron diseases: A multicenter 10 

MRI study. Neurology 95, e2552-e2564. 11 

Brooks, B. R., R. G. Miller, M. Swash, and T. L. Munsat, 2000. El Escorial revisited: revised criteria for 12 

the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1, 13 

293-299. 14 

Buchanan, C. R., L. D. Pettit, A. J. Storkey, S. Abrahams, and M. E. Bastin, 2015. Reduced structural 15 

connectivity within a prefrontal-motor-subcortical network in amyotrophic lateral sclerosis. J Magn 16 

Reson Imaging 41, 1342-1352. 17 

Buhour, M. S., F. Doidy, A. Mondou, A. Pélerin, L. Carluer, F. Eustache, F. Viader, and B. Desgranges, 18 

2017. Voxel-based mapping of grey matter volume and glucose metabolism profiles in amyotrophic 19 

lateral sclerosis. EJNMMI Res 7, 21. 20 

Cedarbaum, J. M., N. Stambler, E. Malta, C. Fuller, D. Hilt, B. Thurmond, and A. Nakanishi, 1999. The 21 

ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. 22 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23297955doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23297955
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 

BDNF ALS Study Group (Phase III). J Neurol Sci 169, 13-21. 1 

Cividini, C., S. Basaia, E. G. Spinelli, E. Canu, V. Castelnovo, N. Riva, G. Cecchetti, F. Caso, G. Magnani, 2 

A. Falini, et al., 2021. Amyotrophic Lateral Sclerosis-Frontotemporal Dementia: Shared and Divergent 3 

Neural Correlates Across the Clinical Spectrum. Neurology 98, e402-415. 4 

Dimond, D., A. Ishaque, S. Chenji, D. Mah, Z. Chen, P. Seres, C. Beaulieu, and S. Kalra, 2017. White 5 

matter structural network abnormalities underlie executive dysfunction in amyotrophic lateral sclerosis. 6 

Hum Brain Mapp 38, 1249-1268. 7 

Fan, L., H. Li, J. Zhuo, Y. Zhang, J. Wang, L. Chen, Z. Yang, C. Chu, S. Xie, A. R. Laird, et al., 2016. 8 

The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture. Cereb Cortex 9 

26, 3508-3526. 10 

Fortanier, E., A. M. Grapperon, A. Le Troter, A. Verschueren, B. Ridley, M. Guye, S. Attarian, J. P. 11 

Ranjeva, and W. Zaaraoui, 2019. Structural Connectivity Alterations in Amyotrophic Lateral Sclerosis: 12 

A Graph Theory Based Imaging Study. Front Neurosci 13, 1044. 13 

Gaujoux, R., and C. Seoighe, 2010. A flexible R package for nonnegative matrix factorization. BMC 14 

Bioinformatics 11, 367. 15 

Jenkinson, M., and S. Smith, 2001. A global optimisation method for robust affine registration of brain 16 

images. Med Image Anal 5, 143-156. 17 

Kimura, F., C. Fujimura, S. Ishida, H. Nakajima, D. Furutama, H. Uehara, K. Shinoda, M. Sugino, and 18 

T. Hanafusa, 2006. Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS. 19 

Neurology 66, 265-267. 20 

Kwan, J. Y., A. Meoded, L. E. Danielian, T. Wu, and M. K. Floeter, 2012. Structural imaging differences 21 

and longitudinal changes in primary lateral sclerosis and amyotrophic lateral sclerosis. Neuroimage Clin 22 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23297955doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23297955
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

2, 151-160. 1 

Li, A., A. Zalesky, W. Yue, O. Howes, H. Yan, Y. Liu, L. Fan, K. J. Whitaker, K. Xu, G. Rao, et al., 2020. 2 

A neuroimaging biomarker for striatal dysfunction in schizophrenia. Nat Med 26, 558-565. 3 

Li, W., Q. Wei, Y. Hou, D. Lei, Y. Ai, K. Qin, J. Yang, G. J. Kemp, H. Shang, and Q. Gong, 2021. 4 

Disruption of the white matter structural network and its correlation with baseline progression rate in 5 

patients with sporadic amyotrophic lateral sclerosis. Transl Neurodegener 10, 35. 6 

Lu, C. H., A. Petzold, J. Topping, K. Allen, C. Macdonald-Wallis, J. Clarke, N. Pearce, J. Kuhle, G. 7 

Giovannoni, P. Fratta, et al., 2015. Plasma neurofilament heavy chain levels and disease progression in 8 

amyotrophic lateral sclerosis: insights from a longitudinal study. J Neurol Neurosurg Psychiatry 86, 565-9 

573. 10 

Matías-Guiu, J. A., V. Pytel, M. N. Cabrera-Martín, L. Galán, M. Valles-Salgado, A. Guerrero, T. 11 

Moreno-Ramos, J. Matías-Guiu, and J. L. Carreras, 2016. Amyloid- and FDG-PET imaging in 12 

amyotrophic lateral sclerosis. Eur J Nucl Med Mol Imaging 43, 2050-2060. 13 

Noh, Y., S. Jeon, J. M. Lee, S. W. Seo, G. H. Kim, H. Cho, B. S. Ye, C. W. Yoon, H. J. Kim, J. Chin, et 14 

al., 2014. Anatomical heterogeneity of Alzheimer disease: based on cortical thickness on MRIs. 15 

Neurology 83, 1936-1944. 16 

Pagani, M., A. Chiò, M. C. Valentini, J. Öberg, F. Nobili, A. Calvo, C. Moglia, D. Bertuzzo, S. Morbelli, 17 

F. De Carli, et al., 2014. Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis. Neurology 18 

83, 1067-1074. 19 

Ratai, E. M., M. J. Alshikho, N. R. Zürcher, M. L. Loggia, C. L. Cebulla, P. Cernasov, B. Reynolds, J. 20 

Fish, R. Seth, S. Babu, et al., 2018. Integrated imaging of [(11)C]-PBR28 PET, MR diffusion and 21 

magnetic resonance spectroscopy (1)H-MRS in amyotrophic lateral sclerosis. Neuroimage Clin 20, 357-22 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23297955doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23297955
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

 

364. 1 

Rose, S., K. Pannek, C. Bell, F. Baumann, N. Hutchinson, A. Coulthard, P. McCombe, and R. Henderson, 2 

2012. Direct evidence of intra- and interhemispheric corticomotor network degeneration in amyotrophic 3 

lateral sclerosis: an automated MRI structural connectivity study. Neuroimage 59, 2661-2669. 4 

Sala, A., L. Iaccarino, P. Fania, E. G. Vanoli, F. Fallanca, C. Pagnini, C. Cerami, A. Calvo, A. Canosa, M. 5 

Pagani, et al., 2019. Testing the diagnostic accuracy of [18F]FDG-PET in discriminating spinal- and 6 

bulbar-onset amyotrophic lateral sclerosis. Eur J Nucl Med Mol Imaging 46, 1117-1131. 7 

Strong, M. J., S. Abrahams, L. H. Goldstein, S. Woolley, P. McLaughlin, J. Snowden, E. Mioshi, A. 8 

Roberts-South, M. Benatar, T. HortobáGyi, et al., 2017. Amyotrophic lateral sclerosis - frontotemporal 9 

spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal 10 

Degener 18, 153-174. 11 

Ten Kate, M., E. Dicks, P. J. Visser, W. M. van der Flier, C. E. Teunissen, F. Barkhof, P. Scheltens, and 12 

B. M. Tijms, 2018. Atrophy subtypes in prodromal Alzheimer's disease are associated with cognitive 13 

decline. Brain 141, 3443-3456. 14 

Tzourio-Mazoyer, N., B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer, 15 

and M. Joliot, 2002. Automated anatomical labeling of activations in SPM using a macroscopic 16 

anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273-289. 17 

van der Burgh, H. K., H. J. Westeneng, R. Walhout, K. van Veenhuijzen, H. H. G. Tan, J. M. Meier, L. 18 

A. Bakker, J. Hendrikse, M. A. van Es, J. H. Veldink, et al., 2020. Multimodal longitudinal study of 19 

structural brain involvement in amyotrophic lateral sclerosis. Neurology 94, e2592-e2604. 20 

van Es, M. A., O. Hardiman, A. Chio, A. Al-Chalabi, R. J. Pasterkamp, J. H. Veldink, and L. H. van den 21 

Berg, 2017. Amyotrophic lateral sclerosis. Lancet 390, 2084-2098. 22 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23297955doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23297955
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

 

Van Weehaeghe, D., E. Van Schoor, J. De Vocht, M. Koole, B. Attili, S. Celen, L. Declercq, D. R. Thal, 1 

P. Van Damme, G. Bormans, et al., 2020. TSPO Versus P2X7 as a Target for Neuroinflammation: An In 2 

Vitro and In Vivo Study. J Nucl Med 61, 604-607. 3 

Verstraete, E., J. H. Veldink, R. C. Mandl, L. H. van den Berg, and M. P. van den Heuvel, 2011. Impaired 4 

structural motor connectome in amyotrophic lateral sclerosis. PLoS One 6, e24239. 5 

Wang, J., X. Wang, M. Xia, X. Liao, A. Evans, and Y. He, 2015. GRETNA: a graph theoretical network 6 

analysis toolbox for imaging connectomics. Front Hum Neurosci 9, 386. 7 

Whitwell, J. L., S. A. Przybelski, S. D. Weigand, R. J. Ivnik, P. Vemuri, J. L. Gunter, M. L. Senjem, M. 8 

M. Shiung, B. F. Boeve, D. S. Knopman, et al., 2009. Distinct anatomical subtypes of the behavioural 9 

variant of frontotemporal dementia: a cluster analysis study. Brain 132, 2932-2946. 10 

Ye, S., Y. Ji, C. Li, J. He, X. Liu, and D. Fan, 2016. The Edinburgh Cognitive and Behavioural ALS 11 

Screen in a Chinese Amyotrophic Lateral Sclerosis Population. PLoS One 11, e0155496. 12 

Yeo, B. T., F. M. Krienen, J. Sepulcre, M. R. Sabuncu, D. Lashkari, M. Hollinshead, J. L. Roffman, J. W. 13 

Smoller, L. Zöllei, J. R. Polimeni, et al., 2011. The organization of the human cerebral cortex estimated 14 

by intrinsic functional connectivity. J Neurophysiol 106, 1125-1165. 15 

Zalesky, A., A. Fornito, and E. T. Bullmore, 2010. Network-based statistic: identifying differences in 16 

brain networks. Neuroimage 53, 1197-1207. 17 

Zanovello, M., G. Sorarù, C. Campi, M. Anglani, A. Spimpolo, S. Berti, C. Bussè, S. Mozzetta, A. Cagnin, 18 

and D. Cecchin, 2022. Brain Stem Glucose Hypermetabolism in Amyotrophic Lateral 19 

Sclerosis/Frontotemporal Dementia and Shortened Survival: An (18)F-FDG PET/MRI Study. J Nucl 20 

Med 63, 777-784. 21 

Zhang, J. H., H. F. Wang, F. Yang, Z. Q. He, F. Feng, M. Li, J. M. Bai, H. R. Wang, and X. S. Huang, 22 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23297955doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23297955
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

 

2022. [Analysis of disease progression rate and related factors in amyotrophic lateral sclerosis patients 1 

at initial visit]. Zhonghua Yi Xue Za Zhi 102, 222-227. 2 

Zhang, Y., T. Qiu, X. Yuan, J. Zhang, Y. Wang, N. Zhang, C. Zhou, C. Luo, and J. Zhang, 2019. Abnormal 3 

topological organization of structural covariance networks in amyotrophic lateral sclerosis. Neuroimage 4 

Clin 21, 101619. 5 

 6 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23297955doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23297955
http://creativecommons.org/licenses/by-nc-nd/4.0/

