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ABSTRACT

This paper presents a comprehensive evaluation of GPT-4V’s capabilities across diverse
medical imaging tasks, including Radiology Report Generation, Medical Visual Question
Answering (VQA), and Visual Grounding. While prior efforts have explored GPT-4V’s
performance in medical imaging, to the best of our knowledge, our study represents the
first quantitative evaluation on publicly available benchmarks. Our findings highlight GPT-
4V’s potential in generating descriptive reports for chest X-ray images, particularly when
guided by well-structured prompts. However, its performance on the MIMIC-CXR dataset
benchmark reveals areas for improvement in certain evaluation metrics, such as CIDEr. In
the domain of Medical VQA, GPT-4V demonstrates proficiency in distinguishing between
question types but falls short of prevailing benchmarks in terms of accuracy. Furthermore,
our analysis finds the limitations of conventional evaluation metrics like the BLEU score,
advocating for the development of more semantically robust assessment methods. In the
field of Visual Grounding, GPT-4V exhibits preliminary promise in recognizing bound-
ing boxes, but its precision is lacking, especially in identifying specific medical organs
and signs. Our evaluation underscores the significant potential of GPT-4V in the medical
imaging domain, while also emphasizing the need for targeted refinements to fully unlock
its capabilities.

1 INTRODUCTION

Large Language Models (LLMs) have consistently demonstrated remarkable prowess across various do-
mains and tasks (Touvron et al., 2023; OpenAI, 2023; Anil et al., 2023). The ongoing pursuit of enhancing
LLMs’ capacity for visual comprehension has spurred the emergence of a new research area: Large Mul-
timodal Models (LMMs) (Ye et al., 2023; Li et al., 2023b; Awadalla et al., 2023). The basic approach has
been to either fine-tune the visual encoder to align with a fixed pre-trained LLM or to use a vision-language
model to convert visual input into textual descriptions that can be understood by the LLM. These applica-
tions are all based solely on the use of the LLM and do not really explore the visual capabilities of the LLM.
GPT-4V, a cutting-edge Large Multimodal Model (LMM) incorporating visual understanding capabilities, is
constructed as an evolution of state-of-the-art Large Language Models (LLMs). This model is trained on an
extensive corpus of multimodal data. Yang et al. conducted a comprehensive case study to assess GPT-4V’s
performance in general-purpose scenarios, revealing its robust visual comprehension ability (Yang et al.,
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2023b). Moreover, LMMs have been widely used in the medical field (Wang et al., 2023b; Singhal et al.,
2023). The introduction of visual capabilities into GPT-4V opens up opportunities for an in-depth examina-
tion of its potential in the domain of medical multimodality. So this paper will evaluate the main image, and
multi-modal tasks in the medical imaging field based on GPT-4V.

The main contribution of this paper is to explore the capabilities of GPT-4V on medical image analysis. We
selected the 3 main medical multimodal tasks, Radiology Report Generation, Medical Visual Question
Answering, and Medical Visual Grounding, to assess GPT-4V’s performance in the context of medical
images. Our evaluation encompassed standard benchmarks and comparative analysis against current state-
of-the-art models. Furthermore, we conducted in-depth case studies using representative examples for each
task, enhancing our comprehension of GPT-4V’s capabilities in medical image understanding.

2 RELATED WORK

2.1 RADIOLOGY REPORT GENERATION

Radiology report generation has emerged as a prominent research area within the domain of medical im-
age analysis in recent years. While similar to image captioning (Vinyals et al., 2015; Xu et al., 2015; Pan
et al., 2020), this task presents heightened complexity due to the extended length of medical reports and the
increased difficulty in identifying medical anomalies within images, due to data imbalance issues. Numer-
ous research has relied on encoder-decoder architectures to address this task. The research can be grouped
into two primary research directions. The first direction concentrates on enhancing the model’s architecture
to facilitate improved extraction of visual features and the generation of high-quality medical reports. For
example, Li et al. used a hierarchical architecture to generate reports with normality and abnormality respec-
tively (Li et al., 2018). Similarly, Liu et al. employed a hierarchical structure to initially generate topics and
subsequently produce related sentences (Liu et al., 2019). With the prevailing of the transformer (Vaswani
et al., 2017), Chen et al. introduced a transformer-based model, enhancing it with relational memory and
memory-driven conditional layer normalization to enhance image feature recognition and capture crucial
report patterns (Chen et al., 2020). Another research direction is to solve the data bias problem by incorpo-
rating external knowledge information. Zhang et al. constructed a predefined medical knowledge graph to
augment the model’s ability to capture valuable medical information (Zhang et al., 2020). To further enrich
this supplementary knowledge, Li et al. developed a dynamic approach that enables real-time updates to the
knowledge graph (Li et al., 2023c).

Furthermore, in recent times, there has been a surge in radiology report generation methods leveraging Large
Language Models (LLMs). These approaches leverage the capabilities of large language models to generate
long-text content and utilize abundant knowledge sources to enhance the quality of radiology reports. Wang
et al. employs Llama2 to elevate the quality of the generated reports. To achieve effective image-text
alignment, the image embeddings are mapped to the feature space of the Llama2 (Touvron et al., 2023) via
a visual mapper to ensure uniform dimensionality (Wang et al., 2023b).

2.2 VISUAL QUESTION ANSWERING

Visual Question Answering (VQA) (Jiang et al., 2020; Wu et al., 2019) has solidified its stature as a
paramount domain, striving to empower machines to decipher visual content and respond to pertinent natu-
ral language inquiries. Given a pair comprising an input image and a correlated question, the VQA model
is engineered to generate the corresponding answer. A plethora of previous scholarly works have delved
into VQA, revealing four critical components within these models: the image encoder, the text encoder,
a fusion method, and either a generator or a classifier, contingent upon the model’s architectural design.
The nature of the posed questions bifurcates into two categories based on the answer type: the close-end
type (Nguyen et al., 2019; Finn et al., 2017; Eslami et al., 2021) and the open-end (Ambati & Dudyala,
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2018; Khare et al., 2021) type. Predominantly, models address these two categories distinctly; they typically
employ a classification-based approach for close-end types, whereas for open-end types, a generation-based
method is utilized. Nevertheless, a select number of studies have attempted to integrate both question types
within a singular model (Ren & Zhou, 2020). A notable example is the Q2ATransformer (Liu et al., 2023),
which simultaneously tackles both varieties of questions, amalgamating the strengths of classification-based
and generation-based methodologies, and subsequently achieving exemplary accuracy across both question
types.

With the emergence of Large Language Models (LLMs), there has been a substantial influx of research
leveraging LLMs to augment the linguistic inferencing capabilities of VQA (Li et al., 2023a). Moreover,
certain studies have pioneered the use of LLMs for facilitating continuous questioning in VQA. The intro-
duction of models such as GPT-3.5 has led to the generation of more LLM-based datasets, mitigating the
issue of data scarcity (Pellegrini et al., 2023). The advent of GPT-4V marks a significant milestone, as it
incorporates image comprehension capabilities directly into the LLM framework. This eliminates the need
for VQA systems to translate all tasks into a language understandable by traditional LLMs. With the ability
to process multimodal inputs seamlessly, the evolution of LLMs has opened new horizons for research and
development in VQA. This paper endeavors to elucidate the application of GPT-4V in the realm of medical
image-based VQA, exploring its potential and implications in this specialized field.

2.3 VISUAL GROUNDING

Visual grounding (Kamath et al., 2021) stands as a pivotal field at the crossroads of computer vision and
natural language processing. Essentially, this task requires interpreting an image while taking into account
a relevant textual description of an object, which could range from a single sentence or caption to a more
elaborate description. The end goal is to produce a bounding box that accurately outlines the designated
object. Given its critical role in integrating visual and textual information, visual grounding has established
itself as a crucial application in the realm of multimodal interactions.

With the emergence of extensive language modeling, there has been a noteworthy blend of visual grounding
techniques with Large Language Models (LLMs) (Peng et al., 2023; Zhao et al., 2023). In a conventional
setup, data from bounding boxes, obtained through visual grounding, is fed into the LLM as a segment of the
prompt. This approach steers the LLM towards making the right assessments. However, the debut of GPT-
4V marks a significant transformation in this workflow. It eliminates the requirement for crafting prompts
manually, allowing users to directly input images and text, and in turn, directly obtain the related bounding
box outputs. This advancement simplifies the process, removing the need for extra steps and intermediaries.

The majority of visual grounding research primarily centers on general imagery, with scant attention paid
to the realm of medical images. This disparity could stem from a noticeable dearth of datasets specifically
tailored for medical visual grounding. The MS-CXR dataset, a recent published visual grounding dataset ,
makes some improvement of medical image visual grounding application, some publications (Huang et al.,
2023; Sun et al., 2023a;b) comes out base on it. Nevertheless, even as this dataset becomes more widely rec-
ognized, there remains a limited body of academic work exploring its potential and applications, highlighting
a crucial area for future research and development.

In this paper, we will embark on a comprehensive review of GPT-4V’s applications within the domain of
medical visual grounding, exploring its capabilities, impact, and potential avenues for future research and
development.
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3 RADIOLOGY REPORT GENERATION

The exponential growth of radiological imaging data has imposed an escalating burden on radiologists, lead-
ing to a heightened risk of diagnostic errors with potentially severe consequences. Consequently, there is a
growing demand for automated radiology report generation, which is anticipated to alleviate the workload
of radiologists and mitigate diagnostic inaccuracies. The rapid advancements in artificial intelligence, par-
ticularly in the domains of computer vision and natural language processing, have made automated medical
report generation a feasible reality (e.g., Chen et al., 2020; 2021; Liu et al., 2021; Wang et al., 2023a). A
prominent challenge in automated medical report generation is long text generation. Presently, large lan-
guage models (LLMs) (e.g., Touvron et al., 2023; Chowdhery et al., 2022) have gained widespread promi-
nence and demonstrate a strong proficiency in generating long text. Furthermore, LLM-based large multi-
modal models (LMMs) (e.g., Zhu et al., 2023; Wu et al., 2023) possess a notable capability for multi-modal
content generation. While LMMs show potential in multi-modal content generation, their efficacy in spe-
cialized tasks like radiology report generation is yet to be fully explored. The accuracy and reliability of
such reports are paramount, making it crucial to evaluate LMMs in this domain rigorously. In the follow-
ing sections, we examined the GPT-4V’s capability for generating radiology reports using distinct prompt
strategies and the dataset.

3.1 EVALUATION

This section presents an evaluation of the GPT-4V model’s capacity for medical report generation. We
employ the MIMIC-CXR dataset (Johnson et al., 2019) for assessment. The model is tasked with generating
diagnostic reports for given medical images. To facilitate comparison with established methodologies(e.g.,
Chen et al., 2020; Yang et al., 2021a; Liu et al., 2021; Wang et al., 2022b; 2023a), we employ widely
recognized metrics, specifically BLEU scores (Papineni et al., 2002), ROUGE-L (Lin, 2004), METEOR
(Banerjee & Lavie, 2005), and CIDEr (Vedantam et al., 2015), to gauge the quality of the generated reports.

Our evaluation focuses on the model’s performance with the MIMIC-CXR testset. Each evaluation instance
comprises a single medical image coupled with a carefully crafted text prompt as the input.

3.1.1 DATASET: MIMIC-CXR

MIMIC-CXR, the largest publicly available dataset in this domain, includes both chest radiographs and
unstructured textual reports. This dataset comprises a total of 377,110 chest X-ray images and 227,835
corresponding reports, obtained from 64,588 patients who underwent examinations at the Beth Israel Dea-
coness Medical Center between 2011 and 2016. To facilitate fair and consistent comparisons, we followed
the official partitioning provided by MIMIC-CXR, resulting in a test set containing 3,858 samples.

3.1.2 PROMPT DESIGN STRATEGIES FOR EVALUATION

To better activate the capabilities of the GPT-4V, we explored different prompt design strategies, including
zero-shot and few-shot approaches. In the zero-shot scenario, we provided examples without reference
reports, while in the few-shot way, we explored three different prompt settings: (1) two normal reports
(Few-shot normal examples prompt), (2) two abnormal reports (Few-shot abnormal examples prompt),
and (3) one normal report paired with one abnormal report (Few-shot mixed examples prompt). Our
extensive evaluation of these prompt strategies unveiled that the inclusion of both a normal and an abnormal
example consistently led to the generation of higher-quality reports. Consequently, we employed prompts
with one normal and one abnormal example (Few-shot mixed examples prompt) to evaluate GPT-4V on
MIMIC-CXR benchmark.
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3.1.3 OVERVIEW OF PROMPT METHODS

Our primary objective is to evaluate the baseline performance of GPT-4V in medical report generation.
Consequently, we focused solely on the zero-shot prompt and the few-shot prompt, avoiding the use of
complex techniques like chain-of-thought (Wei et al., 2022b) or ensembling strategies (Wang et al., 2022a).
Illustrative examples of prompt design strategies are provided in Appendix A.1.

This section provides an introduction to the settings of the zero-shot prompt and few-shot prompt, along
with a comprehensive description of our prompt definition. A detailed analysis of the GPT-4V’s generated
reports under various prompts will be presented in Section 3.2.

Zero-shot Prompt Scenario The zero-shot prompt is employed to assess GPT-4V’s capacity to au-
tonomously generate reports without external guidance. To facilitate a comprehensive comparison with
the Ground Truth report, we tasked GPT-4V with generating both the expression and findings sections.

Few-Shot Prompts Scenario In-context few-shot learning represents a crucial methodology for enhancing
the capabilities of large language models (Tsimpoukelli et al., 2021; Wei et al., 2022a; Dai et al., 2022).
It enables the model to acquire the necessary output format by providing a set of examples. In contrast to
fine-tuning, this method empowers the model to generate desired results without any parameter updating at
inference time. We evaluated the in-context few-shot learning capability of GPT-4V using diverse prompt
examples. Within the scope of our evaluation, we employ contextual learning to facilitate GPT-4V in gener-
ating responses that closely align with the form of ground truth, facilitating meaningful comparisons.

In our investigation of few-shot prompts for the GPT-4V, we conducted experiments with a range of prompt
strategies designed for GPT-4V. Specifically, we explored diverse compositions:

• Exclusively using normal examples (Few-shot normal examples prompt);
• Exclusively using abnormal examples (Few-shot abnormal examples prompt);
• Combining one normal and one abnormal example (Few-shot mixed examples prompt);

The details of example reports in prompts are shown in Appendix A.1. Our observations highlighted the
substantial impact of prompt type on the model’s output. Depending on the chosen prompt, the model dis-
played a clear preference either for generating normal reports or abnormal reports. Details will be discussed
in section 3.2.

3.1.4 COMPARISON WITH SOTA

Table 3 presents a comprehensive performance comparison between the GPT-4V model and state-of-the-art
methods using the MIMIC-CXR dataset (Johnson et al., 2019). The methods encompasses standard image
captioning techniques, including Show-Tell (Vinyals et al., 2015), Att2in (Xu et al., 2015), AdaAtt (Lu
et al., 2017), Transformer (Vaswani et al., 2017), and M2Transformer (Cornia et al., 2020). Additionally, the
evaluation methods also have medical report generation methods, specifically R2Gen (Chen et al., 2020),
R2GenCMN Chen et al. (2021), MSAT (Wang et al., 2022b), and METransformer (Wang et al., 2023a).
To provide fair comparisons, we employ the exact same prompting structure (Few-shot mixed examples
prompt) to help GPT-4V generate the medical report.

From Table 3, it’s clear that medical report generation models such as METransformer, MSAT, and R2Gen
showcase top-tier performance. Nevertheless, GPT-4V’s capability to generate medical reports is impres-
sive, even if it’s a general-purpose model. Leveraging the advantages of an extensive pre-training dataset,
it excels in several metrics, including BLEU, ROUGE, and METEOR. However, when compared to models
specifically trained on MIMIC-CXR, it exhibits a gap, particularly evident in the CIDEr metric. This dis-
crepancy arises because the CIDEr metric assigns varying score weights to words based on their occurrence
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Table 1: Comparison MIMIC-CXR datasets.

Dataset Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE METEOR CIDEr

Show-Tell (Vinyals et al., 2015) 0.308 0.190 0.125 0.088 0.256 0.122 0.096

Att2in (Xu et al., 2015) 0.314 0.198 0.133 0.095 0.264 0.122 0.106

AdaAtt (Lu et al., 2017) 0.314 0.198 0.132 0.094 0.267 0.128 0.131

Transformer (Vaswani et al., 2017) 0.316 0.199 0.140 0.092 0.267 0.129 0.134

M2Transformer (Cornia et al., 2020) 0.332 0.210 0.142 0.101 0.264 0.134 0.142

MIMIC-CXR R2Gen (Chen et al., 2020) 0.353 0.218 0.145 0.103 0.277 0.142 -

R2GenCMN (Chen et al., 2021) 0.353 0.218 0.148 0.106 0.278 0.142 -

PPKED (Liu et al., 2021) 0.360 0.224 0.149 0.106 0.284 0.149 0.237

GSK (Yang et al., 2021b) 0.363 0.228 0.156 0.115 0.284 - 0.203

MSAT (Wang et al., 2022b) 0.373 0.235 0.162 0.120 0.282 0.143 0.299

METransformer (Wang et al., 2023a) 0.386 0.250 0.169 0.124 0.291 0.152 0.362

GPT-4V (OpenAI, 2023) 0.338 0.190 0.109 0.061 0.240 0.125 0.033

frequencies, potentially limiting GPT-4V’s performance in generating certain MIMIC-CXR-specific words,
consequently yielding relatively lower scores.

Furthermore, our testing has revealed that GPT-4V possesses the capacity to generate information that is
absent in the ground truth but is visually evident in the image. This phenomenon contributes to GPT-4V’s
relatively lower performance on metrics such as BLEU, which primarily assesses word match rates. One
example is shown in Figure 1.

Figure 1: One case with few-shot mixed examples prompt. The ground truth does not reference a medical
device; however, one is visibly present in the image and indicated by a red box. GPT-4V demonstrates the
ability to recognize this medical device.
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3.2 CASE STUDY

3.2.1 ZERO-SHOT BEHAVIOR

In the zero-shot scenario, through a series of tests on multiple chest X-ray images, we observed that GPT-4V
consistently generates reports with a focus on various anatomical organs. This phenomenon is illustrated in
Figure 11. Notably, GPT-4V tends to follow a specific order, including the information of lung, cardiomedi-
astinal silhouette, bones, diaphragm, and soft tissues, for the majority of the generated reports.

While the format of the generated reports may vary from MIMIC-CXR, the content within these reports
does convey both normal and abnormal aspects of the radiographic images. Figure 2 shows a selection of
examples. The observations reveal that GPT-4V can describe the normal aspects in the images. Furthermore,
as demonstrated in Example 3, GPT-4V exhibits the capacity to recognize abnormalities, ’suggestive of
a possible infectious or inflammatory process’. These instances collectively underscore that, even in the
context of Zero-shot prompts, GPT-4V may not replicate the exact report format found in MIMIC-CXR, yet
it demonstrates a noteworthy ability to generate relevant reports and identify anomalies.

3.2.2 FEW-SHOT BEHAVIOR

In this prompt scenario, we explored 3 kinds of prompt settings:

• Few-shot normal examples prompt

• Few-shot abnormal examples prompt

• Few-shot mixed examples prompt

In this section, we present a comprehensive analysis of reports generated by GPT-4V under three distinct
few-shot prompts. We observe that different prompts significantly influence the generated reports. Specif-
ically, Figure 3 illustrates the response to a normal chest X-ray image, where we employ three distinct
prompt methodologies to guide GPT-4V in generating corresponding reports. Interestingly, the reports gen-
erated from the normal examples prompt and mixed examples prompt both describe the image as normal. In
contrast, the report originating from the abnormal examples prompt highlights anomalies. This indicates that
GPT-4V’s inclination to generate normal or abnormal reports varies based on the provided example reports.

The analysis of reports generated for an abnormal chest X-ray image can be found in the appendix A.2
with a more detailed explanation. However, it’s worth noting here that our subsequent tests have shown that
the mixed examples prompt (illustrated in figure 3, 14) has a significant influence on GPT-4V’s capacity
to accurately determine the normalcy or abnormality of an image. Due to this observed consistency and
reliability, we opted for the mixed examples prompt when testing the entire MIMIC-CXR test set and in the
computation of related evaluation metrics.

For these examples, we can know summarize the impact of different prompts on the generated reports as
follows:

Normal Examples Prompt The generated report focuses on the normal aspects of the image, seemingly
overlooking or not emphasizing the abnormalities present. This could be attributed to the inherent bias
introduced by the normal examples in the prompt, steering the GPT-4V’s focus towards more routine or
standard interpretations.

Abnormal Examples Prompt As expected, the report provides a clear and distinct description of the abnor-
malities evident in the X-ray. However, for normal chest X-ray radiographs, the GPT-4V may also exhibit a
heightened probability of generating certain erroneous indications of abnormality.
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Figure 2: Zero-shot prompt example. GPT-4V can generate radiology reports without example reports and
can convey both normal and abonrmal aspects. For better illustration, the key medical information in the
reports is highlighted using different colors.

Mixed Examples Prompt The mixed examples prompt leads the GPT-4V to accurately describe the ab-
normal and normal conditions of the image. This suggests a balanced effect, where the GPT-4V doesn’t
get overly biased by either the normal or abnormal examples but leverages both to arrive at an accurate
interpretation.

From this in-depth examination, it becomes evident that the choice of prompt plays a pivotal role in guiding
GPT-4V’s performance, especially when anomalies are present in medical images. The mixed examples
prompt, in particular, shows promise in achieving a balanced and accurate report, making it a potential
choice for diverse medical scenarios.

3.2.3 PROMPT AUGMENTATION FOR OUTPUT VIEW INFORMATION

Additionally, our investigations revealed that augmenting the information content within a given prompt
enables GPT-4V to produce more pertinent information in its generated reports. As an illustrative example,
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Figure 3: Few-shot normal case (The key medical information in the reports is highlighted using differ-
ent colors). GPT-4V is more likely to generate abnormal reports when the prompt includes two abnormal
examples. The words in red correspond to descriptions of abnormal conditions.

we incorporated instances with view information for chest X-ray images within both the few-shot mixed
examples prompt and the few-shot abnormal Examples prompt. Conversely, view information was omitted
in the few-shot normal examples prompt. This deliberate contrast in prompt content demonstrated that
prompts containing view information effectively instructed GPT-4V to incorporate considerations of image
viewpoint into the report generation process.

More specifically, we supplemented the few-shot mixed examples prompt and the few-shots abnormal ex-
amples prompt with the following view information:

• Frontal and lateral views of the chest;

• PA and lateral views of the chest provided.

9
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As illustrated in Figure 4,15 the inclusion of view information prompts GPT-4V to incorporate corresponding
viewpoint details into the generated report. For instance, it generates phrases like ’PA view of the chest
provided’ and ’Frontal view of the chest demonstrates...’. However, it is essential to acknowledge that while
enhancing the prompt with view information empowers GPT-4V to produce reports enriched with these
details, there are instances where GPT-4V inaccurately identifies viewpoint information. The incorrect case
is shown in Appendix A.3.

Figure 4: Viewpoint information Case 1 (The key medical information in the reports is highlighted using
different colors). The inclusion of view information in the prompt results in a higher probability of GPT-4V
generating view information, indicated in red text in the figure. Notably, GPT-4V does not generate view
information when the prompt lacks such information, as seen in the normal examples prompt (in Figure 13).

This phenomenon can be attributed to two primary factors: firstly, potential constraints in GPT-4V’s inherent
recognition capabilities, and secondly, the potential inadequacy of prompt design in fully activating GPT-
4V’s ability to discern viewpoint information.

10
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It is imperative to emphasize that, even with the incorporation of view information, the core content within
the generated reports exhibits a high degree of consistency (crucial medical information in the reports is
distinguished using diverse colours in Figure 4). This observation leads to a significant conclusion: the
inclusion of supplementary information within the prompt broadens the spectrum of content integrated into
the generated report, all while preserving GPT-4V’s capability to fulfill common tasks.

These examples vividly illustrate the critical role of prompt design within the domain of in-context few-shot
learning. In contrast to the fine-tuning approach, few-shot learning empowers GPT-4V to gain essential
knowledge from the prompt and subsequently apply this knowledge in generative tasks. Consequently, the
meticulous design of a logical and effective prompt emerges as a pivotal factor when leveraging GPT-4V for
medical report generation tasks. This aspect of prompt design deserves future studies.

3.3 DISCUSSION

Our extensive evaluation and case study of GPT-4V’s capabilities in Radiology Report Generation reveal
its potential as well as its current limitations. By employing various prompts, GPT-4V demonstrates the
capacity to generate descriptive reports for chest X-ray images, covering both normal and abnormal aspects.
Remarkably, the design of the prompt significantly influences GPT-4V’s performance; prompts with more
information lead to greater attention to the image and the generation of more detailed descriptions.

It is essential to highlight that GPT-4V was not trained specifically on MIMIC-CXR, which impacts its
capacity to generate specific rare words, leading to relatively lower scores on commonly used evaluation
metrics. Nevertheless, GPT-4V demonstrates the ability to generate content related to images that is not
explicitly mentioned in the Ground Truth but is visually apparent. As a result, further research aimed at
improving GPT-4V’s report accuracy remains a valuable pursuit.

4 MEDICAL VISUAL QUESTION ANSWERING

Visual Question Answering (VQA) has become a much critical research area. The goal of VQA systems is
to enable computers to understand natural language questions and provide accurate answers on images. In
the following, we will explore the medical image VQA performance of GPT-4V on the VQA-RAD dataset
and compare it with the current SOTA method.

4.1 EVALUATION

In order to assess GPT-4V’s effectiveness on the Medical VQA dataset, we embarked on a comprehensive
series of experiments. Utilizing the GPT-4V model, we applied it to generate predicted answers based on
the input medical image and the question related to this image. Then, proceeded to calculate the accuracy
of the results. Subsequently, we conducted a comparative analysis with the current state-of-the-art (SOTA)
methods. Herein, we present our principal observations and conclusions.

4.1.1 DATASET: VQA-RAD

VQA-RAD (Lau et al., 2018) is one of the most widely utilized radiology datasets. It comprises 315 images
along with 3515 question-answer pairs, ensuring that each image corresponds to at least one question-answer
pair. The questions encompass 11 distinct categories, including ”anomalies,” ”properties,” ”color,” ”num-
ber,” ”morphology,” ”organ type,” ”other,” and ”section.” A noteworthy 58% of these questions are designed
as closed-ended queries, while the remainder take the form of open-ended inquiries. These images predom-
inantly feature the head, chest, and abdomen regions of the human body. It is essential to manually partition
the dataset into training and test sets for accurate evaluation.
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4.1.2 OVERVIEW OF PROMPT METHODS

GPT-4V not only possesses powerful natural language processing capabilities, but also incorporates ad-
vanced computer vision techniques, which makes it excel in handling fusion tasks of images and text. It is
trained to understand questions and extract information from images to generate accurate answers. However,
the performance of GPT also depends on how the design of the prompt.

To ensure that GPT-4V accurately grasps the answer style of the VQA-RAD dataset, we provided seven
examples to guide the model in generating responses consistent with the dataset’s format. Without these
examples, GPT-4V tends to produce more unconstrained answer text, complicating the task of comparing
predicted answers with the ground truth.

We Designed the prompt by following the template in Figure 5:

Figure 5: VQA Prompt Method. Elements in double braces are replaced with specific questions

4.1.3 COMPARISON WITH SOTA

Upon scrutinizing the results of GPT-4V on the VQA-RAD dataset’s test set, it is calculated that the accu-
racy for closed-end questions is 61.4%, the result shows in table2, which is significantly lower than other
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Table 2: Visual Question Answering Method Comparison
Dataset Reference Methods Fusion Method Close-end

VQA-RAD

StAn (He et al., 2020) SAN 57.2

BiAn (He et al., 2020) BAN 67.9

MAML (Finn et al., 2017)
SAN 69.7

BAN 72.4

MEVF (Nguyen et al., 2019)
SAN 74.1

BAN 75.1

MMQ (Do et al., 2021)
SAN 75.7

BAN 75.8

PubMedCLIP (Eslami et al., 2021) - 80

MMBERT (Khare et al., 2021) - 77.9

Q2ATransformer (Liu et al., 2023) - 81.2

GPT-4V (OpenAI, 2023) - 61.40

published results. In terms of open-end questions, the calculated BLEU score is 0.1155, which also does not
reach a high standard. The majority of currently available research primarily employs classification based
model to tackle Visual Question Answering (VQA) problems. This approach results in a lack of evaluations
using the BLEU score, making it challenging to draw comparisons between different methods. However,
upon analyzing the cases provided by GPT-4V, it is postulated that the low BLEU score may be attributed to
the excessive flexibility of GPT-4V, resulting in substantial deviations from the correct answers. This might
be due to some clear limitations of BLEU itself. BLEU lacks semantic understanding, as it mainly relies on
the literal matching of n-grams and does not deeply understand context and semantics. It is insensitive to
synonyms and diverse ways of expression. Even if two sentences mean the same thing, if they use differ-
ent words or ways of expression, the BLEU score might end up being quite low. In simpler terms, BLEU
struggles to recognize when different words mean the same thing, and this can lead to unfairly low scores
even when the answers are correct. We hope that in the future, more advanced methods capable of deeply
understanding the semantics of text will be developed, providing more accurate and reliable assessments.

4.2 CASE STUDY

We present few case study of VQA in Figure 6 7 From the case study, we can tell that the GPT-4V showed
some limitations in the Medical VQA domain. It showed strong ability in determining whether a question
was close-end or open-end, and was almost always able to make a correct judgment. However, in answering
some open-end questions, it did not make full use of the image information, relying instead on the medical
terms mentioned in the question itself, and failing to make effective reference to the information in the
medical images. For example, in the last case, the GPT-4V only expanded on the nouns that appeared in the
question without taking the medical images into account, resulting in an incorrect answer. There were also
some instances of incorrect responses to close-end questions. These questions did not perform as well as
expected, and further improvements and optimizations are needed to improve performance in Medical VQA
tasks.
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Figure 6: VQA Prompt examples.By given few-shot prompts, GPT-4V can generate answers for the given
image and question pairs, the result for the close-end question is better than open-end questions

4.3 DISCUSSION

Our extensive evaluation and in-depth case studies of GPT-4V’s performance on the VQA-RAD dataset have
highlighted its potential capabilities as well as the areas that necessitate substantial improvement within the
Medical Visual Question Answering (VQA) field.

While GPT-4V demonstrates proficiency in distinguishing between closed-end and open-end questions, its
accuracy rate of 61.4% for closed-end questions and low BLEU score of 0.1155 for open-end questions
signify a performance level that is considerably below the published benchmarks in this domain. This
discrepancy underscores the need for more refined and optimized models that can more accurately interpret
and respond to medical imagery. The capability to accurately identify whether a question is open-ended
or closed-ended demonstrates GPT’s substantial reasoning skills. However, its occasional low accuracy
could be attributed to an insufficient amount of training data. Acquiring general Visual Question Answering
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Figure 7: VQA Prompt examples. With the assistance of a few-shot prompts, GPT-4V has the capability
to generate responses for open-ended questions, though there is room for refinement to enhance its perfor-
mance.

(VQA) data is relatively easier compared to procuring medical VQA data. This discrepancy is due to the
labor-intensive and expensive nature of labeling medical data. Consequently, as the volume of training data
in the medical domain increases, we can anticipate an enhancement in the performance of VQA applications.

Furthermore, the limitations of the BLEU score as an evaluation metric, particularly its lack of semantic
understanding and sensitivity to diverse expressions and synonyms, have been highlighted. This brings to
light the urgent need for the development of more advanced and semantically aware evaluation methods to
provide accurate and reliable assessments of model performance in this field.
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5 MEDICAL VISUAL GROUNDING

Visual Grounding is one of the important tasks in the field of computer vision, aimed at enabling computers
to understand natural language descriptions and associate them with specific regions in an image. This
technique has great potential in areas such as medical image analysis. In this paper, we presented the
performance of GPT-4V on MS-CXR dataset for visual grounding applications and compare it with current
SOTA methods.

5.1 EVALUATION

5.1.1 DATASET: MS-CXR

The MS-CXR (Boecking et al., 2022) dataset is a valuable resource for biomedical vision-language process-
ing, featuring 1162 image-sentence pairs with bounding boxes and corresponding phrases. It was meticu-
lously annotated by board-certified radiologists, covering eight cardiopulmonary radiological findings, each
having an approximately equal number of pairs. This dataset offers both reviewed and edited bounding
boxes/phrases and manually created bounding box labels from scratch. What sets MS-CXR apart is its fo-
cus on complex semantic modeling and real-world language understanding, challenging models with joint
image-text reasoning and tasks like parsing domain-specific location references, complex negations, and
variations in reporting style. It serves as a benchmark for phrase grounding and has been instrumental
in demonstrating the effectiveness of principled textual semantic modeling for enhancing self-supervised
vision-language processing.

5.1.2 OVERVIEW OF PROMPT METHODS

We’ve looked at many different ways to give instructions to GPT, and we’ve found a specific type that helps
it understand better and makes it easier to create bounding boxes. We chose this prompt after carefully
checking which one work best. We Designed the prompt by following the template in Figure 8:

Figure 8: VG Prompt Method. Elements in double braces are replaced with specific image width, height
and description text related to image
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5.1.3 COMPARISON WITH SOTA

In order to compare with current existing models, we use mean Intersection-Over-Union(mIoU) as our eval-
uation metrics. Upon conducting an evaluation of GPT-4V’s performance on the MS-CXR dataset, the
calculated mean Intersection over Union (mIoU) was found to be 0.0974. This result is markedly lower than
all published benchmarks. Empirical evidence demonstrates that while GPT-4V possesses the capability to
comprehend applications within Visual Grounding, it exhibits a deficiency in accurately identifying medical
organs and pathological signs. Consequently, this results in imprecise bounding box predictions. Recently,
SoM (Yang et al., 2023a) addressed this issue and made significant improvements. The approach in the
paper involved first segmenting and labeling the image, and then proceeding with grounding, which led to
substantial enhancements in performance. However, this method was applied to general images, and it’s not
certain that it would yield equally impressive results for medical images, which require much finer-grained
features. Further experiments will be necessary to validate its effectiveness in such contexts.

Table 3: Comparison MS-CXR datasets.

Dataset Methods mIoU

BioViL (Boecking et al., 2022) 0.17

BioViL-T (Bannur et al., 2023) 0.243

RefTR (Li & Sigal, 2021) 50.11

MS CXR VGTR (Du et al., 2022) 53.58

SeqTR (Zhu et al., 2022) 56.63

TransVG (Deng et al., 2021) 58.91

MedRPG (Chen et al., 2023) 59.37

GPT-4V (OpenAI, 2023) 0.097

5.2 CASE STUDY

From the case study, it appears that the GPT-4V has the potential to generate bounding boxes, but notably,
its accuracy performs rather poorly. Although it was able to attempt to calibrate the position of the object,
there were serious errors and uncertainties in this task. This may be due to the fact that GPT-4V’s model
has some limitations in processing the image information and is unable to fully understand and interpret the
exact position of the object in the image. Especially for the medical image, which need more focus on fine
grain feature. Another possible reason for GPT-4V’s poor performance could be that it was mainly trained
using common, everyday images, and it didn’t have a lot of varied images to learn from. The GPT model
needs a lot more data to work well and become reliable. So, because it didn’t have enough diverse data to
learn from, it doesn’t perform very well.

5.3 DISCUSSION

Our comprehensive evaluation and case study of GPT-4V’s capabilities in Visual Grounding highlight both
its potential and its current limitations. While the model shows promise in recognizing bounding boxes,
it falls significantly short in terms of accuracy, as evidenced by its low mIoU score when compared to
existing benchmarks and its performance on the MS-CXR dataset. Its inability to precisely identify medical
organs and pathological signs leading to imprecise bounding box predictions, and this may caused by lack
of training data. It is very hard to get enough labeled data for GPT to train.
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Figure 9: Visual Grounding Prompt examples. The bounding boxes in red color are predicted box by GPT-
4V, and the green bounding boxes are ground truth boxes. GPT-4 is capable of generating and estimating
the bounding box coordinates for the reference text within an image. However, the results show that the
GPT-4V can not understand medical image properly.

In light of these findings, it is evident that GPT-4V requires further refinement and training to overcome its
current limitations and to enhance its bounding box localization accuracy. In order to achieve better results
in this area, further model improvement and more data is needed to increase the accuracy of its bounding
box localization, thus making it more useful and reliable in various applications.

Doing so will undoubtedly make GPT-4V a more reliable and valuable tool in various applications, fostering
its integration and utility in practical, real-world scenarios, especially within the medical field. This journey
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Figure 10: There are some Visual Grounding Prompt examples. The bounding boxes in red color are pre-
dicted box by GPT-4V, and the green bounding boxes are ground truth boxes.

towards improvement is not only necessary but also a crucial step in advancing the field of Visual Grounding
and in unlocking the full potential of models like GPT-4V.

6 CONCLUSION

The comprehensive assessment of GPT-4V’s capabilities in Radiology Report Generation, Medical Visual
Question Answering (VQA), and Visual Grounding offers a perspective on the model’s potential and ar-
eas for improvement within the medical domain. GPT-4V’s ability to generate radiology reports based on
chest X-ray images is commendable, particularly when furnished with detailed prompts. This underscores
the capacity of language models to aid in radiology diagnosis. Nevertheless, its challenges in recognizing
uncommon terms and subtle differences specific to the MIMIC-CXR dataset underscore the necessity for
domain-specific training and fine-tuning to elevate its proficiency in medical reporting.

19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2023. ; https://doi.org/10.1101/2023.11.03.23298067doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.03.23298067
http://creativecommons.org/licenses/by-nc-nd/4.0/


Preprint (work in progress)

Furthermore, although GPT-4V displays proficiency in distinguishing among various question types within
the VQA-RAD dataset, its performance metrics, especially for open-ended questions, fall short of public
benchmarks. This sub-optimal performance reveals a gap in its comprehension and response capabilities
related to medical imaging. Moreover, the limitations of current evaluation metrics like the BLEU score
underscore the significance of constructing semantically-aware evaluation methodologies to gain a holistic
comprehension of the model’s aptitude.

The Visual Grounding evaluation further explored the difficulties GPT-4V encounters in achieving high
precision in bounding box localization within medical images. These limitations, particularly its struggles
in identifying medical organs and pathological indicators, underscore the urgent requirement for specialized
training and model improvements to enhance its grounding capabilities.

In summary, GPT-4V demonstrates remarkable potential across various medical image analysis domains.
Nonetheless, its current limitations underscore the necessity for domain-specific enhancements. Exploring
dedicated training on medical datasets, designing comprehensive prompt methodologies, and advancing
evaluation techniques still need further research.
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A APPENDIX

A.1 DETAILS OF PROMPT SETTINGS

In all prompts, we prompt GPT-4V to assume the role of a professional radiologist. Additionally, we explic-
itly instruct it to generate both the impression and findings sections.

A.1.1 ZERO-SHOT PROMPT

Figure 11 showcases a zero-shot prompt example. We did not add any additional information to the text
prompt.

Figure 11: Zero-shot prompt. No additional information provided to GPT-4V.

A.1.2 FEW-SHOT PROMPT

Figure 12 showcases our few-shot prompt setting. We added two example reports to the prompt. We ex-
plored three different combinations: (1) exclusively using normal examples, (2) exclusively using abnormal
examples), (3) combining one normal and one abnormal example. The example reports are displayed in
Figure 13.
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Figure 12: Few-shot prompt. Example reports from MIMIC-CXR training dataset are added to the prompt
text

Few-shot normal examples prompt In this prompt method, we curated reports from two normal samples
within the MIMIC-CXR training set. To ensure comprehensiveness, we specifically chose reports that were
richer in content.

Few-shot abnormal examples prompt In this prompt method, we carefully chose two reports originating
from abnormal samples within the MIMIC-CXR training set.

Few-shot mixed examples prompt In this prompt method, we chose one normal and one abnormal report
from the MIMIC-CXR training set. The sequence in which these two examples are presented is not antici-
pated to significantly impact the generated results. In this specific experiment, we positioned the abnormal
report before the normal one.
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Figure 13: Example reports in prompts: Three pairs of different example reports in few-shot prompt settings.
We added these example reports to few-shot prompts to help GPT-4V generate radiology reports.

A.2 ABNORMAL PROMPT CASE

Figure 14 shows an abnormal chest X-ray image along with the corresponding reports generated by GPT-
4V using three distinct prompt methodologies. Notably, we observe that GPT-4V tends to generate normal
descriptions when the prompt examples exclusively consist of normal reports.

A.3 INCORRECT VIEWPOINT CASE

In Figure 15, it becomes evident that the chest X-ray image provided is a frontal view, whereas GPT-4V’s
generated report incorrectly labels it as a lateral view.
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Figure 14: Few-shot abnormal case. GPT-4V is more likely to generate normal reports when the prompt
includes two normal examples. The sentences highlighted in red in the figure correspond to descriptions of
normal conditions.
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Figure 15: Viewpoint information Case 2. While GPT-4V provides view information, it is inaccurate.
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