medRXxiv preprint doi: https://doi.org/10.1101/2023.11.10.23298396; this version posted November 11, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Patterns of Glucose Metabolism in [*8F]FDG PET Indicate Regional Variability and
Neurodegeneration in the Progression of Alzheimer's Dementia

John J. Lee'?, Tom Earnest?!, Sung Min Ha?, Abdalla Bani!, Deydeep Kothapallil, Peiwang Liu' and
Aristeidis Sotiras34, on behalf of the Alzheimer’s Disease Neuroimaging Initiative®

Mallinckrodt Institute of Radiology, 2Neuroimaging Laboratory and Research Center,
3Computational Imaging Research Center, 4Institute for Informatics, Data Sciences and
Biostatistics, Washington University, Saint Louis, Missouri, USA

>Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within
the ADNI contributed to the design and implementation of ADNI and/or provided data but did
not participate in analysis or writing of this report. A complete listing of ADNI investigators can
be found at:

https://adni.loni.usc.edu/wp-content/uploads/how to apply/ADNI Acknowledgement List.pdf

Key words: neurodegeneration, glucose metabolism, fluorodeoxyglucose, positron emission
tomography, nonnegative matrix factorization, Alzheimer’s, dementia

Abbreviations: Alzheimer’s Disease Neuroimaging Initiative (ADNI), Brodmann area (BA),
clinical dementia rating (CDR), fluorodeoxyglucose (FDG), functional magnetic resonance
imaging (fMRI), generalized additive model (GAM), generalized linear model (GLM), magnetic
resonance imaging (MRI), nonnegative matrix factorization (NMF), positron emission
tomography (PET), principal component analysis (PCA), patterns of covariance (PoC),
standardized uptake value ratio (SUVR)

Highlights

= Data-driven non-negative matrix factorization (NMF) identified 24 canonical patterns of
spatial covariance of cerebral glucose metabolism. The training data comprised healthy
older participants (CDR = 0 without amyloidosis) cross-sectionally drawn from ADNI.

= In healthy participants, mean SUVRs for specific patterns in precuneus, lateral parietal
cortex, and subcortical areas including superficial white matter and striatum,
demonstrated increasing glucose metabolism with advancing age.

= In asymptomatic participants with amyloidosis, glucose metabolism increased compared
to those who were asymptomatic without amyloid, particularly in medial prefrontal

cortex, frontoparietal cortex, occipital white, and posterior cerebellar regions.

= |n symptomatic participants with amyloidosis, insular cortex, medial frontal cortex, and
prefrontal cortex demonstrated the most severe losses of glucose metabolism with
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increasing CDR. Lateral parietal and posterior superior temporal cortices retained
glucose metabolism even for CDR > 0.5.

=  NMF models of glucose metabolism are consistent with models arising from principal
components, or eigenbrains, while adding additional regional interpretability.

= NMF patterns correlated with regions catalogued in Neurosynth. Following corrections
for spatial autocorrelations, NMF patterns revealed meta-analytic identifications of
patterns with Neurosynth topics of fear/reward, attention, memory, language, and
movement with motor planning. Patterns varied with degrees of cognitive impairment.
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Abstract

In disorders of cognitive impairment, such as Alzheimer’s disease, neurodegeneration is the
final common pathway of disease progression. Modulating, reversing, or preventing disease
progression is a clinical imperative most likely to succeed following accurate and explanatory
understanding of neurodegeneration, requiring enhanced consistency with quantitative
measurements and expanded interpretability of complex data. The on-going study of
neurodegeneration has robustly demonstrated the advantages of accumulating large amounts
of clinical data that include neuroimaging, motiving multi-center studies such as the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). Demonstrative advantages also arise from highly
multivariate analysis methods, and this work reports advances provided by non-negative matrix
factorization (NMF). NMF revealed patterns of covariance for glucose metabolism, estimated by
positron emission tomography of [*®F]fluorodeoxyglucose, in 243 healthy normal participants of
ADNI. Patterns for glucose metabolism provided cross-sectional inferences for 860 total
participants of ADNI with and without cerebral amyloidosis and clinical dementia ratings (CDR)
ranging 0-3. Patterns for glucose metabolism were distinct in number and topography from
patterns identified in previous studies of structural MRI. They were also distinct from well-
establish topographies of resting-state neuronal networks mapped by functional magnetic
resonance imaging. Patterns for glucose metabolism identified significant topographical
landmarks relating age, sex, APOE ¢4 alleles, amyloidosis, CDR, and neurodegeneration.
Patterns involving insular and orbitofrontal cortices, as well as midline regions of frontal and
parietal lobes demonstrated the greatest neurodegeneration with progressive Alzheimer’s
dementia. A single pattern for the lateral parietal and posterior superior temporal cortices
demonstrated preserved glucose metabolism for all diagnostic groups, including Alzheimer’s
dementia. Patterns correlated significantly with topical terms from the Neurosynth platform,
thereby providing semantic representations for patterns such as attention, memory, language,
fear/reward, movement and motor planning. In summary, NMF is a data-driven, principled,
supervised statistical learning method that provides interpretable patterns of
neurodegeneration. These patterns can help inform the understanding and treatment of
Alzheimer’s disease.
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Introduction

Over the lifespan, the human brain undergoes organizational development into young
adulthood, then continues organizational processes with increasing variability into late
adulthood. Alzheimer’s disease may be regarded as a disease of microscale proteinopathies
and macroscale alterations of brain networks®. By progressive neurodegeneration processes,
functional connectivity networks degrade, and cognitive functions deteriorate. The types of
networks that fail determine characteristic dementia phenotypes, generating variability of
presentations, even with the presence of indistinguishable proteinopathies. Nevertheless,
phenotypes can associate with specific lesions to brain networks and subnetworks?.
Neurodegeneration is a state-trajectory with varieties of cognitive and disease outcomes.
Typical Alzheimer’s disease has pathophysiology leading to a progressive amnestic syndrome
involving the default mode network3, but atypical Alzheimer’s pathophysiology can involve non-
memory systems such as language, vision, and executive systems*>.

This work follows prior computational models demonstrating that data from Alzheimer’s
disease can yield predictive features in amyloid data, tau data, and the final common pathway
of neurodegeneration®. Integrative computational models for clinical symptoms, degenerative
brain anatomy in [8F]fluorodeoxyglucose positron emission tomography (FDG PET), and refined
considerations of functional brain networks have previously by reported?. Integrative
computational models for Alzheimer’s disease should incorporate “large-scale ensembles of
coordinated neuronal activity” and “large-scale network topologies”'?. These are motivated by
prior results for the default mode network and failing of interactions with other brain network
hubs®78. Disease and neurodegeneration are disruptions of functional networks, but other
complex characteristics necessarily contribute: molecular processes, microscale misfolding of
proteins, mesoscale functional operations.

Organizational features of the brain can be informed by previously established methodologies.
Cognitive ontologies such as perception, emotion, memory, social cognition, language,
executive function, and their neuroanatomical localization have been described, and ontological
correspondences can be constructed with tools such as Neurosynth®0. Evolutionary expansion
in early development has previously been observed through structural magnetic resonance
imaging (MRI), cortical thickness estimations with FreeSurfer!!, and identification of patterns of
covariance (PoC) using non-negative matrix factorization (NMF)*2. NMF manages data
complexity using multivariate bases, or patterns of covariance. NMF is distinguishable from
principle components analysis (PCA) and independent component analysis (ICA); NMF patterns
are sparse and compact, with interpretable parts!3. This work demonstrates that NMF for FDG
PET produces patterns of covariance distinct from those seen in structural NMF and functional
connectivity. These features unique to FDG PET are likely to reflect the underlying modality as
NMF itself remains hypothesis free, depending only on data, the numerical regularizations
provided by nonnegativity, and linear factorization. FDG PET is an accepted biomarker for
neurodegeneration!®. Thereby, NMF can indicate regions specific for regional parts-based
features that exhibit loss of glucose metabolism on FDG PET, thereby indicating
neurodegeneration.
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In all, lower-dimensional models suitable for characterizing Alzheimer’s disease are sought for
their interpretability, and NMF can provide such models.

Results

This study of participants in ADNI had cross-sectional design, selecting the earliest available
clinical data and neuroimaging following participant enrollments. All data from ADNI had
registry-confirmed exam and imaging dates between 2005 Dec 15 and 2020 Mar 4. PoC for FDG
derived from 243 participants without cerebral amyloidosis and CDR=0, aged 56 — 95 (mean
73.5 * std 6.5), 48.3% with female sex, 0 — 2 APOE &4 alleles (mean 0.19 + std 0.43). Analyses of
neurodegeneration as estimated by FDG used four additional diagnostic cohorts, defined by
CDR and presence or absence of amyloidosis, and detailed further in Table 1. Strategies for
analyses depended on availability of FDG with contemporaneous T1-weighted MRI, which
provided for spatial normalizations. Analyses also required availability of FreeSurfer-derived
regions of interest (ROI) from pons and cerebellar vermis, as well as meta-ROIs*>, for
consistency of standardized uptake value ratios (SUVR) with existing reports drawn from ADNI.
Separation of diagnostic cohorts required PET with amyloid-targeting tracers and CDR. Figure 1
illustrates additional details of data inclusion and exclusion.

Table 1. Census of participants from ADNI. T1w scans and pons-vermis reference regions within 1 year separation are more
informative for inferences. Author JIL made detailed visual inspections of registration quality of CDR=0 and amy- cases,
excluding two FDG session for poor registration with the MNI150 atlas. The first available FDG session for each study participant
provided cross-sectional inferences. Analyses of covariances used data with complete CDR, amyloid status, age, sex, APOE &4
data, and valid pattern-weighted averages of imaging. Descriptive statistics (mean +std. dev.) for age, sex, and ApoE4 inform 1t
FDG scans.

Groups CDR =0, amy- CDR = 0, amy+ CDR=0.5, amy+ CDR > 0.5, amy+

no. FDG with cross-sectionally | 243 106 402 109
complete covariates

Age range (years at enrollment) | 56 — 95 60 — 91 55 —-92 56 — 96
Age (years at enrollment) | 73.5 +6.5 75.8 £6.3 743+7.4 754 +£8.1
Female (%) | 48.3 62.3 44.8 52.4
No. ApoE4 range (alleles) | 0—2 0-2 0-2 0-2

No. ApoE4 (alleles) | 0.19 +0.43 0.53 £0.57 0.84 £0.70 0.95 + 0.66
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Figure 1. Inclusion an exclusion of data for analyses.

NMF Identifies Metabolic Networks

Analysis of reconstruction error and split-half reproducibility provided model selection. The
gradient of reconstruction error reached plateaus at 11, 18 and 24 patterns. Additional
improvement in the gradient beyond 24 raised concerns for overfitting. Split-half reproducibility
with 49 independent anticlustering splits favored 2, 12, and 24 patterns. The distributions of
anticlustered adjusted Rand index are shown in Figure 2. Local maxima were discernable by
distribution medians denoted by dashes.

Examination of models with 2, 12, and 24 patterns suggested hierarchical organization for some
patterns. Two patterns supported separation into cortical regions that indicated intrinsic and
extrinsic large-scale functional networks, originally noted in FDG PET?®. Intrinsic networks
match default mode and frontoparietal functionality observed in resting-state functional
magnetic resonance imaging (fMRI)Y’. Extrinsic networks match the complementary resting-
state networks, including somatomotor sensory, visual, auditory and attention networks!®. This
dichotomy has been replicated by alternative methods including estimates of myelination made
from comparisons of T1 and T2 weighting!® and construction of generalized coordinates
delineating the separation of primary motor and sensory cortices from heteromodal association
cortices?®. The dichotomy has also been replicated in NMF studies of cortical thickness and
evolutionary expansion!?, which associated patterns of the highest evolutionary areal expansion
with topographies reproducibly identified with the default mode and frontoparietal control
functional networks. Patterns of lower evolutionary areal expansion associated with
topographies identified with visual cortex, somato-motor-sensory areas, auditory cortex, limbic
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structures, the insula with areas associated with the ventral attention functional network, and
the dorsal attention network. The model of 12 patterns revealed further parcellations of
intrinsic and extrinsic functional networks, but not according to familiar topographies. Notably,
the default mode network segregated into distinct regions for the orbitofrontal and medial
temporal poles, the medial prefrontal and limbic areas with striatum, and the lateral parietal
areas with large confluences of the lateral frontal lobes. The centrum semiovale formed an
independent pattern. The cerebellum and midbrain also formed an independent patter.
Twenty-four patterns reproduced all patterns of the 12-pattern model, while introducing
additional segregations, many of which corresponded to known cortical surface topographies
and subcortical segmentations.

For the 24-pattern model, enumeration of pattern anatomy & correspondence with Brodmann
areas (BA) are below. While NMF does not impose any ordering to its patterns of
decomposition, distinct from the ordering of explained variance produced by principle
component analysis (PCA), we imposed ordering of 24 enumerated patterns according to the
pattern-averaged quantity of FDG scaled as SUVR. Thereby, pattern 1 had highest FDG SUVR,
indicating maximal glucose metabolism, while pattern 24 had the least FDG SUVR.
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Figure 2. Split-sample reproducibility with anticlustering algorithms. 49 repetitions of anticlustering produced distributions of

adjusted Rand index for each proposed model of NMF patterns of covariance: 2 - 40. Local peaks of adjusted Rand index

included 2, 12, and 24.
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Patterns of Covariance of FDG (SUVR)
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Figure 3. Patterns of covariance determined by model selection had peak selection objectives for 24 patterns, but 12 and 2
patterns provided local peaks of selection objective. Twelve patterns provided coarser grained patterns that nevertheless
replicated patterns from the 24-pattern model. Two patterns provided regional segregation into analogs of the intrinsic (default
mode and frontoparietal) and extrinsic (somatomotor sensory, auditory, visual) large-scale functional networks. The 2-pattern
model is represented on a smoothed cortical surface for clarity of topographies.

Pattern 1: maximal FDG SUVR ranged across the lateral left hemisphere, encompassing lateral
frontal areas, lateral parietal areas, and superior temporal areas. SUVR also encompassed
middle frontal and inferior frontal gyri (BA45, BA44), inferior somato-motor-sensory regions
(BA43), and extended along the supramarginal and angular gyri (BA40, BA39). SUVR also
extended into posterior aspects of the superior temporal gyrus (BA22, BA42, BA41). Moderate
SUVR localized to the lateral aspect of the right premotor cortex at its intersection with the
middle frontal gyrus (BA6). Moderate SUVR also localized to the precuneus (medial BA7),
without involving the superior parietal lobule. Minimal SUVR localized to the right putamen.

Pattern 2: maximal SUVR was bilateral, symmetric, and encompassed insular cortices (BA13),
opercular parts of the inferior frontal gyri (BA45, BA44), and postcentral regions (BA43).
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Moderate SUVR involved the medial prefrontal cortices (BA10, BA11). Moderate SUVR also
localized to the caudate heads and anteromedial thalamus.

Pattern 3: maximal SUVR was bilateral, symmetric, and predominantly ranged across the
medial surfaces of the frontal and parietal lobes, including the dorsolateral prefrontal cortices
(BA9), frontal eye fields (BA8), premotor and supplementary motor cortices (BA6), primary
somato-motor-sensory cortices (BA1-BA4), somatosensory association cortices (BA5), and
precuneus (medial BA7). Tapering SUVR reached the superior margins of the dorsal cingulate
cortices (BA24, BA31). Minimal SUVR localized to anterior and dorsal thalamus.

Pattern 4: maximal SUVR was bilateral, symmetric, and covered the temporal poles (BA38),
extending into inferior temporal gyri (BA20, BA37). Moderate SUVR included entorhinal cortex
(BA34, BA28), amygdala, and hippocampal structures (BA35).

Minimal SUVR localized to orbital inferior frontal gyri (BA47/12).

Pattern 5: maximal SUVR was bilateral, symmetric, and specifically localized to the grey-white
junctional regions of the cerebellum. Moderate SUVR extended into the midbrain.

Pattern 6: maximal SUVR was bilateral, symmetric, and ranged along dorsolateral surfaces
posterior to the precentral gyrus, including primary motor (BA4), somato-sensory (BA1-BA3),
and somato-sensory association cortices (BA5), extending into the superior parietal lobule
(BA7). Parietal SUVR localized dorsal to the intraparietal sulcus and lateral to precuneus.
Minimal SUVR localized to the left insula (BA13).

Pattern 7: maximal SUVR was bilateral, symmetric, and covered the rostral frontal lobes,
including anterior prefrontal (BA10), orbitofrontal (BA11), orbital inferior frontal (BA47/12), and
dorsolateral prefrontal cortical (BA46) areas. SUVR extended onto the medial surfaces of the
anterior prefrontal and orbitofrontal cortices. Minimal SUVR localized to striatum and ventral
thalamus.

Pattern 8: maximal SUVR was bilateral, symmetric, and covered dorsal frontal and parietal
areas, including dorsomedial and dorsolateral portions of dorsolateral prefrontal cortex (BA9),
frontal eye field (BA8), supplementary motor area (BA6), and primary motor cortex (BA4).
SUVR tapered into superior portions of the extrastriate cortex for visual association (BA19).

Pattern 9: maximual SUVR was bilateral, symmetric, and covered contiguous cortical surfaces
of the dorsal cerebrum. The inferior margin of SUVR enclosed superior aspects of middle
frontal gyri and superior lateral frontal gyri (lateral aspects of BA9, BA8, BA6), and superior
parietal lobules. SUVR was absent throughout medial cortical surfaces. Minimal SUVR
localized to striatum and dorsolateral thalamus.

Pattern 10: maximal SUVR ranged across the right lateral hemisphere, ranging from the
triangular part of the inferior frontal gyrus (BA45), to the pars opercularis (BA44), the subcentral
area (BA43), the supramarginal gyrus (BA40), and the angular gyrus (BA39). Tapering SUVR
minimally localizes to posterior aspects of primary auditory cortex (BA41).

Pattern 11: maximal SUVR was bilateral, symmetric, and localized to regions of the straight and
transverse venous sinuses.

Pattern 12: maximal SUVR was bilateral, symmetric, and encompassed large, contiguous
surfaces of the cerebrum and cerebellum along their anterior, lateral and posterior aspects. The
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superior margin of SUVR enclosed the frontal poles and inferior aspects of the middle frontal
gyri, extending caudally to also enclose the inferior parietal lobules as well as the parieto-
occipital junction. Notably, the inferior margin of SUVR excluded subgenual cortex (BA25),
entorhinal and perirhinal cortices (BA34, BA35, BA28). SUVR was minimal along medial
cortical surfaces, with some localization to dorsal aspects of the cingulate cortex (BA31).
Minimal SUVR also localized to patches within striatum and posteromedial thalamus.

Pattern 13: maximal SUVR was bilateral, symmetric, and ranged over medial aspects of
orbitofrontal cortex (BA11) and medial prefrontal cortex (BA10) with extensions into adjacent
deep white matter. Maximal SUVR also localized to large regions incorporating striatum,
thalamus, and midbrain.

Pattern 14: maximal SUVR was bilateral, symmetric, and ranged over cerebellar cortex inferior
to locations of the transverse venous sinuses. Minimal SUVR localized to patches along the
lateral aspects of the inferior temporal gyri and along orbitofrontal areas.

Pattern 15: maximal SUVR was midline, encompassing the walls of the quadrigeminal cistern
and interpeduncular cistern. Moderate SUVR encompassed the anterior midbrain and the walls
of the third ventricle.

Pattern 16: maximal SUVR favored the right hemisphere with moderate SUVR symmetrically
localized in the left hemisphere. Maximal SUVR ranged along the inferior parietal lobule, over
the angular gyrus (BA39) and into posterior aspects of the superior temporal gyri (BA22, BA41,
BA42). Minimal SUVR localized to posterior surfaces of the precuneus, bilaterally (BA7).

Pattern 17: maximal SUVR was largely midline, encompassing primary and secondary visual
cortices (BA17, BA18). Minimal SUVR localized to patches of the left superior temporal gyrus.

Pattern 18: maximal SUVR was bilateral and symmetric, ranging over the grey-white junction
and deeper centrum semiovale underneath primary, secondary, and association visual cortices
(BA17-BA19). Minimal SUVR extended into deep white matter along the medial surfaces of the
lateral ventricles, and also extended into the deep white matter beneath the left posterior-
superior temporal gyri and beneath the left marginal gyrus.

Pattern 19: maximal SUVR was midline, ranging over the posterior cingulate cortext (BA31)
and precuneus (medial BA7). Minimal SUVR localized to the angular gyri, striatum, and
thalamus bilaterally (BA 39).

Pattern 20: maximal SUVR favored the right superior temporal gyrus (BA22, BA41, BA42) and
right supramarginal gyrus (BA40). Moderate SUVR localized to the left superior temporal gyrus
(BA22) and left supramarginal gyrus (BA40).

Pattern 21 (1): maximal SUVR extended throughout the centrum semiovale, internal capsule,
and globus pallidus, but did not involve hippocampal structures. Minimal SUVR localized to
anteromedial thalamus and cerebellar white matter.

Pattern 22: maximal SUVR was bilateral, symmetric, and ranged over the superior parietal
lobule (BA7). Minimal SUVR localized to the posterior thalamus and scattered patches of deep
white matter.
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Pattern 23: maximal SUVR was bilateral, symmetric, and ranged confluently over the orbital
frontal cortices (BA11), extending into medial prefrontal areas (BA10). Minimal SUVR extended
into insular cortex bilaterally (BA16).

Pattern 24: maximal SUVR was bilateral, symmetric, and ranged over all cingulate cortices
(BA31 — BA33, BA23, BA24), extending into corpus callosum and adjacent white matter.
Moderate SUVR localized symmetrically into striatum, thalamus, and white matter tracts deep
within temporal and parietal lobes.

Patterns of Covariance for Metabolism Are Distinct from Other Known Networks

Pattern 1, expressing the greatest glucose metabolism, was left-hemisphere dominant, and
revealed topography encompassing the cortical areas commonly ascribed to language functions
by historical lesion studies, by neurosurgical functional studies, and by task as well as resting
fMRI. Pattern 1, however, encompassed more than Broca’s or Wernicke’s areas, and more than
ventral attention network topography from resting fMRI, notably including also bilateral
precuneus. Pattern 2 symmetrically revealed the anatomy of the insular cortex and opercular
cortex, and indicated associations with medial prefrontal cortex, an association previously not
observed in other neuroimaging studies. Pattern 3 symmetrically revealed an expansive
topography of medial cortical regions of import for cognition and behavior, involving lower
extremity motor function with numerous association areas, including dorsolateral prefrontal
cortex and precuneus. Pattern 4, encompassing entorhinal cortices, amygdala, and hippocampi,
has drawn much scrutiny in dementia research for its known roles in memory and mood
regulation, but pattern 4 is notably segregated from the larger topography ascribed to the
default mode of large-scale functionality. Pattern 4, in union with the orbital frontal topography
of pattern 23, which demonstrated much lower aggregate glucose metabolism, reproduced one
of the patterns of the 12-pattern model (Figure 3). Similar correspondences between models
with varying spatial coarse-graining indicate the reproducibility of NMF PoC and support the
hierarchical organization of brain function?! that has been observed elsewhere??-24, Patterns 5,
11, 14, and 15 segregate the cerebellum, known to have detailed connectivity to the canonical
resting-state networks, but these NMF PoCs have not indicated similar topographies in FDG PET,
likely reflecting the limitations of resolution of ADNI PET processing, but notable for assignment
of three cerebellar patterns. At present, there are no criteria for over-fitting that can exclude
the separations of patterns 5, 11, 14, and 15. While some patterns likely captured variability in
extra-axial cerebrospinal fluid or atrophy, patterns 9 and 12, gross misregistration was excluded
by detailed examination and visualization of spatially normalized imaging. Pattern 21 identified
the centrum semiovale with striatum, not previously identified in neuroimaging studies, to our
best knowledge. Remaining patterns have analogs in large-scale functional studies, but these
remaining patterns from NMF are more compact and contiguous than those familiar from fMRI.

Effects of Age, Sex, APOE €4
Age and sex were previously found significant for structural PoC by NMF in adolescent brain

development!?. GAMs for PoCs used FDG ~ s(age, k=20, interaction=sex) + sex + APOE&4 +
cohort, following Wilkinson’s notation and denoting thin-plate regression splines with s, number
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of spline knots with k, and representing diagnostic cohorts with cohort. Categorical cohorts
described contrasts compared to cognitively normal participants with CDR=0 and without
amyloidosis. PoC SUVR decreased with age for CDR=0 without amyloidosis, but increased with
age for patterns 16, 21, and for males with pattern 22, as shown in Figure 4. PoC SUVR
decreased with age for CDR=0 with amyloidosis, but increased with age for females with pattern
16, for pattern 21, for males with pattern 22, and for females with pattern 23. PoC SUVR
decreased with age for CDR=0.5 with amyloidosis, but increased with age for females with
pattern 21 and females with pattern 22. Some male PoC had trajectories with age that were
convex (PoC increased then diminished with age). PoC SUVR decreased with age for CDR>0.5
with amyloidosis, but increased with age for patterns 1 -3, 6, 7, 11, 13, 16, 21, 22, and for
females pattern 17, as shown in Figure 5. For the cognitively impaired cohort, Increasing
glucose metabolism with age may indicate counter-regulatory activities in the presence of
disease, but the role of glucose metabolism for the progression of dementia is also possible 2°2°

FDG Pattern (SUVR)

Variability of FDG Patterns for Age and Sex. 243 Cognitively Normal Subjects (CDR = 0, amy-)
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Figure 4. Generalized additive model of multivariate regression of patterns of covariance. FDG (SUVR) ~ s(age, interaction=sex)
+ sex + apoe4 + cohort. The cohort with CDR=0 and no amyloidosis is shown. Confidence intervals are modulated by APOE &4.
FDG (SUVR) increases with age for P16, P21, and P22.
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Variability of FDG Patterns for Age and Sex. 109 Cognitively Impaired Subjects (CDR > 0.5, amy+)
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Figure 5. Generalized additive model of multivariate regression of patterns of covariance. FDG (SUVR) ~ s(age, interaction=sex)
+ sex + apoe4 + cohort. The cohort with CDR=0 and no amyloidosis is shown. Confidence intervals are modulated by APOE &4.
FDG (SUVR) increases with age for P1 — P3, P6, P7, P11, P13, P16, P21, P22, and for females pattern P17. Symptomatic cohorts
revealed increasing nonlinearities of FDG (SUVR) with age.

Patterns of Covariance Indicate Neurodegeneration

Figure 6 shows plots of GAM coefficients relating diagnostic cohorts to the asymptomatic cohort
without amyloidosis (CDR=0, amy-). GAM coefficients contrasting CDR=0, amy+ against CDR=0,
amy- exhibited positivity,  cor-0,amy+ > 0, for patterns 1, 8, 9, and 18 — 20, indicating increases of
glucose metabolism for asymptomatic amyloidosis. However, the contrasts were not significant
for our computed GAMs at the significance level of 0.05. Nevertheless, this positive constrast of
glucose metabolism is consistent with observations of persistently youthful measures of aerobic
glycolysis estimated from [*°O]carbon-monoxide, [*>O]oxygen, [*>O]water, and FDG?. GAM
coefficients contrasting CDR>0.5, amy+ against CDR=0, amy-, the contrasts for the severest
cognitive impairments, were most negative for patterns 3, 2, and 7, illustrated in Figure 7.
Remarkably, for all constrasting GAM coefficients for cohorts, pattern 16 was largely preserved,
also illustrated in Figure 7.
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Figure 6. Generalized additive model of multivariate regression of patterns of covariance. FDG (SUVR) ~ s(age, interaction=sex)
+ sex + apoed + cohort. Regression coefficients for diagnostic cohorts (CDR=0, amy+; CDR=0.5, amy+; CDR>0.5, amy+). The zero
value for coefficients is indicated in gray. Coefficients describe variations of cohorts away from asymptomatic individuals
without amyloidosis (CDR=0, amy-). Asterisks indicate p-values for coefficients of CDR=0.5, amy+, following Benjamini-Hochberg
adjustments for false discovery rate: p <0.05~* p<0.01~** p<0.001~ *** For asymptomatic individuals with amyloidosis
(CDR=0, amy+), only pattern 18 was significant with p < 0.05. For moderately and severely symptomatic individual with
amyloidosis (CDR>0.5, amy+), all patterns were significant to p < 0.001.
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Figure 7. Patterns of covariance illustrated with GAM multivariate regression coefficients for the cognitively normal cohort
(CDR=0, amy-) and severely cognitively impaired cohort (CDR>0.5, amy+). Patterns 7, 2, and 3 corresponded to the greatest loss
of glucose metabolism, and inferred neurodegeneration with progression of disease. Pattern 16 retained glucose metabolism

even for the severely cognitively impaired. All coefficients had p-values < 0.0001.
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Predictive Patterns of Neurodegeneration Correspond to Cognitive Domains

Figure 7 clarifies that neurodegeneration corresponds to losses of glucose metabolism along the
cortical midline, within the lateral sulcus, insula, medial prefrontal cortex, and the frontal pole.
These cortical regions, identified as PoC 3, 2, and 7, have larger coefficients in multivariate
generalize linear modeling (GLM) associating them to dependent variable for Alzheimer’s
dementia, especially CDR, CDR-SOB, and metrics of tau. Multivariate GLM results are
summarized in Figure 8. Most PoCs had sex dependence, as anticipated from existing literature
on cognitive impairment and glucose metabolism?’. In multivariate GLM, APOE €2 was also
broadly dependent upon PoC.

Remarkably, neurodegeneration and glucose metabolism were preserved in the right angular
gyrus, supramarginal gyrus, and posterior aspects of the superior and middle temporal gyri,
especially posterior to Heschl’s gyrus, PoC 16, shown in Figure 7.

Utilizing spin-testing of inflated cortical surface?® and corrections of volumetric auto-
correlations?®, we mapped PoCs of glucose metabolism to topical terms from the Neurosynth
platform®3%31, This provided commonly semantic decodings comparable to encodings made for
fMRI2%32 and previous studies of FDG PET2. These mappings for 104 topic terms previously
curated for statistical independence?® are illustrated in Figure 9. A graph of PoC with significant
correlations with topic terms is shown in Figure 10.
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dementia. FDGap are SUVR in Alzheimer’s disease signature regions. MIMSE is the Mini-Mental State Examination. CDR-SOB is
Clinical Dementia Rating Scale Sum of Boxes. Tau-PET are SUVR from PET with tau-binding tracers. Tau-PET (Braakl, Braak34,

Figure 8. Multivariate generalized linear model for patterns of covariance and dependent variables relevant for Alzheimer's
Braak56) are staging scores from post-mortem neurofibrillary tangle estimates. Hippo Vol is hippocampal volume. CDR is

Clinical Dementia Rating Scale. Amyloid-PET are SUVR from PET with amyloid-binding tracers. E4+ indicates carriage of APOE

&4 alleles. E4+ indicates carriage of APOE g2 alleles.
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Pearson correlation of Neurosynth terms and ADNI patterns
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Figure 9. Pearson correlations of patterns of covariance with Neurosynth topical terms selected by spin-testing (Alexander-Bloch
et al. 2018). The NMF model with 16 components is illustrated. Significant correlations were identified by correction of
volumetric spatial autocorrelations using the framework of Brainsmash (Burt et al., 2020).
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Figure 10. Patterns of covariance are embedded in graphs of significantly connected topical terms from Neurosynth.

Discussion

This study used advanced multivariate methods to make retrospective inferences on
Alzheimer’s disease in ADNI, a large, multicenter, deeply curated, publicly accessible repository
of clinical and neuroimaging data. The primary study result is a collection of PoC that describe
factors ascribable to regional glucose metabolism as estimated from FDG SUVR* using NMF*233,
The construction of PoC using NMF on a well-defined cognitively normal cohort was data-
driven, without a priori hypotheses concerning ADNI data*, following methods for NMF
previously used successfully for neuroimaging inferences?3>, This study examined the
multivariate covariances of the NMF PoC with well-known variables for the progression of
neurodegeneration to Alzheimer’s disease, including cortical topography??, age, sex?’, and APOE
¢4 alleles®®. PoC constructed from the cognitively normal cohort provided spatially distributed
bases for inference of cohorts with progressive CDR in the presence of cerebral amyloidosis.
GAMSs3’38 demonstrated that nonlinear dependence on age, interactions with sex, and influence
of APOE g4became more prominent with progressive neurodegeneration. Neurodegeneration
was especially sizeable for PoC encompassing insular cortex, frontal cortex and midline
frontoparietal cortical surfaces. Notably, neurodegeneration spared lateral parietal and
posterior superior temporal areas, even in severely symptomatic ADNI participants with
amyloidosis. In asymptomatic ADNI participants, PoC in selective areas demonstrated
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increasing glucose metabolism in the presence of amyloidosis compared to those without
amyloidosis, reproducing recent observations by Goyal et al. for aerobic glycolysis for which
oxygen metabolism was minimally contributory?®.

Topography of Glucose Metabolism and Neurodegeneration

PoC were reproducible at multiple scales (number of model patterns). The degeneration of the
default mode network in Alzheimer’s disease has been understood for decades?, but PoC from
this work demonstrated that more granular topographies characterized neurodegeneration.
This work on FDG PET reiterated'? four keys aspects for PoCs constructed from NMF. First,
higher PoC resolutions respected boundaries of lower resolutions, consistent with hierarchical
organizations of patterns. Without constraints favoring spatial contiguity or sparsity, PoC from
NMF decompositions were contiguous and sparse, supporting small world properties?324,
There were no constraints favoring spatial positions or symmetries, yet PoC from NMF retained
most neurostructural symmetries. PoC also revealed expected asymmetries of ventral attention
or language functionality. Modest asymmetries emerged in pattern 16, suggesting avenues for
future investigations of brain regions that are resilient to neurodegeneration. PoC revealed
associations that crossed gyral anatomy, consistent with microarchitectural and functional
priors. However, PoC associations were distinct from known atlases of structure and function,
indicating uniqueness of regional glucose metabolism. PoC revealed overlapping areas,
consistent with concurrently distributed underlying processes driving glucose metabolism.

Neurosynth provided semantic mappings in accord with previous approaches with eigenbrains?,
and yielded novel features that may improve models of neurodegeneration. Fear and reward
semantics were coded by PoCs for insula, cingulate cortices, and medial prefrontal cortex.
Memory was coded by PoCs for inferior temporal (entorhinal), posterior cingulate, and
precuneal areas as expected, with addition of secondary and associative visual cortices. The
latter have historically associated with dementia variants affecting vision in younger cohorts.
Language was coded by PoCs for lateral parietal, posterior temporal, opercular and insular
areas, largely as expected from familiar functional topographies. Movement and motor
planning was coded by PoCs for somato-motor-sensory cortex, premotor areas, and secondary
motor areas, but also deeper white matter.

Limitations

This work is retrospective, using a mature dataset which has been studied from numerous
previous scientific perspectives since the first public availability of ADNI data. While benefitting
from breadth and depth of curation, public datasets can accumulate implicit biases. However,
we are unaware of any known biases that could affect this work. This work makes inferences on
cross-sectional data corresponding to the time of enrollment of participants in ADNI, which also
may incur biases of selection and timing. For the date ranges chosen in this work, 1165 subjects
accumulated 1890 imaging sessions with FDG PET, from which modest longitudinal inferences
could be made. Nevertheless, the multivariate strategy of the analyses brings forth contrasts
among differing brain regions, reducing the influence of data collections made at baseline
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epochs. The generalizability of NMF PoC derived from FDG to external, unseen data will be
tested in follow-up studies of replication.

Study Implications

The resulting PoC from this study may provide important alternative regional criteria, distinct
from atlas regions, and made specific for glucose metabolism which has known
pathophysiologic mechanisms corresponding to neurodegeneration. In the pursuit of high-
dimensional datasets, specific regional PoC for neurodegeneration will provide rational means
of dimensionality reduction for purpose of interpretability and predictions. PoC results from
this study can be reused in combinations with other neuroimaging data, with full use of
computational automations, to achieve models with greater predictive capabilities.

Conclusions

NMF is a data-driven, principled, supervised statistical learning method that provides
interpretable patterns from neuroimaging. It can indicate regions specific for parts-based
features that exhibit loss of glucose metabolism on FDG PET, thereby indicating
neurodegeneration. It provides lower-dimensional models that can help inform the
understanding and treatment of Alzheimer’s disease.

Methods

% % % %k %

Participants and Neuroimaging

ADNI data selection. Data for all participants were drawn directly from ADNI
(https://adni.loni.usc.edu) and the ADNI Data Package for R (The ADNI Team. ADNIMERGE:
Alzheimer’s Disease Neuroimaging Initiative, R package version 0.0.1 (2023);
https://adni.bitbucket.io/index.html). Following filing of data use agreements, all data were
downloaded via ADNI’s web services for data access. FDG PET were primary data objects and
data curation began with collection of all available FDG PET from 9/22/2005 — 1/4/2022 which
were co-registered, averaged, standardized for image and voxel size, and transformed to
uniform resolution. For each subject with FDG PET, subsequent data gathering included: all
available T1-weighted (T1w) imaging, and all available dataframes for ADNIMERGE in comma-
separated-value formats. T1lw imaging provided native anatomy for anatomical inferences and
for nonlinear spatial normalizations. For each FDG PET, we selected the most contemporaneous
T1w imaging, not exceeding 365 days separation from FDG PET. We curated dataframe values
so as to ensure that all values used for inferences were contemporaneous to within 365 days.
We gathered scalar FDG SUVR from meta-ROls, age, MMSE, CDR-SOB, scalar tau-specific SUVR,
Braak staging measures, hippocampal volume, CDR, sex, amyloid-specific SUVR, APOE €4, and
APOE 2. Ultimately, we excluded from inferences any FDG PET that lacked adequate
contemporaneous ancillary data.
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Image-processing pipelines. All imaging was nonlinearly warped to the MNI152 atlas. First, we
ensured all imaging to be formatted to NIfTI using dcm2niix®°. Then, we corrected bias fields in
T1w imaging using ANTs N4BiasFieldCorrection®®4l. Next, we constructed binary masks for the
whole brain using DeepMRSeg*2. Next, we constructed nonlinear warps using, from ANTs,
antsRegistrationSyNQuick and antsApplyTransforms. Next, using whole brain masks, we used
4dfp t4_resolve (https://4dfp.readthedocs.io) to obtain rigid-body co-registration of FDG to T1lw
images. Next, we adjusted normalizations of FDG SUVR to values in FreeSurfer-determined
pons and cerebellar vermis!>. Composition of all registrations, warpings, and their inverses,
produced transformations for FDG onto the MNI152 atlas. Finally, we applied the atlas-
registered binary mask to exclude all FDG voxels not in the brain, voxels which otherwise were
needed for high-resolution warping.

The final quality assurance procedure used human visualization of all FDG imaging providing for
construction of PoC by NMF. Greatest variability appeared in the posterior cerebellum, the
cerebral vertex in the vicinity of the sagittal sinus, and cortical thickness after nonlinear
registration. Therefore, NMF patterns involving these regions likely represent aspects of
nonlinear misregistration.

Multivariate Analysis of Hierarchical Covariance Structures

To infer hierarchical covariance structures in ADNI participants and their FDG PET, we used NMF.
FDG PET from all participants (n in number) require reshaping such that all voxels from a single
PET session (d in number) comprise a column vector, and horizontal concatenation of vectors
from all participants form a data matrix, X = [x4, ..., x,,], x; € R%, of size d x n. All PET voxels
are non-negative after reconstruction of emission activities. Consequently, the sought
approximate factorization is X ~ WH with W = [wy, ...,w,],w; € R and HT =

[hq, ..., hi], h; € R™, with all elements of W and H also being non-negative. The number of
adjustable patterns k < d and k < n, thereby providing dimensionality reduction. Matrix W
provides a d-voxel representation for each of k patterns in each column. Matrix HT provides an
n-participant representation, describing the variability of the participants, for each of k patterns
in each column. Our implementation of NMF (https://github.com/asotiras/brainparts) imposes
constraints for orthonormality, WTW = I, and for projection to participant representations,

H = WTX 13,43.

We ran multiple NMF trials for 2-40 patterns with which we performed model selection to find
the optimal number of patterns consistent with our data. Split-half reproducibility made
principled use of anticlustering to find minimally clustered splits**, then examined the stability
of NMF results for each of the trials of patterns*>4¢. The optimal number of patterns satisfied
reproducibility: results with the highest mean adjusted Rand index (ARI) across 49 split-half
bootstraps; and reliability: results with the lowest deviation of ARI across bootstraps®’#8. ARI
measures set similarity adjusted for chance, allowing for balanced comparisons between sets of
patterns for variable numbers of patterns. We also examined reconstruction errors as the
Frobenius norm between data matrix, X, and the NMF decomposition, WH.

Analysis of Patterns of Neurodegeneration
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We accounted for spatial autocorrelations of volumetric FDG imaging as many features
meaningful for the study were subcortical. For this purpose, we used BrainSMASH
(https://github.com/murraylab/brainsmash)?°.

Estimation of Metabolic and Cognitive Associations

Finding ontological correspondence between the body of known neuropsychological landmarks
and FDG imaging features required use of the Neurosynth platform (https://neurosynth.org)®.

Data Availability

https://neurovault.org/collections/13302/

Code Availability

https://github.com/jjleewustledu/mladni/tree/master
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