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Abstract 15 

Analyses of a bipartite Genotype and Phenotype Network (GPN), linking the 16 

genetic variants and phenotypes based on statistical associations, provide an 17 

integrative approach to elucidate the complexities of genetic relationships across 18 

diseases and identify pleiotropic loci. In this study, we first assess contributions to 19 

constructing a well-defined GPN with a clear representation of genetic associations 20 

by comparing the network properties with a random network, including connectivity, 21 

centrality, and community structure. Next, we construct network topology 22 

annotations of genetic variants that quantify the possibility of pleiotropy and apply 23 

stratified linkage disequilibrium (LD) score regression to 12 highly genetically 24 

correlated phenotypes to identify enriched annotations. The constructed network 25 

topology annotations are informative for disease heritability after conditioning on a 26 

broad set of functional annotations from the baseline-LD model. Finally, we extend 27 

our discussion to include an application of bipartite GPN in phenome-wide 28 

association studies (PheWAS). The community detection method can be used to 29 

obtain a priori grouping of phenotypes detected from GPN based on the shared 30 

genetic architecture, then jointly test the association between multiple phenotypes 31 

in each network module and one genetic variant to discover the cross-phenotype 32 

associations and pleiotropy. Significance thresholds for PheWAS are adjusted for 33 

multiple testing by applying the false discovery rate (FDR) control approach. 34 

Extensive simulation studies and analyses of 633 electronic health record (EHR)-35 

derived phenotypes in the UK Biobank GWAS summary dataset reveal that most 36 

multiple phenotype association tests based on GPN can well-control FDR and 37 
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identify more significant genetic variants compared with the tests based on UK 38 

Biobank categories. 39 

Keywords: genotype and phenotype network, network topology annotation, 40 

disease heritability, phenome-wide association studies, GWAS summary 41 

statistics  42 

  43 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.14.23297400doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.14.23297400


 

Introduction 44 

The studies utilizing biological networks have proven to be successful in providing 45 

a comprehensive understanding of the complex relationships within the biological 46 

systems, such as gene regulatory networks1; 2, protein-protein interaction 47 

networks3, human disease networks4, et al. One of the commonly used biological 48 

networks is the bipartite network, which is defined as a network that consists of 49 

two distinct sets of nodes, with nodes in one set only connected to nodes in the 50 

other set and not within the same set. The human disease network usually 51 

describes the biological system as a bipartite network, where diseases and genes 52 

are represented as two distinct sets of nodes and disease nodes are only 53 

connected to their associated gene nodes. Rather than simply identifying the 54 

association between a genetic variant and a specific disease, the construction of 55 

a bipartite network can reveal the integrated molecular underpinnings of diseases5. 56 

Therefore, a bipartite network can be used to explore whether human diseases or 57 

complex traits and the corresponding genetic variants are related to each other at 58 

a higher level of cellular and organization6; 7. In addition, due to many complex 59 

diseases being affected by a shared set of pleiotropic variants, the construction of 60 

a bipartite network can also be used to determine the pathobiological relationship 61 

of one disease to other diseases5 and elucidate the complexities of genetic 62 

correlations across diseases6. 63 

Over the past decade, genome-wide association studies (GWAS) have 64 

generated an impressive list of genetic variant and phenotype association pairs8; 65 

9, which offer a great opportunity to establish a bipartite network connecting genetic 66 
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variants and phenotypes, referred to as a genotype and phenotype network 67 

(GPN)7. GPN provides integrative analyses that allow for the characterization of 68 

complex relationships between genetic variants and phenotypes, which are 69 

reproducible and accurately represent biological relationships. Therefore, it has 70 

become increasingly important in recent years10; 11. Notably, a well-defined GPN 71 

is crucial as it provides a clear representation of the genetic association between 72 

genetic variants and phenotypes, including factors such as connectivity, centrality, 73 

and community structure. Meanwhile, the real-world biological network, including 74 

GPN, often exhibits a scale-free degree distribution12; 13, which means that a small 75 

number of nodes (genetic variants and phenotypes) have a much larger number 76 

of connections than the majority of nodes. In a random network, the nodes are 77 

connected randomly without any preferential attachment, resulting in a network 78 

with a relatively uniform degree distribution14. Therefore, comparing the degree 79 

distribution of a bipartite GPN to that of a random network can reveal important 80 

insights into the underlying mechanisms driving the construction of the network. 81 

Additionally, random networks can serve as a useful null model for testing the 82 

significance of network properties observed in the bipartite GPN. 83 

The centralities of a bipartite GPN are one of the most important statistics 84 

to measure the importance of genetic variants (phenotypes) across phenotypes 85 

(genetic variants) based on the connectivity in the network15. The nodes with high 86 

centralities often act as hubs for information flow within the network16. For example, 87 

a genetic variant with high centrality accounting for all phenotypes is more likely to 88 

be a pleiotropic variant, as it is highly connected to multiple phenotypes in a 89 
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bipartite GPN. Therefore, these centralities can be used to define the network 90 

topology annotations of genetic variants that quantify the possibility of a genetic 91 

variant being a pleiotropic variant. To study whether these network topology 92 

annotations are enriched for disease heritability, we apply stratified linkage 93 

disequilibrium (LD) score regression (S-LDSC)17 along with the leave-one-94 

phenotype-out strategy to quantify the contribution of these annotations to disease 95 

heritability. We condition our analyses of the network topology annotations on the 96 

baseline-LD model, which includes a broad set of coding, conserved, regulatory, 97 

and LD-related functional annotations18. Additionally, in a bipartite GPN, a 98 

phenotype with a higher centrality accounting for all genetic variants is more likely 99 

to have a higher heritability, as it is connected to multiple genetic variants or with 100 

higher association evidence.  101 

With the widespread availability of electronic health records (EHR) data, 102 

phenome-wide association studies (PheWAS) have been used to systematically 103 

examine the impact of one genetic variant across a broad range of phenotypes. 104 

Phenotypes in the whole phenome can be grouped by digitized codes (e.g., ICD-105 

10 code) to represent the common clinical factors underlying the diseases. 106 

However, the taxonomy of digitized codes is based on their etiology rather than 107 

their genetic architecture, but applying the community detection method for GPN 108 

allows us to identify network modules that provide an integrative approach to 109 

understanding the complex genetic relationships across phenotypes7. A network 110 

module is loosely defined as a subnetwork with high local link density so that the 111 

phenotypes within a network module share more genetic architecture across all 112 
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genetic variants than phenotypes outside the network module19; 20. Therefore, the 113 

network modules can serve as a priori grouping of phenotypes in PheWAS, 114 

allowing for jointly testing multiple phenotypes in each network module and a 115 

genetic variant to identify the cross-phenotype associations and pleiotropy. For 116 

multiple testing corrections, we apply a refined false discovery rate (FDR) control 117 

approach to obtain the significance thresholds for PheWAS. 118 

 119 

Material and Methods 120 

In this section, we first describe our approach to constructing Genotype and 121 

Phenotype Networks (GPN) and defining the network topology annotations for 122 

genetic variants and phenotypes. The construction of GPN does not require 123 

access to individual-level genotype and phenotype data and only requires the 124 

marginal association evidence between each genetic variant and each phenotype 125 

(e.g., z-scores or estimated effect sizes from GWAS summary statistics). We first 126 

identify differences in denser representation and sparse representations of GPN 127 

with various sparsity approaches, then provide details of the implementation of 128 

constructed GPN, such as heritability enrichment of network topology annotations, 129 

estimation of the genetic correlation of multiple phenotypes, community detection 130 

of phenotypes, and phenome-wide association studies. Figure 1 shows the 131 

workflow of this study. 132 

 133 

 134 
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 135 

Figure 1. Graphical abstract. Construction of bipartite genotype and phenotype 136 

network (GPN) includes: (a) – (c) Construction of the denser and well-defined 137 

representations of GPN by comparing the network properties with the random 138 

networks, including connectivity, centrality, and system entropy; (d) The weighted 139 

degree distributions with different thresholds and the examples of two network 140 

topology annotations, approximate betweenness centrality and degree centrality, 141 

used in the heritability enrichment analysis; (e) The one-mode projection of GPN 142 

onto phenotypes that are linked through shared genetic architecture. Based on the 143 

constructed well-defined GPN, heritability enrichment analysis and phenome-wide 144 
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association studies are introduced as two important applications of the constructed 145 

GPN. 146 

Bipartite genotype and phenotype networks construction 147 

We consider GWAS summary statistical results from the same or different study 148 

cohorts with  phenotypic traits. Assume that the GWAS summary results for the 149 

 ( ) phenotype are calculated by testing the marginal association 150 

between a genetic variant and the  phenotype based on a sample with  151 

unrelated individuals. Note that  ( ) if the GWAS summary statistics of 152 

the  phenotype and  phenotype are calculated from the same study cohort, 153 

otherwise, . For simplicity, we assume the generalized linear regression7,154 

 where  is the  phenotype value and 155 

 is the vector of covariates, for example, used to account for population 156 

stratification in the study, for the  ( ) individual and the  phenotype. 157 

Assuming that there are  genetic variants in the GWAS summary statistics for 158 

the  phenotype and  is the genotype of the  ( ) genetic variant 159 

taking values from 0, 1, and 2 that counts the number of copies of the minor allele. 160 

Here,  is either the identity link function for quantitative phenotypes or the logit 161 

link for binary phenotypes.  162 

The GWAS summary results are calculated for testing the genetic 163 

association between the  phenotype and the  genetic variant under the null 164 
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hypothesis . The commonly used Wald-type statistic is defined as 165 

 under the generalized linear regression model, where  is 166 

the maximum likelihood estimation (MLE) of  and  is its estimated 167 

standard error21. The p-value  may also be calculated by assuming 168 

 in the GWAS summary results. In this study, we assume that only 169 

GWAS summary results (𝛽"!" and 𝑝!") are available.  170 

Let  be the total number of unique SNPs included in the GWAS summary 171 

statistics for  phenotypes with the property of . In 172 

particular,   if and only if there is at least one GWAS summary data 173 

containing all unique genetic variants and if and only if there are no 174 

variants included in different GWAS summary data. We can exclude the case 175 

 from our analyses since it rarely occurs in most GWAS summary 176 

datasets. 177 

Denser representation of GPN 178 

Same as the network construction introduced by Gaynor et al.11, the denser 179 

representation of GPN allows us to capture the fact that we have no prior 180 

knowledge of precisely which genetic variants and phenotypes might have an 181 

association. Here, we construct the denser representation of GPN, an adjacency 182 

matrix that includes all the associations between genetics variants and phenotypes.  183 
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We first define a signed bipartite GPN, , where 184 

 and  denote two disjoint and independent sets of 185 

phenotypes and genetic variants, and  denotes the set of edges in GPN. Similar 186 

to our previous work7, we denote  as an  adjacency matrix of the 187 

denser representation of GPN, where  is the weight of 188 

the edge between the  genetic variant and the  phenotype.  denotes 189 

the cumulative distribution function (CDF) of ;  if ; 190 

if ; otherwise, . Note that  represents the 191 

strength of the association between the  genetic variant and  phenotype and 192 

 represents the direction of the association. The denser representation 193 

includes all associations and does not involve thresholding.  194 

Sparse representations of GPN 195 

Given that even disease-associated genetic variants typically have a small effect 196 

size and are unlikely to exert their influence across the genome11, utilizing a 197 

sparsity-based approach makes biologically sense. Therefore, we introduce the 198 

false discovery rate (FDR) based sparse representations of GPN, in which the 199 

networks only include edges with associations meet a certain level of significance 200 

(i.e., p-value below a threshold) from the denser representation of GPN.  Let 201 

 be a sparse representation of a bipartite GPN for a specific 202 

threshold , where  denotes the set of edges in the sparse representation of 203 
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GPN.  is an  adjacency matrix of GPN, where  204 

with  from the denser representation of GPN.  is an indicator function that 205 

takes value 1 when , otherwise, it takes value 0.  is a measure of the 206 

significance of genetic association between the  genetic variant and the  207 

phenotype by correcting for multiple comparisons in each GWAS summary data. 208 

We use q-value22; 23 to define  in our main analyses, but other adjustment 209 

methods for multiple comparisons can also be used, such as local FDR (LFDR)24; 210 

25 and an adaptation of Benjamini-Hochberg (BH) FDR26. We use different 211 

thresholds , where  represents the denser representation of GPN 212 

since all edges are included;  represents the empty network with no edges 213 

between genetic variants and phenotypes.  214 

Well-defined sparse representation of GPN 215 

Selecting the appropriate threshold, , is very important in constructing GPN. The 216 

threshold is a sort of information filter, as decreasing , the resulting network will 217 

change from a denser network to a very sparse one. An overly dense network can 218 

be challenging in understanding and interpreting the most biologically informative 219 

interactions between genetic variants and phenotypes due to the abundance of 220 

information. Conversely, an excessively sparse network may lead to the loss of 221 

important information. The construction of a well-defined sparse representation of 222 

GPN can be presented to determine the optimal threshold ( ) of , which can 223 

retain the key information about the interactions between genetic variants and 224 

phenotypes27. Therefore, we propose an approach to determine the optimal 225 
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threshold by comparing the network properties with a corresponding random 226 

network, including connectivity, centrality, and community structure. 227 

More specifically, we first calculate the network “connectance” for each 228 

, which is defined as the ratio of the number of edges in GPN to the total 229 

number of possible edges28; 29. Mathematically, it can be expressed as: 230 

, where  is the counting measure, that is, 231 

 represents the number of edges included in . The degree of 232 

“connectance” in GPN can provide insight into the structure and functionality of the 233 

interactions between genetic variants and phenotypes. As decreasing , the 234 

resulting network will change from a dense network ( ) to a sparse 235 

one ( ). For a specific , we then construct a corresponding 236 

random network by shuffling the edges of the original network . Let 237 

 be the corresponding random network, where  238 

equals to . We also build an adjacency matrix  by keeping 239 

the same weights of the edges in . Then, we compute the following network 240 

properties of  and , respectively.  241 

Weighted and unweighted degree. The unweighted degree of a genetic 242 

variant (phenotype) in a bipartite GPN is defined as the number of edges across 243 

all phenotypes (genetic variants)6. The unweighted degree of the  genetic 244 

variant and the  phenotype are defined as  and 245 

, respectively. The weighted degree is reflecting the 246 
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strength of the associations of edges, which are defined as  and 247 

. 248 

 Kullback–Leibler (KL) divergence. We define KL divergences30; 31 of degree 249 

of genetic variant and phenotypes between  and  to determine the 250 

diversities between a bipartite GPN and a random bipartite network, which are 251 

given by  252 

 253 

where  and  are the min-max standardized degree (either weighted or 254 

unweighted) which is defined as  255 

for the  genetic variant and  for 256 

the  phenotype.  and  are used to measure 257 

the difference between degree distributions of genetic variants and phenotypes in 258 

 and .  will equal 0 if the degree of genetic variants 259 

are the same in  and ; it will be negative if most degrees in  260 

are greater than those in ; and it will be positive if most degrees in   are 261 

greater than those in .  has same properties. We also 262 
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define a global KL divergence of a bipartite network as 263 

. 264 

Without loss of the generality, the optimal threshold  should be selected 265 

by maximizing  and . Meanwhile, considering 266 

the equivalent numbers and weights of edges in the original network and the 267 

corresponding random network, the greater the difference in network topologies 268 

between  and , the more information  includes. To investigate 269 

the stability of the diversities,  and , we 270 

construct 1,000 random networks for each . We thus can estimate the 271 

standard error of KL divergence and then obtain the stability by computing their 272 

95% confidence intervals (CIs). We also evaluate two other network properties, 273 

degree entropy and cross entropy of degree (details in Text S1). 274 

Network topology annotations 275 

For both denser and sparse representations of GPN, we constructed two 276 

probabilistic annotations based on the following network centralities. The 277 

centralities of a bipartite network are measuring the importance of genetic variants 278 

(phenotypes) across phenotypes (genetic variants) in the network. To simplify the 279 

notation, we use  to denote the adjacency matrix of GPN, which can be 280 

constructed by either a denser or sparse representation of GPN. 281 

Degree centrality 282 
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In the context of bipartite GPN, a genetic variant with a high degree across 283 

phenotypes is more likely to be pleiotropic, owing to its strong connections with 284 

multiple phenotypes. Similarly, a phenotype with a high degree across genetic 285 

variants is more likely to have higher heritability and be associated with polygenic 286 

inheritance, as it is connected to multiple genetic variants or has stronger 287 

association evidence. The weighted degree of the  genetic variant or the  288 

phenotype is defined as  289 

 or . 290 

Approximate betweenness centrality  291 

In a bipartite GPN, we define an approximate betweenness centrality of a genetic 292 

variant which can be used to measure its importance in connecting different 293 

phenotypes. A genetic variant with high approximate betweenness can be 294 

considered an important connector between phenotypes. The approximate 295 

betweenness centrality of the  genetic variant is defined as 296 

 297 

where  is the number of shortest paths between the  phenotype and the  298 

phenotype and  is the number of the shortest path between the  299 

phenotype and the  phenotype that pass through the  genetic variant. Note 300 

that there are no direct edges between phenotypes in the bipartite GPN. Therefore, 301 

the shortest path  is the number of genetic variants that are associated with 302 
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both the  phenotype and the  phenotype; the shortest path  only takes 303 

the value 0 or 1, where  if the  genetic variant is associated with both 304 

the  phenotype and the  phenotype, otherwise, . 305 

 306 

Heritability enrichment of network annotations 307 

Note that the network topology annotations of genetic variants quantify the 308 

possibility of a genetic variant being a pleiotropic variant. To study whether these 309 

annotations are enriched for disease heritability of the highly correlated phenotype, 310 

we first perform a leave-one-phenotype-out (LOPO) approach to construct the 311 

network topology annotations. Then, we use stratified LD score regression (S-312 

LDSC) to estimate the enrichment and the standardized effect size of the 313 

annotation32; 33. 314 

Leave-one-phenotype-out (LOPO) 315 

We consider  highly genetically correlated phenotypes. To simplify the notation, 316 

we use  to denote the adjacency matrix of GPN by removing the  phenotype. 317 

 can be constructed by either denser or one of the sparse representations. 318 

Then, we use one of the network topology annotations based on the degree 319 

centrality and approximate centrality to assign the numeric value to each genetic 320 

variant for the evaluation of the  phenotype. Assigning a network topology 321 

annotation to each genetic variant is a way to quantify its potential for pleiotropy. 322 

The LOPO approach can assist in determining whether genetic variants have 323 
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highly evidenced impacts on other  phenotypes through pleiotropy and can 324 

also contribute to estimate the heritability of the  phenotype.  325 

Stratified LD score regression (S-LDSC) 326 

S-LDSC is a method to assess the contribution of the annotation to disease 327 

heritability32; 33 conditional on other functional annotations. We use 86 functional 328 

annotations in the baseline-LD model (v2.1)34, including regulatory annotations 329 

(e.g., promoter, enhancer, histone marks, TF binding sites), LD-related 330 

annotations, et al. In this section, we omit the index  to simplify the notations. Let 331 

 be the annotation value of the  genetic variant for the annotation, where 332 

 and . In particular,  represent the network topology 333 

annotation of the  genetic variant constructed by the LOPO approach.  334 

 S-LDSC assumes that the per-SNP heritability or variance of the effect size 335 

of each genetic variant is given by  where  is the per-SNP 336 

contribution of the annotation to disease heritability. We can estimate  using 337 

S-LDSC, 338 

 339 

where  is the chi-square test statistic for testing the association between the 340 

 genetic variant and a phenotype in GWAS summary data,  341 

is the LD score of the  genetic variant to the  annotation, and  is the 342 

genotypic correlation between the  and the  genetic variants.  343 
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We only focus on the network topology annotation . As demonstrated by 344 

Finucane et al.35,  will be positive if the network annotation increases per-SNP 345 

heritability, accounting for all other factors. Let  be the standard deviation 346 

of the network topology annotation. The standardized effect size  is defined by 347 

 348 

Note that  is defined as the proportionate change in per-SNP heritability 349 

associated with a one-standard-deviation increase in the network topology 350 

annotation conditioning on all other annotations33. The standard error on the 351 

estimate of , , is computed using a block jackknife32. Then, we can 352 

compute the p-value to test if  by assuming .  353 

We also calculate the enrichment of the network topology annotation, which 354 

is defined as the proportion of the heritability explained by genetic variants in the 355 

annotation divided by the proportion of genetic variants in the annotation. 356 

 357 

where  is the estimated heritability and  is the heritability 358 

captured by the network annotation.  represents the network 359 

annotation enriched for the disease heritability. Same as , the significance for 360 

 is computed using a block jackknife32. The inclusion of the 86 361 
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functional annotations in the baseline-LD model can minimize the risk of bias in 362 

enrichment estimates and can also estimate the effect size  conditional on the 363 

known functional annotations32. 364 

Community detection methods 365 

Community detection methods are essential in comprehending the global and local 366 

structures of associations between genetic variants and phenotypes, and in 367 

shedding light on association connections that may not be easily visible in the 368 

network topology15. Calculating the projection of GPN onto phenotypes that are 369 

linked through shared genetic variants is a very important step in community 370 

detection. Let  be the one-mode projection of GPN, called 371 

Phenotype and Phenotype Network (PPN), where  denotes the set of edges 372 

between phenotypes in PPN. Denote  as an  adjacency matrix of 373 

PPN, where  is the weight of the edge between the  phenotype and the  374 

phenotype. In this study, we perform community detection methods to partition  375 

phenotypes into  disjoint network modules based on the adjacency matrix of 376 

PPN.  377 

Community detection method for the denser representation of GPN 378 

For the denser representation of GPN, one straightforward way to define the 379 

adjacency matrix  is to use the correlation of , 7. The elements of 380 

 can be both positive and negative, implying that the PPN represented by the 381 

adjacency matrix of  is a signed network. Inspired by our previously proposed 382 
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modularity-based community detection method36, we introduce a community 383 

detection method for the signed network in this study. Let  and 384 

 be adjacency matrices of the positive and negative weights, 385 

respectively, where  and  such that 386 

. First, we assume  phenotypes can be divided into  network 387 

modules using a hierarchical clustering method with similarity matrix  for 388 

. Let  be a  connectivity matrix, where  if the 389 

 phenotype and the  phenotype are in the same network module, otherwise, 390 

. Then, we calculate the modularity of network with only positive weights, 391 

, as  for each , where  and 392 

 represent the degree of the  phenotype and overall degree of 393 

. Similarly, we calculate the modularity of  as . Therefore, we define the 394 

modularity for the signed network as . Note that 395 

a network’s modularity value indicates the density of connections within network 396 

modules and sparsity of connections between phenotypes in different models15. 397 

Then, we determine the optimal number of network modules as 398 

. 399 

Community detection method for the sparse representation of GPN 400 
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To eliminate the biases in projections caused by a large number of genetic variants 401 

that are unlikely to exert their influence across the whole genome11, we also 402 

provide a weighted projection approach by only focusing on the shared genetic 403 

variants between two phenotypes in the (well-defined) sparse representations of 404 

GPN, . Let  be the set of genetic variants that are connected with the  405 

phenotype and the  phenotype. We define  and 406 

, where  and  are the weighted degree of the 407 

 and the  phenotypes, respectively. More specifically,  is a proportion of 408 

degree of the  phenotype explained by the shared associations between the  409 

and the  phenotypes; similarly,  is a proportion of degree of the  410 

phenotype explained by the shared associations between the  and the  411 

phenotypes. Therefore,  indicates that the projected PPN is a directed 412 

network. If , the shared associations between the  and the  413 

phenotypes are more important to the  phenotype than the  phenotype. In 414 

particular,  if and only if the  phenotype only links with the genetic variants 415 

in . The modularity is easily generalized to both weighted and directed network, 416 

where the modularity based on LinkRank is given by37; 38: 417 

. Let  be the out-degree of the  418 

phenotype for a directed PPN. Then,  is the PageRank vector indicating 419 

the probability of a phenotype being visited by a random surfer. 420 
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 is the Google Matrix, where  is the damping 421 

parameter for PageRank37 (with probability  random surfer jumps to a random 422 

phenotype) and  is an indicator of dangling phenotype. Same as 423 

the community detection method for the denser representation of GPN, we also 424 

determine the optimal number of network modules as . 425 

Phenome-wide association studies (PheWAS) 426 

The community detection method for PPN based on  has potential applications 427 

in PheWAS and multiple phenotype association studies. We extend our discussion 428 

to include the application of GPN in PheWAS. By using the community detection 429 

method of PPN, we can obtain a priori grouping of phenotypes and then jointly test 430 

the association between genetic variant and multiple phenotypes in each network 431 

module to discover the cross-phenotype associations and pleiotropy. 432 

 Assume that  is the total number of phenotypes in the whole phenome, 433 

which can be partitioned into  disjoint network modules by community detection. 434 

Let , where  is the number of phenotypes in the  network 435 

module. We apply four commonly used GWAS summary-based multiple 436 

phenotype association tests to identify the association between genetic variant and 437 

phenotypes in the  network module, including minP39, ACAT40, MTAG41, 438 

SHom42 (details in Text S2). Then, we refine our previous approach to evaluate 439 

FDR by thresholding the p-values obtained from the multiple phenotype 440 

association tests43. Let  be a sequence of p-values for testing the 441 
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association between phenotypes in each of the network modules and the  442 

genetic variant. For a given nominal FDR level , the optimal threshold for 443 

the  genetic variant is given by  444 

 445 

where  is the number of network modules under the null hypothesis that 446 

phenotypes in the network module and the  genetic variant have no 447 

association. We use  , where  is the number of 448 

identified network modules that are associated with the  genetic variant based 449 

on the Bonferroni Correction. 450 

Empirical GWAS summary datasets 451 

In our analyses, we consider two publicly available GWAS summary datasets to 452 

evaluate the performance of constructed bipartite GPN, heritability enrichment of 453 

network annotations, community detection methods, and the applications of 454 

PheWAS. 455 

GWAS summary statistics for correlated phenotypes 456 

To perform the heritability enrichment analysis of network annotations, we obtain 457 

publicly available GWAS summary data for 12 highly genetically correlated 458 

phenotypes in individuals of European ancestry, including attention 459 

deficit/hyperactivity disorder (ADHD), smoking initiation (SmkInit), autism 460 

spectrum disorder (ASD), neuroticism (NSM), anxiety disorder (AXD), major 461 
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depressive disorder (MDD), obsessive-compulsive disorder (OCD), anorexia 462 

nervosa (AN), bipolar disorder (BD), schizophrenia (SCZ), educational attainment 463 

(EA), and cognitive performance (CP). The details of GWAS summary data for the 464 

12 phenotypes are summarized in Table S1. As demonstrated by Zhang et al.44,  465 

the global genetic correlations among the 12 phenotypes estimated by their 466 

proposed SUPERGNOVA are ranging from -0.41 to 0.69. 51 out of 66 pairs of 467 

phenotypes have significant non-zero global genetic correlations (right upper 468 

triangle of Table S2). Meanwhile, they also reported the proportions of correlated 469 

regions between two phenotypes that are ranging from 0.11% to 93%. 46 pairs of 470 

phenotypes contain at least one significantly correlated region after Bonferroni 471 

correction (left lower triangle of Table S2). We only include the genetic variants in 472 

22 autosomes. 473 

GWAS summary statistics in the UK Biobank 474 

The UK Biobank is a population-based cohort study with a wide variety of genetic 475 

and phenotypic information45. It recently released GWAS data on ~ 500K 476 

individuals throughout the United Kingdom46; 47. For our study, we obtain the 477 

publicly available GWAS summary data for 633 EHR-derived phenotypes with 478 

main ICD10 diagnoses from Neale lab (Data availability). These GWAS summary 479 

data are calculated based on score tests on ~337,000 unrelated individuals of 480 

British ancestry. We utilize the LD score regression (LDSC)48 on each of these 633 481 

phenotypes, excluding 45 phenotypes from our analyses since the heritability 482 

estimators for them are out of bounds. There are 588 phenotypes across 483 

1,096,648 genetic variants in autosomes in our analyses.  484 
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 485 

Results 486 

Construction of GPNs for 12 genetically correlated phenotypes 487 

We construct three bipartite GPNs for 12 genetically correlated phenotypes listed 488 

in Table S1, including a denser representation, an arbitrary sparse representation, 489 

and a well-defined representation. There are a total of 17,585,432 unique genetic 490 

variants from 12 GWAS summary datasets. The global genetic correlations and 491 

proportions of correlated regions among the 12 phenotypes estimated by 492 

SUPERGNOVA44 are shown in Table S2. We also perform LDSC48 to estimate 493 

phenotypic correlation (right upper triangle of Table S3) and genetic correlation 494 

(left lower triangle of Table S3) among the 12 phenotypes. Among a total of 66 495 

pairs of phenotypes, 45 pairs of phenotypes have significant non-zero genetic 496 

correlations ( ). In particular, MDD has significant 497 

genetic correlations with all of the other 11 phenotypes, NSM has significant 498 

genetic correlations with 10 phenotypes except for BD, and SCZ and EA have 499 

significant genetic correlations with 10 other phenotypes but do not have significant 500 

genetic correlations with each other. 501 

The denser representation of GPN is constructed without using any 502 

thresholds. Since the 12 GWAS summary datasets contain different numbers of 503 

the 17,585,432 unique genetic variants, the connectance of the denser 504 

representation of GPN is 0.5123 (Figure S1(a)). The well-defined sparse 505 

representation of GPN is constructed by comparing the network properties with the 506 

4p-values 0.05 66 7.58 10-< = ´
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corresponding random networks. Since we have only 12 phenotypes in this 507 

analysis, we only consider the network properties for genetic variants of the 508 

constructed GPN and the corresponding random networks. For each , we 509 

generate 1,000 corresponding random networks. Figure 2 (a) shows the 510 

comparisons of the KL divergence for genetic variants across 1,000 random 511 

networks. The KL divergence increases from 0 to a specific value of the threshold 512 

and then decreases from that value to 1, indicating that the difference between the 513 

original and random network reaches the maximum at the specific value. We also 514 

calculate the cross entropy of the weighted degree of genetic variants compared 515 

to the corresponding random network (Figure 2 (b)). 516 

Note that the weighted degree of genetic variants in a corresponding 517 

random network becomes more different than the original one if the original 518 

network retains the key information about the interactions between genetic 519 

variants27. The network properties, KL divergence and cross entropy, will reach 520 

the maximum value at the most informative network. In our analysis, we prioritize 521 

choosing the optimal threshold with respect to KL divergence and then check the 522 

cross entropy and weighted degree entropy at that optimal threshold. The 523 

maximum mean of KL divergence equals  at , where the mean of 524 

cross entropy equals a larger value ( ) even though it does not reach the 525 

maximum value. Therefore, we constructed the well-defined sparse representation 526 

of GPN with . This optimal threshold is much larger than the significant 527 

level for the association testing (e.g.,  for controlling FDR at the nominal 528 

level of 0.05). The optimal threshold in the construction of GPN does not represent 529 
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the significant associations between genetic variants and phenotypes. It is only 530 

used to ensure that the constructed GPN is more informative than a random 531 

network.  532 

As a comparison, we also construct an arbitrary sparse representation of 533 

GPN by using the threshold . Figure 2(c) shows the weighted degree 534 

distribution of genetic variants for three GPNs, denser representation ( ), well-535 

defined sparse representation ( ), and an arbitrary threshold sparse 536 

representation ( ). We observe that the degree distributions of all three 537 

networks follow the power law with different scale parameters , indicating that a 538 

small number of genetic variants have a much larger number of connections than 539 

the majority of genetic variants. In particular, the degree of genetic variants in the 540 

denser representation of GPN is greater than those in a sparser GPN, resulting in 541 

the scale parameter increases with increasing the threshold .  542 

We also calculate the network properties of the unweighted GPNs by 543 

comparing them with the corresponding random networks (Figure S2). 544 

Furthermore, the adjacency matrix of the projected PPN, can be considered as 545 

the phenotypic correlation among 12 phenotypes based on the shared genetic 546 

architecture. Figure S3 shows the comparisons of the adjacency matrix of PPN 547 

constructed by the denser and well-defined sparse representations of GPN with 548 

the genetic correlation matrix estimated by SUPERGNOVA44 (Table S2) and 549 

LDSC48 (Table S3). 550 
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 551 
Figure 2. Network properties of the weighted bipartite GPNs for 12 genetically 552 

correlated phenotypes. (a) KL divergence for genetic variants. The blue line is the 553 

mean of KL divergencies across 1,000 random network comparisons. The boxplots 554 

show the scaled distributions of the KL divergence for each threshold. (b) Cross 555 

entropy for genetic variants. Blue lines are the means of cross entropy across 556 

1,000 random network comparisons. The boxplot shows the scaled distribution of 557 

the cross entropy for each threshold. (c) Plot of the weighted degree distribution of 558 

genetic variants for three GPNs on the log-log scale, denser representation (559 

), well-defined sparse representation ( ), and an arbitrary threshold sparse 560 

representation ( ).  561 

 562 

Heritability enrichment analysis of network annotations 563 

For each of the three bipartite GPNs for the 12 phenotypes, we perform S-LDSC 564 

along with LOPO to evaluate whether the network topology annotations are 565 

enriched for disease heritability. We consider both degree centrality and 566 

betweenness centrality of genetic variants, conditioning on 86 functional 567 

annotations in the baseline-LD model (v2.1)34. These 86 existing functional 568 
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annotations have been demonstrated to be highly informative by capturing 569 

functionality and LD-related features, thus, we evaluate the added value of our 570 

network topology annotations in capturing disease heritability, contributed by the 571 

pleiotropic variants with other genetically correlated phenotypes.  572 

Table 1 shows the heritability enrichment analysis results for degree 573 

centrality calculated from denser, arbitrary sparse, and well-defined sparse 574 

representations of GPN, respectively. From the LDSC results (Table S3), MDD 575 

has significant non-zero genetic correlations with all other 11 phenotypes. Table 1 576 

shows that the degree centrality annotation is significantly enriched for the 577 

heritability of phenotype MDD based on all of the three constructed GPNs (578 

). Specifically, the network topology annotation of each 579 

genetic variant quantifies its possibility for pleiotropy among other correlated 580 

phenotypes. After we use the LOPO approach to construct the network 581 

annotations of MDD, the significance enrichment indicates that the network 582 

annotation can contribute more information to disease heritability if it is computed 583 

based on other highly genetically correlated phenotypes. In particular, even though 584 

the arbitrary sparse representation of GPN ( ) contains less information than 585 

the denser and well-defined GPN, the degree centrality annotation is still 586 

significantly enriched in heritability of MDD ( ) conditioned on 587 

the 86 functional annotations. Meanwhile, the degree annotation is also 588 

significantly enriched in heritability of CP ( ) and SCZ (589 

) for the arbitrary sparse representation of GPN. SCZ has 590 

significant non-zero genetic correlations with 9 phenotypes except for EA and CP 591 
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(Table S3); CP has significant proportions of correlated regions with 9 phenotypes 592 

in which there are over 15% of correlated regions with 8 phenotypes (Table S2). 593 

The network annotation based on degree centrality obtained by the denser 594 

representation of a bipartite GPN includes the complete information for explaining 595 

the associations between phenotypes and genetic variants. It is significantly 596 

enriched to disease heritability of 11 out of 12 phenotypes as expected, except for 597 

AXD, with enrichment estimates ranging from 1.4457 (OCD with ) 598 

to 2.2894 (ASD with ). We identify the most significant 599 

enrichment of network annotations based on degree centrality for CP (600 

 with ) and EA (  with 601 

).  These two phenotypes have a significant proportion of 602 

correlated regions, 93%, estimated by SUPERGNOVA44. Figures S4(a) and S4(b) 603 

show the QQ-plot of EA versus CP based on the weight of the denser and the well-604 

defined sparse representations of GPN. Most of the genetic variants have similar 605 

weights for both EA and CP, lying in the diagonal line, but there exist some genetic 606 

variants that have the largest weights for only one phenotype. The same 607 

relationship between EA and CP is shown in the marginal associations from GWAS 608 

summary datasets (Figures S4(c) and Figure S4(d)). 609 

The network topology annotations obtained by the well-defined sparse 610 

representation of GPN ( ) perform similarly on the heritability enrichment 611 

compared to the denser representation of GPN. Even though some information is 612 

excluded from the well-defined GPN, the annotations obtained by the well-defined 613 

p-value 0.0016=

24p-value 8.69 10= ´

Enrichment 2.2026= 54p-value 6.33 10-= ´ Enrichment 2.0406=

52p-value 1.14 10-= ´

0.45t =
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GPN contribute similar effects to disease heritability. Table 1 and Table S4 show 614 

that the annotations from both denser and well-defined sparse representations of 615 

GPN can significantly enrich disease heritability of the same phenotypes. 616 

However, the network topology annotations obtained by the arbitrary sparse 617 

representation of GPN ( ) are not enriched to most disease heritability. We 618 

can conclude that a more informative network can be used to understand 619 

heritability rather than an arbitrary one with a smaller threshold. For example, if we 620 

use the significance level of the associations (e.g.,  or ) to construct 621 

a GPN, it may lose more information and key connections even though its edges 622 

represent the significant associations between genetic variants and phenotypes. 623 

Table 1. Heritability enrichment analyses of network topology annotation (degree 624 

centrality) based on denser and sparse representations of bipartite GPN for each 625 

of the 12 phenotypes.  626 

Trait 
Denser Sparse (𝝉 = 𝟎. 𝟒𝟓) Sparse (𝝉 = 𝟎. 𝟏) 

Enrichment 
(Standard error) 
p-value 

Effect 𝜏∗ 
(𝑠𝑒(𝜏∗)) 
z-score 

Enrichment 
(Standard error) 
p-value 

Effect 𝜏∗ 
(𝑠𝑒(𝜏∗)) 
z-score 

Enrichment 
(Standard error) 
p-value 

Effect 𝜏∗ 
(𝑠𝑒(𝜏∗)) 
z-score 

ADHD 
2.2175 
(0.1697) 
8.26e-24 

3.5434 
(0.3247) 
10.8870 

3.3012 
(0.3209) 
8.49e-22 

3.5192 
(0.3423) 
10.2797 

3.4734 
(0.9173) 
0.0072 

2.6504 
(0.9882) 
2.6820 

AN 
1.7796 
(0.1097) 
4.31e-21 

1.5274 
(0.1694) 
9.0145 

2.5216 
(0.2174) 
3.73e-19 

1.5866 
(0.1823) 
8.7030 

2.5594 
(0.9810) 
0.1119 

1.1405 
(0.7423) 
1.5364 

ASD 
2.2894 
(0.2640) 
8.69e-24 

2.2771 
(0.2373) 
9.5973 

3.4316 
(0.4836) 
6.52e-21 

2.3124 
(0.2580) 
8.9614 

6.1025 
(1.9961) 
0.0118 

3.5573 
(1.4359) 
2.4773 

AXD 
1.5678 
(0.5801) 
0.0754 

0.2486 
(0.1613) 
1.5382 

2.1892 
(1.1815) 
0.0653 

0.2913 
(0.1703) 
1.7102 

5.6798 
(5.0946) 
0.2467 

0.7908 
(0.6693) 
1.1816 

BD 
2.0745 
(0.1184) 
7.61e-31 

3.8595 
(0.3194) 
12.0837 

3.2647 
(0.2417) 
1.25e-30 

4.3352 
(0.3547) 
12.2213 

2.9583 
(0.7146) 
0.0043 

2.5911 
(0.9309) 
2.7835 

CP 
2.2026 
(0.0562) 
6.33e-54 

3.4031 
(0.1680) 
20.2517 

3.9373 
(0.1260) 
2.63e-55 

4.1757 
(0.1972) 
21.0983 

4.6075 
(0.7325) 
2.76e-06 

3.3237 
(0.6999) 
4.7485 

EA 
2.0406 
(0.0459) 
1.14e-52 

1.9705 
(0.1001) 
19.5241 

3.7963 
(0.1204) 
1.24e-50 

2.4471 
(0.1267) 
19.3187 

3.5526 
(0.8799) 
0.0045 

1.2735 
(0.4486) 
2.8389 

0.1t =

0.1t = 0.05t =
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MDD 
1.9550 
(0.0715) 
4.40e-32 

0.7342 
(0.0580) 
12.6561 

3.0106 
(0.1537) 
1.19e-29 

0.7761 
(0.0615) 
12.1223 

3.6246 
(0.6172) 
2.79e-05 

0.6783 
(0.1609) 
4.2153 

NSM 
1.8706 
(0.1088) 
1.06e-19 

1.0423 
(0.1147) 
9.0888 

2.8629 
(0.2225) 
9.01e-20 

1.1485 
(0.1243) 
9.2426 

4.1886 
(1.0518) 
0.0097 

1.3055 
(0.5086) 
2.5669 

OCD 
1.4457 
(0.2218) 
0.0016 

1.3711 
(0.5976) 
2.2942 

1.8569 
(0.4276) 
0.0022 

1.4454 
(0.6231) 
2.3197 

0.6951 
(2.1090) 
0.8867 

-0.5192 
(3.1212) 
-0.1663 

SCZ 
1.9353 
(0.0668) 
2.65e-36 

5.4211 
(0.3765) 
14.3994 

3.0742 
(0.1512) 
1.38e-33 

5.6948 
(0.4217) 
13.5116 

3.2212 
(0.7209) 
0.0021 

4.0283 
(1.3343) 
3.0190 

SmkInit 
1.6750 
(0.0918) 
9.76e-21 

0.5857 
(0.0675) 
8.6809 

2.3947 
(0.1866) 
8.62e-20 

0.6398 
(0.0731) 
8.5610 

2.1556 
(0.8704) 
0.1839 

0.3691 
(0.2839) 
1.2888 

Notes: The estimated effect size and its estimated standard error, 𝜏∗ and 𝑠𝑒(𝜏∗), are scaled by 627 
dividing 10"#. Z-score of the effect size is reported to test the null hypothesis that either 𝜏 ≤ 0 (one-628 
sided) or 𝜏 = 0 (two-sided). P-value of enrichment is reported to test the null hypothesis that 629 
𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 > 1. The bold-faced p-values indicate the annotation significantly enriched in the 630 
disease heritability after accounting for multiple testing (p-value< 0.05 12⁄ ≈ 0.0041). 631 

 632 

However, the network annotation based on approximate betweenness 633 

centrality performs differently on the heritability enrichment analysis than the 634 

annotation based on degree centrality. Table S4 shows the heritability enrichment 635 

analysis results for betweenness centrality calculated from denser, arbitrary 636 

sparse, and well-defined sparse representations of GPN, respectively. We observe 637 

that the betweenness centrality calculated by the denser representation of GPN 638 

significantly enriches the disease heritability of only seven phenotypes, whereas 639 

the annotation calculated by the well-defined GPN can significantly enrich the 640 

heritability of 10 phenotypes. The strength of the associations between genetic 641 

variants and phenotypes is not considered in the betweenness centrality and the 642 

denser representation of GPN includes all edges. Therefore, the betweenness 643 

centrality of GPN is not an important feature that can be considered in the 644 

heritability enrichment analysis. Alternatively, it is an important network property 645 

for the sparse representation of GPN since only the edges with strong evidence of 646 
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associations are included in the GPN. A genetic variant with high approximate 647 

betweenness can be considered an important connector between phenotypes. 648 

Therefore, the network annotations based on the approximate betweenness 649 

centrality calculated from the well-defined ( ) and the arbitrary ( ) 650 

sparse representation of GPN are significantly enriched to 10 phenotypes’ 651 

heritability. Meanwhile, the network annotation calculated by a well-defined GPN 652 

has stronger evidence than that calculated by the arbitrary one. 653 

According to heritability enrichment results, we observe that network 654 

annotations are not enriched to the disease heritability of AXD and OCD. Figure 655 

S5 shows the heatmap of edge weights in the well-defined sparse representation 656 

of GPN for the top 100 and the top 1000 genetic variants with the highest degree 657 

of centrality, respectively. We observe that these top genetic variants have smaller 658 

weights on AXD and OCD, which means that the genetic variants with the highest 659 

degree of centrality are not associated with AXD and OCD. Therefore, the network 660 

annotation is not enriched to their heritability. In particular, there are no edges 661 

between OCD and genetic variants if the threshold is smaller than 0.4. 662 

Construction of GPNs for 588 EHR-derived phenotypes in the UK Biobank 663 

For a total of 1,096,648 genetic variants and 588 EHR-derived phenotypes with 664 

main ICD10 diagnoses after preprocessing, we construct two bipartite GPNs 665 

including a denser representation and the well-defined sparse representation. 666 

Different from the previous 12 GWAS summary datasets obtained from different 667 

studies, GWAS summary datasets of these 588 phenotypes are calculated based 668 

on score tests on the same ~337,000 unrelated individuals of British ancestry. 669 

0.45t = 0.1t =
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Therefore, the connectance of the denser representation of GPN equals 1, that is, 670 

all genetic variants link with all phenotypes with strength of the associations 671 

(Figure S1(b)).  672 

We consider the network properties for both genetic variants and 673 

phenotypes of constructed GPN and the corresponding random networks. For 674 

each , we generate 1,000 corresponding random networks. Figures 3(a) 675 

and 3(b) show the KL divergence for genetic variants and phenotypes across 676 

1,000 random network comparisons, respectively. The KL divergence increases 677 

from 0 to a specific value of the threshold and then decreases from that value to 678 

1, indicating that the difference between the original and random network reaches 679 

the maximum at the specific value. We also calculate the cross entropy and degree 680 

entropy of the weighted degree of genetic variants compared to the corresponding 681 

random network (Figure S6). The maximum mean of KL divergence equals 682 

 at , where the mean of cross entropy equals  with the 683 

largest standard error (17.08) compared with other thresholds. Therefore, we 684 

constructed the well-defined sparse representation of GPN with . We also 685 

compare degree distributions of the well-defined network with a denser 686 

representation ( ) and two arbitrary threshold sparse representations (687 

 and ) of GPN. Similar to the constructed GPN of 12 genetically 688 

correlated phenotypes, the degree distributions of all four networks follow the 689 

power law with different scale parameters , indicating that a small number of 690 

genetic variants have a much larger number of connections than the majority of 691 

genetic variants. In particular, the degree of genetic variants in the denser 692 

( )0,1t Î

81.14 10´ 0.6t = 43.90 10´

0.6t =

0.8t =

0.2t = 0.4t =

g

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.14.23297400doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.14.23297400


 

representation of GPN is greater than those in the sparser GPNs, resulting in the 693 

scale parameter increases with increasing the threshold . Meanwhile, we 694 

calculate the network properties of the unweighted GPNs by comparing them with 695 

the corresponding random networks (Figure S7).  696 

We calculate three network topology annotations of genetic variants in the 697 

constructed GPNs with , including weighted degree centrality, 698 

unweighted degree centrality, and approximate betweenness centrality (Figure S8 699 

and S9). Figure S8 illustrates the relationship between the approximate 700 

betweenness centrality of genetic variants and the weighted degree centrality of 701 

genetic variants. The top five genetic variants with the highest degree and 702 

centrality are marked, respectively. These variants have mostly been associated 703 

with multiple phenotypes in the GWAS Catalog, and they overlap considerably 704 

under different parameter . Using the optimal parameter ( ), we have 705 

summarized the number of significantly associated phenotypes in Table S5. 706 

Additionally, the top five genetic variants with the highest weighted degree 707 

centrality are almost entirely located in the same LD blocks. However, the top five 708 

genetic variants with the highest approximate betweenness centrality are 709 

associated with multiple phenotypes and display a pleiotropic effect among them. 710 

Similarly, we also compare the relationship between the approximate 711 

betweenness centrality of genetic variants and the unweighted degree centrality of 712 

genetic variants (Figure S9). Table S6 shows the top five genetic variants with 713 

highest unweighted degree and approximate centralities.  714 

t

0.2,0.4,0.6,0.8t =

t 0.6t =
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 715 

Figure 3. Network properties of the bipartite GPNs for 588 EHR-derived 716 

phenotypes in the UK Biobanks. (a) and (b) KL divergence for genetic variants and 717 

phenotypes. The blue line is the mean of KL divergencies across 1,000 random 718 

network comparisons. The boxplots show the scaled distribution of KL divergence 719 

for each threshold. (c) and (d) Weighted degree distribution of genetic variants and 720 

phenotypes for four GPNs on log-log scale, denser representation ( ), well-721 

defined sparse representation ( ), and two arbitrary threshold sparse 722 

representations (  and ).  723 

Community detection for phenotypes 724 

For the denser representation of GPN, we construct the one-mode projected PPN 725 

by taking the correlation of the adjacency matrix of GPN. After applying the 726 

modularity-based community detection method to the signed PPN, we partition 588 727 

0.8t =

0.6t =

0.2t = 0.4t =
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EHR-derived phenotypes into 132 disjoint network modules. The number of 728 

phenotypes in each network module ranges from 1 to 87. For the well-defined 729 

sparse representation of GPN, we also construct a directed PPN by only focusing 730 

on the shared genetic variants between two phenotypes. In the sparse 731 

representation of GPN, phenotypes link with multiple genetic variants, but different 732 

phenotypes may not share a link with the same genetic variants. That is, we define 733 

the adjacency matrix for the  phenotype as  for all  if the  734 

phenotype does not share the same genetic variants with other phenotypes. 735 

Therefore, we first isolate 125 phenotypes without sharing any genetic variants 736 

with other phenotypes as 125 network modules for a single phenotype. Then, we 737 

partition the remaining 463 phenotypes into 71 network modules using the 738 

community detection method introduced in method. The number of phenotypes in 739 

the 71 network modules ranges from 2 to 37, and there are a total of 196 network 740 

modules. For comparison, we also apply our proposed community detection 741 

method based on the denser representation of GPN to LDSC phenotypic 742 

correlation. 588 phenotypes are divided into 114 categories with the number of 743 

phenotypes ranging from 2 to 82.  744 

 745 

PheWAS for 588 EHR-derived phenotypes in the UK Biobank 746 

In PheWAS, a priori grouping (network module) of phenotypes in whole phenome 747 

can be obtained by the community detection of PPN. For each network module, 748 

we jointly test the phenotypes within this module and a genetic variant to discover 749 

the cross-phenotype associations and potential pleiotropy. In this study, we 750 

thk 0klW = 1, ,l K=  thk
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perform four most commonly used GWAS summary-based multiple phenotype 751 

association tests to identify the association between phenotype in each network 752 

module and each of genetic variants, including minP39, ACAT40, MTAG41, and 753 

SHom42 (details in Text S2). Then, we use the refined FDR controlling approach 754 

to evaluate FDR by thresholding the p-values obtained from the multiple phenotype 755 

association tests.  756 

Simulation studies 757 

We first conduct extensive simulation studies to evaluate whether these four 758 

multiple phenotype association tests used in our study can well-control FDR. We 759 

consider two simulation settings: 500 phenotypes with 50 phenotypic categories 760 

and 1,000 phenotypes with 100 phenotypic categories (details in Text S3). We 761 

assume that only the phenotypes within the same phenotypic category are 762 

correlated with each other. Similar to Lee et al.49, we consider two scenarios of 763 

correlations among phenotypes within the same category: 1) same correlation 764 

between each pair of phenotypes (SAME); 2) different correlation between each 765 

pair of phenotypes that is generated by using an autoregressive (AR(1)) model. 766 

Table S7 and Table S8 show the average FDR in the simulation studies for 500 767 

phenotypes and 1,000 phenotypes, respectively. FDR is evaluated using 10 768 

Monte-Carlo (MC) runs, equivalent to 1,000 replications at a nominal FDR level of 769 

5% (Text S3). The 95% confidence interval (CI) is (0.0365, 0.0635). Note that we 770 

directly generate z-scores instead of effect sizes of genetic variants on phenotypes 771 

without considering LD, therefore, we do not consider MTAG in our simulation 772 

studies. The correlations among phenotypes are estimated by the method 773 
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introduced in Kim et al.39. We observe that minP cannot control FDR in all 774 

scenarios but ACAT, and SHom can well control FDR as expected. 775 

PheWAS based on 165 UK Biobank level 1 categories  776 

As benchmarked categories, 588 EHR-derived phenotypes are grouped into 165 777 

UK Biobank level 1 categories defined in data-field 41202 778 

(https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=41202). The number of 779 

phenotypes in each category ranges from 1 to 20: there are 43 categories 780 

containing only one phenotype; 35 and 31 categories contain 2 and 3 phenotypes, 781 

respectively; only 7 categories contain more than 10 phenotypes. In our real data 782 

analyses, we only apply three multiple phenotype association tests (ACAT, SHom, 783 

and MTAG) to test the association between phenotypes in each category and each 784 

genetic variant. minP is not considered here since it cannot control FDR evaluated 785 

in our simulation studies. We use the commonly used genome-wide nominal FDR 786 

level . After applying our refined FDR controlling approach for the tests of 787 

each genetic variant, ACAT can identify 6,105 genetic variants associated with at 788 

least one category. We observe that most genetic variants are associated with only 789 

one category. SHom can identify 2,701 genetic variants and MTAG can identify 790 

2,980 genetic variants (Figure 4). 791 

PheWAS based on 114 phenotypic categories from LDSC 792 

As a comparison, there are 114 phenotypic categories of the 588 EHR-derived 793 

phenotypes detected from the phenotypic correlation estimated by LDSC. We also 794 

apply three multiple phenotype association tests to 114 categories. ACAT identifies 795 

6,205 genetic variants, SHom identifies 2,237 genetic variants, and MTAG 796 

85 10-´
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identifies 1,603 genetic variants. Compared with the association tests based on 797 

the phenotypic categories in the UK Biobank, ACAT based on the LDSC can 798 

identify all of the 6,105 genetic variants identified by ACAT based on the UK 799 

Biobank (Figure 4). Meanwhile, 100 genetic variants are uniquely identified by 800 

ACAT based on the LDSC. Figure S10 shows the heatmap of -log10(p-value) from 801 

GWAS summary datasets of these 100 genetic variants. We observe that all of 802 

these 100 genetic variants are significantly associated with at least one phenotype 803 

at the GWAS significance level . According to results from SHom and 804 

MTAG, tests based on the UK Biobank identify more genetic variants than the tests 805 

based on the LDSC. 806 

PheWAS based on 132 network modules from the denser representation of GPN  807 

Based on the denser representations of GPN, 588 EHR-derived phenotypes are 808 

partitioned into 132 disjoint network modules According to these 132 network 809 

modules, ACAT can identify 6,142 genetic variants associated with at least one 810 

network module and SHom can identify 6,139 genetic variants. In the application 811 

of MTAG, it is time-consuming and out of memory for one network module with 87 812 

phenotypes. Therefore, we perform MTAG on the other 131 network modules and 813 

MTAG identifies 6,220 genetic variants. Figure 4 shows the Venn plot for genetic 814 

variants identified by three multiple phenotype association tests based on different 815 

phenotypic categories and network modules. Based on the network modules 816 

detected from the denser representation of GPN, all three methods (ACAT, SHom, 817 

and MTAG) can identify ~6,000 genetic variants associated with at least one 818 

network module.  819 

85 10-´
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PheWAS based on 196 network modules from the well-defined representation of 820 

GPN 821 

Based on the well-defined representation of GPN, 588 EHR-derived phenotypes 822 

are partitioned into 196 network modules. According to the 196 network modules, 823 

ACAT can identify 6,060 genetic variants associated with at least one network 824 

module; SHom can identify 2,385 genetic variants; and MTAG can identify 1,934 825 

genetic variants. From ACAT results, 6,060 genetic variants are identified by ACAT 826 

based on at least two other grouping of phenotypes, even if it identifies a smaller 827 

number of genetic variants. According to results from SHom and MTAG, tests 828 

based on the network modules detected from well-defined GPN identify more 829 

genetic variants than the tests based on the LDSC and the UK Biobank, but they 830 

identify fewer genetic variants than the tests based on the network modules 831 

detected from denser GPN. 832 

 833 

Figure 4. Venn plots for genetic variants identified by three multiple phenotype 834 

association tests based on different phenotypic categories and network modules.  835 

 836 

Discussion 837 
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In this paper, we conduct a comprehensive analysis to build the GPNs, which can 838 

be a routine procedure in post-GWAS investigations. Owing to increasingly 839 

accessible to GWAS summary statistics, the construction of GPN only requires the 840 

marginal association evidence between each genetic variant and each phenotype 841 

in GWAS summary data instead of individual-level genotypes and phenotypes 842 

data. The denser representation of the bipartite GPN can be directly constructed 843 

by linking all genetic variants and phenotypes in GWAS summary datasets. 844 

Although a denser representation of bipartite GPN contains information on all 845 

pairwise associations between genetic variants and phenotypes, pruning the 846 

network is both biologically meaningful and computationally efficient11. However, 847 

the thresholding approach used to prune is significantly influenced by the network 848 

size (connectance). To address this issue, we propose to construct a well-defined 849 

GPN with a clear representation of genetic associations by comparing the network 850 

properties with a random network, including connectivity, centrality, and 851 

community structure. Our findings indicate that a well-defined network with an 852 

optimal threshold can preserve crucial information on the associations between 853 

genetic variants and phenotypes.  854 

Based on the construction of the denser and well-defined representation of 855 

bipartite GPNs, we further propose two network topology annotations based on the 856 

degree centrality and the approximate betweenness centrality. Both of the 857 

annotations can be used to quantify the possibility of pleiotropy for genetic variants. 858 

We highlight one of our significant discoveries that link pleiotropy and disease 859 

heritability through the utilization of heritability enrichment analysis using the 860 
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stratified LD score regression. We analyze 12 genetically correlated phenotypes 861 

to show that the genetic variants with high degree centrality and approximate 862 

betweenness centrality are enriched for disease heritability conditioning on known 863 

functional annotations from the baseline LD model. First, in the analyses of the 864 

degree centrality based on the denser and the well-defined GPNs, we identify 10 865 

phenotypes with significant heritability enrichment after using the LOPO approach. 866 

The significant enrichment indicates that the degree annotation can contribute 867 

more information to disease heritability if it is computed based on other highly 868 

genetically correlated phenotypes. We also observe that the denser GPN provides 869 

more information in the degree centrality as the degree centrality contains the 870 

strength of marginal association evidence. Second, we determine that network 871 

annotation based on the approximate betweenness centrality calculated from the 872 

well-defined GPN is strongly enriched for disease heritability. However, the 873 

disease heritability of some phenotypes is fully explained by annotations from the 874 

baseline-LD model in the analysis of the approximate betweenness centrality 875 

calculated from the denser GPN. 876 

Construction of the bipartite GPNs also has important implications for the 877 

PheWAS. In particular, detecting the network modules of phenotypes from the 878 

constructed GPN is essential in understanding the global and local structures of 879 

associations between genetic variants and phenotypes, and in shedding light on 880 

association connections that may not be easily visible in the network topology. The 881 

detected network modules can be used as a priori grouping of phenotypes in 882 

PheWAS, then jointly testing of multiple phenotypes in each network module and 883 
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one genetic variant can be performed to discover the cross-phenotype 884 

associations and pleiotropy. Significance thresholds for PheWAS are adjusted for 885 

multiple testing by applying the false discovery rate (FDR) control approach. First, 886 

we discover that the three multiple phenotype association tests (ACAT, SHom, and 887 

MTAG) applied in this study can well-control FDR as demonstrated by extensive 888 

simulation studies. Second, we analyze 633 EHR-derived phenotypes in the UK 889 

Biobank GWAS summary datasets. Based on the network modules detected from 890 

the denser representation of GPN, all three tests can identify more genetic variants 891 

associated with at least one network module (~6,000 genetic variants) compared 892 

with the tests based on the UK Biobank, LDSC, and well-defined GPN.  893 

There are some limitations to the work presented here. First, genetic effects 894 

can be heterogenous across phenotypes and studies based on different GWAS 895 

summary statistics50; 51 due to different sample sizes, genetic architectures, and 896 

quality of the genotyping and phenotyping data, et al. In our current analyses, we 897 

ignore the influence of different sample sizes for different GWAS summary 898 

statistics in the construction of GPN. However, larger sample sizes are typically 899 

associated with smaller standard errors and more precise effect size estimates, 900 

which can help to reduce bias and increase the stability of effect size estimates. 901 

To construct a GPN with stable evidence of the associations in the edges, we 902 

suggest that the sample sizes used to calculate the GWAS summary results in 903 

each study are sufficiently large (e.g., ). Second, we use the marginal 904 

association between each genetic variant and each phenotype to define the edge 905 

of GPN. The challenge in validating our proposed construction of GPNs is that 906 

10,000kN >
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there is no source of “ground truth” of GWAS. There may exist spurious 907 

associations between multiple genetic variants and a phenotype due to LD9. For 908 

example, a genetic variant in high LD with a true causal variant may be detected 909 

instead of the causal variant itself. However, several powerful fine-mapping and 910 

colocalization approaches have been developed to leverage information on LD to 911 

identify the putative causal variants in a specific genomic region52-54, which 912 

provides a great opportunity to construct a more informative GPN for future 913 

studies. Third, we do not consider the functional relationships between genetic 914 

variants and phenotypes. Filtering candidate (functional) regions based on the 915 

strength of  gene-based associations may reduce multiple testing burdens and 916 

consequently improve statistical power in the construction of GPN. For example, 917 

transcriptome-wide association studies can combine genetic and transcriptomic 918 

data in a specific tissue to identify functional variants and genomic regions, which 919 

provide insights into biological pathways55. 920 
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from the corresponding consortium websites reported in Zhang et al.44. 941 
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diagnoses can be found from Neale lab: 943 
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PLINK version 1.9 can be downloaded from https://www.cog-947 
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LDSC: the command line tool for estimating heritability and genetic correlation 949 

from GWAS summary statistics can be downloaded from 950 
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Cytoscape: an open-source software platform for visualizing complex networks 952 

which can be accessed via https://cytoscape.org/ 58. 953 
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