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Abstract: 
The BrainAGE method is used to estimate biological brain age using structural neuroimaging. 
However, the stability of the model across different scan parameters and races/ethnicities has not 
been thoroughly investigated. Estimated brain age was compared within- and across- MRI field 
strength and across voxel sizes. Estimated brain age gap (BAG) was compared across 
demographically matched groups of different self-reported races and ethnicities in ADNI and 
IMAS cohorts. Longitudinal ComBat was used to correct for potential scanner effects. The brain 
age method was stable within field strength, but less stable across different field strengths. The 
method was stable across voxel sizes. There was a significant difference in BAG between races, 
but not ethnicities. Correction procedures are suggested to eliminate variation across scanner 
field strength while maintaining accurate brain age estimation. Further studies are warranted to 
determine the factors contributing to racial differences in BAG.  
 
 
Keywords: BrainAGE, age estimation, MRI, Alzheimer’s Disease (AD), Mild Cognitive 
Impairment (MCI), biomarker, neurodegeneration, brain atrophy, cognitive decline, race, 
ethnicity, ComBat 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.05.23299222doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299222
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

1. Introduction 

Brain age estimation techniques have become popular over the last decade as potential 
biomarkers of individualized brain health and age-related disease severity or prediction [1-5]. 
The brain age algorithm uses a machine learning model, typically in the form of a regression, 
trained on structural magnetic resonance imaging (MRI) scans from a large group of healthy 
individuals from a wide age range to generate a typical pattern of brain aging [1]. The algorithm 
can then be applied on independent datasets to predict the brain age of individuals, and the 
deviation from their chronological age can be calculated, which is referred to as the brain age 
gap (BAG) [1]. 

Brain aging measures are specifically relevant in patients with Alzheimer’s disease and related 
dementias (ADRD) due to accelerated brain atrophy in these disorders and the relationship 
between brain atrophy and cognitive decline [6-11]. The brain age technique has been previously 
used to measure brain aging in cognitively normal (CN), mild cognitive impairment (MCI), and 
ADRD [7, 8, 12-19]. Results show that brain age techniques are a potential biomarker for 
detecting neuroanatomical brain changes that could facilitate early detection before the 
presentation of clinical AD symptoms [5, 8].  

Previous studies have uncovered some biases and limitations in the brain age method. Studies 
have shown that the brain age framework inherently underestimates the age of older individuals 
and overestimates the age of younger individuals, compared to their chronological age; corrected 
procedures are suggested [3, 20-27]. Studies have also provided evidence that the brain age 
model is stable within- and across- scanner field strength, reported using intraclass correlation 
coefficient (ICC) values as a measure of test-retest repeatability [2, 3, 12]. However, a linear 
offset for field strength has been observed [2, 12]. To date, there are no studies comparing 
stability across different scan voxel sizes, which has been noted as a limitation [3]. Another 
noted limitation of the brain age model is that majority of studies are conducted in primarily or 
exclusively non-Hispanic White race participants [1], although a few brain age studies have been 
conducted in East Asian populations [13, 21, 28]. To our knowledge, there are no studies 
comparing racial or ethnic groups using the brain age algorithm despite previous studies 
suggesting that evidence of racial, ethnic, or cultural differences are represented in brain 
structure [1, 29-36]. 

The overall aim of this study was to define ways to harmonize the brain age algorithm output in 
large datasets containing scans with different parameters and individuals from different racial 
and ethnic groups. Thus, we had two main goals. The first was to determine whether the brain 
age estimations are stable across different scanner/scan parameters, namely field strength and 
voxel size. To assess field strength, we used participants from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) with multiple structural MRI scans in both a 1.5T scanner and a 
3T scanner and performed a repeatability analysis within- and across- scanner field strength. 
Then, we assessed structural MRI scans at three different inherent voxel sizes from participants 
in the Indiana Memory and Aging Study (IMAS) and performed repeatability analysis across the 
different voxel sizes. To attempt data harmonization across scanner parameters, we investigated 
the use of ComBat. ComBat harmonization is a tool that was first created to eliminate batch 
effects for gene expression microarray data [37]. ComBat has been translated into use for both 
cross-sectional and longitudinal multi-modal neuroimaging data [38-41]. ComBat is an empirical 
Bayes method that is useful for removing unwanted technical variability across scanners and 
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sites, while preserving biological variability, and is robust for small sample sizes [37, 38]. Our 
second goal was to investigate differences in BAG between individuals from different racial or 
ethnic groups. To accomplish this goal, we assessed differences in BAG between 
demographically matched African American (AA) individuals and non-Hispanic White (NHW) 
individuals from IMAS, as well as demographically matched AA and NHW, Asian and NHW, 
and Hispanic White (HW) and NHW individuals from ADNI.   

2. Methods 

The data presented within this article were from participants from both ADNI 
(http://adni.loni.usc.edu) and IMAS. These studies are discussed in detail in the Supplemental 
text. Details of the sub-samples from each cohort that were used for each parameter investigation 
are described below. All MRI scans used were 3D T1-weighted magnetization-prepared rapid 
gradient-echo (MPRAGE) scans. Individuals and single scans were excluded for failed 
BrainAGE processing after visual quality control. Outliers of 3 standard deviations above or 
below the mean BAG were also excluded. 

2.1. Consent Statement  
Informed consent was obtained according to the Declaration of Helsinki. 

2.2. ADNI – Field Strength Analysis 
ADNI is a multi-site longitudinal study designed to improve and standardize neuroimaging 
biomarkers for studying AD. For more details, see the Supplementary text. For the field strength 
analyses, ADNI participants from the ADNI-1 phase who had undergone at least two 1.5T 
MPRAGE scans in the same session and at least two 3T MPRAGE scans in a separate single 
session were included. The duplicate scans in different scanner types were conducted on average 
a few weeks apart. AD and MCI were diagnosed using standard criteria [42, 43]. CN participants 
had no significant memory concerns or performance deficits on cognitive testing. 25 individuals 
from each diagnostic group (CN, MCI, AD) were randomly selected and included in the 
analyses, for a total of 75 participants. All participants were NHW, due to uncertainty of brain 
age model accuracy on other racial and ethnic groups. 3D T1-weighted MPRAGEs were 
acquired on various scanners collected at over 50 sites. All scans followed the ADNI-1 
MPRAGE sequence (see http://adni.loni.usc.edu). Pre-processed MRI scans were downloaded 
from ADNI and processed with using the brain age algorithm as described below.  

2.3. IMAS – Voxel Size Analysis 
The Indiana Memory and Aging Study (IMAS) is a longitudinal observational study of older 
adults at risk for and with clinical AD. For more details on IMAS and diagnostic criteria, see the 
Supplemental text and references [42-47]. Included individuals had at least two MPRAGE scans 
of different inherent voxel sizes collected within the same scan session. Participants had multiple 
3D T1-weighted MPRAGEs acquired on a Siemens Prisma 3T scanner at 3 varying inherent 
voxel sizes: 1) 0.8mm3, 2) 1mm3, 3) 1.1mm x 1.1mm x 1.2mm (termed “ADNI2 sequence”). 
Specifically, 48 NHW participants (19 CN, 16 SCD, 10 MCI, 3 AD) were included in the 
analyses, including 47 participants with one 0.8mm3 scan and one ADNI2 sequence scan, and 16 
participants with all three scans (one 0.8mm3, one 1mm3, one ADNI2 sequence). Notably, we 
also tested whether preregistering the scans to Montreal Neurologic Institute (MNI) space 
affected the brain age results compared to native space scans, which it did not (ICC=0.999 
(p<0.001); R2 =0.999 (p<0.001); data not shown). 
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2.4. Race/Ethnicity Comparisons (ADNI and IMAS) 
In IMAS, 71 AA individuals were each matched as closely as possible on sex, age, education, 
diagnostic group, and handedness to a NHW individual. All IMAS scans were performed on the 
same Siemens Prisma 3T scanner and processed using the BrainAGE algorithm described below. 
In ADNI, 147 AA, 76 HW, and 47 Asian participants were each matched as closely as possible 
on sex, age, education, diagnostic group, magnet field strength, and handedness to a NHW 
participant from the same phase of ADNI (ADNI1, ADNIGO/2, ADNI3). Pre-processed 3D 
MPRAGE scans were downloaded from ADNI (http://adni.loni.usc.edu) and processed using the 
BrainAGE algorithm as described below. 

2.5. Brain Age Framework 
Predicted raw brain age estimations were generated using brainageR, (version 1.0, 
https://github.com/james-cole/brainageR/releases/tag/1.0), which is performed in R and uses 
SPM12 and KernLab [3, 14, 48, 49]. A machine-learning Gaussian Process Regression (GPR) 
was used, which was based on a training dataset of structural MRI scans of 2001 healthy 
individuals (male/female: 1016/985, mean age: 36.95 (18.12), age range: 18-90 years), to capture 
the typical brain aging trajectory over time [3, 14]. This GPR was created from multiple public 
access data sets using different collection sites, various scanners including both 1.5T and 3T, and 
various voxel sizes [3, 14]. Each participant’s T1-weighted MRI scan from our data set was then 
registered to standard space, segmented, and compared to this GPR. Then, the code provided an 
estimated brain age for each participant based on his/her/their brain structure. The BAG is then 
calculated by subtracting an individual’s chronological age from his/her/their brain age 
estimation to measure the residual or distance from the GPR, which is a measure of the 
individual’s deviation from the typical brain aging trajectory. A positive BAG indicates 
accelerated aging, while a negative BAG indicates decelerated aging compared to the typical 
brain aging trajectory [2]. For example, an individual that is 67 years old chronologically, but has 
a brain resembles that of a typical 70-year-old, will have a raw brain age estimation of 70, and a 
BAG of +3 years, indicating accelerated aging [2].  

2.6. ComBat Harmonization Method 
We used longitudinal ComBat to remove the technical variability seen across scanner field 
strengths, while maintaining the biological variability in the brain age estimation. Longitudinal 
ComBat was designed to correct for additive and multiplicative scanner effects while accounting 
for the within-subject correlation inherent to longitudinal data [38]. Longitudinal ComBat was 
performed on the brain age values from the repeat 1.5T scans and the repeat 3T scans. The R 
code for longitudinal ComBat can be found at https://github.com/jcbeer/longCombat [38]. 

2.7. Statistical Analyses 
Statistical analyses were performed using R studio / R version 4.2.1. The raw brain age 
estimations and BAG scores are reported as mean ± standard deviation in years.  

For field strength and voxel-size analyses, intraclass correlation coefficients (ICC: two-way 
random-effects, absolute agreement, single rater/measurements) and regressions reporting R-
squared (R2) values were calculated to assess the repeatability of the brain age output within- and 
across- scans of different field strengths and across scans of different voxel sizes [3, 45]. In 
addition, paired t-tests were calculated to determine whether mean brain age estimates were 
significantly different between scans with different scanner parameters. For the within field 
strength analyses, a p-value < 0.05 is considered significant. For the across field strength 
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analyses, if Bonferroni correction is applied, a p-value < 0.0125 is considered significant. All p-
values far surpassed this cut off for multiple comparison testing, so we report the raw p-values as 
they are all significant after correction. If Bonferroni correction is applied for the voxel size 
analyses, a p-value < 0.017 is considered significant. 

For the race/ethnicity analyses, independent group t-tests (two-tailed) were used to compare the 
mean BAG between self-reported racial or ethnic groups. To check appropriate demographic 
matching, demographic variables were compared between racial groups using a Chi-Square test 
for nominal variables (diagnostic group, sex, handedness) or an independent t-test (for 
continuous variables (years of education, scan age)). For the race/ethnicity analyses, no 
correction is necessary for the independent analysis comparison of AAs and NHWs in the IMAS 
cohort, and a p-value < 0.05 is considered significant. For the ADNI cohort, each comparison 
may be considered independent, but since there is potential overlap between the NHW groups, 
we acknowledge that if Bonferroni correction is applied, a p-value < 0.017 is considered 
significant.  

3. Results 

3.1. Comparisons of Estimated Brain Age within Field Strength 
Repeatability scores were consistently high between scans within the same scanner parameters. 
Raw brain age estimations from two 1.5T scans showed good consistency with ICC=0.992 and 
R2=0.984 (both p<0.001; Figure 1A, Table 1). Similarly, raw brain age estimations from two 3T 
scans were consistent with an ICC of 0.987 and R2 =0.975 (both p<0.001; Figure 1B, Table 1). 
The 1.5T scans gave mean brain age estimates of 74.62 ± 9.69 years and 74.74 ± 9.94 years, 
while the 3T scans gave mean brain age estimates of 70.49 ± 9.87 years and 70.02 ± 9.45 
(Supplemental Table 1). No significant difference within field strength was observed for either 
the 1.5T or 3T scans (p>0.05; Table 1).  

3.2 Comparisons of Brain Age Estimates across Field Strength 
When comparing across scans from different MRI field strength (1.5T vs 3T), the brain age 
estimation tool was less consistent than within field strength. There were two 1.5T scans and two 
3T scans for each participant, thus there were four possible comparisons: 1.5T scan 1 vs. 3T scan 
1, 1.5T scan 1 vs 3T scan 2, 1.5T scan 2 vs 3T scan 1, and 1.5T scan 2 vs 3T scan 2. The ICCs 
for these comparisons ranged from 0.840 – 0.870 (all p<0.01, Table 1), while R2 values for these 
comparisons ranged from 0.859 – 0.888 (all p<0.001; Figure 2, Table 1). Linear equations and 
statistical results describing the brain age estimate relationship between 1.5T and 3T scans are 
shown in Table 1. Mean brain age estimates for each scan type are shown in Supplemental Table 
S1 and ranged from 70.02 ± 9.45 for 3T scan 2 to 74.62 ± 9.69 for 1.5T scan 1. Brain age 
estimates were significantly different for all four comparisons (p<0.001; Table 2). The 3T 
scanner consistently estimated a lower brain age than the 1.5T scanner, with an offset of 4.43 
years on average. 

3.3. Comparisons of Brain Age Estimates across Voxel Size  
Similar to the field strength analyses above, three different comparisons were calculated to assess 
differences in raw brain age estimation by voxel size: 0.8mm3 scan vs. 1mm3 scan, 0.8mm3 scan 
vs. ADNI2 scan (1.1x1.1x1.2mm), and 1mm3 scan vs. ADNI2 scan. The ICC value for the 
comparison of the 0.8mm3 scan to the 1mm3 scan was 0.968 and the R2 value was 0.965 (all 
p<0.001; Figure 3A, Table 2). The ICC value for the comparison of the 0.8mm3 scan to the 
ADNI2 scan was 0.929 and the R2 value was 0.865 (all p<0.001; Figure 3B, Table 2). Finally, 
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the comparison between the 1mm3 scan and the ADNI2 scan had an ICC of 0.965 and R2 of 
0.957 (both p<0.001; Figure 3C, Table 2), The mean brain age estimation for 0.8mm3 scan was 
70.69 ± 11.05 years, for the 1mm3 scan was 71.64 ± 8.99 years, and for the ADNI2 scan was 
71.13 ± 10.45 years (Supplementary Table S2). No significant differences were observed 
between the mean brain age estimates between the 0.8mm3 and the 1mm3 scans, or the 0.8mm3 
and the ADNI2 scans (p>0.05; Table 2). However, a trend for a difference between 1mm3 and 
ADNI2 scans was observed but did not meet corrected significance (p=0.04; Table 2). 

3.4. ComBat Harmonization Results 
Additive effects but no multiplicative effects were found, so longitudinal ComBat was applied 
for correction. After longitudinal ComBat, there was no longer an additive effect nor significant 
differences in brain age estimations across field strengths (p>0.05, Table 1). Using the ComBat 
batch-corrected values, the ICC values increased, while the R2 values slightly decreased. The 
details are shown in Table 1.  

3.5 Linear Transformation Results 
A linear transformation equation was used to remove differences across scanner field strengths. 
This linear equation was created by pooling all brain age values from the 1.5T scans and 
regressing these against all the 3T scans. The regression equation produced was y = 0.95x –0.35. 
We then applied this equation (adjusted 3T estimate = (raw 3T estimate + 0.35) / 0.95) to all 3T 
scan brain age values to correct for the scanner difference. After application of this linear 
transformation, no significant differences across scanner field strength were observed. Further, 
the ICC values increased, while the R2 values remained the same relative to the original analyses. 
The details are shown in Table 1. 

3.6. Comparisons of Brain Age Gap between Demographically Matched Racial and Ethnic 
Groups 
To test BAG between racial and ethnic groups, we first calculated each participant’s BAG (brain 
age estimate - chronological age). We then compared the mean BAG of each racial or ethnic 
group (AA, HW, or Asian) to a sample of NHWs matched on diagnostic group, sex, age, 
education, and handedness, as well as ADNI phase for the ADNI analyses. No significant 
differences in any demographic variables were detected between racial or ethnic groups, which 
confirmed appropriate demographic matching (Supplementary Tables S3-S6). 

In IMAS, mean BAG was significantly different between NHWs (-3.87 ± 6.79 years) and AA (-
6.49 ± 8.50 years) (t=2.03, p=0.04; Figure 4A, Supplemental Table S3). A similar effect was 
seen in the ADNI cohort, with a significant difference in mean BAG between the NHW group (-
3.87 ± 8.84 years) and the AA group (-6.79 ± 8.01 years) observed (t=2.96, p=0.003; Figure 4B, 
Supplemental Table S4). However, BAG was not significantly different between the NHW group 
(-2.76 ± 8.04 years) and the HW group (-3.75 ± 7.64 years) (t=0.77, p=0.441; Figure 4C, 
Supplemental Table S5). Finally, a significant difference in BAG between the NHW group (-
1.56 ± 9.64 years) and the Asian group (-5.59 ± 7.80 years) was observed for the raw p-value 
(t=2.22, p=0.029; Figure 4D, Supplemental Table S6), but not after correction.  

4. Discussion 

The BrainAGE method was consistent across multiple scans of the same individual in the same 
scanner, but relatively less stable across scans of the same individual in different scanners with 
different field strengths. Brain age estimates from scans acquired in a 3T scanner estimated 
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individuals to be ~4.43 years younger than the estimates from scans acquired on a 1.5T scanner. 
This finding aligns with previous studies, where stability was lower across field strengths, and it 
was suggested that researchers correct for the field strength effect by shifting the BAG scores to 
a zero group mean [3, 12]. Longitudinal ComBat performed relatively well for the correction of 
scanner field strength. Using ComBat, the need for covarying for scanner is no longer necessary. 
In addition to the ComBat method, we propose a linear transformation (adjusted 3T estimate = 
(raw 3T estimate + 0.35) / 0.95), as this equation may be a better fit for correcting for scanner 
field strength, as it produced higher repeatability values in this study. In addition to supporting 
the differences by field strength, our results show for the first time that the brain age method was 
stable across scans of different voxel sizes. However, our group of participants with 1mm3 scans 
was rather limited (n=16), and thus, this analysis should be repeated in a larger sample, as well as 
with scans from other inherent voxel sizes.  

To our knowledge, this paper is also the first to investigate differences in the brain age method 
by race or ethnicity. Our results show significant differences in BAG between racial groups 
(NHWs vs. AA, NHWs vs. Asians), but not between ethnic groups (NHWs vs. Hispanic Whites). 
However, it is noted that the Asian group did not have a significantly different BAG from NHWs 
if multiple comparison correction is applied. Both the AA group and the Asian group had lower 
BAG scores than respective demographically matched NHWs, suggesting decelerated aging in 
these groups. Previous studies have suggested that there are biological brain differences between 
East Asian and White, as well as AA and White CN individuals [29-33]. Studies have also 
suggested differences in presentation of AD and MCI with regard to both cognition and affected 
brain structures across NHWs, HWs, and AAs [34-36]. However, in the present study, we cannot 
determine whether the observed differences are biological or a bias from the machine learning 
model as most of the training set were NHWs. Additional studies should be conducted using 
larger multi-racial and multi-ethnic cohorts to clearly understand the different results across races 
from brain age techniques. Further, studies using the brain age technique in samples with mixed 
races should consider the impact of these factors when performing brain age analyses. Finally, 
we propose that separate machine learning models should be created and trained on subset of 
racial groups to ensure accuracy of brain age estimation. ADNI4 will be a prospective cohort that 
can be used to investigate racial differences further, as it will include a higher percentage of 
participants from underrepresented backgrounds. 

One limitation of our study is the relatively small subgroup sample sizes, especially for the 1mm3 
voxel size group (n=16). In addition, all cohorts have a high mean education level, which has 
been associated with lower brain age results [50]. We did not account for physical activity, 
which has previously been associated with lower brain age results as well  [50]. Finally, while 
the basis for these findings is still unclear, the observed differences in BAG by race raises 
several important questions for future research on the neuroimaging methodologies in racial and 
ethnic groups and highlights the important need for improved recruitment of underrepresented 
minorities in AD research to better understand aging and age-related diseases in all individuals.  

In conclusion, the brain age method was stable within field strength and across inherent voxel 
sizes. Brain age estimations are dependent on field strength, so we suggest using an offset 
equation or ComBat to harmonize data in studies with scans from scanners of different field 
strengths. Lastly, we found differences in BAG scores between self-reported races but are 
uncertain whether these represent biological differences or bias inherent in the algorithm. Further 
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studies should explore this important area in larger multi-racial samples recruited from 
population-based studies.   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.05.23299222doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299222
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

References 
 

[1] Baecker L, Garcia-Dias R, Vieira S, Scarpazza C, Mechelli A. Machine learning for brain age 
prediction: Introduction to methods and clinical applications. EBioMedicine. 2021;72:103600. 
doi:10.1016/j.ebiom.2021.103600 
[2] Franke K, Gaser C. Ten Years of BrainAGE as a Neuroimaging Biomarker of Brain Aging: 
What Insights Have We Gained? Front Neurol. 2019;10:789. doi:10.3389/fneur.2019.00789 
[3] Cole JH, Poudel RPK, Tsagkrasoulis D, Caan MWA, Steves C, Spector TD, et al. Predicting 
brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. 
Neuroimage. 2017;163:115-24. doi:10.1016/j.neuroimage.2017.07.059 
[4] Cole JH, Franke K. Predicting Age Using Neuroimaging: Innovative Brain Ageing 
Biomarkers. Trends Neurosci. 2017;40:681-90. doi:10.1016/j.tins.2017.10.001 
[5] Elliott ML, Belsky DW, Knodt AR, Ireland D, Melzer TR, Poulton R, et al. Brain-age in 
midlife is associated with accelerated biological aging and cognitive decline in a longitudinal 
birth cohort. Mol Psychiatry. 2021;26:3829-38. doi:10.1038/s41380-019-0626-7 
[6] Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, et al. 
One-year brain atrophy evident in healthy aging. J Neurosci. 2009;29:15223-31. 
doi:10.1523/JNEUROSCI.3252-09.2009 
[7] Gaser C, Franke K, Klöppel S, Koutsouleris N, Sauer H, ADNI. BrainAGE in Mild Cognitive 
Impaired Patients: Predicting the Conversion to Alzheimer’s Disease. PLoS ONE. 
2013;8:e67346. doi:https://doi.org/10.1371/journal.pone.0067346 
[8] Franke K, Ziegler G, Kloppel S, Gaser C, Alzheimer's Disease Neuroimaging I. Estimating 
the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the 
influence of various parameters. Neuroimage. 2010;50:883-92. 
doi:10.1016/j.neuroimage.2010.01.005 
[9] Davatzikos C, Xu F, An Y, Fan Y, Resnick SM. Longitudinal progression of Alzheimer's-like 
patterns of atrophy in normal older adults: the SPARE-AD index. Brain. 2009;132:2026-35. 
doi:10.1093/brain/awp091 
[10] Sluimer JD, van der Flier WM, Karas GB, van Schijndel R, Barnes J, Boyes RG, et al. 
Accelerating regional atrophy rates in the progression from normal aging to Alzheimer's disease. 
Eur Radiol. 2009;19:2826-33. doi:10.1007/s00330-009-1512-5 
[11] Liem F, Varoquaux G, Kynast J, Beyer F, Kharabian Masouleh S, Huntenburg JM, et al. 
Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage. 
2017;148:179-88. doi:10.1016/j.neuroimage.2016.11.005 
[12] Franke K, Gaser C, ADNI. Longitudinal Changes in Individual BrainAGE in Healthy 
Aging, Mild Cognitive Impairment, and Alzheimer's Disease. GeroPsych - The Journal of 
Gerontopsychology and Geriatric Psychiatry. 2012;25:235-45. doi:10.1024/1662-9647/a000074 
[13] Beheshti I, Maikusa N, Matsuda H. The association between "Brain-Age Score" (BAS) and 
traditional neuropsychological screening tools in Alzheimer's disease. Brain Behav. 
2018;8:e01020. doi:10.1002/brb3.1020 
[14] Cole JH, Ritchie SJ, Bastin ME, Valdes Hernandez MC, Munoz Maniega S, Royle N, et al. 
Brain age predicts mortality. Mol Psychiatry. 2018;23:1385-92. doi:10.1038/mp.2017.62 
[15] Ly M, Yu GZ, Karim HT, Muppidi NR, Mizuno A, Klunk WE, et al. Improving brain age 
prediction models: incorporation of amyloid status in Alzheimer's disease. Neurobiol Aging. 
2020;87:44-8. doi:10.1016/j.neurobiolaging.2019.11.005 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.05.23299222doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299222
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

[16] Lowe LC, Gaser C, Franke K, Alzheimer's Disease Neuroimaging I. The Effect of the 
APOE Genotype on Individual BrainAGE in Normal Aging, Mild Cognitive Impairment, and 
Alzheimer's Disease. PLoS One. 2016;11:e0157514. doi:10.1371/journal.pone.0157514 
[17] Kaufmann T, van der Meer D, Doan NT, Schwarz E, Lund MJ, Agartz I, et al. Common 
brain disorders are associated with heritable patterns of apparent aging of the brain. Nat 
Neurosci. 2019;22:1617-23. doi:10.1038/s41593-019-0471-7 
[18] Mohajer B, Abbasi N, Mohammadi E, Khazaie H, Osorio RS, Rosenzweig I, et al. Gray 
matter volume and estimated brain age gap are not linked with sleep-disordered breathing. Hum 
Brain Mapp. 2020;41:3034-44. doi:10.1002/hbm.24995 
[19] Varikuti DP, Genon S, Sotiras A, Schwender H, Hoffstaedter F, Patil KR, et al. Evaluation 
of non-negative matrix factorization of grey matter in age prediction. Neuroimage. 
2018;173:394-410. doi:10.1016/j.neuroimage.2018.03.007 
[20] Smith SM, Vidaurre D, Alfaro-Almagro F, Nichols TE, Miller KL. Estimation of brain age 
delta from brain imaging. Neuroimage. 2019;200:528-39. doi:10.1016/j.neuroimage.2019.06.017 
[21] Aycheh HM, Seong JK, Shin JH, Na DL, Kang B, Seo SW, et al. Biological Brain Age 
Prediction Using Cortical Thickness Data: A Large Scale Cohort Study. Front Aging Neurosci. 
2018;10:252. doi:10.3389/fnagi.2018.00252 
[22] de Lange AG, Cole JH. Commentary: Correction procedures in brain-age prediction. 
Neuroimage Clin. 2020;26:102229. doi:10.1016/j.nicl.2020.102229 
[23] Le TT, Kuplicki RT, McKinney BA, Yeh HW, Thompson WK, Paulus MP, et al. A 
Nonlinear Simulation Framework Supports Adjusting for Age When Analyzing BrainAGE. 
Front Aging Neurosci. 2018;10:317. doi:10.3389/fnagi.2018.00317 
[24] Liang H, Zhang F, Niu X. Investigating systematic bias in brain age estimation with 
application to post-traumatic stress disorders. Hum Brain Mapp. 2019;40:3143-52. 
doi:10.1002/hbm.24588 
[25] Niu X, Zhang F, Kounios J, Liang H. Improved prediction of brain age using multimodal 
neuroimaging data. Hum Brain Mapp. 2020;41:1626-43. doi:10.1002/hbm.24899 
[26] Cole JH. Multimodality neuroimaging brain-age in UK biobank: relationship to biomedical, 
lifestyle, and cognitive factors. Neurobiol Aging. 2020;92:34-42. 
doi:10.1016/j.neurobiolaging.2020.03.014 
[27] Treder MS, Shock JP, Stein DJ, du Plessis S, Seedat S, Tsvetanov KA. Correlation 
Constraints for Regression Models: Controlling Bias in Brain Age Prediction. Front Psychiatry. 
2021;12:615754. doi:10.3389/fpsyt.2021.615754 
[28] Simfukwe C, Youn YC. Prediction of East Asian Brain Age using Machine Learning 
Algorithms Trained With Community-based Healthy Brain MRI. Dement Neurocogn Disord. 
2022;21:138-46. doi:10.12779/dnd.2022.21.4.138 
[29] Isamah N, Faison W, Payne ME, MacFall J, Steffens DC, Beyer JL, et al. Variability in 
frontotemporal brain structure: the importance of recruitment of African Americans in 
neuroscience research. PLoS One. 2010;5:e13642. doi:10.1371/journal.pone.0013642 
[30] Chee MW, Zheng H, Goh JO, Park D, Sutton BP. Brain structure in young and old East 
Asians and Westerners: comparisons of structural volume and cortical thickness. J Cogn 
Neurosci. 2011;23:1065-79. doi:10.1162/jocn.2010.21513 
[31] Kang DW, Wang S-M, Na H-R, Park SY, Kim NY, Lee CU, et al. Differences in cortical 
structure between cognitively normal East Asian and Caucasian older adults: a surface-based 
morphometry study. Scientific Reports. 2020;10:20905. doi:10.1038/s41598-020-77848-8 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.05.23299222doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299222
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

[32] Tang Y, Zhao L, Lou Y, Shi Y, Fang R, Lin X, et al. Brain structure differences between 
Chinese and Caucasian cohorts: A comprehensive morphometry study. Hum Brain Mapp. 
2018;39:2147-55. doi:10.1002/hbm.23994 
[33] Zilles K, Kawashima R, Dabringhaus A, Fukuda H, Schormann T. Hemispheric shape of 
European and Japanese brains: 3-D MRI analysis of intersubject variability, ethnical, and gender 
differences. Neuroimage. 2001;13:262-71. doi:10.1006/nimg.2000.0688 
[34] B. Zahodne L, J. Manly J, Narkhede A, Y. Griffith E, DeCarli C, S. Schupf N, et al. 
Structural MRI Predictors of Late-Life Cognition Differ Across African Americans, Hispanics, 
and Whites. Current Alzheimer Research. 2015;12:632-9.  
[35] DeCarli C, Reed BR, Jagust W, Martinez O, Ortega M, Mungas D. Brain behavior 
relationships among African Americans, whites, and Hispanics. Alzheimer Dis Assoc Disord. 
2008;22:382-91. doi:10.1097/wad.0b013e318185e7fe 
[36] Gavett BE, Fletcher E, Harvey D, Farias ST, Olichney J, Beckett L, et al. Ethnoracial 
differences in brain structure change and cognitive change. Neuropsychology. 2018;32:529-40. 
doi:10.1037/neu0000452 
[37] Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data 
using empirical Bayes methods. Biostatistics. 2007;8:118-27. doi:10.1093/biostatistics/kxj037 
[38] Beer JC, Tustison NJ, Cook PA, Davatzikos C, Sheline YI, Shinohara RT, et al. 
Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data. 
Neuroimage. 2020;220:117129. doi:10.1016/j.neuroimage.2020.117129 
[39] Fortin JP, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, et al. Harmonization of 
cortical thickness measurements across scanners and sites. Neuroimage. 2018;167:104-20. 
doi:10.1016/j.neuroimage.2017.11.024 
[40] Fortin JP, Parker D, Tunc B, Watanabe T, Elliott MA, Ruparel K, et al. Harmonization of 
multi-site diffusion tensor imaging data. Neuroimage. 2017;161:149-70. 
doi:10.1016/j.neuroimage.2017.08.047 
[41] Yu M, Linn KA, Cook PA, Phillips ML, McInnis M, Fava M, et al. Statistical 
harmonization corrects site effects in functional connectivity measurements from multi-site fMRI 
data. Hum Brain Mapp. 2018;39:4213-27. doi:10.1002/hbm.24241 
[42] McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Jr., Kawas CH, et al. The 
diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute 
on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. 
Alzheimers Dement. 2011;7:263-9. doi:10.1016/j.jalz.2011.03.005 
[43] Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256:183-
94. doi:10.1111/j.1365-2796.2004.01388.x 
[44] Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chetelat G, et al. A 
conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's 
disease. Alzheimers Dement. 2014;10:844-52. doi:10.1016/j.jalz.2014.01.001 
[45] Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients 
for Reliability Research. J Chiropr Med. 2016;15:155-63. doi:10.1016/j.jcm.2016.02.012 
[46] Rattanabannakit C, Risacher SL, Gao S, Lane KA, Brown SA, McDonald BC, et al. The 
Cognitive Change Index as a Measure of Self and Informant Perception of Cognitive Decline: 
Relation to Neuropsychological Tests. J Alzheimers Dis. 2016;51:1145-55. doi:10.3233/JAD-
150729 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.05.23299222doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299222
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

[47] Weintraub S, Besser L, Dodge HH, Teylan M, Ferris S, Goldstein FC, et al. Version 3 of the 
Alzheimer Disease Centers' Neuropsychological Test Battery in the Uniform Data Set (UDS). 
Alzheimer Dis Assoc Disord. 2018;32:10-7. doi:10.1097/WAD.0000000000000223 
[48] Karatzoglou A, Smola A, Hornik K. kernlab: Kernel-Based Machine Learning Lab. 2022.  
[49] Karatzoglou A, Smola A, Hornik K, Zeileis A. kernlab -- An {S4} Package for Kernel 
Methods in {R}. Journal of Statistical Software. 2004;11:1--20. doi:10.18637/jss.v011.i09 
[50] Steffener J, Habeck C, O'Shea D, Razlighi Q, Bherer L, Stern Y. Differences between 
chronological and brain age are related to education and self-reported physical activity. 
Neurobiol Aging. 2016;40:138-44. doi:10.1016/j.neurobiolaging.2016.01.014 
 
 

Acknowledgements 
The authors thank Steve Brown, Bobi Eastman, Tatiana M. Foroud, Yolanda Graham-Dotson, 
Tyler Gannon, Savannah Hottle, Gary D. Hutchins, Brenna McDonald, Fredrick Unverzagt, 
Aaron Vosmeier, and Donna Wert for their contributions to this work. 

Funding 
Funding for this project comes from T32 AG071444, P30 AG010133, P30 AG072976, R01 
AG019771, R01 AG057739, U19 AG024904, R01 LM013463, R01 AG068193, U01 
AG068057, and U01 AG072177. 

Data collection and sharing for this project was funded by the Alzheimer's Disease 
Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD 
ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the 
National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, 
and through generous contributions from the following: AbbVie, Alzheimer's Association; 
Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-
Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli 
Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company 
Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.;Janssen Alzheimer Immunotherapy 
Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development 
LLC.; Lumosity; Lundbeck; Merck & Co., Inc.;Meso Scale Diagnostics, LLC.; NeuroRx 
Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal 
Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian 
Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private 
sector contributions are facilitated by the Foundation for the National Institutes of Health 
(www.fnih.org). The grantee organization is the Northern California Institute for Research and 
Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at the 
University of Southern California. ADNI data are disseminated by the Laboratory for Neuro 
Imaging at the University of Southern California. 

Collaborators 
*Data used in preparation of this article were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within 
the ADNI contributed to the design and implementation of ADNI and/or provided data but did 
not participate in analysis or writing of this report. A complete listing of ADNI investigators can 
be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.05.23299222doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299222
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

 
Disclosures 

Dr. Apostolova received grant or other financial support from the National Institutes of Health 
(NIH), Alzheimer's Association, AVID Pharmaceuticals, Life Molecular Imaging, Roche 
Diagnostics, and Eli Lilly. In addition, she has received consulting fees from Biogen, Two Labs, 
IQIVA, Florida Department of Health, Genentech, NIH Biobank, Eli Lilly, GE Healthcare, Eisai, 
and Roche Diagnostics. She has also received payment or honoraria from American Academy of 
Neurology, MillerMed, National Alzheimer's Coordinating Center CME, CME Institute, APhA, 
Purdue University, Mayo Clinic, MJH Physician Education Resource, and Ohio State University. 
She received support for travel from the Alzheimer's Association. She has served on Data Safety 
and Monitoring or Advisory Boards for IQVIA, UAB Nathan Schock Center, New Mexico 
Exploratory ADRC, and NIA R01 AG061111. She has a leadership role in multiple committees, 
including the Medical Science Council of the Alzheimer's Association Greater Indiana Chapter, 
the Alzheimer's Association Science Program Committee, and the FDA PCNS Advisory 
Committee. Finally, Dr. Apostolova holds stock in Cassava Neurosciences and Golden Seeds. 
Dr. Saykin receives support from multiple NIH grants (P30 AG010133, P30 AG072976, R01 
AG019771, R01 AG057739, U19 AG024904, R01 LM013463, R01 AG068193, T32 
AG071444, U01 AG068057, U01 AG072177, and U19 AG074879). He has also received 
support from Avid Radiopharmaceuticals, a subsidiary of Eli Lilly (in kind contribution of PET 
tracer precursor); Bayer Oncology (Scientific Advisory Board); Eisai (Scientific Advisory 
Board); Siemens Medical Solutions USA, Inc. (Dementia Advisory Board); NIH NHLBI (MESA 
Observational Study Monitoring Board); Springer-Nature Publishing (Editorial Office Support as 
Editor-in-Chief, Brain Imaging and Behavior). All other authors declare no conflict of interest. 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.05.23299222doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299222
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

Figures and Figure Legends 
 
 
Figure 1. Brain Age Estimation Within Field Strength 

Scatterplots showing the association of raw brain age estimation values (A) between scans 1 and 
2 within the 1.5T field strength showed an ICC=0.992 (p< 0.001) and R2=0.984 (p<0.001), with 
the linear equation: y=1.01x-0.35. (B) The association between scan 1 and 2 within the 3T field 
strength shows an ICC=0.987 (p<0.001) and R2=0.975 (p<0.001), with the linear equation: 
y=0.99x+0.73. ICC = intraclass correlation coefficient 
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Figure 2. Brain Age Estimation Across Field Strength 

 
Scatterplots showing the correlation of raw brain age estimation values (A) between 1.5T scan 1 
and 3T scan 1, resulting in repeatability values of: ICC=0.865 (p<0.01) and R2=0.886 (p<0.001), 
with the linear equation: y=0.96x-1.11 (B) between 1.5T scan 1 and 3T scan 2, resulting in 
repeatability values of: ICC=0.840 (p<0.01) and R2=0.859 (p<0.001), with the linear equation: 
y=0.95x-0.49 (C) between 1.5T scan 2 and 3T scan 1, resulting in repeatability values of: 
ICC=0.870 (p<0.01) and R2=0.888 (p<0.001), with the linear equation: y=0.94x+0.05 (D) 
between 1.5T scan 2 and 3T scan 2, resulting in repeatability values of: ICC=0.848 (p<0.01) and 
R2=0.865 (p<0.001), with the linear equation: y=0.94x+0.48. ICC = intraclass correlation 
coefficient 
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Figure 3. Brain Age Estimation Across Voxel Size 

 
Scatterplots showing the correlation of the raw brain age estimation values (A) between the 
0.8mm3 scan and the 1mm3 scan, resulting in repeatability values of: ICC=0.968 (p<0.001) and 
R2=0.965 (p<0.001), with the linear equation: y=0.83x+11.94 (B) between the 0.8mm3 scan and 
the ADNI2 scan, resulting in repeatability values of: ICC=0.929 (p<0.001) and R2=0.865 
(p<0.001), with the linear equation: y=0.90x+7.66 (C) between the 1mm3 scan compared to the 
ADNI2 sequence (1.1x1.1x1.2mm), resulting in repeatability values of: ICC=0.965 (p<0.001) 
and R2=0.957 (p<0.001), with the linear equation: y=1.10x-5.78. ICC = intraclass correlation 
coefficient 
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Figure 4. Brain Age Gap (BAG) Between Race and Ethnicity Groups  

 
Box plots comparing BAG between racial and ethnic groups matched on diagnostic group, sex, 
age, and handedness. (A) In the IMAS cohort, a significant difference in BAG between the Non-
Hispanic White (NHW) group and the African American (AA) group was observed (t=2.03, 
p=0.04). (B) In the ADNI cohort, there was a significant difference in BAG between NHW and 
AAs (t=2.96, p=0.003) but (C) no difference in BAG between NHWs and Hispanic Whites 
(HWs) (t=0.77, p=0.441). (D) Finally, in ADNI, a significant difference in BAG was observed 
between NHWs and Asians (t=2.22, p=0.03), which did not remain after correction.  
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Tables and Table Legends 
 
Table 1. Comparisons Within and Across Scanner Field Strength in ADNI 

Comparison (x,y) Linear Equation ICC (p-value) R2 (p-value) T-statistic (p-value) 

Within Field Strength 

1.5T Scan #1 1.5T Scan #2 y = 1.01x - 0.35 0.992 (p<0.001) 0.984 (p<0.001) -0.264 (p=0.793) 

3T Scan #1 3T Scan #2 y = 0.99x + 0.73 0.987 (p<0.001) 0.975 (p<0.001) 0.667 (p=0.507) 

Across Field Strength 

1.5T Scan #1 3T Scan #1 y = 0.96x -1.11 0.865 (p<0.01) 0.886 (p<0.001) 10.680 (p<0.001) 

1.5T Scan #1 3T Scan #2 y = 0.95x – 0.49 0.840 (p<0.01) 0.859 (p<0.001) 10.194 (p<0.001) 

1.5T Scan #2 3T Scan #1 y = 0.94x + 0.05 0.870 (p<0.01) 0.888 (p<0.001) 10.385 (p<0.001) 

1.5T Scan #2 3T Scan #2 y = 0.94x + 0.48 0.848 (p<0.01) 0.865 (p<0.001) 10.004 (p<0.001) 

All 1.5T Scans All 3T Scans y = 0.95x – 0.35 0.856 (p<0.01) 0.876 (p<0.001) 14.665 (p<0.001) 

Across Field Strength - After ComBat 

1.5T Scan #1 3T Scan #1 y = 0.94x + 4.10 0.926 (p<0.001) 0.856 (p<0.001) -0.078 (p=0.938) 

1.5T Scan #1 3T Scan #2 y = 0.93x + 4.91 0.908 (p<0.001) 0.822 (p<0.001) 0.171 (p=0.865) 

1.5T Scan #2 3T Scan #1 y = 0.93x + 5.31 0.928 (p<0.001 0.859 (p<0.001) -0.145 (p=0.885) 

1.5T Scan #2 3T Scan #2 y = 0.92x + 5.89 0.912 (p<0.001) 0.831 (p<0.001) 0.046 (p=0.963) 

Across Field Strength – After Linear Transformation 

1.5T Scan #1 3T Scan #1 y = 1.00x – 0.80 0.940 (p<0.001) 0.866 (p<0.001) 0.138 (p=0.891) 

1.5T Scan #1 3T Scan #2 y = 1.00x – 0.15 0.925 (p<0.001) 0.856 (p<0.001) 0.438 (p=0.663) 

1.5T Scan #2 3T Scan #1 y = 0.99x + 0.42 0.942 (p<0.001) 0.888 (p<0.001) 0.030 (p=0.977) 

1.5T Scan #2 3T Scan #2 y = 0.99x + 0.87 0.929 (p<0.001) 0.856 (p<0.001) 0.280 (p=0.780) 

All 1.5T Scans All 3T Scans y = 1.00x – 0.01 0.934 (p<0.001) 0.876 (p<0.001) 0.298 (p=0.766) 

ICC, R2 values, and paired T-test results for the brain age results are shown for each comparison. 
There was no significant difference within scanner field strength, but there was a significant 
difference between every pair across scanner field strength. After ComBat and after linear 
transformation, there was no longer a significant difference between the brain age values across 
field strengths. ICC = intraclass correlation coefficient. 
 
 
Table 2. Comparisons Across Scanner Voxel Size in IMAS 

Comparison (x,y) Linear Equation ICC (p-value) R2 (p-value) T-statistic (p-value) 
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Across Voxel Size 

0.8mm3 Scan 1mm3 Scan y = 0.83x + 11.94 0.968 (p<0.001) 0.965 (p<0.001) 1.011 (p=0.328) 

0.8mm3 Scan ADNI2 Scan y = 0.90x + 7.66 0.929 (p<0.001) 0.865 (p<0.001) -1.166 (p=0.250) 

1mm3 Scan ADNI2 Scan  y = 1.10x - 5.78 0.965 (p<0.001) 0.957 (p<0.001) -2.249 (p=0.040) 

ICC, R2 values, and paired T-test results for the brain age results are shown for each comparison. 
There was a difference between the brain age results from the 1mm3 scan and the ADNI2 scan. 
There was no significant difference between the 0.8mm3 scan and the 1mm3 scan or the 0.8mm3 
scan and the ADNI2 scan. ICC = intraclass correlation coefficient 
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