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Abstract
Background

Accurate identification of growing subsolid nodules is crucial for effective risk stratification and the

early detection of invasive lung cancer, allowing for timely treatment while avoiding unnecessary

surgery on low-risk nodules that would otherwise remain stable. The traditional method of risk

stratification, which relies on qualitative visual analysis of CT scans, remains challenging. Therefore,

this study aims to leverage a longitudinal dataset of subsolid nodules on CT and develop radiomic

and clinical feature-based models to identify nodules that are likely to grow over time.

Purpose

The purpose of this study is to develop a machine learning model to predict the growth of subsolid

nodules using a combination of radiomic and clinical features.

Materials and Methods

A retrospective study was conducted on a cohort of patients who had undergone chest CT scans at

a single institution between 2015 and 2019. Corresponding radiology reports were used to extract

ground truth labels for the nodules' growth status (i.e., increased, decreased, unchanged), as well as

other related information such as nodule size, nodule type, location, slice location, component

sizes, and compared studies. An automated NLP pipeline was employed for the extraction of labels.

Additionally, associated CT scans were processed through a commercial nodule characterization

algorithm, which generated parameters such as nodule size, location, and 3D segmentation

coordinates. Utilizing this dataset, along with radiomic features computed from pyRadiomics and

clinical features (e.g., patient age and sex), models for predicting the growth of subsolid nodules

were developed. The primary metric used to evaluate model performance was the AUC-ROC,

assessed on both the independent validation set and averaged across 5-fold cross-validation. A

total of 15 features were used for the model, selected through a combination of recursive feature

elimination, random forest importance analysis, and univariate selection during cross-validation.
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Results

The final dataset comprises 950 subsolid nodules, each with corresponding growth statuses and 3D

segmentations (799 unchanged, 139 growing, 12 decreasing). Among various models, support

vector machine (SVM) achieved the highest AUC of 0.81 on both 5-fold cross-validation and the

independent validation set. Furthermore, in the statistical analysis of the association between

radiomic and clinical features and increasing versus unchanged nodules, 88 radiomic features were

identified as statistically significant (p < 0.05) through a Mann-Whitney U test, with 82 of these

radiomic features being highly statistically significant (p < 0.01). Notable radiomic features, including

Voxel Volume, Run Length Non-Uniformity, and Dependence Non-Uniformity, demonstrated high

feature importance in identifying growing nodules in the SVM model. Among the clinical features,

Patient Age exhibited high feature importance.

Conclusion

A model based on combined radiomic and clinical features was trained to predict subsolid nodules

that would grow over time. Dependence Non-Uniformity, Run Length Non-Uniformity, Voxel

Volume, Gray Level Non-Uniformity, and Patient Age were among the most predictive features for

identifying high-risk, growing nodules.
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Introduction
Lung cancer remains a significant global health concern and consistently ranks among the top

causes of cancer-related mortality [1]. Early or pre-neoplasia in the form of subsolid nodules on CT

poses a clinical conundrum for the thoracic tumor board due to their heterogeneous risk of

invasion, metastasis, and growth over time. Predicting the growth of lung nodules is of high clinical

importance because it enables more precise targeted treatment of high-risk nodules at an early

stage while allowing low-risk nodules to be either left untouched or longitudinally followed over

time [2]. The traditional method of subsolid nodule risk stratification involves qualitative visual

analysis of nodules over months to years through repeated CT scans by radiologists. However, this

method has multiple disadvantages, including but not limited to the risk of patient loss to follow-up,

an overly extended time for characterization, and causing patient anxiety during the follow-up

period [3]–[5]. The importance of early detection in achieving positive patient outcomes, as well as

the increase in subsolid nodule identification in CT, further emphasizes the need to address this

challenge [4].

Ensuring the precise evaluation and timely treatment of growing subsolid nodules will significantly

contribute to the survival of individuals with lung cancer. Consequently, given the urgency of these

challenges, radiomics, situated at the intersection of medical imaging, data science, and advanced

image analysis, has garnered substantial attention as a quantitative approach to nodule

characterization [6]. This innovative approach entails the extraction of a comprehensive array of

quantitative features from both 3D and 2D medical images, potentially revealing complex patterns

hidden from the naked eye. Moreover, as evidenced by previous studies, radiomics has been

successfully employed to address various clinical problems, including the classification between

benign and malignant nodules [7]–[10]. In a study of 86 part-solid ground glass nodules, Chae et al.

successfully differentiated invasive lung adenocarcinoma from preinvasive lesions by employing a

combination of texture-based features [11]. In Ma et al., the authors identified 583 features of

nodule intensity, heterogeneity, and shape, which they employed to achieve 82.7% accuracy in the

classification of malignant and benign pulmonary nodules [12].
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In the realm of radiomic studies, widely used multivariate models, such as linear and quadratic

discriminant analysis, logistic regression, support vector machines, and random forests classifiers,

have been frequently employed [6], [8], [9], [13]. These models, when combined with clinical and/or

demographic features, transform radiomics into a powerful tool capable of uncovering intricate

characteristics within pulmonary nodule images [13], [14]. Modern machine learning techniques can

leverage this wealth of information to develop accurate prediction models, marking a significant

stride in the comprehensive understanding and effective management of lung cancer.

Our objective is to develop a machine learning model that leverages both clinical and radiomic

features extracted from chest CT scans to accurately identify growing adenocarcinoma spectrum

nodules, thereby assisting the thoracic tumor board in optimizing their management and improving

overall outcomes.
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Materials and Methods
Dataset

In this retrospective and Institutional Review Board (IRB) approved study, chest CT scans were

collected from a cohort of patients who had undergone imaging at a single institution between 2015

and 2019. The range of CT scans encompassed low-dose, non-contrast, contrast-enhanced, and

high-resolution chest CTs, as well as CT angiograms obtained from various sites and different

vendors. Corresponding radiology reports were utilized to extract ground truth labels for the

nodules' growth status (i.e., increased, decreased, unchanged), along with other pertinent

information such as nodule size, nodule type (e.g., pure ground glass vs. mixed solid/ground glass),

location (e.g., lobe of the lung), slice location, component sizes, and compared studies.

A total of 1737 consecutive and comprehensively collected radiology reports describing subsolid

nodules were initially retrieved using multiple keyword-based searches. An automated NLP pipeline,

employing regular expression and heuristics, was utilized for label extraction, and manual review

was conducted to ensure the accuracy of the dataset.

To link the nodules reported in the radiology reports with their specific coordinates and

segmentations, we processed the CT scans using a commercial algorithm (United Imaging

Intelligence, Boston, MA, USA), which identified the location, coordinates, and nodule

segmentations. We then applied a matching algorithm using the parameters generated by the

commercial algorithm and those extracted from the radiology reports to identify the intersection of

the two groups. A workflow pipeline is displayed in Figure 2.

A subsolid nodule's ‘growth’ was defined as follows: 1) increased total size, 2) new or growing solid

component, or 3) increasing density of the nodule. Additionally, a board-certified radiologist and a

second-year radiology resident manually verified the set of growing nodules.
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Radiomics

All images were converted to the NIfTI format for use in pyRadiomics. Using the results of the

commercial algorithm and its intersection with the radiology report dataset, an image processing

algorithm was applied to locate the nodule within the CT scan. A 3D bounding box with dimensions

(50 px, 50 px, nodule thickness) was generated, centered around the nodule and volume of interest.

From these bounding boxes, the 3D bounded image and its segmentation mask were extracted.

Following this approach, pyRadiomics (v3.1.0), an open-source package for extracting features from

2D and 3D medical images [15], was employed to generate first-order, shape, and texture-based

radiomic features for each nodule. This process of creating the image and mask allowed the

extraction of relevant radiomic features and characteristics for subsequent analysis. The list of

radiomic features can be found in pyRadiomics' documentation, and sample information derived

from commercial algorithms and report text is presented in Table 2.

Data Processing and Preparation

Due to the incomplete and inconsistent nature of free-text radiology reports and the false-positive

identification of acute ground glass nodular opacities by the commercial algorithm, a graduated

intersection algorithm was applied to identify those that were most confidently matched on a scale

from 1 to 12. Out of the 4025 nodules identified in the radiology reports, 950 nodules from the

report text were confidently extracted. These nodules were confirmed to be true subsolid nodules

as described in the radiology reports, correctly segmented by the commercial algorithm, and

validated as a match between the report and the algorithm.

To ensure greater accuracy and confidence in a nodule's reported growth status, we applied a

180-day rule: nodules reported as unchanged from a previous scan that occurred less than or equal

to 180 days ago were removed from the dataset before training [16].

Feature Analysis, Engineering, and Selection

To enhance model performance, various feature engineering techniques were applied. These

encompassed one-hot encoding for categorical variables (e.g., patient sex), feature scaling, and

standardization, as well as polynomial and logarithmic transformations. Moreover, various data

visualizations, such as correlation heatmaps, feature importance plots, and box plots, were utilized
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in combination with domain knowledge to account for collinearities and correlations in the data [6].

Additionally, a filtering algorithm based on statistical methods, such as Mann-Whitney U tests,

Chi-squared tests, and pairwise correlation analyses with a threshold of 0.8 (Pearson correlation),

was employed, and recursive feature elimination was utilized to generate a set of relevant features.

In the analysis of radiomic and clinical features, various univariate tests were conducted, including

non-parametric Mann-Whitney U tests using Python's SciPy 1.8.1 'mannwhitneyu' function. These

tests aimed to analyze and quantify the differences between the increasing and unchanging nodule

groups.

Model Training

As observed in many medical datasets, a significant class imbalance dilemma was noted within the

dataset. Specifically, in the nodule dataset assembled for this study, approximately 15% (139) of

nodules were classified as increasing. Therefore, to split the dataset into training, testing, and

validation sets, the 'train_test_split' function from scikit-learn was used, which has the ability to

stratify based on the output label. To address the significant class imbalance, 5-fold cross-validation

was employed to verify and analyze the model’s results [17]. Furthermore, hyperparameter

optimization was conducted using scikit-learn’s 'GridSearchCV.' Various models recommended in

prior studies, including support vector machine, adaptive boosting (AdaBoost), random forests,

logistic regression, and residual neural network, were explored for training [6], [9]. SVM was chosen

as the optimal model, and all algorithms were programmed using Python (version 3.8), scikit-learn

(version 1.3), and PyTorch (version 2.0).

Model Evaluation

A total of 15 features were selected for the model using a combination of recursive feature

elimination, random forest importance analysis, and univariate selection during cross-validation.

The primary metric for evaluating model performance was the AUC-ROC, assessed on both the

independent validation set and averaged across 5-fold cross-validation. The selected threshold for

the SVM classifier was chosen by optimizing for the F1 score, and a confusion matrix was analyzed

to assess the tradeoff between precision and recall, offering a more comprehensive evaluation for

clinical decision-making [18].
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Error Analysis

Error analysis was conducted by assessing the tradeoff between precision and recall in a confusion

matrix. Additionally, a Mann-Whitney U test was applied to assess differences between the

true-positive and false-negative groups, providing statistical insights into potential distinctions in

their distributions. To complement these quantitative analyses, a qualitative visual analysis is

presented in Figure 3.
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Results
Dataset

The intersection dataset generated from radiology reports and the commercial algorithm consists

of 1234 subsolid nodules, with ground truth labels (i.e., increase, unchanged, decrease) available for

950 of them. There are 799 (~84%) unchanged nodules, 139 (~15%) increasing nodules, and 12

(~1%) decreasing nodules. A detailed breakdown of the dataset and corresponding patient

characteristics is presented in Table 1.

Feature Analyses

Results from non-parametric Mann-Whitney U tests indicated that 88 radiomic features were

statistically significant (p < 0.05), with 82 of them being highly statistically significant (p < 0.01).

Notably, features that demonstrated significant importance included Voxel Volume and Gray Level

Non-Uniformity, as illustrated in Table 2. As validated in this study and seen in prior studies, nodule

size remains a widely and highly predictive indicator for assessing the probability of nodule

malignancy [28]. Additionally, a Chi-squared test was conducted to evaluate Patient Sex (~70%

Female vs. ~30% Male), but ultimately, this analysis did not yield statistically significant differences

between nodule statuses.

Model Evaluation

We implemented various machine learning models, with SVM (utilizing a radial basis function

kernel) emerging as the top-performing model, achieving an AUC of 0.81 on both the 5-fold

cross-validation and the independent validation set. To assist physicians and readers in better

interpreting AUC scores, a confusion matrix is presented in Figure 1. The confusion matrix was

computed using the top-performing cross-validated model on the independent validation set. This

model was tuned with a False Positive Rate (FPR) threshold of 0.23, which was chosen by optimizing

for the F1 score. Nearly all progressive nodules in the independent validation set were correctly

identified. Furthermore, as observed in the statistical analyses and exploratory data analysis of the

radiomic features, and as noted in prior research studies [19], many of these features were highly
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correlated. Consequently, after performing feature dimensionality reduction, the SVM model

performed best using only 15 features, as demonstrated in Figure 1.

Error Analysis

The primary focus for this model was to identify true-positive cases of nodule growth, due to its

high significance in clinical decision-making. As shown in Figure 1's confusion matrix, instances of

false positives and false negatives occurred. Out of 17 positive cases in the independent validation

set, 14 were correctly classified as growing nodules, while 3 were incorrectly classified as stable

nodules. A Mann-Whitney U test between the true-positive and false-negative cases indicated high

statistical significance for each feature used in the SVM model. Figure 3 displays a gallery of

incorrectly classified nodules.
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Discussion
This study underscores the practical importance of integrating radiomic and clinical attributes to

predict subsolid nodule growth in CT scans. When managing early or pre-neoplasia of the lungs,

especially in the context of deciding whether surgical intervention is necessary, no definitive and

widely accepted guidelines exist to inform these management decisions. Such decisions ultimately

reside on the availability of local surgical and/or alternative expertise, as well as the practice culture

of the individual institution. Although radiological guidelines, such as the Fleischner Society criteria

for incidental lung nodules and Lung-RADS for lung cancer screening, provide some guidance on

the next steps in management, they do not conclusively determine these critical treatment

decisions [16], [20].

The decision to operate or opt for conservative management of pulmonary nodules typically

depends on both clinical and imaging factors, including total nodule size, solid component size, and

the overall cardiopulmonary health of the patient. The past growth and potential future growth of

these nodules over time become increasingly relevant factors in the decision-making process. While

the passage of time would naturally serve as the most accurate assessment of nodule growth, this

evaluation only occurs once the nodule has already grown. Hence, the interplay between radiomic

features, which delve into the intricate characteristics of nodules using advanced imaging analysis,

and clinical attributes like patient history and risk factors, can offer a more comprehensive and

nuanced understanding of nodule behavior and growth. By combining these two sources of

information and leveraging a large dataset of 950 nodules, the developed model has the potential

to enhance radiologists' ability to predict which nodules are likely to grow over time. This, in turn,

can provide more accurate and personalized recommendations for the thoracic tumor board and

patients.

Compared to existing studies in the literature, our study utilized a large curated dataset of 950

subsolid nodules, all of which were longitudinally confirmed, 3D segmented, and manually verified,

although not all pathology confirmed. However, arguably, this dataset is subject to much less

selection bias than the cases that are surgically resected and pathology confirmed. This is because
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most surgically resected datasets would include nodules that were radiologically and clinically

deemed highly suspicious, with patients healthy enough to undergo surgery. Moreover, nodules

pathologically compatible with adenocarcinoma spectrum lesions do not necessarily indicate

growth and invasion in patients, whereas longitudinal observation would arguably represent

another potentially more informative way of assessing the risk status of a nodule. Continued

surveillance and analysis of pulmonary nodules over time constitutes a critical aspect of nodule

management, as underscored by established guidelines and widely adopted practices in clinical

settings. The emphasis on longitudinal observation stems from the recognition that the evolution of

nodules is a dynamic process, influenced by various factors such as growth patterns, changes in

morphology, and alterations in radiographic characteristics [3], [5]. Tao et al. predicted nodule

invasiveness by utilizing a longitudinal dataset of lung nodules, arguing that results should consider

the rich longitudinal data that clinicians acquire during follow-up to identify and track patterns that

may otherwise remain uncaptured [21]. Similarly, Paez et al. argue for the potential of longitudinal

modeling to enhance radiomic predictions of lung cancer by leveraging distinct trends in nodule

morphology and size over time [22].

Our most effective model, employing an SVM with a radial basis kernel, achieved an impressive

average AUC of 0.81 in both 5-fold cross-validation and independent validation. To underscore the

model's effectiveness, it correctly identified 14 out of 17 growing nodules in the independent

validation dataset. The model utilizes the radiomic and clinical features at a single time point to

predict growth. Additionally, when assessing the visual interpretation of radiomic features, the set

of radiomic features that performed the best collectively hinted at patterns potentially discernible

to the naked eye, such as a higher level of surface heterogeneity in progressive and possibly

malignant nodules. Various statistical analyses, including Mann-Whitney U tests and correlation

analyses, demonstrated the high statistical significance of radiomic features in distinguishing

between growing and stable nodules.

To delve deeper into the interpretation of these features, it was observed that, on average, patients

with growing nodules were found to be older than those with stable nodules, aligning with the

widely recognized notion that age is considered a crucial risk factor in many health contexts [13].

One of the radiomic features examined was Run Length Non-Uniformity (RLN), which exhibited an
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approximately 336% increase for growing nodules compared to stable nodules on average. RLN

measures the dissimilarity in intensity among consecutive pixels or elements in an image, with

lower RLN values indicating that the same color or intensity persists over a relatively long distance

without interruption. Similarly, Zone Entropy (ZE), a feature that quantifies the uncertainty and

randomness in the distribution of zone sizes and gray levels, was found to be approximately 528%

higher for growing nodules than for stable nodules on average, indicating a greater degree of

heterogeneity in the texture patterns of growing nodules. Other features, such as Gray Level

Non-Uniformity, Inverse Difference Normalized, and Voxel Volume, also provided valuable insights.

Collectively, these features suggest that progressive nodules may often appear less homogeneous

and more heterogeneous to the naked eye, frequently exhibiting larger sizes [23]. Understanding

these patterns could provide practitioners with valuable quantitative insights for determining the

suspiciousness of a nodule.

Multiple studies have attempted to use qualitative imaging features to predict growth, but none has

been widely accepted, primarily due to low to moderate accuracy at best, which may also stem from

a lack of clear qualitative image-based signal and/or small sample size. Our results are consistent

with previous studies [7], [13], [14], but are distinctive due to a significantly larger dataset, robust

predictive power, utilization of a combination of radiomic and clinical features, and automated data

collection methodologies. Our findings underscore the effective performance of our model in both

the training and validation sets.

While our study achieved success, it also unveiled several limitations inherent in the nature of

radiology reports. Specifically, these limitations encompass discrepancies in reporting, metrics that

are either unquantifiable or missing, and subtle uncertainties within radiology report text, including

the presence of words such as “may,” “possibly,” and “slightly.” The ground truth label generation

process was based solely on the reporting radiologists' assessment within the report text. Thus,

these factors have the potential to influence the consistency of the ground truth labels assigned to

nodule growth statuses. Consequently, this underscores the need for improved standards in

radiology reporting [24]. High interreader variability poses significant challenges in achieving

consistent and accurate diagnoses of pulmonary nodules [25], [26]. Additionally, this highlights the
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promising implications of combining NLP and computer vision pipelines to validate radiologists’

reportings, provide additional insights, and potentially uncover undetected findings.

It is also worth noting the challenging aspects of curating large datasets for machine learning and

deep-learning-based algorithms, especially in medical contexts. The requirement for large volumes

of data is further driven by the high complexity and variability of medical data, as well as the diverse

range of patient cases and conditions, making it especially challenging to collect, particularly in

specialized or rare medical scenarios [27]. Factors such as the limited availability of radiologists and

the laborious annotation processes further contribute to the complexity of acquiring sufficient data.

Other obstacles include privacy and ethical concerns related to the sensitive patient information

involved, the heterogeneity of data from various sources, class imbalance issues, and the need to

adhere to strict regulatory compliance. However, by leveraging AI-powered tools, such as

automated report generation, image interpretation, and workflow optimization, we may mitigate

such issues in data collection.

In conclusion, this study developed a predictive model for identifying the overall nodule growth

status, leveraging a combination of radiomic and clinical features. The model achieved an AUC of

0.81 in both cross-validation and an independent validation set. Additionally, we curated a valuable

dataset comprising 1234 subsolid nodules, complete with segmentations, ground truth labels, and

various other attributes (e.g., nodule size, type, location, slice location) for 950 nodules.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 18, 2024. ; https://doi.org/10.1101/2023.12.05.23299456doi: medRxiv preprint 

https://www.zotero.org/google-docs/?tlNiUo
https://doi.org/10.1101/2023.12.05.23299456
http://creativecommons.org/licenses/by-nc-nd/4.0/


Author Contributions
Conceptualization: S.W., J.H.S.; Methodology: S.W, J.H.S, B.F.; Data Curation: S.W, M.B., A.I., T.C.; Data

Validation: S.W, M.B., J.H.S, B.F.; Data Analysis: S.W.; Resources: S.W, J.H.S, B.K.K.F.; Code and

Visualization: S.W, G.R.C.; Manuscript Review/Editing: S.W, J.H.S., B.K.K.F.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 18, 2024. ; https://doi.org/10.1101/2023.12.05.23299456doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299456
http://creativecommons.org/licenses/by-nc-nd/4.0/


References
[1] “Lung cancer.” Accessed: Nov. 02, 2023. [Online]. Available:

https://www.who.int/news-room/fact-sheets/detail/lung-cancer
[2] J. P. Ko et al., “Pulmonary Nodules: Growth Rate Assessment in Patients by Using Serial CT and

Three-dimensional Volumetry,” Radiology, vol. 262, no. 2, pp. 662–671, Feb. 2012, doi:
10.1148/radiol.11100878.

[3] H. MacMahon et al., “Guidelines for Management of Incidental Pulmonary Nodules Detected on 
CT Images: From the Fleischner Society 2017,” Radiology, vol. 284, no. 1, pp. 228–243, Jul. 2017,
doi: 10.1148/radiol.2017161659.

[4] P. Zhan, H. Xie, C. Xu, K. Hao, Z. Hou, and Y. Song, “Management strategy of solitary pulmonary
nodules,” Journal of Thoracic Disease, vol. 5, no. 6, Dec. 2013, doi:
10.3978/j.issn.2072-1439.2013.12.13.

[5] “Evaluation of Individuals With Pulmonary Nodules: When Is It Lung Cancer? - CHEST.” Accessed:
Nov. 19, 2023. [Online]. Available:
https://journal.chestnet.org/article/S0012-3692(13)60291-3/fulltext

[6] J. E. van Timmeren, D. Cester, S. Tanadini-Lang, H. Alkadhi, and B. Baessler, “Radiomics in
medical imaging—‘how-to’ guide and critical reflection,” Insights into Imaging, vol. 11, no. 1, p. 91,
Aug. 2020, doi: 10.1186/s13244-020-00887-2.

[7] S. R. Digumarthy et al., “Predicting malignant potential of subsolid nodules: can radiomics
preempt longitudinal follow up CT?,” Cancer Imaging, vol. 19, no. 1, p. 36, Jun. 2019, doi:
10.1186/s40644-019-0223-7.

[8] Z. Liu et al., “The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology:
Opportunities and Challenges,” Theranostics, vol. 9, no. 5, pp. 1303–1322, Feb. 2019, doi:
10.7150/thno.30309.

[9] J. D. Shur et al., “Radiomics in Oncology: A Practical Guide,” RadioGraphics, vol. 41, no. 6, pp.
1717–1732, Oct. 2021, doi: 10.1148/rg.2021210037.

[10]“Radiomics: Images Are More than Pictures, They Are Data | Radiology.” Accessed: Nov. 12,
2023. [Online]. Available: https://pubs.rsna.org/doi/10.1148/radiol.2015151169

[11] “Computerized Texture Analysis of Persistent Part-Solid Ground-Glass Nodules: Differentiation
of Preinvasive Lesions from Invasive Pulmonary Adenocarcinomas | Radiology.” Accessed: Nov.
02, 2023. [Online]. Available: https://pubs.rsna.org/doi/10.1148/radiol.14132187

[12]J. Ma, Q. Wang, Y. Ren, H. Hu, and J. Zhao, “Automatic lung nodule classification with radiomics
approach,” in Medical Imaging 2016: PACS and Imaging Informatics: Next Generation and
Innovations, SPIE, Apr. 2016, pp. 26–31. doi: 10.1117/12.2220768.

[13] R. Yang, D. Hui, X. Li, K. Wang, C. Li, and Z. Li, “Prediction of single pulmonary nodule growth by
CT radiomics and clinical features — a one-year follow-up study,” Frontiers in Oncology, vol. 12,
2022, Accessed: Nov. 02, 2023. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fonc.2022.1034817

[14] Y. Sun et al., “Computed tomography radiomics in growth prediction of pulmonary ground-glass
nodules,” European Journal of Radiology, vol. 159, p. 110684, Feb. 2023, doi:
10.1016/j.ejrad.2022.110684.

[15] “pyradiomics · PyPI.” Accessed: Nov. 02, 2023. [Online]. Available:
https://pypi.org/project/pyradiomics/

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 18, 2024. ; https://doi.org/10.1101/2023.12.05.23299456doi: medRxiv preprint 

https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://doi.org/10.1101/2023.12.05.23299456
http://creativecommons.org/licenses/by-nc-nd/4.0/


[16] “Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From
the Fleischner Society 2017 | Radiology.” Accessed: Nov. 02, 2023. [Online]. Available:
https://pubs.rsna.org/doi/full/10.1148/radiol.2017161659

[17] S. Prusty, S. Patnaik, and S. K. Dash, “SKCV: Stratified K-fold cross-validation on ML classifiers for
predicting cervical cancer,” Frontiers in Nanotechnology, vol. 4, 2022, Accessed: Nov. 12, 2023.
[Online]. Available: https://www.frontiersin.org/articles/10.3389/fnano.2022.972421

[18] S. A. Hicks et al., “On evaluation metrics for medical applications of artificial intelligence,” Sci
Rep, vol. 12, no. 1, Art. no. 1, Apr. 2022, doi: 10.1038/s41598-022-09954-8.

[19] E. J. Limkin et al., “The complexity of tumor shape, spiculatedness, correlates with tumor
radiomic shape features,” Sci Rep, vol. 9, no. 1, Art. no. 1, Mar. 2019, doi:
10.1038/s41598-019-40437-5.

[20] “Lung Rads | American College of Radiology.” Accessed: Nov. 01, 2023. [Online]. Available:
https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Lung-Rads

[21] G. Tao et al., “Longitudinal prediction of lung nodule invasiveness by sequential modelling with
common clinical computed tomography (CT) measurements: a prediction accuracy study,”
Translational Lung Cancer Research, vol. 11, no. 5, May 2022, doi: 10.21037/tlcr-22-319.

[22] “Longitudinal lung cancer prediction convolutional neural network model improves the
classification of indeterminate pulmonary nodules | Scientific Reports.” Accessed: Nov. 01, 2023.
[Online]. Available: https://www.nature.com/articles/s41598-023-33098-y

[23] C.-H. Chen et al., “Radiomic features analysis in computed tomography images of lung nodule
classification,” PLoS One, vol. 13, no. 2, p. e0192002, Feb. 2018, doi:
10.1371/journal.pone.0192002.

[24] M. A. Bruno, E. A. Walker, and H. H. Abujudeh, “Understanding and Confronting Our Mistakes:
The Epidemiology of Error in Radiology and Strategies for Error Reduction,” RadioGraphics, vol.
35, no. 6, pp. 1668–1676, Oct. 2015, doi: 10.1148/rg.2015150023.

[25] S. Bakr et al., “Interreader Variability in Semantic Annotation of Microvascular                   
Invasion in Hepatocellular Carcinoma on Contrast-enhanced Triphasic CT Images,” Radiology:
Imaging Cancer, vol. 2, no. 3, p. e190062, May 2020, doi: 10.1148/rycan.2020190062.

[26] S. S. Hsieh et al., “Understanding Reader Variability: A 25-Radiologist Study on Liver                   
Metastasis Detection at CT,” Radiology, vol. 306, no. 2, p. e220266, Feb. 2023, doi:
10.1148/radiol.220266.

[27] L. M. Prevedello et al., “Challenges Related to Artificial Intelligence Research in Medical                 
  Imaging and the Importance of Image Analysis Competitions,” Radiology: Artificial Intelligence,
vol. 1, no. 1, p. e180031, Jan. 2019, doi: 10.1148/ryai.2019180031.

[28] A. R. Larici et al., “Lung nodules: size still matters,” European Respiratory Review, vol. 26, no. 146,
Dec. 2017, doi: 10.1183/16000617.0025-2017.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 18, 2024. ; https://doi.org/10.1101/2023.12.05.23299456doi: medRxiv preprint 

https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://www.zotero.org/google-docs/?XvmKqM
https://doi.org/10.1101/2023.12.05.23299456
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures

Figure 1

SVM Model Results

* An SVMmodel with a radial basis kernel achieved a notable average AUC of 0.81 across both 5-fold cross-validation and an
independent validation dataset (left). The confusion matrix (right) was computed using the top-performing cross-validated
model on the independent validation set and tuned with a False Positive Rate (FPR) threshold of 0.23, identifying nearly all
progressive nodules in the independent validation set.
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Figure 2
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Figure 3

Error Analysis

Average Size: 7.0 mm
Previous Size: 4.0 mm
Location: Right Upper Lobe
Study Date: 2/2018
Compared Date: 2/2017
Doubling Time: ~442 Days

Average Size: 6.0 mm
Previous Size: N/A
Location: Right Lower Lobe
Study Date: 5/2018
Compared Date: 3/2007
Doubling Time: N/A

Average Size: 5.0 mm
Previous Size: 3.0 mm
Location: Right Upper Lobe
Study Date: 2/2022
Compared Date: 2019
Doubling Time: ~1151 Days

* Of the 17 increasing cases, the SVMmodel misclassified 3 growing nodules as stable (false negatives). A Mann-Whitney U
test was conducted to assess the differences between the true positives (14) and the false negatives (3).
* Features with P-Values < 0.01: Surface Volume Ratio, Surface Area, Correlation, Dependence Non-Uniformity, Run Length
Non-Uniformity, and Voxel Volume.
* Features with P-Values < 0.05: Patient Age, Maximum 2D Diameter Row, Maximum 3D Diameter, Maximum 2D Diameter
Slice, Maximum 2D Diameter Volume, Zone Entropy, Inverse Difference Normalized, Gray Level Non-Uniformity, Dependence
Entropy.
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Figure 4

Analyses of Features

a. b.

c. d.

* The above displays various boxplots for several statistically significant radiomic features.
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Tables

Table 1

Dataset and Patient Characteristics

Characteristics Unchanging Group
(N = 799, 85.2%)

Increasing Group
(N = 139, 14.8%)

P-Value §

Age — year (% > 60) *† 70.3 ± 10.6 (84.3%) 73.1 ± 11.6 (86.3%) <0.001

Male Sex — no. (%) 239 47 0.411

Nodule Size — mm. ‡ 6.9 ± 4.0 10.4 ± 4.6 <0.001

Nodule Volume — mm3 440.3 ± 1085.3 1072.0 ± 1353.0 <0.001

* Plus-minus values are means ± SD
† The percentage is the proportion of patients with age > 60 out of both unchanging and increasing groups, respectively
‡ Nodule Size is the average diameter of the nodule from its long and short axes
§ P-value is computed from Mann-Whitney U tests (increasing vs. unchanging) and Chi-squared tests (male vs. female)
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Table 2

SVM Features

# Feature Name Feature Type Radiomic Family P-Value †

1 Patient Age Clinical N/A <0.001

2 Maximum 2D Diameter Row Radiomic Shape <0.001

3 Maximum 3D Diameter Radiomic Shape <0.001

4 Maximum 2D Diameter Slice Radiomic Shape <0.001

5 Maximum 2D Diameter Column Radiomic Shape <0.001

6 Surface Volume Ratio Radiomic Shape <0.001

7 Surface Area Radiomic Shape <0.001

8 Voxel Volume Radiomic Shape <0.001

9 Zone Entropy Radiomic GLSZM <0.001

10 Gray Level Non-Uniformity Radiomic GLSZM <0.001

11 Correlation Radiomic GLCM <0.001

12 Inverse Difference Normalized Radiomic GLCM <0.001

13 Run Length Non-Uniformity Radiomic GLRLM <0.001

14 Dependence Entropy Radiomic GLDM <0.001

15 Dependence Non-Uniformity Radiomic GLDM <0.001

* The above features were used in the SVMmodel, resulting in an AUC of 0.81 on both independent validation and 5-fold
cross-validation.
† The p-value is computed by performing a Mann-Whitney U test between two groups: increasing nodules and unchanging
nodules.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 18, 2024. ; https://doi.org/10.1101/2023.12.05.23299456doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299456
http://creativecommons.org/licenses/by-nc-nd/4.0/

