Original research article

1

Targeting the Histone Methyltransferase SETD7 Rescues Diabetes-induced 2 Impairment of Angiogenic Response by Transcriptional Repression of Semaphorin 3G 3

Shafeeq A. Mohammed, PhD¹, Era Gorica, PhD¹, Mattia Albiero, PhD^{2,3}, Gergely Karsai, PhD⁴, Alessandro Mengozzi, MD, PhD^{1,5,6}, Carlo Maria Caravaggi, MD⁷, Samuele Ambrosini, PhD¹, Stefano Masi, MD, PhD^{5,8}, Maria Cristina Vinci, PhD⁹, Gaia Spinetti, PhD¹⁰, Sanjay Rajagopalan, MD^{11,12}, Assam El-Osta, PhD^{13,14,15}, Jaroslav Pelisek¹⁶, Frank Ruschitzka, MD^{1,17}, Gian Paolo Fadini, MD, PhD^{2,3}, Sarah Costantino, PhD^{1,17§}, Francesco Paneni, MD, PhD^{1,17§*}

- ¹Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, 4
- Zurich University Hospital and University of Zürich, Wagistrasse 12, Schlieren CH-8952, 5 Switzerland. 6
 - ²Department of Surgery, Oncology and Gastroenterology University of Padova, Italy. ³Veneto Institute of Molecular Medicine, Padova, Italy.

⁴Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich-8091, Switzerland.

⁵Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy

⁶Health Science Interdisciplinary Center, Sant'Anna School of Advanced Studies, Pisa, Italy; ⁷Diabetic Foot Department, IRCCS MultiMedica, Milan, Italy.

⁸Institute of Cardiovascular Science, University College London, London, UK

⁹Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan. Italv.

¹⁰Cardiovascular Pathophysiology-Regenerative Medicine Laboratory, IRCCS MultiMedica, Milan, Italy.

¹¹Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH.

¹²Case Western Reserve University School of Medicine, Cardiovascular Research Institute, Cleveland, OH.

¹³Baker Heart and Diabetes Institute, Epigenetics in Human Health and Disease Program, Melbourne, Vic, Australia:

¹⁴Department of Diabetes, Central Clinical School, Monash University, Melbourne, Vic, Australia:

¹⁵University College Copenhagen, Faculty of Health, Department of Technology, Biomedical Laboratory Science, Copenhagen, Denmark;

¹⁶Department of Vascular Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;

¹⁷University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland.

[§]The authors contributed equally to this work.

7 *Address for Correspondence:

- Prof. Dr. med. Francesco Paneni, FESC 8
- Director, Center for Translational and Experimental Cardiology (CTEC) 9
- Head. Cardiometabolic Division 10
- University Heart Center 11
- 12 Department of Cardiology
- Rämistrasse 100 13
- 14 CH-8091 Zürich
- 15 francesco.paneni@uzh.ch
- www.herzzentrum.usz.ch 16

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

1 Abstract

2

Background: Peripheral artery disease (PAD) is highly prevalent in patients with diabetes 3 4 (DM) and associates with a poor prognosis. Revascularization strategies failed to improve outcome, suggesting that new strategies to promote blood vessel growth are needed. 5 Histone modifications have emerged as key modulators of gene expression, however their 6 7 role in angiogenic response in DM remains poorly understood. Here we investigate the role of chromatin remodelling in DM-related impairment of angiogenic response. Methodology: 8 Primary human aortic endothelial cells (HAECs) were exposed to normal glucose (NG, 5 9 mM) or high glucose (HG, 25 mM) for 48 hours. Gene expression profiling was performed by 10 11 RNA sequencing (RNA-seq). Cell migration and tube formation were employed to study 12 angiogenic properties in HAECs. Levels of the histone methyltransferase SETD7 and its 13 chromatin signature at histone 3 on lysine 4 (H3K4me1) were investigated by Western blot and chromatin immunoprecipitation (ChIP). Pharmacological blockade of SETD7 was 14 achieved by using the selective inhibitor (R)-PFI-2 while the inactive enantiomer (S)-PFI-2 15 16 was used as a control. Mice with streptozotocin-induced DM were orally treated with (R)-PFI-17 2 or vehicle and underwent hindlimb ischemia by femoral artery ligation. Our experimental findings were translated in endothelial cells and gastrocnemius muscle samples obtained 18 19 from DM patients with PAD. Results: RNA-seq in HG-treated HAECs unveiled the histone 20 methyltransferase SETD7 as the top-ranking transcript. SETD7 upregulation was associated 21 with increased H3K4me1 levels as well as with impaired HAECs migration and tube formation. Both SETD7 silencing and inhibition by (R)PFI-2 rescued hyperglycemia-induced 22 23 impairment of HAECs migration and tube formation, while SETD7 overexpression blunted the angiogenic response. RNA-seq and ChIP assays showed that SETD7-induced 24 25 H3K4me1 enables the transcription of the angiogenesis inhibitor semaphorin-3G (SEMA3G) 26 by increasing chromatin accessibility to PPARy. Moreover, SEMA3G overexpression 27 mimicked the impairment of angiogenic response observed during hyperglycemia. In DM 28 mice with hindlimb ischemia, (R)-PFI-2 improved limb perfusion by suppressing SEMA3G. 29 Finally, RNAseq and immunofluorescence in vascular specimens from two cohorts of DM patients with PAD confirmed the upregulation of SETD7/SEMA3G signalling. Of note, (R)-30 PFI-2 restored angiogenic properties in HAECs collected from DM patients. Conclusion: 31 32 SETD7 is a druggable epigenetic target to promote neovascularization in DM.

- 33
- 34
- 35
- 36
- 37

1 Introduction

2

Diabetes mellitus (DM) is a major cause of disability due to the occurrence of micro- and 3 macrovascular complications.¹ Among the constellation of cardiovascular comorbidities, DM 4 shows the highest association with peripheral artery disease (PAD), a condition 5 6 characterized by atherosclerotic lesions, reduced blood supply and chronic ischemia of the lower extremities.² DM is highly prevalent in patients with PAD and has been co-diagnosed 7 in nearly 40% of all PAD patients.³ Despite advances in revascularization strategies, the rate 8 9 of limb amputation due to chronic limb ischemia remains high and associates with cardiovascular morbidity in DM patients.³⁻⁵ In this perspective, strategies that promote 10 vascularization can be considered as a novel therapeutic option in DM patients with PAD.⁶⁻⁸ 11 Epigenetic changes, defined as plastic chemical modifications of DNA/histone complexes -12 have shown to modulate gene activity by modifying chromatin accessibility to transcription 13 factors.^{9, 10} To date, only few studies have investigated the contribution of epigenetic 14 15 modifications in regulating angiogenic response and post-ischemic vascularization.^{11, 12} Inhibition of histone deacetylase 9 (HDAC9) was shown to impair endothelial cells (ECs) 16 tube formation, sprouting and retinal vessel outgrowth, whereas HDAC9 overexpression 17 rescued the impairment of angiogenesis.¹³ In another study, pharmacological inhibition and 18 genetic ablation of transcriptional co-activator p300-CBP associated factor (PCAF) impaired 19 blood flow recovery and arteriogenesis following hindlimb ischemia via suppression of 20 inflammatory signalling and leukocyte recruitment.¹⁴ Although these studies highlighted a 21 pivotal role of chromatin remodelling in the regulation of EC angiogenic properties, our 22 23 understanding of epigenetic regulation of angiogenic response in diabetes remains poor and 24 chromatin-editing approaches with specific epi-drugs are yet to be approved in this setting. In the present study we show that, among chromatin modifying enzymes, the histone 25 methyltransferase SETD7 is strongly upregulated by hyperglycemia and impairs angiogenic 26 27 response by transcriptional regulation of the anti-angiogenic gene semaphorin3G (SEMA3G). Pharmacological targeting of SETD7 by (R)PFI-2 was able to rescue DM-28

1 induced impairment of angiogenic properties both in vitro and in vivo. Activation of the 2 SETD7/SEMA-3G axis was validated by RNA-seq and immunofluorescence in two different 3 cohorts of patients with DM and PAD. Notably, SETD7 inhibition by (R)PFI-2 rescued migration and tube formation in ECs collected from DM patients thus suggesting the 4 5 potential clinical relevance of our study. Taken together, these findings suggest that 6 selective pharmacological blockade of SETD7 could help restoring post-ischemic 7 neovascularization thus preventing limb ischemia in DM. 8 9 Methods An extended version of the methods used in this study is provided in Supplemental Material. 10

11 Experiments in human aortic endothelial cells

12 Human aortic endothelial cells (HAECs, passages 5 to 7) were cultured in EBM-2 (growth

13 factor-free medium) with 2% FBS and exposed for 48 hours either to normal glucose (5

14 mmol/L) or high glucose concentrations (25 mmol/L), in the presence or in the absence of

the SETD7 inhibitor R-PFI-2 (20 μ M) or its inactive enantiomer S-PFI-2 (20 μ M). Mannitol at

the final concentration of 20 mmol/L was used as an osmotic control. After 48 h cells were

17 harvested and used for angiogenesis assays or molecular analyses.

18 RNA-sequencing

19 RNA-sequencing (RNA-seq) was performed in NG and HG-treated HAECs, in the presence

20 or in the absence of SETD7-siRNA or scrambled siRNA (n=5/group). Samples were

sequenced as a75 bp paired end with a NextSeq 500 using the Truseq LT kit (please see

22 Supplemental Material for details about RNA-seq and bioinformatic analysis).

23 Chromatin immunoprecipitation (ChIP) assays

24 Chromatin immunoprecipitation was performed in HAECs and mouse gastrocnemius muscle

25 specimens by using the Magna ChIP Assay Kit (Millipore, Billerica, USA), according to the

26 manufacturer's instructions. ChIP quantifications of gene promoters were performed by real

1 time PCR (gene primers are shown in **Table S1).** Quantifications were performed using the

2 comparative cycle threshold method and are reported as the n fold difference in antibody-

3 bound chromatin against the input DNA, as previously reported.^{15, 16}

4 Mouse model of diabetic hindlimb ischemia

5 Diabetes was induced in 8-week-old male mice (C57BL/6) by a single high dose of 6 streptozotocin (STZ, 175 mg/Kg, via intraperitoneal injection) as previously reported.¹⁷ For 7 the hindlimb ischemia experiments, animals were sedated with 5% inhaled Isoflurane (Iso-8 Vet, Piramal Healthcare, UK) and kept at 2-3% for maintenance. Analgesia was achieved 9 with 5 mg/kg tramadol. The femoral artery and the vein were surgically dissected from the 10 femoral nerve, then cauterized by applying an electric current with a bipolar tweezer end 11 excised from the proximal end to poplite bifurcation. Hindlimb perfusion was measured with Perimed PeriscanPim II Laser Doppler System (PerimedAB, Sweden) at 1, 7 and 14 days 12 13 after ischemia. Animal experiments were approved by the Veneto Institute of Molecular

14 Medicine Animal Care and Use Committee and by the Italian Health Ministry.

15 In vivo treatment with (R)-PFI-2

(R)-PFI-2 hydrochloride (Cat. HY-18627A, MedChemExpress) at the final dose of 95 mg/Kg
or vehicle (DMSO:Corn oil at 1:1 ratio) were given orally in mice for 5 days before the
induction of hindlimb ischemia and continued for the next 14 days. Body weight and blood
glucose levels were monitored before and after treatment. At the end of the study, mice were
harvested, and liver specimens were tested for possible toxicity.

21 RNA-seq in DM patients with PAD and healthy control donors

Human vascular tissue samples were collected from DM patients with PAD who underwent
open surgical interventions at the Department of Vascular Surgery at the University Hospital
Zurich. Control aortas were obtained from healthy donors and provided by the Department of
Visceral Surgery at the University Hospital Zurich. The local ethics committee (Cantonal
Ethics Committee Zurich, Switzerland; BASEC-Nr. 2020-00378) approved the tissue sample

- 1 collection and processing for molecular analyses. The detailed methods for library
- 2 preparation and RNA-seq are reported in Supplemental Material.

3 Collection of skeletal muscle specimens from DM patients with PAD

- 4 Skeletal muscle specimens were obtained from a second cohort of DM patients with PAD to
- 5 validate our findings. The collection of human samples was approved by the MultiMedica
- 6 Research Ethics Committee and was conducted according to the principles outlined in the
- 7 Declaration of Helsinki. Specimens were collected from: i) different anatomical locations of
- 8 the lower extremities from non-diabetic control participants, referred for
- 9 investigations/therapeutic interventions related to leg varicosity; or ii) foot muscle from T2D
- 10 participants at the occasion of minor amputation for chronic limb ischemia (diagnosed
- 11 according to the Trans-Atlantic Inter-Society Consensus Document on Management of
- 12 Peripheral Arterial Disease [TASC].

13 Experiments in primary endothelial cells collected from patients

14 Primary human aortic endothelial cells (passages 5–7, Clonetics®) were obtained from DM

patients (M:F=2:2; age, 61±2 years; n=4), free from overt cardiovascular disease and other

- 16 relevant comorbidities. Cells were grown in fibronectin-coated 75 cm² flasks in optimized
- 17 endothelial growth medium-2 supplemented with 2% fetal bovine serum, as previously
- 18 described.¹⁸ Treatment with (*R*)-PFI-2 was performed as described above and in
- 19 Supplemental Material.

1 Results

Hyperglycemia leads to an impairment of angiogenic response and SETD7 2

3 upregulation in human aortic endothelial cells (HAECs)

4 To investigate whether HG may impact on angiogenesis in vitro, we exposed primary human aortic endothelial cells (HAECs) to normal glucose (NG, 5 mM/L) and high glucose 5 6 concentrations (HG, 25 mM/L) for 24 and 48 hours. Compared with NG, HG led to an 7 impairment of endothelial migration, tube formation and sprouting (Fig. 1A-C). To unveil transcriptional signatures potentially involved in hyperglycemia-induced impairment of 8 angiogenesis, we employed an unbiased approach by performing RNA-seg in HAECs treated 9 with NG and HG. Among dysregulated genes, HAECs treated with HG displayed a significant 10 11 upregulation of the histone methyltransferase SETD7 (Fig. 1D-E; Fig. S1A). Consistently with this finding, HG led to a time-dependent increase in SETD7 gene expression and protein 12 levels (Fig. 1F, Fig. S1B-C), whereas no changes in SETD7 expression were observed with 13 the osmotic control mannitol (Fig. S1D). Since SETD7 is specifically involved in mono-14 methylation of lysine 4 at histone 3 (H3K4me1)¹⁸⁻²⁰, we next investigated this chromatin 15 signature and found an increase in H3K4me1 levels in HG-treated HAECs as compared to the 16 NG group (Fig. 1G). In line with enhanced histone methylation, we observed an increased 17 nuclear translocation of SETD7 upon HG treatment, as shown by immunoblotting and 18 19 immunofluorescence (Fig 1H-I, Fig. S2A-B).

20 SETD7 inhibition blunts H3K4me1 levels and rescues hyperglycemia-induced defects of angiogenic response. 21

22 We next investigated whether SETD7 inhibition could restore angiogenic response in HAECs 23 exposed to HG. Of interest, SETD7 depletion by small interfering RNA (siRNA) reduced H3K4me1 levels while restoring EC migration and tube formation as compared to scrambled 24 25 siRNA (Scr.siRNA) (Fig. 2A-C). Given its specificity for H3K4me1, gene silencing of SETD7

did not affect other H3K4 methylation marks (H3K4me3) (Fig. S3). Next, we employed a highly selective pharmacological inhibitor of SETD7, (*R*)-PFI-2, and used its inactive enantiomer (*S*)-PFI-2 as a control. HAECs treated with (*R*)-PFI-2 showed neither signs of cell toxicity nor changes in cell morphology (Fig. S4A-B). Consistent with the siRNA experiments, (*R*)-PFI-2 treatment led to a reduction of H3K4me1 levels and associated with an improvement of angiogenic properties (Fig. 2D-F). As expected, the drug did not affect H3K4me3 levels (Fig. S4C).

8 SEMA3G is a downstream target of SETD7

9 We next performed RNA-seq in HG-treated HAECs with and without SETD7 depletion to 10 appraise SETD7-dependent transcriptional changes in ECs (Fig. 3A). SETD7 knockdown in 11 HAECs was associated with significant changes in the expression of genes implicated in the regulation of vasculogenesis, angiogenesis and cell migration (as shown by IPA analysis, 12 Fig. 3B). Specifically, SETD7-depleted HAECs displayed a significant downregulation of 13 14 SEMA3G, VCAM1, PTGS1 and DUSP23 (Fig. 3C, Fig. S5). In order to unveil SETD7 15 transcriptional targets, we interrogated the UCSC genome browser (https://genome.ucsc.edu) to investigate the enrichment of SETD7-specific histone marks 16 (H3K4me1) on the promoter of deregulated genes (Fig. 3D). SEMA3G promoter showed a 17 strong enrichment in H3K4me1, suggesting a potential involvement of SETD7 in its 18 19 transcriptional regulation (Fig. 3D). SEMA3G was significantly upregulated upon HG exposure as compared to NG (S6A-B), while SETD7 gene silencing in HG-treated HAECs 20 led to a significant downregulation of SEMA3G levels as compared to Scr.siRNA, suggesting 21 that SETD7 is required for SEMA3G upregulation (Fig. 3E, S6A-B). A similar downregulation 22 of SEMA3G was observed with the selective SETD7 inhibitor (R)-PFI-2 as compared to its 23 inactive enantiomer (S)-PFI-2 (Fig. 3F). On the other hand, SETD7 overexpression in NG-24 treated HAECs was sufficient to increase SEMA3G protein levels and mimicked 25 26 hyperglycemia-induced impairment of ECs migration and tube formation (Fig. 3G-I).

1

2 SEMA3G is preferentially expressed in aortic endothelial cells and represses 3 angiogenic capacity

In order to explore the expression pattern of SEMA3G in the vascular endothelium, we 4 5 analyzed a single-cell RNAseq dataset previously generated in mouse skeletal muscle specimens.²¹ scRNA-seq profiles were obtained from 4,121 cells with a median of 959 genes 6 7 per cell. Unsupervised clustering followed by t-distributed stochastic neighbor embedding (t-8 SNE) revealed six clusters of vascular ECs, which all expressed the pan-vascular markers 9 Cdh5 and Pecam1 while did not express described marker sets of muscle stem cells and other muscle cell types.²¹ Of interest, we found that SEMA3G was preferentially enriched in 10 aortic endothelial cells and arteriole endothelial cells (Fig. 4A). To characterize the function 11 of SEMA3G in the diabetic endothelium we performed loss-of-function experiments by 12 13 siRNA. We observed that SEMA3G silencing in HG-treated HAECs restored cell migration and tube formation (Fig. 4B-C). 14

15

16 SETD7 regulates SEMA3G secretion in endothelial cells

17 Recent work has shown that SEMA3G can be secreted from cells.²² Hence, we investigated 18 whether SETD7 inhibition could affect SEMA3G secretion from cultured HAECs exposed to 19 HG. SEMA3G secretion was enhanced in HG-treated HAECs as compared to NG, whereas 20 treatment with the SETD7 inhibitor (R)-PFI-2 significantly reduced SEMA3G levels in 21 conditioned media as compared to its inactive enantiomer (S)-PFI-2 (**Fig. 4D**).

22

23 SETD7-dependent H3K4me1 favors chromatin accessibility on SEMA3G promoter

To appraise whether SETD7 regulates SEMA3G via H3K4me1 (transcriptional mechanism) rather than by direct protein methylation (posttranslational mechanism), we performed coimmunoprecipitation to test a direct interaction between SETD7 and SEMA3G. No interaction between the 2 proteins was observed upon HG exposure (**Fig. S7**). Bioinformatic analysis of ChIP-seq data from the UCSC genome browser showed a strong enrichment of

1 H3K4me1 on SEMA3G promoter (Fig. 5A). To confirm these data, we performed a ChIP assay by leveraging three sets of primers targeting different regions of SEMA3G promoter 2 (Fig. 5B). ChIP assay performed in HG-treated HAECs revealed that H3K4me1 is 3 preferentially enriched at the initiator site of SEMA3G promoter (Fig. S8A). Interestingly 4 5 enough, H3K4me1 enrichment on SEMA3G promoter was reduced in the presence of (R)-6 PFI-2 in HG-treated HAECs, as compared to (S)-PFI-2 (Fig. 5C). Moreover, SETD7 7 inhibition only affected H3K4me1 but not H3K4me3 enrichment, in line with the notion that 8 SETD7 specifically induces histone mono-methylation (Fig. S8B). This set of data shows 9 that SETD7-induced H3K4me1 is required for SEMA3G transcription.

10 PPARy drives SEMA3G transcription

In silico analysis showed that both PPARy and SOX18 could potentially act as transcription 11 12 factors on the SEMA3G promoter (Fig. 5D). By leveraging motif binding analysis (https://jaspar.genereg.net/) we next determined the nucleotide sequence of transcription 13 factor binding site (Fig. 5E). ChIP assay revealed a strong binding of the transcription factor 14 PPARy to SEMA3G promoter, while no binding was observed for SOX18 (Fig. 5F). These 15 16 results were confirmed by experiments with siRNA-mediated depletion of both PPARy and SOX18 showing a reduction of SEMA3G expression and protein levels only in presence of 17 PPARy but not SOX18-siRNA (Fig. 5G-H, Fig. S9A-B). PPARy-siRNA did not affect SETD7 18 protein levels (Fig. S9C). To further validate the role of PPARy in SEMA3G transcription, we 19 20 treated HAECs with the PPARy agonist pioglitazone. Notably, HAECs treated with 21 pioglitazone showed increased SEMA3G expression and protein levels as compared to 22 vehicle (Fig. 5I, Fig. S10A-B). Pioglitazone did not affect SETD7 expression (Fig. S10B-C).

23 (R)-PFI-2 improves post-ischemic vascularization and limb perfusion in diabetic mice

Prompted by our *in vitro* results, we next determined whether SETD7 inhibition could rescue ischemia-mediated angiogenesis *in vivo*, in a model of diabetic hindlimb ischemia. Diabetes was induced by streptozotocin while control mice received citrate buffer alone, as previously

reported.¹⁷ After 4 weeks, subgroups of diabetic and non-diabetic mice were randomized to 1 2 oral treatment with (R)-PFI-2 (95 mg/kg/day) or vehicle 6 days before the induction of 3 hindlimb ischemia till 14 days following limb ischemia, for a total of 20 days. Alanine transaminase (ALT) assay excluded liver toxicity in mice treated with (R)-PFI-2 (Fig. S11A). 4 5 Diabetes led to increased blood glucose levels and body weight loss as compared to nondiabetic mice, and these alterations were not affected by (R)-PFI-2 treatment (Fig. S11B-C). 6 7 Following hindlimb ischemia, diabetic mice exhibited a marked impairment of blood perfusion 8 as assessed by laser Doppler Imaging (blood flow of ischemic vs. non-ischemic hindlimb at 9 14 days (0.48 \pm 0.02 vs 0.36 \pm 0.02, p = 0.003) as compared to non-diabetic controls 10 (Fig.6A-B). Treatment with (R)-PFI-2 restored blood perfusion levels in diabetic mice as compared to vehicle (0.36 \pm 0.02 vs 0.51 \pm 0.04, p=0.025) (Fig. 6A-B). The observed 11 12 improvement of limb perfusion with (R)-PFI-2 was associated with restoration of capillary 13 density, as shown by CD31 immunofluorescence in cross-sections from gastrocnemius muscles of diabetic mice (Fig. 6D). 14

15

16 In vivo modulation of SETD7/SEMA3G axis by (R)-PFI-2

17 In line with our in vitro data, SETD7/SEMA3G axis was dysregulated in ischemic gastrocnemius muscles from diabetic as compared to non-diabetic mice, as shown by real 18 time PCR and Western blot (Fig. 6E, Fig. S12). (R)-PFI-2 treatment suppressed 19 SETD7/SEMA3G expression while decreasing H3K4me1 levels (Fig. 6E, Fig. S12). 20 Mechanistically, ChIP assays showed that (R)-PFI-2 prevented the enrichment of both 21 H3K4me1 and the transcription factor PPARy on SEMA3G promoter (Fig. 6F-G). Of interest, 22 we found that in vivo treatment with (R)-PFI-2 reduced plasma levels of SEMA3G in diabetic 23 mice (Fig. 6H). 24

1 SETD7/SEMA3G signaling in diabetic patients with PAD

2 To translate our experimental findings to humans, we first performed RNA-seq in vascular 3 specimens collected from DM patients with PAD undergoing elective surgical revascularization and age-matched healthy controls. Of note, RNA-seq confirmed a 4 significant dysregulation of both SETD7 and SEMA3G (Fig. 7A). SETD7/SEMA3G axis and 5 6 H3K4me1 expression were then validated in a second cohort of patients, where 7 gastrocnemius muscle specimens were collected from non-diabetic patients (controls) and age-matched patients with DM and PAD. Immunofluorescence confirmed the upregulation of 8 SETD7, SEMA3G and H3K4me1 in DM patients as compared to controls (Fig.7B-C). 9 Pearson's correlation confirmed the nuclear translocation of SETD7 in muscular specimens 10 from DM patients as compared to controls (Fig. 7D). Real-time PCR confirmed SETD7 and 11 SEMA3G upregulation in DM patients with PAD (Fig. 7E). Interestingly, ChIP assay 12 confirmed the enrichment of PPARy and H3K4me1 on SEMA3G promoter in muscle 13 specimens from DM patients with PAD as compared to controls (Fig. 7F-G). 14

15 Targeting SETD7 restores angiogenic properties in the human diabetic endothelium

We next investigated whether pharmacological modulation of SETD7 in the human diabetic endothelium could rescue angiogenic properties. To this end, we employed human aortic endothelial cells isolated from patients with DM (M:F=2:2; age, 61 ± 2 years; n=4). (*R*)-PFI-2 attenuated SEMA3G expression and H4K3me1 levels in diabetic ECs as compared to its inactive enantiomer (*S*)-PFI-2 (**Fig. 8A-B**). Moreover, SETD7 inhibition significantly improved EC cell migration and tube formation (**Fig. 8C-D**). A schematic summarizing the main study findings is reported in **Fig. 8E**.

23

24 Discussion

In the present study we show that, among different genes deregulated by hyperglycemia, the
 histone methyltransferase SETD7 is a pivotal chromatin remodeler fostering transcriptional
 programs leading to defective angiogenesis and reduced limb perfusion in diabetic mice.

The most important findings of our study are: i) RNA-seg in human aortic endothelial cells 4 5 exposed to hyperglycemia unveiled SETD7 as the top-ranking transcript; ii) hyperglycemia increases SETD7 expression and SETD7-dependent H3K4me1, thus leading to an open 6 7 chromatin and active transcription of the anti-angiogenic gene SEMA3G; iii) Both gene silencing and selective pharmacological inhibition of SETD7 by (R)-PFI-2 blunt H3K4me1 8 levels and SEMA3G transcription thus rescuing hyperglycemia-induced impairment of 9 angiogenic properties; iv) in diabetic mice, the SETD7 inhibitor (R)-PFI-2 rescues post-10 ischemic vascularization and limb perfusion by suppressing SEMA3G transcription; (v) 11 12 SETD7/SEMA3G signalling was dysregulated in two different cohorts of DM patients with PAD; iv) treatment with (R)-PFI-2 in ECs collected from DM patients restored angiogenic 13 properties. 14

Over the last few years, an increasing body of evidence showed that epigenetic changes 15 affect transcriptional programs implicated in blood vessel growth and angiogenic response.²³ 16 17 The growing understanding of chromatin structure has led to the design of specific drugs with ability to erase or write epigenetic signatures eventually resetting the cell transcriptome 18 in disease states.²⁰ Notably, several of these compounds have been already approved by 19 the FDA for the treatment of cancer, neurological and autoimmune diseases.²⁴ Post-20 translational modifications of histone tails, namely acetylation and methylation, induce 21 chromatin remodelling that may either enable or repress gene transcription.¹⁰ In vitro studies 22 have recently shown that SETD7 is involved in epigenetic regulation of the transcription 23 factor NF-kB.^{25, 26} In addition, SETD7 induces MCP-1 upregulation and endoplasmic 24 reticulum stress in the kidney of diabetic mice.²⁷ Although these studies provide important 25 mechanistic insights on the role of SETD7 in hyperglycemia-induced inflammation, SETD7 26 function in the vascular endothelium remains poorly understood. 27

1 In the present study, we show for the first time that SETD7 is a pivotal repressor of blood 2 vessel growth in the setting of diabetic PAD. Specifically, in conditions of hyperglycaemia SETD7 monomethylates H3K4me1 in proximity of SEMA3G promoter. These chromatin 3 signatures enables changes in chromatin accessibility ultimately favouring SEMA3G 4 5 transcription and subsequent impairment of EC migration and tube formation. This was demonstrated by SETD7 gain- and loss-of-function approaches. SETD7 overexpression 6 7 mimicked defective angiogenesis while its depletion or pharmacological blockade by (R)-8 PFI-2 rescued hyperglycaemia-induced impairment of angiogenic properties. We showed 9 that SETD7-dependent histone mono-methylation was causally involved in SEMA3G 10 upregulation. First, co-immunoprecipitation experiments ruled out a direct protein methylation of SEMA3G by SETD7. Furthermore, SETD7 is the only methyl-writing enzyme 11 responsible for H3K4me1¹⁹ and this confers specificity to our findings. Indeed, we did not 12 observe any change of other H4K4 methylation sites (i.e.H3K4me3) following SETD7 13 manipulation. However, H3K4me1 is amenable to demethylation by the lysine-specific 14 demethylase 1 (LSD1)^{26, 28} and further experiments should elucidate the fine balance and 15 16 interplay between SETD7 and LSD1 in the regulation of SEMA3G transcription. An active 17 downregulation of LSD1 could also participate to enhanced H3K4me1 levels in our study.

Although histone methylation is emerging as a pivotal determinant of transcriptional and 18 phenotypic changes in different cell types^{29, 30}, methylation of non-histone proteins by SETD7 19 may also play a role in endothelial homeostasis. For example, SETD7-dependent 20 methylation and LSD1-dependent demethylation of hypoxia-inducible factor-1 α (HIF-1 α) 21 were recently reported to regulate protein stability in the nucleus in a proline hydroxylation-22 and VHL-independent manner during normoxic and hypoxic conditions.³¹ We cannot exclude 23 that non-histone methylation by SETD7 could participate to the observed changes in 24 angiogenic properties, and that other SETD7 targets could be involved in the setting of DM... 25 An interesting aspect of our study is that, once transcribed, SEMA3G is secreted by 26 endothelial cells, and this process is regulated by SETD7. Indeed, both SETD7 depletion by 27

siRNA and pharmacological blockade by (R)-PFI-2 were able to blunt SEMA3G levels in

1 conditioned media from cultured human endothelial cells. Of note, circulating levels of SEMA3G were increased in diabetic mice with hindlimb ischemia, while in vivo treatment 2 with (R)-PFI-2 led to a significant reduction of SEMA3G levels in plasma. Hence, SETD7 3 inhibition could prevent detrimental actions of SEMA3G in target organs. In this regard, a 4 5 recent study showed that SEMA3G promotes adipocyte differentiation, adipogenesis and insulin resistance while its inhibition prevented metabolic alterations in mice.³² Moreover, 6 7 SEMA3G plasma levels were increased in obese patients and positively correlated with circulating leptin and adipokines levels.³² Hence, SETD7 inhibition could contribute to 8 prevent SEMA3G-dependent metabolic alterations thus broadening the potential applicability 9 10 of our findings. Furthermore, our results indicate that SEMA3G could represent a potential biomarker of defective angiogenesis, and future studies should explore this possibility. 11

In our work, we identified PPARy as the transcription factor responsible for SEMA3G 12 13 transcription. ChIP experiments confirmed PPARy binding to SEMA3G promoter while PPARy depletion prevented SEMA3G transcription in HAECs. These findings were further 14 confirmed by treatment with the PPARy agonist pioglitazone which was sufficient to induce 15 SEMA3G transcription. These data could also help to understand the results of clinical trials 16 17 where pioglitazone was associated with increased hazard for surgical or percutaneous lower extremity revascularization in patients with DM.³³ In line with our findings, a previous study 18 showed that in vivo treatment with pioglitazone was associated with decreased ischemic 19 limb perfusion and capillary density in a rat model of hindlimb ischemia.³⁴ Hence, 20 pioglitazone-induced SEMA3G could be a plausible mechanistic explanation for the 21 observed impairment of limb perfusion with this drug. 22

Consistent with our *in vitro* observations, *in vivo* inhibition of SETD7 by (*R*)-PFI-2 was able to restore limb perfusion and capillary density in diabetic mice with hindlimb ischemia. At the molecular level, we showed that oral administration of (*R*)-PFI-2 was associated with blunted H3K4me1 levels as well as reduced SEMA3G transcription and secretion in plasma. The SETD7 pharmacological inhibitor (*R*)-PFI-2 was recently reported as a first-in-class, potent (Kiapp = 0.33 nM), selective, and cell-active inhibitor of the SETD7 methyltransferase

activity.^{35, 36} Our results in diabetic mice pave the way for translational studies testing the 1 2 effects of SETD7 inhibitors in preclinical models of PAD and limb ischemia. To appraise 3 whether our experimental findings hold true in the human setting, we further investigated SETD7/SEMA3G signalling in two different cohorts of diabetic patients. RNA-seg and 4 5 immunofluorescence confirmed the upregulation of SETD7/SEMA3G axis in diabetic patients with PAD as compared to healthy controls. Furthermore, we showed a significant enrichment 6 7 of H3K4me1 on SEMA3G promoter in patient samples, suggesting that (R)-PFI-2 might 8 represent a promising therapeutic intervention in this clinical setting. Of clinical relevance, 9 (R)-PFI-2 restored angiogenic properties in ECs obtained from DM patients, suggesting the 10 possibility of a therapeutic modulation of SETD7 in DM patients. The lack of toxicity and 11 adverse effects associated with (R)-PFI-2 treatment in mice supports the plausibility of 12 testing (R)-PFI-2 in a pre-clinical and clinical setting.

13 Our study has some limitations. Although hyperglycemia was able to induce a significant upregulation of SETD7, the mechanistic link between high glucose and increased SETD7 14 activity remains to be elucidated. The N-terminal region of SETD7 contains membrane 15 occupation and recognition nexus (MORN) motifs, which are known to be involved in stress 16 response and regulation of SETD7 localization.³⁷ Further experiments should elucidate the 17 role of MORN motifs as a potential mechanism linking cellular stress to SETD7 localization 18 and activity in our setting. Furthermore, the role of other cells potentially involved in the in 19 vivo improvement of limb perfusion and capillary density was not addressed in this study. 20 Although we show an important function of SETD7 in endothelial cells, other relevant cell 21 types, namely pericytes and immune cells, could contribute to the observed phenotype. 22

In conclusion, our translational study unveils a druggable target to boost post-ischemic vascularization in the setting of diabetes. Our results pave the way for preclinical studies in larger animal models to better define the potential of SETD7-targeting approaches in DM patients with PAD and limb ischemia.

27

28 Sources of Funding

This work was supported by the Swiss National Science Foundation (n. 310030_197557),
the Swiss Heart Foundation (n. FF19045), the Olga Mayenfisch Foundation, the Swiss Life
Foundation, the Kurt und Senta-Hermann Stiftung, the EMDO Stiftung, the Schweizerische
Diabetes-Stiftung, the Novo Nordisk Foundation and the Novartis Foundation for Biomedical
Research (to F.P.); the Holcim Foundation and the Swiss Heart Foundation (to SC); the
Italian Ministry of Health (Ricerca Corrente to the IRCCS MultiMedica).

8

9 Disclosures

10 There are no competing interests related to the present work. F.P. is a consultant to Vectura

11 Fertin Pharma and has received personal fees for lectures from Novo Nordisk.

12

13 Figure legends

Figure 1. Defective angiogenesis and upregulation of the histone methyltransferase 14 SETD7 by hyperglycemia. HAECs were cultured in growth factor-free medium and 15 16 exposed to normal glucose concentrations (NG, 5 mM/L) or high glucose concentration (HG, 25 mM/L) for 24 and 48 hours. A) Scratch assay and relative quantification showing 17 18 migration of HAECs exposed to NG and HG; B) Representative images of Matrigel-based 19 tube formation assay in the 2 experimental groups. For quantification, the length of tubule 20 (vellow arrow) and loop (LO) formation were considered; C) Endothelial sprouting and 21 relative quantification in aortic rings from non-diabetic and diabetic mice; **D-E**) Heatmap and volcano plot displaying differential gene expression in HAECs exposed to NG vs HG; (fold 22 23 change 2 to -2; significantly downregulated genes are shown in green while upregulated genes are shown in red); F) Representative Western blot and relative guantification showing 24 25 SETD7 protein levels in HAECs treated with NG and HG at different time points (6, 12, 24 and 48 hours). GAPDH and Vinculin were used as loading controls; G) Representative 26 27 Western blot and relative guantification showing H3K4me1 levels in HAECs treated with NG and HG at different time points (6, 12, 24 and 48 hours). Histone 3 was used as a loading 28 control; H) Representative Western blot and relative quantification showing SETD7 29 30 localization in cytosolic and nuclear fractions from HAECs treated with NG and HG; I) Immunostaining and Pearson's coefficient showing the localization of SETD7 in HAECs 31 32 treated with NG and HG. Nuclei are shown in blue (DAPI), whereas SETD7 is shown in

green. Data are expressed as mean ± SD and shown as a percentage of control. Multiple
 comparisons were performed by one-way ANOVA followed by Bonferroni post hoc test
 where appropriate. A p value <0.05 was considered significant. HG, high glucose; NG,
 normal glucose.

5 Figure 2. SETD7 inhibition reduces H3K4me1 levels while rescuing HG-induced defects of angiogenic response. A) Representative Western blot and relative 6 7 quantification showing SETD7 and H3K4me1 levels in HAECs treated with HG, in presence 8 of SETD7-siRNA and scramble-siRNA. GAPDH and histone 3 were used as loading controls; B) Scratch assay and relative quantification showing migration of HG-treated 9 10 HAECs in presence of SETD7-siRNA and scramble-siRNA; C) Representative images of Matrigel-based tube formation assay in the different experimental groups. For quantification, 11 the length of tubule (indicated by arrow) and loop (LO) formation was considered; D) 12 Representative Western blot and relative quantification showing H3K4me1 levels in HAECs 13 treated with HG, in the presence of the SETD7-selective inhibitor (R)-PFI-2 and its inactive 14 15 enantiomer (S)-PFI-2. Histone 3 was used as a loading control; E-F) Scratch assay and 16 Matrigel-based tube formation assay in HG-treated HAECs treated with (R)-PFI-2 or (S)-PFI-17 2. Data are expressed as mean ± SD and shown as a percentage of control. Comparisons 18 were performed by Student's t test. A p value <0.05 was considered significant.

Figure 3. The angiogenesis inhibitor SEMA3G is a downstream target of SETD7. A) 19 20 Heatmap showing differential gene expression in HG-treated HAECs, in the presence of SETD7-siRNA or Scr.siRNA (fold change 2 to -2; downregulated genes are shown in green 21 22 while upregulated transcripts are shown in red); B) IPA (Ingenuity Pathway Analysis) signaling pathways affected by SETD7 depletion; C) Volcano plot shows 23 displaving differential gene expression in HG-treated HAECs with and without SETD7 depletion by 24 siRNA (fold change 2 to -2; downregulated genes are shown in green while upregulated 25 transcripts are shown in red); D) UCSC genome analysis showing enrichment of different 26 histone marks on gene promoters; E) Representative Western blot and relative guantification 27 of SEMA3G in HAECs treated with HG+SETD7 siRNA vs. HG+ Scr.siRNA; F) 28 29 Representative Western blot and relative quantification of SEMA3G in HG-treated HAECs, in 30 presence of the SETD7-selective inhibitor (R)-PFI-2 or its inactive enantiomer (S)-PFI-2; G) 31 Representative Western blot and relative quantification of SEMA3G expression following 32 SETD7 overexpression in HAECs. A scrambled genomic RNA (Scr.Grna) was used as 33 control for SETD7 overexpression; H) Scratch assay and relative quantification showing migration of HG-treated HAECs in presence of SETD7 overexpression or Scr.Grna (control): 34 I) Representative images of Matrigel-based tube formation assay in the different 35

1 experimental groups. Multiple comparisons were performed by one-way ANOVA followed by

2 Bonferroni post hoc test where appropriate. A p value <0.05 was considered significant.

Figure 4. SEMA3G is preferentially expressed in aortic endothelial cells and represses 3 angiogenic capacity. A) Bioinformatic analysis of scRNA-seg data obtained in skeletal 4 5 muscle-derived endothelial cells (https://shiny.debocklab.hest.ethz.ch/Fan-et-al/). Violin plots show normalized SEMA3G expression in each EC cluster; B) Scratch assay and relative 6 7 quantification showing migration of HG-treated HAECs in presence of SEMA3G-siRNA and 8 scr.siRNA; C) Representative images of Matrigel-based tube formation assay in the different experimental groups; D) ELISA showing SEMA3G levels in conditioned media from HAECs 9 10 treated with NG and HG, in presence of SETD7-selective inhibitor (R)-PFI-2 and its inactive enantiomer (S)-PFI-2. Multiple comparisons were performed by one-way ANOVA followed 11 by Bonferroni post-hoc test where appropriate. A p value <0.05 was considered significant. 12

Figure 5. PPARy regulates SEMA3G transcription. A) Analysis of ChIP-seq data 13 14 (available from the UCSC genome browser) showing enrichment of chromatin marks 15 (H3K4me1, H3K27ac) on SEMA3G promoter; B) Schematic showing ChIP primers targeting 16 three different regions of SEMA3G promoter; C) ChIP assay showing enrichment of 17 H3K4me1 on SEMA3G promoter in HG-treated HAECs; D) In silico prediction analysis shows PPARy and SOX18 as transcription factors potentially involved in SEMA3G 18 transcription; E) Motif binding analysis (JASPAR) showing the sequence for transcription 19 20 binding site; F) ChIP assay showing enrichment of PPARy and SOX-18 on SEMA3G promoter. Chromatin was immunoprecipitated with normal rabbit IgG or antibody against 21 SOX-18 and PPARy, and precipitated genomic DNA was analyzed by real-time PCR using 22 primers for SEMA3G promoter; n = 4/group; G) Representative Western blot and relative 23 quantification of SEMA3G and PPARy in HG-treated HAECs, in presence of PPARy siRNA 24 or Scr.siRNA; H) Representative Western blot and relative quantification of SEMA3G and 25 SOX18 in HG-treated HAECs with and without SOX18 depletion; I) Representative Western 26 blot and relative quantification of SEMA3G and PPARy expression in HAECs treated with 27 the PPARy agonist pioglitazone or vehicle (DMSO). Multiple comparisons were performed 28 29 by one-way ANOVA followed by Bonferroni post-hoc test where appropriate. A p value <0.05 30 was considered significant.

31 Fig.6. SETD7 inhibition by (*R*)-PFI-2 improves post-ischemic vascularization and limb perfusion in diabetic mice 32

Unilateral hindlimb ischemia was surgically induced in non-diabetic and diabetic C57BL/6J 33 male mice; A) Laser Doppler perfusion imaging was serially performed to determine blood 34 flow recovery at 24 h, 7 and 14 days after hindlimb ischemia; B) Time-dependent changes of 35

1 blood flow recovery (expressed as the ratio of blood perfusion in the 2 ischemic versus nonischemic hind limb) in diabetic and non-diabetic mice treated with (R)-3 PFI-2 or vehicle; *, p<0.05; C) Immunostaining (CD31) and relative guantification showing capillary density in gastrocnemius muscle samples. Scale bar = $50 \mu m$; n = 9/group; D) Real-4 5 time PCR showing gene expression of SETD7 and SEMA3G in gastrocnemius muscle obtained from non-diabetic and diabetic mice treated with vehicle or (R)-PFI-2; E) 6 Representative Western blot of STED7, SEMA3G and H3K4me1 in gastrocnemius muscle 7 obtained from non-diabetic mice and diabetic mice treated with vehicle or (R)-PFI-2. GAPDH 8 9 and histone 3 were used as loading controls; F-G) ChIP assay showing enrichment of PPARG and H3K4me1 on SEMA3G promoter. Chromatin was immunoprecipitated with 10 normal rabbit IgG or antibody against PPARG and H3K4me1, and precipitated genomic DNA 11 was analyzed by real-time PCR using primers for SEMA3G promoter, n=4/group. H) 12 Circulating SEMA3G levels in plasma samples from diabetic mice treated with (R)-PFI-2 or 13 vehicle. Data are expressed as mean ± SD and shown as a percentage of control. Multiple 14 comparisons were performed by one-way ANOVA followed by Bonferroni correction and 15 16 Student's t-test where appropriate. A p value <0.05 was considered significant.

17 Fig.7.Dysregulation of SETD7/SEMA3G signaling in patients with DM and PAD. A) 18 RNA-seq data show the upregulation of SETD7 and SEMA3G gene expression in vascular specimens from DM patients with PAD as compared to healthy controls; B-C). 19 Immunofluorescence and relative quantification showing SETD7, SEMA3G and H3K4me1 20 expression in lower limb muscle specimens from healthy and DM patients with PAD; D) 21 22 Representative immunofluorescence images showing localization of SETD7 in lower limb 23 muscle specimens from DM patients with PAD and non-diabetic controls. SETD7 displays a cytosolic localization in non-diabetic patients while it shows nuclear translocation in DM 24 patients with PAD. Nuclei were stained with DAPI (blue). Quantification of SETD7 nuclear 25 translocation was performed by using the Pearson's coefficient; E) Real-time PCR 26 confirming theupregulation of SEMA3G and SETD7 in muscular specimens from DM 27 patients with PAD versus non-diabetic controls; F-G) ChIP assay showing enrichment of 28 29 H3K4me1 and PPARy on SEMA3G promoter in muscular specimens from DM patients with 30 PAD versus non-diabetic controls. Chromatin was immunoprecipitated with normal rabbit IgG or antibody against PPARF and H3K4me1, and precipitated genomic DNA was analyzed 31 32 by real-time PCR using primer of SEMA3G promoter. Data are expressed as mean ± SD and 33 shown as a percentage of control. Multiple comparisons were performed by one-way ANOVA followed by Bonferroni correction and Student's t-test where appropriate. A p value 34 <0.05 was considered significant. *p<0.05; **p<0.01; and ***p<0.001. PAD, peripheral 35 artery disease; T2D, type 2 diabetes. 36

1 Fig. 8. (R)-PFI-2 restores angiogenic properties in the human diabetic endothelium. A-

- 2 B) (R)-PFI-2 attenuates SEMA3G expression and H4K3me1 levels in human aortic
- 3 endothelial cells isolated from patients with DM (D-HAECs). The inactive enantiomer (S)-
- 4 PFI-2 was used as a negative control; C-D) Cell migration and tube formation in D-HAECs
- treated with (R)-PFI-2 and (S)-PFI-2. Comparisons were performed by Student's t-test where 5
- appropriate. A p value <0.05 was considered significant; E) Schematic showing the role of 6
- 7 SETD7/SEMA3G axis and the effects of its therapeutic modulation to restore vascularization
- in diabetic PAD. 8
- 9

1

2 Abbreviations

- PAD: Peripheral artery disease 3
- CLI: Critical limb ischemia 4
- 5 DM: Diabetes mellitus
- CAD: Coronary artery disease 6
- 7 EC: Endothelial cell
- HAECs: Human aortic endothelial cells 8
- 9 NG: Normal Glucose
- HG: High Glucose 10
- ChIP: Chromatin immunoprecipitation 11
- VEGF: Vascular endothelial growth factor 12
- 13 H3k27ac: Histone 3 lysine 27 acetylation
- MMT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 14
- 15 PCR: Polymerase chain reaction
- 16 SDS: sodium dodecyl sulfate
- 17 siRNA: small interfering RNA
- GAPDH: Glyceraldehyde 3-phopsphate dehydrogenase 18
- STZ: streptozotocin 19
- 20 T2D: type 2 diabetes
- 21 TBP: TATA-Box binding protein
- ChIP: Chromatin immunoprecipitation 22
- ANOVA: analysis of variance 23
- 24 FDR: False discovery rate

perpetuity. All rights reserved. No reuse allowed without permission.

References

1. Lopez-Diez R, Egana-Gorrono L, Senatus L, Shekhtman A, Ramasamy R and Schmidt AM. Diabetes and Cardiovascular Complications: The Epidemics Continue. *Curr Cardiol Rep.* 2021;23:74.

2. Singh MV and Dokun AO. Diabetes mellitus in peripheral artery disease: Beyond a risk factor. *Front Cardiovasc Med.* 2023;10:1148040.

3. Barnes JA, Eid MA, Creager MA and Goodney PP. Epidemiology and Risk of Amputation in Patients With Diabetes Mellitus and Peripheral Artery Disease. *Arterioscler Thromb Vasc Biol.* 2020;40:1808-1817.

4. Humphries MD, Brunson A, Li CS, Melnikow J and Romano PS. Amputation trends for patients with lower extremity ulcers due to diabetes and peripheral artery disease using statewide data. *J Vasc Surg.* 2016;64:1747-1755 e3.

5. Mohammedi K, Woodward M, Hirakawa Y, Zoungas S, Colagiuri S, Hamet P, Harrap S, Poulter N, Matthews DR, Marre M, Chalmers J and Group AC. Presentations of major peripheral arterial disease and risk of major outcomes in patients with type 2 diabetes: results from the ADVANCE-ON study. *Cardiovasc Diabetol.* 2016;15:129.

6. Han J, Luo L, Marcelina O, Kasim V and Wu S. Therapeutic angiogenesis-based strategy for peripheral artery disease. *Theranostics*. 2022;12:5015-5033.

7. Caporali A, Back M, Daemen MJ, Hoefer IE, Jones EA, Lutgens E, Matter CM, Bochaton-Piallat ML, Siekmann AF, Sluimer JC, Steffens S, Tunon J, Vindis C, Wentzel JJ, Yla-Herttuala S and Evans PC. Future directions for therapeutic strategies in post-ischaemic vascularization: a position paper from European Society of Cardiology Working Group on Atherosclerosis and Vascular Biology. *Cardiovasc Res.* 2018;114:1411-1421.

8. Fadini GP, Spinetti G, Santopaolo M and Madeddu P. Impaired Regeneration Contributes to Poor Outcomes in Diabetic Peripheral Artery Disease. *Arterioscler Thromb Vasc Biol.* 2020;40:34-44.

9. Costantino S, Libby P, Kishore R, Tardif JC, El-Osta A and Paneni F. Epigenetics and precision medicine in cardiovascular patients: from basic concepts to the clinical arena. *Eur Heart J.* 2018;39:4150-4158.

10. Handy DE, Castro R and Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. *Circulation*. 2011;123:2145-56.

11. Fork C, Gu L, Hitzel J, Josipovic I, Hu J, SzeKa Wong M, Ponomareva Y, Albert M, Schmitz SU, Uchida S, Fleming I, Helin K, Steinhilber D, Leisegang MS and Brandes RP. Epigenetic Regulation of Angiogenesis by JARID1B-Induced Repression of HOXA5. *Arterioscler Thromb Vasc Biol.* 2015;35:1645-52.

12. Mitic T, Caporali A, Floris I, Meloni M, Marchetti M, Urrutia R, Angelini GD and Emanueli C. EZH2 modulates angiogenesis in vitro and in a mouse model of limb ischemia. *Mol Ther*. 2015;23:32-42.

13. Kaluza D, Kroll J, Gesierich S, Manavski Y, Boeckel JN, Doebele C, Zelent A, Rossig L, Zeiher AM, Augustin HG, Urbich C and Dimmeler S. Histone deacetylase 9 promotes angiogenesis by targeting the antiangiogenic microRNA-17-92 cluster in endothelial cells. *Arterioscler Thromb Vasc Biol.* 2013;33:533-43.

14. Bastiaansen AJ, Ewing MM, de Boer HC, van der Pouw Kraan TC, de Vries MR, Peters EA, Welten SM, Arens R, Moore SM, Faber JE, Jukema JW, Hamming JF, Nossent AY and Quax PH. Lysine acetyltransferase PCAF is a key regulator of arteriogenesis. *Arterioscler Thromb Vasc Biol.* 2013;33:1902-10.

15. Costantino S, Paneni F, Virdis A, Hussain S, Mohammed SA, Capretti G, Akhmedov A, Dalgaard K, Chiandotto S, Pospisilik JA, Jenuwein T, Giorgio M, Volpe M, Taddei S, Luscher TF and Cosentino F. Interplay among H3K9-editing enzymes SUV39H1, JMJD2C and SRC-1 drives p66Shc transcription and vascular oxidative stress in obesity. *Eur Heart J*. 2019;40:383-391.

16. Costantino S, Akhmedov A, Melina G, Mohammed SA, Othman A, Ambrosini S, Wijnen WJ, Sada L, Ciavarella GM, Liberale L, Tanner FC, Matter CM, Hornemann T, Volpe M, Mechta-Grigoriou F, Camici GG, Sinatra R, Luscher TF and Paneni F. Obesity-induced activation of JunD promotes myocardial lipid accumulation and metabolic cardiomyopathy. *Eur Heart J.* 2019;40:997-1008.

17. Mohammed SA, Albiero M, Ambrosini S, Gorica E, Karsai G, Caravaggi CM, Masi S, Camici GG, Wenzl F, Calderone V, Madeddu P, Sciarretta S, Matter CM, Spinetti G, Luscher TF, Ruschitzka F, Costantino S, Fadini GP and Paneni F. The BET Protein Inhibitor Apabetalone Rescues Diabetes-induced Impairment of Angiogenic Response by Epigenetic Regulation of Thrombospondin-1. *Antioxid Redox Signal.* 2021.

18. Paneni F, Costantino S, Battista R, Castello L, Capretti G, Chiandotto S, Scavone G, Villano A, Pitocco D, Lanza G, Volpe M, Luscher TF and Cosentino F. Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus. *Circ Cardiovasc Genet*. 2015;8:150-8.

19. Okabe J, Orlowski C, Balcerczyk A, Tikellis C, Thomas MC, Cooper ME and El-Osta A. Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells. *Circ Res.* 2012;110:1067-76.

20. Keating ST and El-Osta A. Epigenetics and metabolism. *Circ Res.* 2015;116:715-36.

21. Fan Z, Turiel G, Ardicoglu R, Ghobrial M, Masschelein E, Kocijan T, Zhang J, Tan G, Fitzgerald G, Gorski T, Alvarado-Diaz A, Gilardoni P, Adams CM, Ghesquiere B and De Bock K. Exercise-induced angiogenesis is dependent on metabolically primed ATF3/4(+) endothelial cells. *Cell Metab.* 2021;33:1793-1807 e9.

22. Liu X, Uemura A, Fukushima Y, Yoshida Y and Hirashima M. Semaphorin 3G Provides a Repulsive Guidance Cue to Lymphatic Endothelial Cells via Neuropilin-2/PlexinD1. *Cell Rep.* 2016;17:2299-2311.

23. Heuslein JL, Gorick CM and Price RJ. Epigenetic regulators of the revascularization response to chronic arterial occlusion. *Cardiovasc Res.* 2019;115:701-712.

24. Berdasco M and Esteller M. Clinical epigenetics: seizing opportunities for translation. *Nat Rev Genet*. 2019;20:109-127.

25. El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, Cooper ME and Brownlee M. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. *J Exp Med*. 2008;205:2409-17.

26. Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK, Calkin AC, Brownlee M, Cooper ME and El-Osta A. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. *Diabetes*. 2009;58:1229-36.

27. Chen J, Guo Y, Zeng W, Huang L, Pang Q, Nie L, Mu J, Yuan F and Feng B. ER stress triggers MCP-1 expression through SET7/9-induced histone methylation in the kidneys of db/db mice. *Am J Physiol Renal Physiol.* 2014;306:F916-25.

28. Reddy MA, Villeneuve LM, Wang M, Lanting L and Natarajan R. Role of the lysinespecific demethylase 1 in the proinflammatory phenotype of vascular smooth muscle cells of diabetic mice. *Circ Res.* 2008;103:615-23.

29. Mathiyalagan P, Keating ST, Du XJ and El-Osta A. Chromatin modifications remodel cardiac gene expression. *Cardiovasc Res.* 2014;103:7-16.

30. Gillette TG and Hill JA. Readers, writers, and erasers: chromatin as the whiteboard of heart disease. *Circ Res.* 2015;116:1245-53.

31. Kim Y, Nam HJ, Lee J, Park DY, Kim C, Yu YS, Kim D, Park SW, Bhin J, Hwang D, Lee H, Koh GY and Baek SH. Methylation-dependent regulation of HIF-1alpha stability restricts retinal and tumour angiogenesis. *Nat Commun.* 2016;7:10347.

32. Liu M, Xie S, Liu W, Li J, Li C, Huang W, Li H, Song J and Zhang H. Mechanism of SEMA3G knockdown-mediated attenuation of high-fat diet-induced obesity. *J Endocrinol.* 2020;244:223-236.

33. Dormandy JA, Betteridge DJ, Schernthaner G, Pirags V, Norgren L and investigators PR. Impact of peripheral arterial disease in patients with diabetes--results from PROactive (PROactive 11). *Atherosclerosis*. 2009;202:272-81.

perpetuity. All rights reserved. No reuse allowed without permission.

34. Dromparis P, Sutendra G, Paulin R, Proctor S, Michelakis ED and McMurtry MS. Pioglitazone inhibits HIF-1alpha-dependent angiogenesis in rats by paracrine and direct effects on endothelial cells. *J Mol Med (Berl)*. 2014;92:497-507.

35. Barsyte-Lovejoy D, Li F, Oudhoff MJ, Tatlock JH, Dong A, Zeng H, Wu H, Freeman SA, Schapira M, Senisterra GA, Kuznetsova E, Marcellus R, Allali-Hassani A, Kennedy S, Lambert JP, Couzens AL, Aman A, Gingras AC, Al-Awar R, Fish PV, Gerstenberger BS, Roberts L, Benn CL, Grimley RL, Braam MJ, Rossi FM, Sudol M, Brown PJ, Bunnage ME, Owen DR, Zaph C, Vedadi M and Arrowsmith CH. (R)-PFI-2 is a potent and selective inhibitor of SETD7 methyltransferase activity in cells. *Proc Natl Acad Sci U S A*. 2014;111:12853-8.

36. Ambrosini S, Montecucco F, Kolijn D, Pedicino D, Akhmedov A, Mohammed SA, Herwig M, Gorica E, Szabo PL, Weber L, Russo G, Vinci R, Matter CM, Liuzzo G, Brown PJ, Rossi FMV, Camici GG, Sciarretta S, Beltrami AP, Crea F, Podesser B, Luscher TF, Kiss A, Ruschitzka F, Hamdani N, Costantino S and Paneni F. Methylation of the Hippo effector YAP by the methyltransferase SETD7 drives myocardial ischaemic injury: a translational study. *Cardiovasc Res.* 2023;118:3374-3385.

37. Chiang C, Yang H, Zhu L, Chen C, Chen C, Zuo Y and Zheng D. The Epigenetic Regulation of Nonhistone Proteins by SETD7: New Targets in Cancer. *Front Genet.* 2022;13:918509.

