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Abstract  
Objective: We present a proof-of-concept digital scribe system as an ED clinical conversation 
summarization pipeline and report its performance.  
 
Materials and Methods: We use four pre-trained large language models to establish the digital 
scribe system:  T5-small, T5-base, PEGASUS-PubMed, and BART-Large-CNN via zero-shot 
and fine-tuning approaches. Our dataset includes 100 referral conversations among ED 
clinicians and medical records. We report the ROUGE-1, ROUGE-2, and ROUGE-L to compare 
model performance. In addition, we annotated transcriptions to assess the quality of generated 
summaries. 
 
Results: The fine-tuned BART-Large-CNN model demonstrates greater performance in 
summarization tasks with the highest ROUGE scores (F1ROUGE-1=0.49, F1ROUGE-2=0.23, F1ROUGE-

L=0.35) scores. In contrast, PEGASUS-PubMed lags notably (F1ROUGE-1=0.28, F1ROUGE-2=0.11, 
F1ROUGE-L=0.22). BART-Large-CNN's performance decreases by more than 50% with the zero-
shot approach. Annotations show that BART-Large-CNN performs 71.4% recall in identifying 
key information and a 67.7% accuracy rate. 
 
Discussion: The BART-Large-CNN model demonstrates a high level of understanding of 
clinical dialogue structure, indicated by its performance with and without fine-tuning. Despite 
some instances of high recall, there is variability in the model's performance, particularly in 
achieving consistent correctness, suggesting room for refinement. The model's recall ability 
varies across different information categories. 
 
Conclusion: The study provides evidence towards the potential of AI-assisted tools in reducing 
clinical documentation burden. Future work is suggested on expanding the research scope with 
larger language models, and comparative analysis to measure documentation efforts and time. 
 
Keywords: Text Summarization, Emergency department, clinical conversation, pre-trained 
language model, Natural Language Processing, documentation burden 
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Introduction  
Healthcare professionals (HCPs), including clinicians, nurses, therapists, and other 
practitioners, dedicate a considerable amount of their working hours to charting and maintaining 
clinical documentation.[1–3] This labor-intensive process has been linked to burnout among 
these providers, manifesting as emotional exhaustion, decreased focus, and heightened 
cognitive burden.[1,2] This issue is particularly prevalent within emergency departments 
(ED),[4,5] where ED crowding impacts the process due to the high volume of patients waiting to 
be seen, and low throughput due to limited space, resources, staff and inefficient flow further 
contributing to delays in treating patients.[6,7] In addition, the use of EMRs has significantly 
impacted clinical documentation workflow and communication within routine healthcare, 
influenced by Meaningful Use (MU) requirements, the Affordable Care Act (ACA) 
reimbursement models, and a heavily regulated environment.[8,9] Literature reported that 
clinicians spend more time on electronic documentation and administrative tasks than providing 
direct patient care.[3,10] Clinicians may allocate over half of their working hours to clinical 
documentation and charting, which has led to decreased direct patient interaction.[11,12] In 
some cases, insufficient time for documentation leads to burnout.[12] Overall, unaddressed 
needs and burden may influence unintended choices, as some clinicians express a willingness 
to remain non-compliant to reduce the burden associated with documentation.[13] 
 
In 2022, the Surgeon General issued an advisory on addressing burnout, which includes several 
recommendations to address the burden on HCPs in the United States.[14] Some of the 
recommendations emphasize “designing technology to serve the needs of health workers, care 
teams, and patients across the continuum of care” and “improving our understanding of how to 
develop and apply health information technology that more effectively supports health workers 
in the delivery of care.”[14] In line with that,  AMIA 25x5 Task Force issued a call for action to 
implement personalized clinical decision support (CDS) to improve user-specific workflows and 
support care recommendations[15] as well as emphasized artificial intelligence as part of 
current and emerging applications to reduce documentation burden in the long term.[16]    
 
Clinical documentation could be an AI-assisted process, interactively assisting HCPs and 
easing the burden.[17–19] A digital scribe is an “automated clinical documentation system” to 
capture the HCP conversations with patients and/or other providers and create clinical 
documentation similar to a human medical scribe [1]. There are several emerging natural 
language processing (NLP) and deep learning models being used as automated text 
summarization (ATS) and conversation summarization in the literature [20]. Yet, the 
implementation of digital scribing in medical informatics and health services has been limited 
due to technical and algorithmic challenges and limited dataset availability. [1] In this study, we 
address this gap and present and evaluate a proof-of-concept digital scribe system (as an 
automated text summarization pipeline) for clinical conversations. We report its performance, 
with a specific focus on ED consultation sessions.  

Background  
ATS is the foundation of the digital scribe, and it aims to automatically generate a concise and 
clear summary of a text, highlighting the key information for the intended audience.[21–23] ATS 
can be broadly categorized into two approaches: extractive summarization and abstractive 
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summarization. Extractive summarization selects and combines important sentences and 
fragments from the original text to form a summary.[24,25] Abstractive summarization (ABS) 
generates new summaries that incorporate the essential elements of the original text, potentially 
including key phrases.[24,26] ABS requires both identifying the important aspects of the original 
text and producing relevant and new natural language summaries.[27] In this study, we used the
ABS approach. 
 
Deep learning has been the predominant method for state-of-the-art ABS.[21,28] With the 
recent development of Transformer network models and the larger generalized language 
models,[29,30] fine-tuning and/or modifying pre-trained transformer-based models have become
the leading techniques for ABS on public datasets.[21] Specialized transformer models have 
been developed for ABS, such as PEGASUS family of pre-trained models,[21] BART, [31] and 
its modifications,[32] and T5 family.[33,34] ABS in the biomedical field has mostly focused on 
online biomedical texts over clinical applications. Overall, ATS has been understudied with 
medical records as only 11 of the 58 reviewed studies (19%) used Electronic Medical Record 
(EMR) information as input.[35] However, a recent survey on dialog summarization found that 
pre-trained language model-based method achieved the highest scores in summarization of 
public datasets on meeting conversations and chatlogs.[36]  

Methods  
 
Study setting and data collection 
In the scope of our study, we use a dataset (phone conversations) available at Nationwide 
Children’s Hospital (NCH) Physician Consult and Transfer Center (PCTC).[37]  PCTC is a call 
service that receives calls from healthcare providers across the U.S. to consult, admit, transfer, 
or refer patients. A nurse team responds to the calls from physicians, registers their calls, 
connects them to physicians at NCH, and takes a summary note of the conversation into the 
corresponding patient records (Epic EMR system).[38] Emergency department (ED) patient 
transfer calls constitute a large amount of the daily PCTC calls. Our proposed digital scribe 
system uses the conversational data (audio files) stored at NCH servers. Study is approved by 
NCH ethical board (#00002897) 
 
In this study, 100 phone call recordings from 100 unique callers (physicians) for ED referrals at 
NCH are used (~412 total minutes). The calls are randomly selected from the local server 
(between November-December 2022). Each call consists of a multi-turn conversation (ranging 
from 1 to 9 minutes conversation each) among PCTC nurses, an ED clinician or staff, and an 
external clinician or nurse.  Figure 1 outlines the clinical flow and study design. 
 

Figure 1. Study design 
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Audio transcription  
To convert the audio recordings into text, we follow a two-step approach. First, we use speech-
to-text services via Amazon Web Services (AWS Transcribe),[39] and then an annotator 
reviews the original recordings and corrects any errors in the transcript to generate clean 
transcripts. Dialog between speakers is differentiated with a speaker label (e.g. “Speaker 1: 
Hello.”). The models have a maximum input token size of 1024 tokens. Of the 100 transcripts, 
82 of the transcripts have fewer than 1024 tokens, and the maximum length of the transcript is 
1987 tokens (Figure 2). Longer transcripts were truncated to include only the first 1024 tokens.  

 
  
Figure 2. A histogram of the number of tokens per transcript. The tokens were generated for 
this graph using the BART tokenizer.[40] The vertical line represents the maximum input length 
of the models, 1024 tokens, and 82% of transcripts clusters to the left of this line.   
 

Model selection 
We employ four pre-trained large language models (T5-small[33], T5-base[33], PEGASUS-
PubMed[41], and BART-Large-CNN[40]) for the task of summarizing clinical conversation 
transcriptions based on their unique strengths and adaptability to the healthcare domain. Our 
two T5 models use the original T5 seq2seq architecture,[33] trained for a small model (60 
million parameters) and a base model (220 million parameters). The T5 models were trained on 
a large corpus of English text and performed well in tasks like summarization, question 
answering, and translation. PEGASUS-PubMed (568 million parameters) comes from the class 
of PEGASUS models[41] developed for abstractive summarization. The inclusion of PEGASUS-
PubMed in our selection is driven by its specialization in the biomedical field (Pre-trained in 
biomedical literature via PubMed repository).[41]  BART-Large-CNN (406 million parameters) is 
a BART model that is fine-tuned on the CNN Daily Mail dataset for summarization. BART-Large-
CNN is chosen for its demonstrated effectiveness in producing coherent and contextually 
accurate summaries.[40]  
 
Our choice of these models is influenced by their combined efficiency, domain-specific 
accuracy, and ability to produce coherent, reliable summaries, which are critical in the fast-
paced and precision-oriented context of healthcare. In addition,  these models offer a practical 
solution, enabling us to process conversation transcriptions quickly without overextending our 
hardware capabilities (All models were run on a single A100 NVIDIA GPU with 40GB of VRAM), 
which may represent common computational resources in healthcare.[42,43]  Furthermore, our 
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decision is influenced by security, privacy, and compliance. Larger and more resource-intensive 
LLMs require API access via cloud services. At the time this study was conducted, our team did 
not have compliant service access to use such models (e.g. GPT, LLaMA) with our dataset 
which includes Protected Health Information (PHI) and patient data.  
 

Model training  
We use zero-shot (no fine-tuning) and fine-tuning approaches. For fine-tuning, each model is 
fine-tuned using 10-fold cross-validation (90 training samples, 10 hold-out testing samples for 
each fold). The final evaluation is run over the concatenated hold-out testing samples from the 
10 trials (representing all the data). Each sequence is trained for 30 epochs, with an early 
stopping patience of 3 epochs, using the AdamW optimizer.[44] Multiple initial learning rates are 
undertaken (5x10-10, 1x10-6, 1x10-5,1x10-4,1x10-3, 1x10-2) and the best result is reported. For 
zero-shot, each model is run without any fine-tuning. For training and prediction, each model is 
configured to use a maximum of 1024 tokens inputs and output up to 200 summary tokens.    
The input data (100 transcribed conversations) is summarized and compared with the PCTC 
nurse notes on each patient’s medical records (structured as details of the complaint, 
background Information, and consultation recommendations).  
 
Evaluation 
We follow 2-stage evaluation: 1) quantitative evaluation and 2) qualitative evaluation.  We report 
the ROUGE-1, ROUGE-2, and ROUGE-L to compare model performance[45]. ROUGE scores 
are a standard set of metrics for quantitatively evaluating the similarity of two texts based on the 
number of common words or word sequences. We compare the summaries generated by each 
model against the nurse summary notes (ground truth). For this task, we pulled nurse notes 
from the patient EMR intake form corresponding to each ED referral conversation. We report 
ROUGE-1 (overlap scores for each word), ROUGE-2 (overlap scores for each bigram), and 
ROUGE-L (longest common subsequence score).   
 
In addition, we qualitatively evaluate and compare generated summaries against nurse notes to 
assess the information included in the generated summary. We only evaluate the generated 
summaries from the best-performing model based on the ROUGE scores. For this qualitative 
assessment, we compare the amount and type of important information in the nurse notes that 
is also included in the generated summary. We manually label the nurse notes and generated 
summaries with the following eight tags:  (1)Condition– Symptoms, Diagnosis, Medications 
related to the patient, (2)Behaviors– The patient’s actions, (3)Measurements– Any numerical 
value measured, (4)Supplies– List of supplies that the patient has/needs, (5)Date/Time– Any 
mentioned relevant date or time, (6)Test– Any tests given or not to the patient, (7)Location– Any 
locations mentioned including where the patient should be brought, (8)Transportation– Method 
of transportation for the patient.  
 
We incorporate a two-tier annotation system to evaluate the quality of the generated 
summaries. Firstly, we use Entity Linking (LINK) annotations to identify and connect specific 
pieces of clinical information found in the generated summaries with their corresponding 
references in the nurse notes. These LINK annotations serve to establish a direct 
correspondence between the generated text and the ground truth provided by the nurse notes. 
Secondly, we assess the Information Accuracy (CORRECT) of these entity links (LINK). 
Information Accuracy is measured by evaluating whether the linked information in the generated 
summary retains the same meaning as it does in the nurse notes. For instance, if both the nurse 
and generated summaries report a positive COVID test result for a patient, the LINK is labeled 
as CORRECT. Conversely, if the generated summary erroneously reports a negative result, the 
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LINK is marked as INCORRECT. This dual-annotation approach allows us to measure not only 
the presence of key information in the generated summaries but also the accuracy with which it 
reflects the original nurse notes. The entire process of annotation is facilitated by the use of the 
MedTator text annotation tool.[37] 

Results  
Quantitative results 
Across ROUGE-1 scores, the BART-Large-CNN model displays the highest precision (0.42, CI 
[0.34, 0.49]), recall (0.53, CI [0.44, 0.62]), and F1-score (0.49, CI [0.38, 0.51]), indicating a 
strong ability to capture unigrams from the source text (Table 1). The T5-base model follows 
closely, with a ROUGE-1 precision of 0.41 (CI [0.30, 0.51]) and recall of 0.41 (CI [0.32, 0.50]), 
but a slightly lower F1-score of 0.37 (CI [0.30, 0.45]), suggesting comparable performance in 
identifying key unigrams. The T5-small and PEGASUS-PubMed models show lower 
performance on these metrics, with the PEGASUS-PubMed model exhibiting the lowest F1-
score of 0.28 (CI [0.22, 0.36]). Similar to ROUGE-1 scores, BART-Large-CNN has the highest 
Recall (ROUGE-2=0.28, ROUGE-L=0.43) and F1-scores (ROUGE-2=0.23, ROUGE-L=0.35), 
while T5-base has the highest Precisions scores (ROUGE-2=0.22, ROUGE-L=0.34).  
 
Table 1. ROUGE-1, -2, and -L average precision, recall, and F1 scores for the fine-tuned 
models on clean transcripts (CI= 95% Confidence interval) 
Model ROUGE-1 Scores 

 Precision (CI) Recall (CI) F1-score (CI) 

T5-small 0.34 (0.26, 0.43) 0.40 (0.31, 0.50) 0.35 (0.28, 0.42) 

T5-base 0.41 (0.30, 0.51) 0.41 (0.32, 0.50) 0.37 (0.30, 0.45) 

PEGASUS-PubMed 0.29 (0.21, 0.38) 0.35 (0.26, 0.44) 0.28 (0.22, 0.36) 

BART-Large-CNN 0.42 (0.34, 0.49) 0.53 (0.44, 0.62) 0.49 (0.38, 0.51) 

 ROUGE-2 Scores 

T5-small 0.17 (0.13, 0.32) 0.21 (0.15, 0.29) 0.18 (0.13, 0.23) 

T5-base 0.22 (0.15, 0.30) 0.22 (0.15, 0.30) 0.20 (0.15, 0.26) 

PEGASUS-PubMed 0.11 (0.07, 0.16) 0.14 (0.09, 0.20) 0.11 (0.07, 0.16) 

BART-Large-CNN 0.21 (0.16, 0.27) 0.28 (0.21, 0.36) 0.23 (0.18, 0.29) 

 ROUGE-L Scores 

T5-small 0.28 (0.22, 0.35) 0.34 (0.25, 0.43) 0.29 (0.23, 0.35) 

T5-base 0.34 (0.25, 0.44) 0.34 (0.27, 0.44) 0.32 (0.25, 0.39) 

PEGASUS-PubMed 0.22 (0.16, 0.30) 0.27 (0.20, 0.30) 0.22 (0.16, 0.29) 

BART-Large-CNN 0.33 (0.27, 0.41) 0.43 (0.34, 0.52) 0.35 (0.29, 0.42) 
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Table 2 reports the performance of the zero-shot models. For ROUGE-1 scores, BART-Large-
CNN exhibits the highest precision (0.26, CI [0.19, 0.34]) and recall (0.23, CI [0.17, 0.30]), with a 
corresponding F1-score of 0.23 (CI [0.17, 0.29]), suggesting a modest capability to identify key 
unigrams without fine-tuning. The T5-base model also shows relatively better performance 
compared to T5-small, with precision, recall, and F1-score of 0.30 (CI [0.22, 0.38]), 0.17 (CI 
[0.15, 0.23]), and 0.20 (CI [0.15, 0.26]), respectively. T5-small has lower scores, and 
PEGASUS-PubMed's performance is notably minimal, with an F1-score of 0.07 (CI [0.05, 0.10]). 
When examining ROUGE-2 scores, which evaluate bigram overlap, the models perform 
generally poorly, with BART-Large-CNN leading at a lower precision of 0.08 (CI [0.04, 0.12]) 
and a corresponding F1-score of 0.07 (CI [0.04, 0.10]). The T5 models report low scores, with 
T5-base obtaining an F1-score of 0.06 (CI [0.03, 0.09]), marginally outperforming T5-small, 
which has an F1 of 0.05 (CI [0.02, 0.09]). PEGASUS-PubMed has no bigram overlap in this 
scenario, reflecting significant limitations in its zero-shot performance. Regarding the ROUGE-L 
scores, BART-Large-CNN achieves the highest F1-score of 0.16 (CI [0.12, 0.21]), albeit modest, 
indicating its relative advantage in capturing the longest common subsequences in the zero-
shot learning context. T5-base and T5-small achieve F1-scores of 0.15 (CI [0.11, 0.21]) and 
0.13 (CI [0.08, 0.17]), respectively, followed by PEGASUS-PubMed with an F1-score of 0.06 (CI 
[0.04, 0.07]). 

 
Table 2. ROUGE-1, -2, and -L average precision, recall, and F1 scores for the zero-shot models 
on clean transcripts (CI= 95% Confidence interval) 

Model ROUGE-1 Scores 

 Precision (CI) Recall (CI) F1-score (CI) 

T5-small 0.24 (0.17, 0.32) 0.15 (0.11, 0.22) 0.17 (0.11, 0.24) 

T5-base 0.30 (0.22, 0.38) 0.17 (0.15, 0.23) 0.20 (0.15, 0.26) 

PEGASUS-PubMed 0.06 (0.04, 0.09) 0.12 (0.05, 0.16) 0.07 (0.05, 0.10) 

BART-Large-CNN 0.26 (0.19, 0.34) 0.23 (0.17, 0.30) 0.23 (0.17, 0.29) 

 ROUGE-2 Scores 

T5-small 0.06 (0.02, 0.11) 0.04 (0.01, 0.08) 0.05 (0.02, 0.09) 

T5-base 0.08 (0.04, 0.12) 0.05 (0.02, 0.08) 0.06 (0.03, 0.09) 

PEGASUS-PubMed 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.01) 

BART-Large-CNN 0.08 (0.04, 0.12) 0.07 (0.03, 0.11) 0.07 (0.04, 0.10) 

 ROUGE-L Scores 

T5-small 0.18 (0.12, 0.23) 0.11 (0.07, 0.16) 0.13 (0.08, 0.17) 

T5-base 0.21 (0.16, 0.26) 0.12 (0.08, 0.21) 0.15 (0.11, 0.21) 

PEGASUS-PubMed 0.05 (0.03, 0.06) 0.09 (0.06, 0.12) 0.06 (0.04, 0.07) 

BART-Large-CNN 0.18 (0.13, 0.24) 0.16 (0.11, 0.22) 0.16 (0.12, 0.21) 

   * CI= 95% Confidence interval 
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Qualitative Results 

We label each of the 100 ground truth summaries and the summaries generated by the Bart-
Large-CNN model (fine-tuned on 90 not held-out data for that cross-validation fold) using eight 
tag categories: Conditions, Behaviors, Measurements, Supplies, Date/Time, Tests, Locations, 
and Transportation.  

Table 3. Average Recall for Tags and Annotations in Generated Summaries by the Fine-tuned 
BART-Large-CNN Model (SD: Standard Deviation) 

Tags  % Summary with  
at least 1 Tag  

Average Tags  
per Summary (SD)  

Average LINK Recall 
per Summary (SD) 

Average CORRECT 
 Recall per Summary 

(SD) 

All Tags  100% (100/100)  8.670 (4.800)  0.714 (0.231)  0.677 (0.228)  

Condition  99% (99/100)  4.848 (2.776)  0.744 (0.268)  0.731 (0.274)  

Behaviors  29% (29/100)  1.483 (1.038)  0.772 (0.380)  0.772 (0.380)  

Measurements  47% (47/100)  2.298 (1.687)  0.736 (0.409)  0.644 (0.425)  

Supplies  7% (7/100)  1.143 (0.350)  0.571 (0.495)  0.571 (0.495)  

DateTime  46% (46/100)  1.304 (0.655)  0.741 (0.409)  0.730 (0.409)  

Test  35% (35/100)  2.343 (1.453)  0.673 (0.409)  0.564 (0.423)  

Location  42% (42/100)  1.071 (0.258)  0.762 (0.426)  0.667 (0.471)  

Transportation  41% (41/100)  1.000 (0.000)  0.439 (0.496)  0.439 (0.496)  

 

Table 3 presents the average recall for manually annotated information tags in summaries of 
the fine-tuned BART-Large-CNN. All summaries contain at least one of the specified tags, with 
an average of 8.67 tags per summary. When examining the average LINK recall, the model 
performs consistently, with a mean recall of 0.71 (SD=0.23), indicating that over 70% of the 
information present in the ground truth summaries is also found in the generated summaries. 
The average CORRECT recall is marginally lower at 0.67 (SD=0.23), suggesting that while the 
model is proficient at identifying relevant information, there is a slight decrease in accuracy 
when considering the correctness of the information. Figure 3 illustrates the recall 
characteristics of the fine-tuned BART-Large-CNN model.  
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Figure 3. Histograms showing information recalled (without consideration of correctness) [right]
and correctly recalled information [left] by a generated summary that appeared in the ground
truth summary.   

The 'Condition' tag appears in 99% (99/100) of the summaries, and it has a high CORRECT 
recall at 0.73 (SD=0.27), which indicates a high degree of precision in reporting patient 
conditions, symptoms, and diagnoses. However, tags such as 'Transportation' are present in 
only 41% (41/100) of the summaries, with the lowest average LINK and CORRECT recall 
scores of 0.44 (SD=0.5). 'Behaviors' and 'Supplies' tags appear less frequently at 29% (29/100) 
and 7% (7/100) respectively, yet show relatively high CORRECT recall. Figure 4 shows an 
example note sample outlining CORRECT and LINK annotations and tags.  

Figure 4. Example generated and nurse note samples with LINK and CORRECT annotations 

For all summaries combined, the model demonstrates a LINK recall of 69.7% (604/867) 
instances where tagged information in the ground truth also appears in the generated 
summaries (Table 4). The CORRECT recall, which indicates the instances where the tagged 
information from the ground truth summary appears accurately in the generated summary, is 
slightly lower at 65.7% (570/867). However, of the information that is LINKed correctly, the 
CORRECT accuracy is high at 94.4% (570/604), indicating that when the model does capture 
relevant information, it tends to be accurate. 'Conditions' shows the highest LINK recall at 72.1%
(346/480), and an almost equivalent CORRECT recall at 70.8% (340/480). The CORRECT 
accuracy for 'Conditions' is at 98.3% (340/346), indicating that nearly all the condition-related 
information captured by the model is accurate. The 'Behaviors' and 'Supplies' tags have the 
fewest instances but achieve a CORRECT recall of 74.4% (32/43) and 62.5% (5/8), 
respectively, with both categories achieving CORRECT accuracy of 100%. Conversely, 'Test' 
and 'Transportation' tags display lower performance on LINK and CORRECT recall.  
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Table 4. Information tag appearance and correctness in the summaries generated by the fine-
tuned BART-Large-CNN model. 

Tag  Total Tags  LINK recall across all 
summaries 

CORRECT recall across 
all summaries 

CORRECT accuracy 
across LINKed tags  

All Tags  867  69.7% (604/867)  65.7% (570/867)  94.4% (570/604)  

Condition  480  72.1% (346/480)  70.8% (340/480)  98.3% (340/346)  

Behaviors  43  74.4% (32/43)  74.4% (32/43)  100.0% (32/32)  

Measurements  108  68.5% (74/108)  57.4% (62/108)  83.8% (62/74)  

Supplies  8  62.5% (5/8)  62.5% (5/8)  100.0% (5/5)  

Date/Time  60  75.0% (45/60)  73.3% (44/60)  97.8% (44/45)  

Test  82  62.2% (51/82)  48.8% (40/82)  78.4% (40/51)  

Location  45  73.3% (33/45)  64.4% (29/45)  87.9% (29/33)  

Transportation  41  43.9% (18/41)  43.9% (18/41)  100.0% (18/18)  

 
Transcription differences  
We compare the difference in performance between the AWS transcripts and the clean 
transcripts. BART-Large-CNN’s ROUGE-1 improves by 0.06 (F1-score) when using the clean 
transcripts. However, T5-base and PEGASUS-PubMed both have lower F1-scores when using 
the clean transcripts. This difference is mostly not applicable for ROUGE-2 and ROUGE-L 
scores with a difference between F1-scores less than 0.02.  Please see Appendix 1 for 
ROUGE scores of AWS transcripts. 

Discussion  

Our fine-tuned text summarization models report promising results compared to similar 
applications and tasks[20]. The BART-Large-CNN model shows a greater ability to comprehend 
and replicate the structure and flow of clinical dialogue in medical conversation with a fine-tuned 
and zero-shot approach. This is similar to the performance of high-performing models on the 
non-medical CNN/DailyMail dataset.[21] However, the variants of recall show an inconsistency 
in performance, with a subset of notes being replicated with high accuracy, yet a broader 
variability indicating room for refinement, especially in achieving consistent correctness. The 
differential performance across various information categories illuminates the necessity for 
enhancing model recognition capabilities.[46] As the accuracy rates across most tags are 
promising, they also highlight the disparity in the model's ability to uniformly identify and convey 
the full spectrum of clinically relevant information present in the reference summaries.[47] In a 
zero-shot context, each model performed relatively worse than their fine-tuned counterparts. 
Bart-Large-CNN and T5 have better performance, as the models tend to reproduce some lines 
of the transcript as the summary. PEGASUS-PubMed, by comparison, outputs similar to the 
original training data text which is somewhat related to the text in the transcript. These results 
reinforce the idea that competent zero-shot performance might be achievable at larger model 
sizes as well as incorporating different architectures and datasets.[48] Furthermore, the 
variability in model performance in our study, particularly in the context of recall, denotes a 
significant opportunity for advancing the model's performance with hybrid models[49] or 
approaches (e.g., user interface design, human-in-the-loop),[50,51] thereby augmenting its 
utility in real-world clinical documentation. 

Transcription quality  
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The transcription quality notably impacts the model performance, as evidenced by the 
improvement in BART-Large-CNN's ROUGE-1 scores when utilizing clean transcripts. This 
improvement underscores the importance of high-quality input data for the efficacy of AI-driven 
clinical documentation.[52] Interestingly, T5-base and PEGASUS-PubMed models register a 
lower F1-score with clean transcripts, an anomaly that suggests a complex interaction between 
model architecture and data quality. This observation requires a closer examination of the 
preprocessing steps and the models' resilience to variations in data quality. In the high-stress, 
fast-paced ED environment, where documentation accuracy is important, these findings 
highlight the necessity for robust digital scribe systems capable of handling the inherent 
variability in clinical speech and text data. The minor differences in ROUGE-2 and ROUGE-L 
scores with different transcript quality suggest that for capturing the broader context and 
relationships within the text, the models are less sensitive to transcription errors. This resilience 
is critical for the practical deployment of digital scribes, where they must perform reliably across 
varying conditions of data quality.[53] 

The nature of conversations 

In our observation of audio conversations, we note a common pattern involving additional 
clinicians or healthcare workers, often leading to multi-participant calls and extended 
discussions. The conversation starts with caller information and patient information exchange, 
followed by patient health information shared later in the conversation. Waiting times with hold 
tones are frequent. A notable discrepancy between audio summaries and intake notes is that, 
especially when nurses follow up for additional details, these details are not always included in 
the initial transcription. Another observation is the variation in note style and content, depending 
on the nurse taking the notes, indicating differences in documentation approaches among 
nurses. This added an extra layer of complexity to the task of accurate digital scribing. 
Additionally, external factors like background noise and coughing during conversations pose 
potential challenges for automated transcription accuracy.[1] The intake notes sometimes 
include details from internal consultations not present in the original audio, pointing to a possible 
mismatch in the documentation. These insights underscore the multifaceted nature of clinical 
communication and the challenges it presents for effective digital documentation.[54] 

Implications 

The implications of our study extend into several key areas of healthcare informatics and policy. 
Firstly, the use of the BART-Large-CNN model in clinical documentation points towards a 
potential to reduce the documentation burden on HCPs, aligning with the broader goal of 
mitigating burnout.[1] The high accuracy in key information categories like 'Conditions' indicates 
that AI-assisted tools can effectively complement HCPs' condition tasks. However, the 
successful integration of such AI tools hinges on their design and usability.[55,56] The variability 
in model performance underscores the need for a user-centered design approach and a 
systems thinking approach to overcome technical challenges.[57,58] This involves tailoring 
these tools to fit into clinical workflows, ensuring they are intuitive and capable of handling the 
dynamic nature of clinical environments.[59] 

In line with recommendations by the Surgeon General and the AMIA 25x5 Task Force, the 
findings inform developing and applying health information technology that supports HCPs, 
suggesting that policies may encourage the exploration and adoption of AI tools like digital 
scribes in clinical settings.[15] This could be achieved through incentives for technology 
adoption, support for implementation research and technical development, and the development 
of evidence-based guidelines to ensure ethical and secure use of AI in healthcare.[60] However, 
the collaboration between HCP and AI is key to success in improving the accuracy, consistency, 
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and completeness of medical documentation while minimizing documentation errors.[51,61] It is 
also important to develop operationalization and implementation plans with accountable, fair, 
and inclusive AI approaches to ensure the trustworthiness of the digital scribes. [62,63] 

Limitations 

The limitations of our study are multifaceted, reflecting both methodological constraints and 
broader challenges in the field. Firstly, the absence of standardized and validated measures for 
assessing documentation burden presents a significant challenge.[64] Therefore we depend on 
our quantitative and qualitative approaches to assess quality, and assuming higher quality of 
summarization will contribute to reducing documentation burden. Our scoring does not account 
for differences in notes, note-takers (nurses), and conversations. ROUGE metrics are 
coherence-insensitive, focusing solely on word overlap without considering the coherence and 
logical flow of the summaries, which introduces a limitation for quantitative analysis.[65]. Our 
qualitative evaluation focused on a 2-tier assessment, which might limit the perspectives. The 
study lacks qualitative feedback from nurses and clinicians to further assess the perceived value 
and utility of generated summaries. These limitations are compounded by the small dataset 
size, single annotator bias, lack of real-world testing, and the limited scope of the dataset for ED 
referrals, all of which contribute to potential constraints on the generalizability and applicability 
of our findings. 

Future work 

In future works, we aim to expand the scope and applicability of our research. A primary focus 
will be on testing a cloud-based transcription and digital scribe pipeline using advanced 
language models with larger and diverse datasets. This initiative will be geared towards 
developing a deployable pipeline, with a specific scenario involving a call service connection 
and providing immediate feedback through a web application to nurses. Another important area 
of exploration will be the hybrid models[35] combining statistical, machine learning, and 
computational linguistics techniques, and experimenting via a comparative study utilizing 
emerging documentation measures focusing on effort, time, and other relevant units of analysis. 
[64] 

Conclusions 
Our study introduces the development and testing of a digital scribe pipeline, contributing to the 
field of automated clinical documentation and efficient documentation flow. By utilizing a real-
world dataset, our research addresses a critical gap in the literature, particularly in the areas of 
workflow optimization and clinical and nurse informatics applications [1]. The practical 
implications of our findings are offering potential time and resource savings for healthcare 
systems, aiming to reduce the documentation burden among nurses and clinicians, thereby 
enhancing overall healthcare delivery efficiency and quality. 
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Appendix 1. AWS transcripts ROUGE scores 
 

Fine-tuned models - ROUGE scores with AWS transcripts 

ROUGE-1 Scores 

Model Precision (CI) Recall F1-score 

T5-small 0.32 (0.24, 0.40) 0.40 (0.31, 0.49) 0.33 (0.26, 0.39) 

T5-base 0.42 (0.32, 0.52) 0.39 (0.30, 0.49) 0.38 (0.30, 0.45) 

Pegasus-Pubmed 0.29 (0.21, 0.38) 0.36 (0.28, 0.45) 0.30 (0.23, 0.37) 

Bart-Large-CNN 0.40 (0.32, 0.48) 0.51 (0.43, 0.59) 0.43 (0.37, 0.48) 

ROUGE-2 Scores 

Model Precision Recall F1-score 

T5-small 0.16 (0.11, 0.21) 0.20 (0.14, 0.27) 0.16 (0.12, 0.21) 

T5-base 0.22 (0.16, 0.29) 0.21 (0.15, 0.29) 0.20 (0.15, 0.26) 

Pegasus-Pubmed 0.11 (0.07, 0.15) 0.14 (0.09, 0.18) 0.11 (0.08, 0.15) 

Bart-Large-CNN 0.20 (0.15, 0.26) 0.26 (0.20, 0.34) 0.22 (0.17, 0.27) 

ROUGE-L Scores 

Model Precision Recall F1-score 

T5-small 0.26 (0.19, 0.27) 0.32 (0.24, 0.41) 0.27 (0.21, 0.32) 

T5-base 0.35 (0.26, 0.44) 0.33 (0.25, 0.42) 0.31 (0.25, 0.38) 
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Pegasus-Pubmed 0.22 (0.16, 0.29) 0.28 (0.21, 0.35) 0.23 (0.17, 0.29) 

Bart-Large-CNN 0.32 (0.25, 0.39) 0.41 (0.33, 0.50) 0.34 (0.28, 0.40) 

Zero-shot models - ROUGE scores with AWS transcripts 

ROUGE-1 Scores 

Model Precision Recall F1-score 

T5-small 0.18 (0.12, 0.27) 0.11 (0.06, 0.17) 0.13 (0.08, 0.19 

T5-base 0.27 (0.20, 0.35) 0.16 (0.11, 0.22) 0.19 (0.14, 0.25) 

Pegasus-Pubmed 0.07 (0.04, 0.10) 0.12 (0.09, 0.16) 0.08 (0.06, 0.11) 

Bart-Large-CNN 0.25 (0.18, 0.31) 0.22 (0.17, 0.28) 0.22 (0.17, 0.27) 

ROUGE-2 Scores 

Model Precision Recall F1-score 

T5-small 0.04 (0.01, 0.08) 0.03 (0.01, 0.05) 0.03 (0.01, 0.06) 

T5-base 0.07 (0.03, 0.11) 0.04 (0.02, 0.07) 0.05 (0.02, 0.08) 

Pegasus-Pubmed 0.00 (0.00, 0.01) 0.01 (0.00, 0.01) 0.00 (0.00, 0.01) 

Bart-Large-CNN 0.07 (0.04, 0.10) 0.06 (0.03, 0.10) 0.06 (0.03, 0.09) 

ROUGE-L Scores 

Model Precision Recall F1-score 

T5-small 0.14 (0.09, 0.20) 0.08 (0.05, 0.12) 0.10 (0.06, 0.14) 

T5-base 0.19 (0.14, 0.25) 0.12 (0.08, 0.16) 0.14 (0.10, 0.18) 

Pegasus-Pubmed 0.05 (0.03, 0.07) 0.09 (0.07, 0.13) 0.06 (0.04, 0.08) 

Bart-Large-CNN 0.17 (0.12, 0.21) 0.16 (0.11, 0.21) 0.15 (0.11, 0.20) 
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