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Abstract 
 
Objective 
Deep learning reconstruction (DLR) algorithms exhibit object-dependent resolution and noise 
performance. Thus, traditional geometric CT phantoms cannot fully capture the clinical imaging 
performance of DLR. This study uses a patient-derived 3D-printed PixelPrint lung phantom to evaluate a 
commercial DLR algorithm across a wide range of radiation dose levels. 

Approach 
The lung phantom used in this study is based on a patient chest CT scan containing ground glass 
opacities and was fabricated using PixelPrint 3D-printing technology. The phantom was placed inside two 
different sized extension rings to mimic a small and medium sized patient and was scanned on a 
conventional CT scanner at exposures between 0.5 and 20 mGy. Each scan was reconstructed using 
filtered back projection (FBP), iterative reconstruction, and DLR at five levels of denoising. Image noise, 
contrast to noise ratio (CNR), root mean squared error (RMSE), structural similarity index (SSIM), and 
multi-scale SSIM (MS SSIM) were calculated for each image. 

Main Results 
DLR demonstrated superior performance compared to FBP and iterative reconstruction for all measured 
metrics in both phantom sizes, with better performance for more aggressive denoising levels. DLR was 
estimated to reduce dose by 25-83% in the small phantom and by 50-83% in the medium phantom without 
decreasing image quality for any of the metrics measured in this study. These dose reduction estimates 
are more conservative compared to the estimates obtained when only considering noise and CNR with 
a non-anatomical physics phantom.  

Significance 
DLR has the capability of producing diagnostic image quality at up to 83% lower radiation dose which 
can improve the clinical utility and viability of lower dose CT scans. Furthermore, the PixelPrint phantom 
used in this study offers an improved testing environment with more realistic tissue structures compared 
to traditional CT phantoms, allowing for structure-based image quality evaluation beyond noise and 
contrast-based assessments. 
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1. Introduction 

Over the last few years, there has been substantial interest in the development and clinical use of deep 

learning reconstruction (DLR) algorithms for improving computed tomography (CT) image quality and 

reducing radiation dose1. For decades, filtered back projection (FBP) was the dominant reconstruction 

algorithm due to its numerical stability and fast computation time2. However, at lower doses, FBP image 

quality drops and image noise increases dramatically1. With continued interest in dose reduction3, 

especially in pediatric populations4-7, clinical CT imaging has begun moving away from FBP toward newer 

solutions such as iterative reconstruction (IR) which preserves image quality at lower doses. Various 

forms of IR have demonstrated significant potential to minimize noise and thus to reduce dose compared 

to FBP8. However, limitations in IR including unnatural noise texture8,9  and extended reconstruction 

time1,8 have resulted in a push for further innovation in reconstruction solutions. 

DLR for CT has emerged as a novel solution for improving image quality and reconstruction time while 

preserving FBP-like noise textures. These algorithms utilize artificial neural networks such as 

convolutional neural networks (CNNs)10,11 or generative adversarial networks (GANs)12 which are trained 

to produce optimized output images from lower dose input data. DLR frameworks can be broadly 

categorized as either indirect, where a deep learning network is used alongside FBP or IR, or direct, in 

which the network directly converts sinogram data to image data without FBP or IR1. Many different 

implementations of DLR have been proposed in academic research13-15 as well as introduced clinically 

by CT vendors9,16,17.  

With the rise of commercially available DLR algorithms, there has been an increase in studies evaluating 

DLR. Multiple patient and phantom studies have demonstrated that DLR can improve image quality at 

low doses through enhanced lesion detectability and reduced noise5-7,18-25. These studies utilize 

quantitative metrics such as signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), noise, detectability 

index (d’), and noise power spectrum (NPS). In addition, qualitative scores for various aspects of 

subjective image quality have been obtained via reader studies by experienced radiologists. The literature 
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has shown that various implementations of DLR can reduce dose by about 30-71% compared to hybrid 

iterative reconstruction (HIR) methods while preserving diagnostic image quality1. 

While there are many promising results regarding DLR performance, there are several limitations to 

current studies. First, due to the nonlinear nature of DLR, images reconstructed with DLR demonstrate 

object-dependent resolution and noise26. Traditional CT phantoms used in DLR evaluation studies are 

often composed of simple geometric shapes which are not designed to represent realistic tissue 

structures19,22,23. As a result, general image quality metrics such as noise and CNR measured on 

traditional CT phantoms cannot fully capture the clinical imaging performance of DLR. Second, clinical 

imaging studies using patient data are often limited by sample size and restricted by radiation dose 

exposure concerns24,25,27, which limit the acceptable dose range as well as the number of times a patient 

can be scanned. Furthermore, patient scans do not have reliable ground truth images for comparison 

and thus cannot be used to assess the structural accuracy of a reconstructed image. A clinical scenario 

in which structural accuracy is important is lung CT imaging with ground glass opacity (GGO) findings. 

Subtle differences in shape (round vs polygonal, with or without radial growths) and texture (presence or 

absence of solid densities) in a GGO can lead to differences in image interpretation and clinical decision 

making28. Because of this, the accurate reconstruction of such structures and details is critical to ensuring 

the highest quality of patient care. Image reconstruction for clinical scenarios such as this require 

evaluation beyond what is available with current phantom and patient studies. 

This study proposes to use a patient-derived PixelPrint29-31 phantom as a novel solution to address the 

current limitations in the evaluation of DLR performance. PixelPrint is a technology which produces 3D-

printed patient-based phantoms which demonstrate highly detailed tissue structures, realistic textures, 

and accurate attenuation profiles. PixelPrint software converts 3D CT images into geometric code (g-

code) instructions for fused filament fabrication (FFF) 3D printers by taking advantage of the partial 

volume effect to produce desired Hounsfield Unit (HU) values31. Previous studies have demonstrated a 

high degree of HU and geometric similarity between scans of PixelPrint phantoms and their reference 
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patient scans32. Furthermore, reader studies demonstrated that there was no clinically significant 

difference in image quality assessment between reading a phantom lung image and reading a patient 

lung image30. Compared to standard geometric CT imaging phantoms, PixelPrint phantoms demonstrate 

realistic tissue morphology and thus can more fully capture the clinical imaging performance of DLR. 

Compared to patient data, PixelPrint phantoms allow for more flexibility in radiation dose usage and have 

more accurate ground truth images with which to assess the structural precision of DLR images.  

This study utilized a 3D-printed PixelPrint lung phantom to evaluate the clinical imaging performance of 

a commercial DLR algorithm, Precise Image (PI) (Philips Healthcare, Cleveland, OH, USA)9, in 

comparison to FBP and IR.  PI is an example of a direct DLR algorithm and utilizes simulated low dose 

sinogram data for CNN training1,9.The PixelPrint phantom was scanned with a large range of radiation 

doses to investigate the dose reduction potential of each algorithm. As image quality is affected by patient 

size (i.e., CT images of large patients tend to have higher noise and reduced image quality compared to 

smaller patients), two different phantom sizes were included in the performance assessment to examine 

the generalizability of results to different patient sizes. 

2. Methods 

2.1 Patient CT Scan Selection 

A single patient chest CT scan containing multiple subsolid GGOs representing metastatic lesions was 

retrospectively selected as the model for the 3D-printed phantom in this study (Figure 1). GGO lesions 

are an example of highly detailed lung structures in which accurate reconstruction of textures and shapes 

is clinically important. The Institutional Review Board (IRB) at the University of Pennsylvania approved 

this retrospective study, and the image was taken from the Hospital of the University of Pennsylvania 

PACS system and anonymized. The scan and reconstruction parameters of the patient CT scan are listed 

in Table 1. 
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Figure 1. (A) Image of the left lung from the patient chest CT scan which was used to generate the 

phantom. (B) CT scan of the printed phantom, scanned at 20 mGy and 120 kVp and reconstructed using 

PI-Sharp. WL: -500, WW: 1000 

Table 1. Scan and reconstruction parameters of the patient CT image. 

Scanner Model Philips Spectral CT 7500 

Scan mode Helical 

Tube voltage 120 kVp 

Tube current 173 mA 

Rotation time 0.4 s 

Helical pitch 1.15 

Exposure 60 mAs 

CTDI
vol

 4.7 mGy 

Collimation 128 x 0.625 mm 

Slice thickness 1 mm 

Slice increment 1 mm 

Reconstruction filter YA 

Reconstructed field of view  368 x 368 mm2 

Matrix size 512 x 512 pixel2 

Pixel spacing 0.7188 mm 
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2.2 Phantom Fabrication 

The phantom was fabricated using PixelPrint technology30,31 to produce a realistic patient-specific lung 

CT phantom. The phantom was designed as a 20 cm diameter cylinder containing the segmented left 

lung positioned in the center of the cylinder. A 4 cm scan length containing a large (4.5 x 3.2 cm) GGO 

was selected. The left lung was segmented along with a 1 cm border of surrounding tissue using an open-

source automated U-net lung segmentation model33.  The regions inside of the segmented lung were 

printed using PixelPrint technology to modulate density and accurately reproduce the HU profiles of the 

patient image, while regions of the cylinder surrounding the segmented anatomy were printed with a 

constant infill ratio of 15% (corresponding to ~-800 HU). The entire phantom was 3D-printed as one piece 

using polylactic acid (PLA) filament on an FFF printer (Lulzbot TAZ Sidekick with M175 v2 tool head, 

Fargo Additive Manufacturing Equipment 3D, LLC Fargo, ND, USA).  

2.3 Image Acquisition and Reconstruction 

The phantom was scanned with a default high resolution chest imaging protocol on a conventional CT 

scanner (Incisive CT, Philips Healthcare, Cleveland, OH, USA). Multiple scans were acquired with varying 

radiation dose levels ranging from 0.5 to 20 mGy. Scans were repeated three times at each dose level 

and each scan was reconstructed using FBP, an iterative reconstruction algorithm (iDose4) at a single 

noise level (Level 3), and DLR (Precise Image (PI)) at five levels with increasingly aggressive noise 

reduction (Sharper, Sharp, Standard, Smooth, Smoother) (Table 2). Additional scan and reconstructions 

parameters common to all scans are listed in Table 3. 
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Table 2. Varying radiation dose levels used for phantom scanning and the different methods used for 

reconstruction.  

 

* Dose and reconstruction parameters used for ground truth image. 
† 

Diagnostic reference level for a 29-33cm water-equivalent diameter patient.34 
‡
Achievable dose level for a 29-33cm water-equivalent diameter patient.34 

§
Lung cancer screening level.35 

 
 
Table 3. CT scan and reconstruction parameters for the phantom scans. 

Scanner Model  Philips Incisive CT 

Scan mode Helical 

Tube voltage 120 kVp 

Rotation time 0.5 s 

Helical pitch 1 

Collimation  64 x 0.625 mm 

Slice thickness 1 mm 

Slice increment 0.5 mm 

Reconstructed field of view 350 x 350 mm2 

Matrix size 512 x 512 pixel2 

Pixel spacing 0.6836 mm 
 

Exposure [mAs] CTDI
vol

 [mGy] Reconstruction Algorithms 

250* 20* FBP, YC Filter* 
 
iDose4 Level 3, YC filter 
 
Precise Image (PI), Lung Definition, 
Sharper/Sharp/Standard/Smooth/Smoother 
 

235 19 
185 15 

148
†
 12

†
 

111
‡
 9

‡
 

74 6 
49 4 

25
§
 2

§
 

12 1 
6 0.5 
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2.4 Extension Rings  

To mimic different patient sizes, the phantom was placed inside two different sized extension rings during 

scanning (Figure 2). A custom 25 x 25 cm water-equivalent extension ring with a 20 cm cylindrical bore 

was 3D printed using PLA filament. The phantom was placed in this custom extension ring to represent 

a small sized patient (small phantom), resulting in a total water equivalent diameter of about 19 cm. For 

a medium size, the phantom was placed in the 20 cm bore of a 30 x 40 cm multi-energy CT phantom 

(MECT) (Sun Nuclear, WI, USA) extension ring (medium phantom). The total water equivalent diameter 

of the phantom plus MECT extension ring was about 30 cm. The scan and reconstruction parameters 

outlined in Tables 2 and 3 were repeated for each phantom size. 

 

Figure 2. The PixelPrint lung phantom (A) placed inside of a 25 x 25 cm 3D printed extension ring (B) to 

represent a small sized pateient and placed inside of a 30 x 40 cm MECT extension ring (C) to represent 

a medium sized patient.  

2.5 Image Analysis 

Image noise and CNR were calculated for each reconstruction and dose combination. The image noise 

was calculated for a 2 x 2 cm region of interest (ROI) across 10 consecutive slices in a homogeneous 

region of the phantom background lung parenchyma. The CNR was calculated between the GGO lesion 

and the background lung parenchyma where the GGO ROI was a 2 x 2 cm ROI over 14 consecutive 

slices inside of the GGO lesion. The equations used for noise and CNR calculations were: 
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𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝜎𝜎𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 

𝐶𝐶𝑁𝑁𝐶𝐶 =  
𝜇𝜇𝐺𝐺𝐺𝐺𝐺𝐺 − 𝜇𝜇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝜎𝜎𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
 

Where 𝜎𝜎𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the standard deviation of HU values in the background lung ROI, 𝜇𝜇𝐺𝐺𝐺𝐺𝐺𝐺 is the mean 

HU in the GGO ROI, and 𝜇𝜇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the mean HU in the background lung ROI. 

In addition to these general image quality metrics, structural accuracy of the reconstructed images was 

evaluated using the image similarity metrics: root mean squared error (RMSE), structural similarity index 

measure (SSIM)36, and multi-scale SSIM (MS SSIM)37. These metrics were measured in a 13.5 x 13.5 

cm ROI across 50 consecutive slices within the 3D printed phantom, using the highest dose (20 mGy) 

FBP image as the ground truth image. Since the 20 mGy scans were used as the ground truth, they were 

excluded from the sample for all image metric calculations. The RMSE and SSIM were calculated for 

each image using the open source Python package skimage.metrics38, and the MS SSIM was calculated 

using the open source python library pytorch-msssim39. All ROIs used for these calculations are shown 

in Figure 3, and the same ROIs were used for each of the reconstructed images. 
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Figure 3. CT scan of the phantom placed inside of the medium sized extension ring with marked ROIs 

used for image quality metric measurements. The yellow box encompasses the background lung ROI 

used for image noise and CNR calculations, the red box shows the GGO ROI used to calculate CNR, 

and the cyan box represents the ROI used for RMSE, SSIM, and MS SSIM measurements. WL: -450, 

WW: 1100. 

2.6 Statistical analysis 

The performance of each dose and reconstruction combination was evaluated in comparison to the 

performance of the FBP images of scans taken at 12 mGy, which is the diagnostic reference level for 29-

33 cm water equivalent diameter patients34. A two-sample, one-tailed t-test was performed for each image 

metric using the open-source python package Scipy statistical functions40. Effects were considered 

statistically significant where 𝑝𝑝 <  0.05, which after applying the Bonferroni post hoc correction results in  

p < 0.05
# 𝑚𝑚𝑚𝑚𝑚𝑚𝐵𝐵𝑚𝑚𝐵𝐵𝑚𝑚

< 0.05
5

< 0.01 . The potential dose reduction of each reconstruction algorithm was then 

determined by finding the lowest dose measured at which there was no statistically significant decrease 

in image quality from the reference for any measured metric. 

3. Results 

3.1 Comparison of reconstruction algorithms 

PI demonstrates superior performance compared to both FBP and iterative reconstruction for all 

measured metrics in both phantom sizes. The image quality of FBP images is noticeably degraded by 

noise at lower doses while low dose scans reconstructed with iDose4 and PI have image quality which 

more closely resemble the highest dose FBP image. This effect is demonstrated visually in Figure 4 and 

confirmed quantitatively by the measured metrics. The results of each metric are represented in Figures 

5 and 6, and Tables A1-A10 show the t-test statistics. 
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Figure 4. Images of the GGO lesion taken from the small phantom (top) and medium phantom (bottom) 

at several dose and reconstruction combinations. Figures A1 and A2 in the appendix show the GGO 

lesion images from all the dose levels collected. WL: -500, WW: 1000. 

All metrics show that iDose4 is capable of dose reduction compared to FBP and that PI shows further 

dose reduction compared to iDose4. Furthermore, more aggressive noise reduction, i.e. smoother levels 

of PI, showed improved performance over less aggressive noise reduction, i.e. sharper levels of PI. When 

only considering noise and CNR, the different levels of PI achieved dose reduction capabilities between 

67-96% for the small phantom and between 50-96% for the medium phantom, respectively (Figure 5). 

However, the results of the image similarity metrics RMSE, SSIM, and MSSIM show more conservative 

dose reduction estimates compared to the estimates obtained from noise and CNR alone. When 
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considering the image similarity metric results, PI demonstrated lower dose reduction capabilities of 25-

83% in the small phantom and 50-83% in the medium phantom (Figure 6). Thus, these image similarity 

metrics provide additional information about the structural accuracy of the reconstructed images that is 

not captured by general image quality metrics like noise and CNR.  

 

Figure 5. Heatmaps displaying results of the image metric calculations for Noise (left) and CNR (right) 

from both the small phantom (top) and medium phantom (bottom). A white star is used to designate the 

dose and reconstruction combination used as the reference for statistical comparison for each metric. 

The value for this reference group is indicated on the color bars by a black line. The black lines on the 

heatmaps separate values that are statistically better than or equivalent to the reference (above the line) 

from those that are statistically worse than the reference (below the line). 
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Figure 6. Heatmaps displaying results of the image metric calculations for RMSE (left), SSIM (middle), 

and MS SSIM (right) from both the small phantom (top) and medium phantom (bottom). The white stars 

and black lines in this figure have the same function as in Figure 5. 

3.2 Phantom Size Effects 

The image quality of the small phantom reconstructions showed an average of approximately 40% 

improvement across all metrics compared to the matched doses and reconstructions of the medium 

phantom. Analysis of noise and CNR suggest that there is a slight increase in dose reduction capabilities 

of PI in the small phantom (67-96%) compared to the medium phantom (50-96%). However, the image 

similarity metrics show the opposite trend, with slightly lower dose reduction capabilities in the small 

phantom (25-83%) compared with the medium phantom (50-83%). Overall the results from the two 

phantom sizes showed similar trends in dose reduction. 
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3.3 Summarized Potential Dose Reduction Capabilities 

The overall dose reduction of each reconstruction algorithm compared to FBP was determined using the 

minimum dose at which all metrics matched or exceeded the reference performance. These minimum 

doses are summarized in Figure 7 with corresponding dose reduction percentages indicated on the right 

axis. For both the small phantom and medium phantom, PI demonstrated dose reduction capabilities up 

to 83% for the highest level of denoising (PI-Smoother). 

 

Figure 7. The minimum doses (left axis) required to match or exceed all image quality metrics of the 

reference images for each reconstruction algorithm, along with the corresponding percent dose reduction 

(right axis). 

3 Discussion 

This study examined the clinical imaging performance of a DLR algorithm, PI, compared to FBP and IR 

by utilizing a custom made patient derived PixelPrint lung phantom. The results show that PI is capable 

of dose reduction between 25-83% compared to FBP depending on the denoising level of the algorithm 

and phantom size. This suggests that in some cases PI can produce diagnostic level image quality even 
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for CT scans acquired at lung cancer screening doses of < 3 mGy35. This could mean more effective lung 

cancer screening and/or reduced radiation burden. 

The validity of using PixelPrint phantoms in the evaluation of DLR, and specifically PI, has also been 

demonstrated through this study. The results align with the current literature regarding image quality 

improvement, noise reduction, and dose reduction capabilities of DLR algorithms. A patient study by 

Greffier et. al24 looking at Precise Image for evaluating liver metastases24 demonstrated that the highest, 

most aggressive levels of PI (Smooth and Smoother) gave better scores for the lowest doses compared 

to the lower, less aggressive denoising levels of PI, the same trend found in this study. In a phantom 

study by Greffier et. al examining the use of PI in chest imaging, reported dose reductions were 58% for 

PI-Smooth and 83% for PI-Smoother compared to iDose4 Level 419, again similar to the results of this 

study. Our study showed that in a medium sized phantom, if the results from MS SSIM are excluded, PI 

- Smooth has a 58% dose reduction potential and PI - Smoother an 88% dose reduction potential 

compared to iDose4 level 3. However, when MS SSIM is included the dose reduction potential becomes 

more conservative. Studies evaluating other DLR algorithms have also demonstrated reduced noise and 

improved lesion detectability in DLR compared to IR18 leading to a range of dose reduction estimates 

between 30-80%1,20,21. Overall, our results align closely with the results presented in previous studies 

evaluating DLR, which supports the validity of using PixelPrint phantoms for evaluation of DLR algorithms.  

Furthermore, the results of this study demonstrate that PixelPrint phantoms provide additional information 

compared to patients and standard phantoms. Compared to patient studies, the use of PixelPrint 

phantoms allows for comparison of images over a wide range of doses beyond the dose range acceptable 

in clinical practice. This allows for the acquisition of ground truth data using a higher than standard 

radiation dose as well as repeated acquisition of increasingly lower dose data to probe dose limits more 

precisely. Additionally, there is no motion between acquisitions, which facilitates comparison between 

images using similarity metrics such as RMSE. Compared to traditional CT phantoms, the presence of 

clinically relevant structures and details in PixelPrint phantoms is advantageous because it enables 
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comparison of reconstructed tissue structures via metrics like SSIM. Including these image similarity 

metrics resulted in more conservative dose reduction estimates compared to analysis including only 

general image quality metrics such as noise and CNR. This may be because DLR algorithms are 

inherently non-linear in nature and thus their performance is dependent on the specific characteristics of 

the objects being reconstructed. As a result, analyses on non-clinical structures such as those found in 

traditional CT phantoms cannot adequately capture these algorithms’ diagnostic imaging performance. 

PixelPrint phantoms can also provide additional information about patient size dependency in DLR dose 

reduction. A previous patient study using general image quality metrics showed that iDose4 achieved 

higher dose reduction in smaller patients versus larger patients41. In the present study, only considering 

the noise and CNR measurements results in the same trend while the inclusion of image similarity metrics 

results in a reversal of the trend such that the small phantom size has slightly reduced dose reduction 

potential. Finally, it has been reported that a possible concern with DLR is that if certain lesions are not 

well represented in training sets, these lesions may not be reconstructed accurately in DLR images6. This 

is not something that can be tested with standard geometric phantoms but can be easily investigated 

using PixelPrint phantoms with various lesions and known ground truth images. These findings suggest 

that the use of PixelPrint phantoms in conjunction with image similarity metrics provides valuable 

information which is not available from standard phantoms or patient studies alone for determining dose 

reduction capability.  

The present study has a few limitations. First, PI was compared to only one denoising level of iDose4, the 

default level for lung imaging. To form a more robust understanding of the improvement that PI affords 

over IR, it would be valuable to compare PI to more denoising levels of iDose4. Second, this study only 

utilized one phantom and thus only one example of patient anatomy. Future studies involving more 

phantoms from different patients could improve our insights into the behavior of PI in different clinical 

scenarios and disease states. This could be especially useful in rarer or more unique clinical cases where 

patient data is limited. Third, this study only focuses on the performance of lung imaging since this 
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PixelPrint phantom only included lung structures. Fourth, this study does not include a reader study 

involving subjective image quality scores. However, there are many existing studies that include a reader 

study portion and those results show good alignment with the results of the present study. Finally, the 

raw projection data corresponding to the patient images used to create the PixelPrint phantom was 

unavailable, preventing a direct comparison between PI performance on phantom data and its 

performance on the source patient data.  

4 Conclusion 

This study demonstrates the dose reduction capabilities of a DLR algorithm, Precise Image. PI has the 

capability of producing diagnostic image quality at up to 83% lower radiation dose, even surpassing the 

dose reduction capabilities of iterative reconstruction. These results are consistent with existing literature 

evaluating DLR. Images reconstructed using PI demonstrate not only improved noise and contrast 

compared to FBP and iterative reconstruction, but also improved structural accuracy of lung features 

such as GGO lesions. The use of PI can improve the clinical utility and viability of lower dose CT scans, 

ultimately improving patient care while reducing radiation exposure.  

The PixelPrint phantom used in this study offers an improved testing environment with more realistic 

tissue structures and attenuation profiles compared to other CT phantoms. This is particularly important 

for the evaluation of non-linear reconstruction algorithms such as DLR. Thus, PixelPrint phantoms can 

elevate the clinical relevance of phantom evaluations of new and emerging CT technologies, which will 

lead to more rapid translation of these technologies into medical practice.  
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7 Appendix 

 

Figure A1. Images of the GGO lesion taken from the small phantom at each dose and reconstruction 

combination. WL: -500, WW: 1000. 
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Figure A2. Images of the GGO lesion taken from the medium phantom at each dose and 

reconstruction combination. WL: -500, WW: 1000. 
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Tables A1 - A10. t-values and p-values obtained from the two-sample, one-tailed student’s t-test for 

each image metric calculated. The cells highlighted with red indicate where the t-value signifies worse 

performance (t < 0 for Noise and RMSE, t > 0 for CNR, SSIM, and MS SSIM) than the reference (FBP, 

12 mGy). The cells highlighted in blue indicate where the p-value suggests a statistically significant 

result (p < 0.01). Cells above the thick black line have performance that is better than or not statistically 

different than the reference (t > 0 and/or p > 0.01). Cells below the thick black line have performance 

that is statistically worse than the reference (t < 0 and p < 0.01). 

Table A1. Noise - Small Phantom

 

Table A2. CNR - Small Phantom 

 

 

 

t p t p t p t p t p t p t p

19 6.761 0.00125 21.284 1.4E-05 18.823 2.3E-05 22.722 1.1E-05 26.661 5.9E-06 30.917 3.3E-06 34.427 2.1E-06

15 2.747 0.02578 17.985 2.8E-05 17.541 3.1E-05 22.060 1.2E-05 26.474 6E-06 31.028 3.2E-06 34.276 2.2E-06

12 0.000 0.5 14.665 6.3E-05 12.857 0.00011 17.298 3.3E-05 22.228 1.2E-05 27.898 4.9E-06 32.885 2.5E-06

9 -3.864 0.00904 7.859 0.00071 7.521 0.00084 11.495 0.00016 15.927 4.5E-05 21.479 1.4E-05 27.262 5.4E-06

6 -17.203 3.3E-05 3.561 0.01179 5.257 0.00313 12.392 0.00012 19.860 1.9E-05 28.348 4.6E-06 35.938 1.8E-06

4 -9.091 0.00041 -2.566 0.03114 -1.426 0.1135 1.848 0.06919 5.911 0.00205 11.943 0.00014 19.397 2.1E-05

2 -30.202 3.6E-06 -18.046 2.8E-05 -14.640 6.3E-05 -7.544 0.00083 1.991 0.05866 16.937 3.6E-05 33.697 2.3E-06

1 -131.203 1E-08 -80.192 7.2E-08 -63.965 1.8E-07 -43.634 8.2E-07 -24.505 8.2E-06 -2.304 0.04129 16.855 3.6E-05

0.5 -32.942 2.5E-06 -27.526 5.2E-06 -24.341 8.5E-06 -20.110 1.8E-05 -14.580 6.4E-05 -5.465 0.00273 10.483 0.00023

PI-Smooth PI-Smoother
CTDIvol [mGy]

FBP iDose4, L3 PI-Sharper PI-Sharp PI-Standard

t p t p t p t p t p t p t p

19 -5.682 0.00237 -19.874 1.9E-05 -16.974 3.5E-05 -21.166 1.5E-05 -25.959 6.5E-06 -32.035 2.8E-06 -38.306 1.4E-06

15 -2.581 0.03062 -17.200 3.4E-05 -17.059 3.5E-05 -22.222 1.2E-05 -27.632 5.1E-06 -33.379 2.4E-06 -36.996 1.6E-06

12 0.000 0.5 -12.301 0.00013 -10.731 0.00021 -14.539 6.5E-05 -19.034 2.2E-05 -24.642 8E-06 -30.502 3.4E-06

9 3.299 0.01498 -6.487 0.00146 -6.274 0.00165 -9.343 0.00037 -12.648 0.00011 -16.727 3.7E-05 -21.270 1.4E-05

6 13.110 9.8E-05 -2.892 0.02224 -4.489 0.00546 -10.981 0.0002 -18.327 2.6E-05 -27.608 5.1E-06 -38.072 1.4E-06

4 9.898 0.00029 2.408 0.03685 1.244 0.14063 -1.701 0.08206 -4.930 0.00394 -9.160 0.00039 -14.062 7.4E-05

2 29.902 3.7E-06 16.885 3.6E-05 13.244 9.4E-05 6.505 0.00144 -1.927 0.06316 -15.406 5.2E-05 -37.097 1.6E-06

1 57.630 2.7E-07 45.992 6.7E-07 41.449 1E-06 32.667 2.6E-06 20.695 1.6E-05 2.237 0.04444 -15.346 5.3E-05

0.5 52.822 3.8E-07 42.270 9.4E-07 36.004 1.8E-06 28.069 4.8E-06 18.359 2.6E-05 5.497 0.00267 -8.813 0.00046

PI-Smooth PI-Smoother
CTDIvol [mGy]

FBP iDose4, L3 PI-Sharper PI-Sharp PI-Standard
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Table A3. RMSE - Small Phantom 

 

Table A4. SSIM - Small Phantom 

 

Table A5. MS SSIM - Small Phantom 

 

 

t p t p t p t p t p t p t p

19 9.022 0.00042 13.742 8.1E-05 15.565 5E-05 17.113 3.4E-05 18.411 2.6E-05 19.410 2.1E-05 19.635 2E-05

15 3.748 0.00999 9.611 0.00033 11.838 0.00015 13.908 7.7E-05 15.724 4.8E-05 17.299 3.3E-05 17.997 2.8E-05

12 0.000 0.5 8.267 0.00058 11.251 0.00018 14.048 7.4E-05 16.467 4E-05 18.533 2.5E-05 19.479 2E-05

9 -10.673 0.00022 2.739 0.02598 8.158 0.00061 13.614 8.4E-05 18.675 2.4E-05 23.317 1E-05 25.617 6.9E-06

6 -28.001 4.8E-06 -10.363 0.00024 -3.282 0.01522 3.641 0.01097 10.049 0.00028 16.124 4.3E-05 19.747 1.9E-05

4 -57.470 2.7E-07 -29.466 3.9E-06 -19.627 2E-05 -9.225 0.00038 0.162 0.43974 8.718 0.00048 13.679 8.3E-05

2 -117.216 1.6E-08 -73.213 1E-07 -58.057 2.6E-07 -39.635 1.2E-06 -21.997 1.3E-05 -4.917 0.00397 5.723 0.00231

1 -207.496 1.6E-09 -146.938 6.4E-09 -122.796 1.3E-08 -94.716 3.7E-08 -65.543 1.6E-07 -32.787 2.6E-06 -6.935 0.00113

0.5 -189.715 2.3E-09 -153.389 5.4E-09 -134.644 9.1E-09 -113.199 1.8E-08 -88.169 5E-08 -55.673 3.1E-07 -23.898 9.1E-06

PI-Smooth PI-Smoother
CTDIvol [mGy]

FBP iDose4, L3 PI-Sharper PI-Sharp PI-Standard

t p t p t p t p t p t p t p

19 -6.253 0.00167 -9.816 0.0003 -11.165 0.00018 -12.508 0.00012 -13.722 8.2E-05 -14.823 6E-05 -15.470 5.1E-05

15 -3.075 0.01855 -8.389 0.00055 -9.975 0.00028 -11.839 0.00015 -13.239 9.4E-05 -14.524 6.5E-05 -14.784 6.1E-05

12 0.000 0.5 -6.636 0.00134 -8.185 0.00061 -10.298 0.00025 -12.083 0.00013 -13.797 8E-05 -14.620 6.4E-05

9 8.766 0.00047 -0.843 0.22325 -3.990 0.00813 -7.639 0.00079 -10.956 0.0002 -14.058 7.4E-05 -15.896 4.6E-05

6 15.212 5.4E-05 5.687 0.00236 2.790 0.02465 -1.337 0.12611 -5.874 0.0021 -10.849 0.0002 -13.903 7.8E-05

4 23.776 9.3E-06 13.918 7.7E-05 9.657 0.00032 5.562 0.00256 1.019 0.18283 -4.643 0.00486 -8.888 0.00044

2 50.550 4.6E-07 27.778 5E-06 32.064 2.8E-06 24.165 8.7E-06 14.866 6E-05 4.218 0.00675 -3.582 0.01156

1 76.733 8.6E-08 47.351 5.9E-07 63.213 1.9E-07 56.416 3E-07 46.731 6.3E-07 28.522 4.5E-06 6.650 0.00133

0.5 157.740 4.8E-09 122.256 1.3E-08 141.228 7.5E-09 125.567 1.2E-08 97.477 3.3E-08 48.559 5.4E-07 14.264 7E-05

PI-Smooth PI-Smoother
CTDIvol [mGy]

FBP iDose4, L3 PI-Sharper PI-Sharp PI-Standard

t p t p t p t p t p t p t p

19 -8.576 0.00051 -13.895 7.8E-05 -15.959 4.5E-05 -18.335 2.6E-05 -20.725 1.6E-05 -23.408 9.9E-06 -26.204 6.3E-06

15 -4.464 0.00556 -12.587 0.00011 -14.074 7.4E-05 -16.237 4.2E-05 -17.334 3.3E-05 -18.071 2.8E-05 -17.353 3.2E-05

12 0.000 0.5 -10.559 0.00023 -12.470 0.00012 -15.250 5.4E-05 -17.268 3.3E-05 -19.559 2E-05 -20.828 1.6E-05

9 11.911 0.00014 -2.052 0.0547 -5.914 0.00205 -10.778 0.00021 -14.870 6E-05 -18.378 2.6E-05 -20.857 1.6E-05

6 28.021 4.8E-06 9.674 0.00032 6.062 0.00187 -0.552 0.30515 -7.552 0.00082 -14.267 7E-05 -16.820 3.7E-05

4 51.394 4.3E-07 27.620 5.1E-06 21.278 1.4E-05 14.183 7.2E-05 5.828 0.00216 -3.753 0.00995 -8.802 0.00046

2 57.907 2.7E-07 30.306 3.5E-06 60.686 2.2E-07 53.371 3.7E-07 34.361 2.1E-06 18.110 2.7E-05 2.431 0.03595

1 48.771 5.3E-07 30.914 3.3E-06 53.438 3.7E-07 55.382 3.2E-07 57.712 2.7E-07 52.878 3.8E-07 19.623 2E-05

0.5 167.543 3.8E-09 124.102 1.3E-08 243.779 8.5E-10 210.586 1.5E-09 152.992 5.5E-09 71.409 1.2E-07 29.596 3.9E-06

PI-Smooth PI-Smoother
CTDIvol [mGy]

FBP iDose4, L3 PI-Sharper PI-Sharp PI-Standard
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Table A6. Noise - Medium Phantom 

 

Table A7. CNR - Medium Phantom 

 

Table A8. RMSE - Medium Phantom 

 

 

t p t p t p t p t p t p t p

19 6.567 0.00139 15.326 5.3E-05 17.442 3.2E-05 21.516 1.4E-05 26.131 6.4E-06 31.871 2.9E-06 36.951 1.6E-06

15 2.676 0.02772 11.150 0.00018 13.841 7.9E-05 18.702 2.4E-05 24.523 8.2E-06 31.894 2.9E-06 37.641 1.5E-06

12 0.000 0.5 9.664 0.00032 12.616 0.00011 17.837 2.9E-05 23.858 9.2E-06 31.000 3.2E-06 35.894 1.8E-06

9 -7.162 0.00101 5.774 0.00223 9.842 0.0003 15.854 4.6E-05 22.205 1.2E-05 29.372 4E-06 34.787 2E-06

6 -8.045 0.00065 -1.944 0.0619 0.509 0.31865 4.281 0.00642 9.184 0.00039 16.681 3.8E-05 25.913 6.6E-06

4 -27.663 5.1E-06 -12.697 0.00011 -6.266 0.00166 1.629 0.08937 10.652 0.00022 22.370 1.2E-05 34.032 2.2E-06

2 -13.706 8.2E-05 -9.259 0.00038 -8.031 0.00065 -5.406 0.00283 -2.004 0.05777 3.962 0.00833 17.113 3.4E-05

1 -23.515 9.7E-06 -18.126 2.7E-05 -17.703 3E-05 -14.541 6.5E-05 -10.122 0.00027 -2.797 0.02447 8.288 0.00058

0.5 -54.010 3.5E-07 -38.489 1.4E-06 -46.115 6.6E-07 -40.285 1.1E-06 -30.738 3.3E-06 -15.936 4.5E-05 4.419 0.00576

PI-Smooth PI-Smoother
CTDIvol [mGy]

FBP iDose4, L3 PI-Sharper PI-Sharp PI-Standard

t p t p t p t p t p t p t p

19 -6.450 0.00149 -14.883 5.9E-05 -17.073 3.5E-05 -21.357 1.4E-05 -27.082 5.5E-06 -37.861 1.5E-06 -61.046 2.2E-07

15 -2.717 0.02657 -10.675 0.00022 -13.389 9E-05 -18.527 2.5E-05 -26.468 6.1E-06 -46.331 6.5E-07 -89.628 4.6E-08

12 0.000 0.5 -9.241 0.00038 -12.397 0.00012 -18.232 2.7E-05 -26.665 5.9E-06 -41.654 9.9E-07 -44.483 7.6E-07

9 6.087 0.00184 -6.176 0.00175 -11.436 0.00017 -20.486 1.7E-05 -32.346 2.7E-06 -44.840 7.4E-07 -39.780 1.2E-06

6 9.095 0.00041 1.965 0.0604 -0.695 0.26264 -4.191 0.0069 -7.926 0.00069 -12.200 0.00013 -16.082 4.4E-05

4 18.762 2.4E-05 10.146 0.00027 5.223 0.00321 -1.669 0.08518 -10.902 0.0002 -24.912 7.7E-06 -42.184 9.4E-07

2 19.823 1.9E-05 13.115 9.8E-05 10.515 0.00023 6.561 0.0014 2.064 0.05398 -3.586 0.01152 -10.958 0.0002

1 32.666 2.6E-06 26.655 5.9E-06 23.702 9.4E-06 19.166 2.2E-05 12.859 0.00011 3.042 0.01916 -6.220 0.0017

0.5 41.139 1E-06 36.777 1.6E-06 34.589 2.1E-06 31.148 3.2E-06 25.849 6.7E-06 15.081 5.6E-05 -4.178 0.00697

PI-Standard
CTDIvol [mGy]

FBP iDose4, L3 PI-Sharper PI-Sharp PI-Smooth PI-Smoother

t p t p t p t p t p t p t p

19 44.258 7.8E-07 73.694 1E-07 86.812 5.3E-08 100.083 3E-08 113.486 1.8E-08 128.633 1.1E-08 142.164 7.3E-09

15 21.459 1.4E-05 61.105 2.1E-07 79.889 7.4E-08 100.645 2.9E-08 121.589 1.4E-08 143.956 7E-09 161.626 4.4E-09

12 0.000 0.5 53.509 3.7E-07 74.716 9.6E-08 97.681 3.3E-08 120.655 1.4E-08 146.253 6.6E-09 167.884 3.8E-09

9 -49.981 4.8E-07 25.468 7.1E-06 51.251 4.3E-07 77.265 8.4E-08 101.083 2.9E-08 125.004 1.2E-08 144.281 6.9E-09

6 -74.652 9.6E-08 -26.617 5.9E-06 -0.645 0.27694 31.399 3.1E-06 68.483 1.4E-07 112.823 1.9E-08 148.735 6.1E-09

4 -280.873 4.8E-10 -156.561 5E-09 -87.198 5.2E-08 -25.306 7.2E-06 36.939 1.6E-06 105.108 2.5E-08 159.904 4.6E-09

2 -166.211 3.9E-09 -127.538 1.1E-08 -114.549 1.7E-08 -88.419 4.9E-08 -48.958 5.2E-07 23.809 9.2E-06 110.499 2E-08

1 -383.558 1.4E-10 -312.656 3.1E-10 -283.320 4.7E-10 -235.633 9.7E-10 -173.495 3.3E-09 -74.744 9.6E-08 62.681 1.9E-07

0.5 -218.662 1.3E-09 -181.638 2.8E-09 -176.841 3.1E-09 -156.027 5.1E-09 -127.778 1.1E-08 -82.302 6.5E-08 -11.521 0.00016

PI-Smooth PI-Smoother
CTDIvol [mGy]

FBP iDose4, L3 PI-Sharper PI-Sharp PI-Standard
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Table A9. SSIM - Medium Phantom 

 

Table A10. MS SSIM - Medium Phantom 

 

 

t p t p t p t p t p t p t p

19 -19.370 2.1E-05 -31.832 2.9E-06 -38.489 1.4E-06 -48.070 5.6E-07 -51.121 4.4E-07 -52.955 3.8E-07 -56.114 3E-07

15 -7.318 0.00093 -23.726 9.4E-06 -29.889 3.7E-06 -38.887 1.3E-06 -42.319 9.3E-07 -51.829 4.1E-07 -64.686 1.7E-07

12 0.000 0.5 -27.447 5.2E-06 -40.491 1.1E-06 -57.749 2.7E-07 -70.720 1.2E-07 -61.592 2.1E-07 -73.123 1E-07

9 15.645 4.9E-05 -5.426 0.0028 -16.187 4.3E-05 -30.130 3.6E-06 -43.755 8.2E-07 -57.682 2.7E-07 -64.132 1.8E-07

6 14.748 6.2E-05 4.581 0.00509 1.407 0.11611 -4.881 0.00408 -14.256 7E-05 -33.151 2.5E-06 -48.538 5.4E-07

4 68.332 1.4E-07 34.075 2.2E-06 28.008 4.8E-06 11.720 0.00015 -7.595 0.00081 -35.739 1.8E-06 -62.100 2E-07

2 48.862 5.2E-07 33.319 2.4E-06 33.102 2.5E-06 25.422 7.1E-06 15.173 5.5E-05 -2.201 0.04628 -31.278 3.1E-06

1 206.702 1.6E-09 139.426 7.9E-09 152.245 5.6E-09 125.979 1.2E-08 93.240 4E-08 41.728 9.9E-07 -10.140 0.00027

0.5 232.325 1E-09 153.242 5.4E-09 246.323 8.1E-10 245.382 8.3E-10 163.871 4.2E-09 84.515 5.9E-08 17.028 3.5E-05

PI-Smooth PI-Smoother
CTDIvol [mGy]

FBP iDose4, L3 PI-Sharper PI-Sharp PI-Standard

t p t p t p t p t p t p t p

19 -16.977 3.5E-05 -27.404 5.3E-06 -30.150 3.6E-06 -36.641 1.7E-06 -39.635 1.2E-06 -40.705 1.1E-06 -40.808 1.1E-06

15 -8.549 0.00051 -22.780 1.1E-05 -29.635 3.9E-06 -35.996 1.8E-06 -36.974 1.6E-06 -40.680 1.1E-06 -42.979 8.8E-07

12 0.000 0.5 -13.394 9E-05 -20.279 1.7E-05 -28.750 4.4E-06 -37.559 1.5E-06 -36.619 1.7E-06 -39.246 1.3E-06

9 8.833 0.00045 -6.350 0.00158 -11.583 0.00016 -19.357 2.1E-05 -27.832 5E-06 -34.745 2E-06 -39.366 1.2E-06

6 18.062 2.8E-05 3.675 0.01065 2.158 0.04857 -5.776 0.00223 -16.554 3.9E-05 -28.946 4.2E-06 -28.954 4.2E-06

4 55.655 3.1E-07 22.686 1.1E-05 26.618 5.9E-06 14.356 6.8E-05 0.110 0.45874 -18.159 2.7E-05 -28.857 4.3E-06

2 16.350 4.1E-05 11.286 0.00018 13.231 9.4E-05 11.330 0.00017 8.466 0.00053 1.754 0.07716 -12.498 0.00012

1 97.635 3.3E-08 77.421 8.3E-08 59.528 2.4E-07 47.219 6E-07 37.883 1.4E-06 31.359 3.1E-06 8.942 0.00043

0.5 106.521 2.3E-08 69.036 1.3E-07 94.496 3.8E-08 84.870 5.8E-08 86.032 5.5E-08 55.308 3.2E-07 26.770 5.8E-06

PI-Smooth PI-Smoother
CTDIvol [mGy]

FBP iDose4, L3 PI-Sharper PI-Sharp PI-Standard
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