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Abstract 72 

Structural brain aging has demonstrated strong inter-individual heterogeneity and mirroring 73 

patterns with brain development. However, due to the lack of large-scale longitudinal 74 

neuroimaging studies, most of the existing research focused on the cross-sectional changes of 75 

brain aging. In this investigation, we present a data-driven approach that incorporate both cross-76 

sectional changes and longitudinal trajectories of structural brain aging and identified two brain 77 

aging patterns among 37,013 healthy participants from UK Biobank. Participants with 78 

accelerated brain aging also demonstrated accelerated biological aging, cognitive decline and 79 

increased genetic susceptibilities to major neuropsychiatric disorders. Further, by integrating 80 

longitudinal neuroimaging studies from a multi-center adolescent cohort, we validated the “last 81 

in, first out” mirroring hypothesis and identified brain regions with manifested mirroring 82 

patterns between brain aging and brain development. Genomic analyses revealed risk loci and 83 

genes contributing to accelerated brain aging and delayed brain development, providing 84 

molecular basis for elucidating the biological mechanisms underlying brain aging and related 85 

disorders.  86 
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Introduction 87 

The structure of the brain undergoes continual changes throughout the entire lifespan, with 88 

structural brain alterations intimately linking brain development and brain aging1,2. Brain aging 89 

is a progressive process that often co-occurs with biological aging and declines of cognitive 90 

functions3–5, which contribute to the onset and acceleration of neurodegenerative6 and 91 

neuropsychiatric disorders7. Studies on healthy brain aging have revealed significant inter-92 

individual heterogeneity in the patterns of neuroanatomical changes8,9. Therefore, examining 93 

the patterns of structural brain aging and its associations with cognitive decline is of paramount 94 

importance in understanding the diverse biological mechanisms of age-related 95 

neuropsychiatric disorders. 96 

Despite the fact that there exist large differences between brain development and brain 97 

aging10, a discernible association between these two processes remains evident. Direct 98 

comparisons of brain development and brain aging using structural MRI indicated a “last in, 99 

first out” mirroring pattern, where brain regions develop relatively late during adolescence 100 

demonstrated accelerated degeneration in older ages11,12. In addition, brain regions with strong 101 

mirroring effects showed increased vulnerability to neurodegenerative and neuropsychiatric 102 

disorders, including Alzheimer’s disease and schizophrenia13. However, due to the lack of 103 

large-scale longitudinal MRI studies during adolescence and mid-to-late adulthood, validation 104 

of the “last in, first out” mirroring hypothesis remains unavailable.  105 

Prior investigations have largely focused on regional and cross-sectional changes of brain 106 

aging9,13,14, with relatively few studies exploring longitudinal trajectories of brain aging and its 107 

associations with brain development8,15,16. In this article, we present a data-driven approach to 108 

examine the population clustering of longitudinal brain aging trajectories using structure MRI 109 

data obtained from 37,013 healthy individuals during mid-to-late adulthood (44-82 years), and 110 

explore its association with biological aging, cognitive decline and susceptibilities for 111 

neuropsychiatric disorders. Further, mirroring patterns between longitudinal brain 112 

development and brain aging are investigated by comparing the region-specific aging / 113 

developmental trajectories, and manifestation of the mirroring patterns are investigated across 114 

the whole-brain and among participants with different brain aging patterns. Genomic analyses 115 
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are conducted to reveal risk loci and genes associated with accelerated brain aging and delayed 116 

brain development. 117 

 118 

Results 119 

Longitudinal trajectories of whole-brain gray matter volume in mid-to-late adulthood 120 

define two brain aging patterns. 121 

Fig. 1 provides the data sources, analytical workflow and research methodology of this study. 122 

After the sample selection process (Supplementary Fig. 1, Supplementary Tables 1 and 2), 123 

longitudinal grey matter volume (GMV) trajectories in 40 ROIs (33 cortical and 7 subcortical 124 

ROIs, see Supplementary Table 3) were estimated for each of the 37,013 healthy participants 125 

in UK Biobank. The first 15 principal components derived from dimensionality reduction via 126 

principal component analysis were used in the clustering analysis (see Methods)17,18. Two brain 127 

aging patterns were identified, where 18,929 (51.1%) participants with the first brain aging 128 

pattern (pattern 1) had higher total GMV at baseline and a slower rate of GMV decrease over 129 

time, and the remaining participants with the second pattern (pattern 2) had lower total GMV 130 

at baseline and a faster rate of GMV decrease (Fig. 2a). Comparing the region-specific rate of 131 

GMV decrease, pattern 2 showed a more rapid GMV decrease in medial occipital (lingual gyrus, 132 

cuneus and pericalcarine cortex) and medial temporal (entorhinal cortex, parahippocampal 133 

gyrus) regions (Fig. 2b, c and Supplementary Fig. 2), which had the largest loadings in the 134 

second and third principal components (Supplementary Table 4). These two patterns can be 135 

clearly stratified by both linear and non-linear dimensionality reduction methods, indicating 136 

distinct structural differences in brain aging between patterns (Supplementary Fig. 3). Sample 137 

characteristics of these 37,013 UK Biobank participants stratified by brain aging patterns are 138 

summarized in Supplementary Table 5. Overall, participants with different brain aging patterns 139 

had similar distributions with regard to age, sex, ethnicity, smoking status, Townsend 140 

deprivation index (TDI), body mass index (BMI) and years of schooling.  141 

 142 

Brain aging patterns were significantly associated with biological aging. 143 
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To explore the relationships between structural brain aging and biological aging, we 144 

investigated the distribution of aging biomarkers, such as telomere length and PhenoAge19, 145 

across brain aging patterns identified above (Fig. 3 and Supplementary Table 6). Compared to 146 

pattern 1, participants in pattern 2 with more rapid GMV decrease had shorter leucocyte 147 

telomere length (P = 0.009, Cohen’s D = -0.028) and this association remained consistent after 148 

adjusting for sex, age, ethnic, BMI, smoking status and alcohol intake frequency20. Next, we 149 

examined PhenoAge, which was developed as an aging biomarker incorporating composite 150 

clinical and biochemical data19, and observed higher PhenoAge among participants with brain 151 

aging pattern 2 compared to pattern 1 (P = 0.019, Cohen’s D = 0.027). Again, the association 152 

remained significant after adjusting for sex, age, ethnic, BMI, smoking status, alcohol intake 153 

frequency and education years (P = 3.05 × 10-15, Cohen’s D = 0.092). Group differences in 154 

terms of each individual component of PhenoAge (including albumin, creatinine, glucose, c-155 

reactive protein, lymphocytes percentage, mean corpuscular volume, erythocyte distribution 156 

width, alkaline phosphatase and leukocyte count) were also investigated and results were 157 

consistent with PhenoAge (Supplementary Fig. 4). 158 

 159 

Accelerated brain aging was associated with cognitive decline and increased genetic 160 

susceptibilities to attention-deficit/hyperactivity disorder and delayed brain development. 161 

Next, we conducted comprehensive comparisons of cognitive functions between participants 162 

with different brain aging patterns. In general, those with brain aging pattern 2 (lower baseline 163 

total GMV and more rapid GMV decrease) exhibited worse cognitive performances compared 164 

to pattern 1. Specifically, brain aging pattern 2 showed lower numbers of correct pairs matching 165 

(P = 0.006, Cohen’s D = -0.029), worse prospective memory (OR = 0.943, 95% CI [0.891, 166 

0.999]), lower fluid intelligence (P < 1.00 × 10-20, Cohen’s D = -0.102), and worse numeric 167 

memory (P = 5.97 × 10-11, Cohen’s D = -0.082). No statistically significant differences were 168 

observed in terms of the reaction time (P = 0.99) and prospective memory (P = 0.052) between 169 

these two brain aging patterns after FDR correction. Results were consistent when using 170 

models adjusted for sex, age, and socioeconomic status (TDI, education and income)21,22 (Fig. 171 
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4). Full results demonstrating the associations between brain aging patterns and cognitive 172 

functions are presented in Supplementary Table 7. 173 

Having observed cognitive decline among participants with accelerated brain aging pattern, we 174 

next investigated whether brain aging patterns were associated with genetic vulnerability to 175 

major neuropsychiatric disorders. Since current GWAS are under-powered for attention-176 

deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD) and the difficulty 177 

in identifying genetic variants was likely due to their polygenic nature, we calculated the 178 

corresponding polygenic risk scores (PRS) using multiple p value thresholds. This approach 179 

enabled robust investigation of the association between genetic susceptibility of 180 

neuropsychiatric disorders and brain imaging phenotypes. PRS for major neuro-developmental 181 

disorders including attention-deficit/hyperactivity disorder (ADHD) and autism spectrum 182 

disorders (ASD),  neurodegenerative diseases including Alzheimer’s disease (AD) and 183 

Parkinson’s disease (PD), neuropsychiatric disorders including bipolar disorder (BIP), major 184 

depressive disorder (MDD), and schizophrenia (SCZ), and delayed structural brain 185 

development (GWAS from an unpublished longitudinal neuroimaging study)23 were calculated 186 

for each participant using multiple P value thresholds (from 0.005 to 0.5 at intervals of 0.005) 187 

and results were then averaged over all thresholds (Fig. 5). The primary GWAS datasets used 188 

for calculating the PRS were listed in Supplementary Table 8. Overall, we observed increased 189 

genetic susceptibility to ADHD (P = 0.040) and delayed brain development (P = 1.48 × 10-6) 190 

among participants with brain aging pattern 2 after FDR correction, while no statistically 191 

significant differences were observed for ASD, AD, PD, BIP, MDD and SCZ (Fig. 5). Details 192 

regarding the genetic liability to other common diseases and phenotypes using enhanced PRS 193 

from UK Biobank are displayed in Supplementary Tables 9 and 10. 194 

 195 

Genome Wide Association Studies (GWAS) identified significant genetic loci associated 196 

with accelerated brain aging. 197 

Having observed significant associations between brain aging patterns and cognitive 198 

performances / genetic liabilities to major neurodevelopmental disorders, we further 199 

investigated if there exist genetic variants contributing to individualized brain aging phenotype.  200 
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We conducted genome-wide association studies (GWAS) using estimated total GMV at 60 201 

years old as the phenotype. This phenotype was derived by adding individual specific 202 

deviations to the population averaged total GMV, thus providing additional information 203 

compared to studies using only cross-sectional neuroimaging phenotypes. 204 

Six independent single nucleotide polymorphisms (SNPs) were identified at genome-wide 205 

significance level (P < 5 × 10-8) (Fig. 6) and were subsequently mapped to genes using NCBI, 206 

Ensembl and UCSC Genome Browser database (Supplementary Table 11). Among them, two 207 

SNPs (rs10835187 and rs779233904) were also found to be associated with multiple brain 208 

imaging phenotypes in previous studies24, such as regional and tissue volume, cortical area and 209 

white matter tract measurements. Compared to the GWAS using global gray matter volume as 210 

the phenotype, our GWAS revealed additional signal in chromosome 7 (rs7776725), which was 211 

mapped to the intron of FAM3C and encodes a secreted protein involved in pancreatic cancer25 212 

and Alzheimer's disease26. This signal was further validated to be associated with specific brain 213 

aging mode by another study using a data-driven decomposition approach27. In addition, 214 

another significant loci (rs10835187, P = 1.11 × 10-13) is an intergenic variant between gene 215 

LGR4-AS1 and LIN7C, and was reported to be associated with bone density and brain volume 216 

measurement24,28. LIN7C encodes the Lin-7C protein, which is involved in the localization and 217 

stabilization of ion channels in polarized cells, such as neurons and epithelial cells29,30. Previous 218 

study has revealed the association of both allelic and haplotypic variations in the LIN7C gene 219 

with ADHD31. 220 

 221 

Mirroring patterns between brain aging and brain development. 222 

Having observed significant associations between brain aging and genetic susceptibility to 223 

neurodevelopmental disorders, we are now interested in examining the mirroring patterns 224 

between brain aging and brain development in the whole population, and whether these 225 

mirroring patterns were more pronounced in those with accelerated brain aging. Adolescents 226 

in the IMAGEN cohort showed more rapid GMV decrease in the frontal and parietal lobes, 227 

especially the frontal pole, superior frontal gyrus, rostral middle frontal gyrus, inferior parietal 228 

lobule and superior parietal lobule, while those in their mid-to-late adulthood showed more 229 
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accelerated GMV decrease in the temporal lobe, including medial orbitofrontal cortex, inferior 230 

parietal lobule and lateral occipital sulcus (Fig. 7a). The mirroring patterns (with slower GMV 231 

decrease during brain development and more rapid GMV decrease during brain aging) were 232 

particularly prominent in inferior temporal gyrus, caudal anterior cingulate cortex, fusiform 233 

cortex, middle temporal gyrus and rostral anterior cingulate cortex (Fig. 7b). The regional 234 

mirroring patterns became weaker when we focus on late brain aging at age 75 years old, 235 

especially in the frontal lobe and cingulate cortex. Further, mirroring patterns were represented 236 

more prominently in participants with brain aging pattern 2, where stronger mirroring between 237 

brain aging and brain development was observed in frontotemporal area, including lateral 238 

occipital sulcus and lingual gyrus (Fig. 7c).  239 

 240 

Gene expression profiles were associated with delayed brain development and accelerated 241 

brain aging. 242 

The Allen Human Brain Atlas (AHBA) transcriptomic dataset (http://human.brain-map.org) 243 

were used to obtain the spatial correlation between gene expression profiles across cortex and 244 

structural brain development/aging via partial least square (PLS) regression. The first PLS 245 

component explained 24.7% and 53.6% of the GMV change during brain development 246 

(estimated at age 15y, rspearman = 0.51, Ppermutation = 0.03) and brain aging (estimated at age 55y, 247 

rspearman = 0.49, Ppermutation = 1.5 ×  10-4), respectively. Seventeen of the 45 genes mapped to 248 

GWAS significant SNP were found in AHBA, with LGR4 (rspearman = 0.56, Ppermutation < 0.001) 249 

significantly associated with delayed brain development and ESR1 (rspearman = 0.53, Ppermutation < 250 

0.001) and FAM3C (rspearman = -0.37, Ppermutation = 0.004) significantly associated with 251 

accelerated brain aging. BDNF-AS was positively associated with both delayed brain 252 

development and accelerated brain aging after spatial permutation test (Supplementary Tables 253 

12 and 13).  254 

Next, we screened the genes based on their contributions and effect directions to the first 255 

PLS components in brain development and brain aging. 990 and 2293 genes were identified to 256 

be positively associated with brain development and negatively associated with brain aging at 257 

FDR corrected P value of 0.005, respectively, representing gene expressions associated with 258 
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delayed brain development and accelerated brain aging. These genes were then tested for 259 

enrichment of GO biological processes and KEGG pathways. Genes associated with delayed 260 

brain development showed significant enrichment in “regulation of trans-synaptic signaling”, 261 

“forebrain development”, “signal release” and “cAMP signaling pathway” (Fig. 8a), and genes 262 

associated with accelerated brain aging showed significant enrichment in “macroautophagy”, 263 

“establishment of protein localization to organelle”, “histone modification”, and “pathways of 264 

neurodegeneration – multiple diseases” (Fig. 8b). Full results of the gene set enrichment 265 

analysis were provided in Supplementary Fig. 5. In summary, the analyses from using the 266 

databases of GO biological processes and KEGG Pathways indicate synaptic transmission as 267 

an important process in the common mechanisms of brain development and aging, and cellular 268 

processes (autophagy), as well as the progression of neurodegenerative diseases, are important 269 

processes in the mechanisms of brain aging. 270 

 271 

Discussion 272 

In this study, we adopted a data-driven approach and revealed two distinct brain aging patterns 273 

using large-scale longitudinal neuroimaging data in mid-to-late adulthood. Compared to brain 274 

aging pattern 1, brain aging pattern 2 were characterized by a faster rate of GMV decrease, 275 

accelerated biological aging, cognitive decline, and genetic susceptibility to 276 

neurodevelopmental disorders. By integrating longitudinal neuroimaging data from adult and 277 

adolescent cohorts, we demonstrated the “last in, first out” mirroring patterns between 278 

structural brain aging and brain development, and showed that the mirroring pattern was 279 

manifested in the temporal lobe and among participants with accelerated brain aging. Further, 280 

genome-wide association studies identified significant genetic loci contributing to accelerated 281 

brain aging, while spatial correlation between whole-brain transcriptomic profiles and 282 

structural brain aging / development revealed important gene sets associated with both 283 

accelerated brain aging and delayed brain development.   284 

Brain aging is closely related to the onset and progression of neurodegenerative and 285 

neuropsychiatric disorders. Both neurodegenerative and neuropsychiatric disorders 286 

demonstrate strong inter-individual heterogeneity, which prevents the comprehensive 287 
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understanding of their neuropathology and neurogenetic basis. Therefore, multidimensional 288 

investigation into disease subtyping and population clustering of structural brain aging are 289 

crucial in elucidating the sources of heterogeneity and neurophysiological basis related to the 290 

disease spectrum32. In the last decades, major developments in the subtyping of Alzheimer's 291 

disease, dementia and Parkinson's disease, have provided new perspectives regarding their 292 

clinical diagnosis, treatment, disease progression and prognostics32–34. While previous studies 293 

of brain aging mostly focused on the cross-sectional differences between cases and healthy 294 

controls, we here delineated the structural brain aging patterns among healthy participants 295 

using a novel data-driven approach that captured both cross-sectional and longitudinal 296 

trajectories of the whole-brain gray matter volume35,36. The two brain aging patterns identified 297 

using the above approach showed large differences in the rate of change in medial 298 

occipitotemporal gyrus, which is involved in vision, word processing and scene recognition37–299 

39. Significant reduction of the gray matter volume and abnormal changes of the functional 300 

connectivity in this region were found in subjects with mild cognitive impairment (MCI) and 301 

AD, respectively40,41. Previous research on brainAGE3,42 (the difference between chronological 302 

age and the age predicted by the machine learning model of brain imaging data) showed that 303 

as a biomarker of accelerated brain aging, people with older brainAGE have accelerated 304 

biological aging and early signs of cognitive decline, which is consistent with our discoveries 305 

in this study. Our results support the establishment of a network connecting brain aging patterns 306 

with biological aging profiles involving multi-organ systems throughout the body43. Since 307 

structural brain patterns might manifest and diverge decades before cognitive decline44, 308 

subtyping of brain aging patterns could aid in the early prediction of cognitive decline and 309 

severe neurodegenerative and neuropsychiatric disorders.  310 

Mirroring pattern between brain development and brain aging has long been hypothesized 311 

by postulating that phylogenetically newer and ontogenetically less precocious brain structures 312 

degenerate relatively early13. Early studies have reported a positive correlation between age-313 

related differences of cortical volumes and precedence of myelination of intracortical fibers45. 314 

Large differences in the patterns of change between adolescent late development and aging in 315 

the medial temporal cortex were previously found in studies of brain development and aging 316 
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patterns12. Here, we compared the annual volume change of the whole-brain gray matter during 317 

brain development and early / late stages of brain aging, and found that mirroring patterns are 318 

predominantly localized to the lateral / medial temporal cortex and the cingulate cortex. These 319 

cortical regions characterized by “last-in, first-out” mirroring patterns showed increased 320 

vulnerability to the several neuropsychiatric disorders. For example, regional deficits in the 321 

superior temporal gyrus and medial temporal lobe were observed in schizophrenia46, along with 322 

morphological abnormalities in the medial occipitotemporal gyrus47. Children diagnosed with 323 

ADHD had lower brain surface area in the frontal, cingulate, and temporal regions48. Douaud 324 

et al.13 revealed a population transmodal network with lifespan trajectories characterized by the 325 

mirroring pattern of development and aging. We investigated the genetic susceptibility to 326 

individual-level mirroring patterns based on the lasting impact of neurodevelopmental genetic 327 

factors on brain15, demonstrating that those with more rapidly brain aging patterns have a 328 

higher risk of delayed development. 329 

Identifying genes contributing to structural brain aging remains a critical step in 330 

understanding the molecular changes and biological mechanisms that govern age-related 331 

cognitive decline. Several genetic loci have been reported to be associated with brain aging 332 

modes and neurocognitive decline, many of which demonstrated global overlap with 333 

neuropsychiatric disorders and their related risk factors27,49,50. Here, we focused on the 334 

individual brain aging phenotype by estimating individual deviation from the population 335 

averaged total GMV and conducted genome-wide association analysis with this phenotype. 336 

Our approach identified 6 risk SNPs associated with accelerated brain aging, most of which 337 

could be further validated by previous studies using population averaged brain aging 338 

phenotypes. However, our approach revealed additional genetic signals and demonstrated 339 

genetic architecture underlying brain aging patterns overlap with bone density28,51. In addition, 340 

molecular profiling of the aging brain has been thoroughly investigated among patients with 341 

neurogenerative diseases, but rarely conducted to shed light on the mirroring patterns among 342 

healthy participants. Analysis of the spatial correlation between gene expression profiles and 343 

structural brain development / aging further identified genes contributing to delayed brain 344 

development and accelerated brain aging. Specifically, expression of gene BDNF-AS was 345 
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significantly associated with both processes. BDNF-AS is an antisense RNA gene and plays a 346 

role in the pathoetiology of non-neoplastic conditions mainly through the mediation of BDNF52. 347 

LGR4 (associated with delayed brain development) and FAM3C (associated with accelerated 348 

brain aging) identified in the spatial genetic association analysis also validated our findings in 349 

the GWAS. 350 

There are several limitations in the current study that need to be addressed in future research. 351 

Firstly, the UK Biobank cohort, which we leveraged to identify population clustering of brain 352 

aging patterns, had a limited number of repeated structural MRI scans. Therefore, it remains 353 

challenging to obtain robust estimation of the longitudinal whole-brain GMV trajectory at the 354 

individual level. As a robustness check, we have calculated both intra-class correlation and 355 

variance of both random intercept and age slope to ensure appropriateness of the mixed effect 356 

models. Secondly, although aging is driven by numerous hallmarks, we have only investigated 357 

the association between brain aging patterns and biological aging in terms of telomere length 358 

and blood biochemical markers due to limitations of data access. Other dimensions of aging 359 

hallmarks and their relationship with structural brain aging need to be investigated in the future. 360 

Thirdly, our genomic analyses were restricted to "white British" participants of European 361 

ancestry. The diversity of genomic analyses will continue to improve as the sample sizes of 362 

GWAS of non-European ancestry increase. Further, although the gene expression maps from 363 

Allen Human Brain Atlas enabled us to gain insights into the spatial coupling between gene 364 

expression profiles and mirroring patterns of the brain, the strong inter-individual variation of 365 

whole-brain gene expression levels and large temporal span of the human brain samples may 366 

lead to the inaccurate correspondence in the observed associations. Finally, we focused on 367 

structural MRIs in deriving brain aging patterns in this analysis, future investigations could 368 

consider other brain imaging modalities from a multi-dimensional perspective. Nevertheless, 369 

our study represents a novel attempt for population clustering of structural brain aging and 370 

validated the mirroring pattern hypothesis by leveraging large-scale adolescent and adult 371 

cohorts.  372 
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Methods 373 

Participants T1-weighted brain MRI images were obtained from 37,013 individuals aged 44-374 

82 years old from UK Biobank (36,914 participants at baseline visit in 2014+, 4,007 375 

participants at the first follow-up visit in 2019+). All participants provided written informed 376 

consent, and ethical approval was granted by the North West Multi-Center Ethics committee 377 

(https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics). Participants 378 

were excluded if they were diagnosed with severe psychiatric disorders or neurological 379 

diseases using ICD-10 primary and secondary diagnostic codes or from self-reported medical 380 

conditions at UK Biobank assessment center (see Supplementary Tables 1 and 2). Data were 381 

obtained under application number 19542. 1,529 adolescents with structural MRI images were 382 

drawn from the longitudinal project IMAGEN (1,463 at age 14, 1,377 at age 19 and 1,148 at 383 

age 23), of which the average number of MRI scans was 2.61 per adolescent. The lMAGEN 384 

study was approved by local ethics research committees at each research site and informed 385 

consent was given by all participants and a parent/guardian of each participant.  386 

 387 

MRI acquisition Quality-controlled T1-weighted neuroimaging data from UK Biobank and 388 

IMAGEN were processed using FreeSurfer v6.0. Detailed imaging processing pipeline can be 389 

found online for UK Biobank (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf) 390 

and IMAGEN (https://github.com/imagen2/imagen_mri). Briefly, cortical gray matter volume 391 

(GMV) from 33 regions in each hemisphere were generated using Desikan–Killiany Atlas53, 392 

and total gray matter volume (TGMV), intracranial volume (ICV) and subcortical volume were 393 

derived from ASEG atlas54 (See Supplementary Table 3). Regional volume was averaged 394 

across left and right hemispheres. To avoid deficient segmentation or parcellation, participants 395 

with TGMV, ICV or regional GMV beyond 4 standard deviations from the sample mean were 396 

considered as outliers and removed from the following analyses.  397 

 398 

Identification of longitudinal brain aging patterns Whole-brain GMV trajectory was 399 

estimated for each participant in 40 brain regions of interest (ROIs) (33 cortical regions and 7 400 

subcortical regions), using mixed effect regression model with fixed linear and quadratic age 401 
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effects, random intercept and random age slope. Covariates include sex, assessment center, 402 

handedness, ethnic, and ICV. Models with random intercept and with both random intercept 403 

and random age slope were compared using AIC, BIC and evaluation of intra-class correlation 404 

(ICC). Results suggested that random age slope model should be chosen for almost all ROIs 405 

(Supplementary Table 14). Deviation of regional GMV from the population average was 406 

calculated for each participant at age 60 years and dimensionality reduction was conducted via 407 

principal component analysis (PCA). The first 15 principal components explaining 408 

approximately 70% of the total variations of regional GMV deviation were used in multivariate 409 

k-means clustering. Optimal number of clusters was chosen using both elbow diagram and 410 

contour coefficient (Supplementary Fig. 6). Rates of volumetric change for total gray matter 411 

and each ROI were estimated using generalized additive mixed effect models (GAMM) with 412 

fixed cubic splines of age, random intercept and random age slope, which incorporates both 413 

cross-sectional between-subject variation and longitudinal within-subject variation from 414 

40,921 observations and 37,013 participants. Covariates include sex, assessment center, 415 

handedness, ethnic, and ICV. We also applied PCA and locally linear embedding (LLE)55 to 416 

the adjusted GMV ROIs in order to map the high-dimensional imaging-derived phenotypes to 417 

a low-dimensional space for stratification visualisation. The GMV of 40 ROIs at baseline were 418 

linearly adjusted for sex, assessment center, handedness, ethnic, ICV, and second-degree 419 

polynomial in age to be consistent with the whole-brain GMV trajectory model. 420 

 421 

Association between brain aging patterns and biological aging, cognitive decline and 422 

genetic susceptibilities of neuropsychiatric disorders Individuals with Z-standardized 423 

leucocyte telomere length56 and blood biochemistry (which were used to calculate PhenoAge19 424 

that characterizes biological aging) outside 4 standard deviations from the sample mean were 425 

excluded for better quality control. A total of 11 cognitive tests performed on the touchscreen 426 

questionnaire were included in the analysis. More information about the cognitive tests is 427 

provided in Supplementary Information. Comparisons of biological aging (leucocyte telomere 428 

length, PhenoAge) and cognitive function were conducted among participants with different 429 

brain aging patterns using both unadjusted and adjusted multivariate regression models with 430 
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Bonferroni / FDR correction. Polygenic Risk Scores (PRS) were calculated for autism spectrum 431 

disorder (ASD), attention deficit hyperactivity disorder (ADHD), Alzheimer’s disease (AD), 432 

Parkinson’s Disease (PD), bipolar disorder (BIP), major depressive disorder (MDD), 433 

schizophrenia (SCZ) and delayed brain development using GWAS summary statistics23 at 434 

multiple P value thresholds (from 0.005 to 0.5 at intervals of 0.005, and 1), with higher P value 435 

thresholds incorporating larger number of independent SNPs. After quality control of genotype 436 

and imaging data, PRSs were generated for 25,861 participants on UK Biobank genotyping 437 

data. SNPs were pruned and clumped with a cutoff r2 ≥ 0.1 within a 250 kb window. All 438 

calculations were conducted using PRSice v2.3.557. Enhanced PRS from UK Biobank 439 

Genomics for multiple diseases were also tested. Detailed instructions for calculating enhanced 440 

PRS in UK Biobank can be found in research of Thompson et al.58 Comparisons of 441 

neuropsychiatric disorders were conducted among participants with different brain aging 442 

patterns using t test with FDR correction. All statistical tests were two-sided. 443 

 444 

Genome Wide Association Study to identify SNPs associated with brain aging patterns 445 

We performed Genome-wide association studies (GWAS) on individual deviations of total 446 

GMV relative to the population average at 60 years using PLINK 2.059. Variants with missing 447 

call rates exceeding 5%, minor allele frequency below 0.5% and imputation INFO score less 448 

than 0.8 were filtered out after the genotyping quality control for UK Biobank Imputation V3 449 

dataset. Among the 337,138 unrelated "white British" participants of European ancestry 450 

included in our study, 25,861 with recent UK ancestry and accepted genotyping and imaging 451 

quality control were included in the GWAS. The analyses were further adjusted for age, age2, 452 

sex, assessment center, handedness, ethnic, ICV, and the first 10 genetic principal components. 453 

Genome-wide significant SNPs (P < 5× 10-8) obtained from the GWAS were clumped by 454 

linkage disequilibrium (LD) (r2 < 0.1 within a 250 kb window) using UKB release2b White 455 

British as the reference panel. We subsequently performed gene-based annotation in FUMA60 456 

using genome-wide significant SNPs and SNPs in close LD (r2  ≥ 0.1) using Annotate Variation 457 

(ANNOVAR) on Ensemble v102 genes61. 458 

 459 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 2, 2024. ; https://doi.org/10.1101/2024.01.09.24301030doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.09.24301030
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

Mirroring patterns between brain aging and brain development To validate the “last in, 460 

first out” mirroring hypothesis, we evaluated the structural association between brain 461 

development and brain aging. Longitudinal neuroimaging data from 1,529 adolescents in the 462 

IMGAEN cohort and 3,908 mid-to-late adulthood in the UK Biobank cohort were analyzed. 463 

Annual percentage volume change (APC) for each ROI was calculated among individuals with 464 

at least 2 structural MRI scans by subtracting the baseline GMV from follow-up GMV and 465 

dividing by the number of years between baseline and follow-up visits. Region-specific APC 466 

was regressed on age using smoothing spline with cross validated degree of freedom. Estimated 467 

APC for each ROI was obtained at age 15y for adolescents and at age 55y (early aging) and 468 

75y (late aging) for participants in UK Biobank. Region-specific APC during adolescence (or 469 

mid-to-late adulthood) was then standardized across all cortical regions to create the brain 470 

development (or aging) map. Finally, the brain development map and brain aging map were 471 

compared to assess the mirroring pattern for each ROI in the overall population and across 472 

different aging subgroups. 473 

 474 

Gene Expression Analysis The Allen Human Brain Atlas (AHBA) dataset 475 

(http://human.brain-map.org), which comprises gene expression measurements in six 476 

postmortem adults (age 24–57y) across 83 parcellated brain regions62,63, were used to identify 477 

gene expressions significantly associated with structural brain development and aging. The 478 

expression profiles of 15,633 genes were averaged across donors to form a 83 × 15,633 479 

transcriptional matrix and partial least squares (PLS) regression was adopted for analyzing the 480 

association between regional change rate of gray matter volume and gene expression profiles. 481 

Specifically, estimated regional APC at 15 (obtained from IMAGEN cohort) and 55 years old 482 

(obtained from UK Biobank) were regressed on the high-dimensional gene expression profiles 483 

upon regularization. Associations between the first PLS component and estimated APC during 484 

brain development and brain aging were tested by spatial permutation analysis (10,000 times)64. 485 

Additionally, gene expression profiles of genes mapped to GWAS significant SNP were 486 

extracted from AHBA. The association between gene expression profiles of mapped genes and 487 

estimated APC during brain development and aging was also tested by spatial permutation 488 
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analysis. Statistical significance of each gene’s contribution to the first PLS component was 489 

tested with standard error calculated using bootstrap65–67, and genes significantly associated 490 

with delayed brain development and accelerated brain aging were selected. Enrichment of 491 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene ontology (GO) of 492 

biological processes for these selected genes were analyzed using R package clusterProfiler68. 493 

All statistical significances were corrected for multiple testing using FDR. 494 

 495 

Data availability 496 

All the UK Biobank data used in the study are available at https://www.ukbiobank.ac.uk. The IMAGEN 497 
project data are available at https://imagen-project.org. GWAS summary statistics used to calculate the 498 
PRS are available in the Supplementary Table 8. Human gene expression data are available in the Allen 499 
Human Brain Atlas dataset: https://human.brainmap.org. 500 
 501 

Code availability 502 

R version 4.2.0 was used to perform statistical analyses. FreeSurfer version 6.0 was used to process 503 
neuroimaging data. lme4 1.1 in R version 4.2.0 was used to perform longitudinal data analyses. PRSice 504 
version 2.3.5 (https://choishingwan.github.io/PRSice/) was used to calculate the PRS. PLINK 2.0 505 
(www.cog-genomics.org/plink/2.0/) and FUMA version 1.5.6 (https://fuma.ctglab.nl/) were used to 506 
perform genome-wide association analysis, and ANNOVAR was used to perform gene-based annotation. 507 
AHBA microarray expression data were processed using abagen toolbox version 0.1.3 508 
(https://doi.org/10.5281/zenodo.5129257). The rotate_parcellation code used to perform a spatial 509 
permutation test of a parcellated cortical map: https://github.com/frantisekvasa/rotate_parcellation. Code 510 
for PLS analysis and bootstrapping to estimate PLS weights are available at 511 
https://github.com/KirstieJane/NSPN_WhitakerVertes_PNAS2016/tree/master/SCRIPTS. clusterProfiler 512 
4.6 in R version 4.2.0 was used to analyze gene-set enrichment.  513 
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Fig. 1 Overview of the study workflow. a, Population cohorts (UK Biobank and IMAGEN) and data 
sources (brain imaging, biological aging biomarkers, cognitive functions, genomic data) involved in this 
study. b, Brain aging patterns were identified using longitudinal trajectories of the whole brain GMV, which 
enabled the capturing of long-term and individualized variations compared to only use cross-sectional data, 
and associations between brain aging patterns and other measurements (biological aging, cognitive functions 
and PRS of major neuropsychiatric disorders) were investigated. c, Mirroring patterns between brain aging 
and brain development was investigated using z-transformed brain volumetric change map and gene 
expression analysis. 
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Fig. 2 Global (a) and selected regional (b, c) cortical gray matter volume rate of change among 
participants with brain aging patterns 1 (red) and 2 (blue). Rates of volumetric change for total gray 
matter and each ROI were estimated using GAMM, which incorporates both cross-sectional between-subject 
variation and longitudinal within-subject variation from 40,921 observations and 37,013 participants. 
Covariates include sex, assessment center, handedness, ethnic, and ICV. Shaded areas around the fit line 
denotes 95% CI. 
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Fig. 3 Distributions of biological aging biomarkers (leucocyte telomere length (LTL) and PhenoAge) 
among participants with brain aging patterns 1 and 2. Boxes represent the interquartile range (IQR), 
lines within the boxes indicate the median. Two-sided P values were obtained by comparing LTL or 
PhenoAge19 between brain aging patterns using unadjusted multivariate linear regression models. Results 
remained significant when adjusting for sex, age, ethnic, BMI, smoking status and alcohol intake frequency 
in the LTL model20 and sex, age, ethnic, BMI, smoking status, alcohol frequency and education years in 
PhenoAge model. Stars indicate statistical significance after Bonferroni correction. ****: p <= 0.0001, *: p 
<= 0.05.  
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Fig. 4 Effect size (Cohen’s D or odds ratio) for comparing the cognitive functions between participants 
with brain aging patterns 1 and 2. Results were adjusted such that negative Cohen’s D and Odds Ratio 
less than 1 indicate worse cognitive performances in brain aging pattern 2 compared to pattern 1. Width of 
the lines extending from the center point represent 95% confidence interval. Two-sided P values were 
obtained using both unadjusted and adjusted (for sex, age, and TDI, education and income) multivariate 
regression models. Stars indicate statistical significance after FDR correction for 11 comparisons. ****: p 
<= 0.0001, ***: p <= 0.001, **: p <= 0.01, ns: p > 0.05. 
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Fig. 5 Participants with accelerated brain aging (brain aging pattern 2) had significantly increased 
genetic liability to ADHD and delayed brain development. Polygenic risk score (PRS) for ADHD, ASD, 
AD, PD, BIP, MDD, SCZ and delayed brain development (unpublished GWAS) were calculated at different 
p-value thresholds from 0.005 to 0.5 at an interval of 0.005. Vertical axis represents negative logarithm of P 
values comparing PRS in brain aging pattern 2 relative to pattern 1. Red horizontal dashed line indicates 
FDR corrected P value of 0.05. Colors represent traits and dots within the same color represent different p 
value thresholds. The trigonometric symbol indicates the average PRS across all p-value thresholds for the 
same trait. 
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Fig. 6 Genome-wide association study (GWAS) identified 6 independent SNPs associated with 
accelerated brain aging. Total GMV at 60 years old was estimated for each participant using mixed effect 
models allowing for individualized baseline GMV and GMV change rate, and was used as the phenotype in 
the GWAS. a, At genome-wide significance level (P = 5 × 10-8, red dashed line), rs10835187 and rs7776725 
loci were identified to be associated with accelerated brain aging. b, Quantile–quantile plot showed that the 
most significant P values deviate from the null, suggesting that results are not unduly inflated. 
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Fig. 7 The “last in, first out” mirroring patterns between brain development and brain aging. a, The 
annual percentage volume change (APC) was calculated for each ROI and standardized across the whole 
brain in adolescents (IMAGEN, left) and mid-to-late aged adults (UK Biobank, right), respectively. For 
adolescents, ROIs of in red indicate delayed structural brain development, while for mid-to-late aged adults, 
ROIs in blue indicate accelerated structural brain aging. b, Estimated APC in brain development versus early 
aging (55 years old, left), and versus late aging (75 years old, right). ROIs in red indicate faster GMV 
decrease during brain aging and slower GMV decrease during brain development, i.e., stronger mirroring 
effects between brain development and brain aging. c, Mirroring patterns between brain development and 
brain aging were more manifested in participants with accelerated aging (brain aging pattern 2). The arrows 
point to ROIs with more pronounced mirroring patterns in each subfigure. 
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Fig. 8 Functional enrichment of gene transcripts significantly associated with delayed brain 
development and accelerated brain aging. a, 990 genes were spatially correlated with the first PLS 
component of delayed structural brain development, and were enriched for trans-synaptic signal regulation, 
forebrain development, signal release and cAMP signaling pathway. b, 2,293 genes were spatially correlated 
the first PLS component of accelerated structural brain aging, and were enriched for macroautophagy, 
pathways of neurodegeneration, establishment of protein localization to organelle and histone modification. 
Size of the circle represents number of genes in each term and P values were corrected using FDR for 
multiple comparisons. 
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