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Abstract  
Optimized deep brain stimulation (DBS) is fast becoming a therapy of choice for the treatment of 
Parkinson’s disease (PD). However, the post-operative optimization (patient clinical benefits are 
maximized and adverse effects are minimized) of the large number of possible DBS parameter settings 
(signal frequency, voltage, pulse width and contact locations) using the current empirical protocol 
requires numerous clinical visits, which substantially increases the time to reach optimal DBS 
stimulation, patient cost burden and ultimately limits the number of patients who can undergo DBS 
treatment. These issues became even more problematic with the recent introduction of electrode models 
with stimulation directionality thereby enabling more complex stimulation paradigms. These difficulties 
have necessitated the search for a biomarker-based optimization method that will streamline the DBS 
optimization process. Our recently published functional magnetic resonance imaging (fMRI) and machine 
learning-assisted DBS parameter optimization for PD treatment has provided a way to rapidly classify 
DBS parameters using parcel-based features that were extracted from DBS-fMRI response maps. 
However, the parcel-based method had limited accuracy as the parcels are based on subjective literature 
review. Here, we propose an unsupervised autoencoder (AE) based extraction of features from the DBS-
fMRI responses to improve this accuracy. We demonstrate the usage of the extracted features in 
classification methods such as multilayer perceptron (MLP), random forest (RF), support vector machine 
(SVM), k-nearest neighbors (KNN) and LDA. We trained and tested these five classification algorithms 
using 122 fMRI response maps of 39 PD patients with a priori clinically optimized DBS parameters. 
Further, we investigated the robustness of the AE-based feature extraction method to changes in the 
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activation patterns of the DBS-fMRI responses, which may be caused by difference in stimulation side 
and disease condition. Changes in the locations of activated and deactivated brain regions was simulated 
using a left-right horizontal flipping of the original left-sided (or nominal) DBS-fMRI response maps. The 
visualization of AE-based features extracted from the nominal and flipped DBS-fMRI response maps 
formed optimal and non-optimal clusters in a neuro-functionally meaningful manner, which indicate 
robustness of the AE-based feature extraction to subtle differences in the activated regions of DBS-fMRI 
response maps. The MLP, RF, SVM and LDA methods gave an overall DBS parameter classification 
accuracy of 96%, 94%, 92% and 93% respectively when trained using the AE-extracted features from the 
nominal DBS-fMRI maps. The AE-based MLP, RF, SVM and LDA accuracies were higher than the 
overall accuracy (81%) of our initial parcel-based LDA method. The performance of an AE-MLP model 
trained using the nominal DBS-fMRI maps did not change significantly when the model was tested on the 
flipped DBS-fMRI responses. We showed that the MLP method combined with AE-based feature 
extraction is best suited for fMRI-based DBS parameter optimization and represents another step towards 
a proposed digital tool for rapid semi-automated biomarker-based DBS optimization. 

 

1. Introduction 
Deep brain stimulation (DBS) is a neurosurgical procedure that involves the delivery of constant electric 
pulse using surgically implanted electrodes in specific target areas of the brain to suppress aberrant neural 
activities and/or modulate brain networks (1). DBS procedures are routinely adopted for the treatment of 
movement disorders such as Parkinson’s disease (PD), essential tremor and dystonia (2–4) and have 
additionally shown promising results for a range of psychiatric, cognitive, pain, and seizure disorders 
(2,5,6). The successful treatment of PD using sub-thalamic nucleus (STN) or globus pallidus internus 
(GPi) DBS hinges on precise surgical implantation and determining a patient-specific optimal 
combination of DBS parameters including signal frequency, voltage, pulse width and electrode contact 
location. DBS parameters are said to be optimized if they achieve maximal patient benefit while 
minimizing adverse effects (7). It is well known that sub-optimal DBS programming can lessen the 
treatment efficacy, increase patient side effects, and drain the implanted pulse generator battery more 
quickly than necessary (8). 

Based on current standard-of-care empirical DBS programming, the search for an optimal combination of 
DBS parameters usually involves multiple time-consuming programming sessions that substantially 
increase the time to optimization (TTO) per patient (an average of 1 year), patient cost burden, patient 
fatigue and ultimately limits the number of patients who can undergo DBS treatment (9–11). Furthermore, 
the advent of newer DBS electrodes with an even greater number of directional contact locations renders 
the empirical optimization method increasingly difficult as the expanded DBS parameter space has made 
it intractable for clinicians to empirically program the electrode within a clinically acceptable timeframe. 
This increased complication and difficulty has hindered the adoption of the newer and more effective 
DBS electrodes by clinicians (12–16). In diseases such as dystonia, addiction and depression, clinically 
based programming is further complicated as there is a latency – potentially in the order of weeks – 
between stimulation adjustments and subsequent clinical effect (17). Due to such difficulties, an estimated 
230,000 patients – a small number compared to the eligible patients for DBS – have undergone DBS 
therapy worldwide for a variety of neurological and non-neurological conditions (18). 

The possibility of a biomarker-based DBS programming that can substantially reduce the TTO per patient 
during DBS therapy has been previously established by our research team (11,17). Optimal DBS 
parameter settings were shown to yield unique functional magnetic resonance imaging (fMRI) response 
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maps in PD patients undergoing DBS therapy.  Blood oxygenation level dependent (BOLD) DBS-fMRI 
response maps associated with optimal stimulation of the left STN showed significant deactivations in the 
ipsilateral motor cortex, contra-lateral cerebellum, orbito-lateral cortex, and significant activation in the 
ipsilateral thalamus. Subtherapeutic voltages triggered a decrease in the magnitude of the BOLD changes 
with a preserved topographic pattern. Supratherapeutic voltages yielded a relatively stronger BOLD 
response in the ipsilateral motor cortex and contra-lateral cerebellum and was also accompanied by 
increased BOLD signal in non-motor regions, such as the inferior frontal and occipital lobes. 

Features that characterize the patient’s DBS parameters can be extracted from the DBS-fMRI response 
map and used to train a DBS parameter classification model via artificial intelligence (AI) methods such 
as multi-layer perceptron (MLP), random forest (RF), support vector machine (SVM), k-nearest 
neighbors (KNN), linear discriminant analysis (LDA) etc. In contrast with the current standard-of-care 
DBS optimization protocol, such AI models can facilitate the rapid classification of DBS parameter sets 
as either optimal or non-optimal. 

The feature vector that is used to train the DBS parameter classification model may be composed of the 
entirety of voxels in the DBS-fMRI response maps. However, such full-voxel approach can substantially 
increase the length of the feature vector, model training time complexity and sensitivity to noise, without 
necessarily resulting in a superior classification accuracy rate (19). To avoid these difficulties, we had 
previously carried out our feature extraction using a parcel-based approach, where voxel intensities in 
predetermined brain regions of motor function relevance were extracted from normalized DBS-fMRI 
response maps (11). However, the accuracy and neurofunctional meaningfulness of this parcel-based 
feature extraction method may not be guaranteed as the parcels are based on subjective literature review 
and may not be able to take care of differences in DBS-fMRI responses that may occur due to differences 
in stimulation side and PD condition. 

Here, in contrast to our previously implemented parcel-based feature extraction method, we propose an 
unsupervised autoencoder (AE) based feature extraction approach (free of ROI-based normalization) for 
obtaining feature vectors from the DBS-fMRI response maps of PD patients undergoing DBS therapy. 
The learned feature embeddings are subsequently used to train a DBS parameter classification model 
using the MLP, RF, SVM, KNN and LDA classification methods. We also compared the accuracy of the 
AE-based MLP, RF, SVM, KNN and LDA classification models to our previous parcel-based LDA 
model. Further, we investigate the robustness of the AE-based feature extraction method to changes in the 
activation patterns of the DBS-fMRI responses, which may be caused by difference in stimulation side 
and PD symptoms. 

 

2. Methods 
2.1. Experimental Data Description 
In this work, we used our previously acquired BOLD fMRI data acquired on a 3T GE HDx MRI scanner 
(GE Healthcare, Wisconsin, USA) from 39 PD patients (n = 35 STN-DBS, n = 4 GPi-DBS, mean age = 
62.4±7.1, 20 males, 19 females; study #NCT03153670) who had undergone left DBS treatment at 
Toronto Western Hospital. The optimal DBS parameters of all 39 patients was previously determined via 
the standard-of-care clinical optimization protocol (3,4). FMRI data was then acquired from all 39 PD 
patients with different DBS settings amounting to a total of 122 response maps. Data were acquired after 
protocols were approved by the institutional research ethics board at the University Health Network, #14-
8255. All participants provided written informed consent prior to MRI scans, and a member of the clinical 
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team was present to monitor patients during the MRI sessions. Patients were instructed to take their last 
dose of PD medication at least 24 hours before the study to avoid confounding responses.  Other details of 
the patient demographics and DBS-fMRI data used in this work can be found in our previous publication 
(11). The BOLD fMRI design implemented in the study data was aimed at distinguishing patterns of brain 
activation at optimal and non-optimal DBS parameter settings. DBS-fMRI experimental data included 
6.5-minute fMRI sessions using a 30 second DBS-ON/OFF cycling paradigm (Figure 1). All DBS-fMRI 
response maps correspond to different DBS parameter sets and were labeled as optimal or non-optimal by 
a movement disorder clinician based on optimal DBS parameter settings obtained via the standard-of-care 
clinical optimization protocol (3,4). Axial 3D anatomical T1-weighted images were also acquired for 
rigid-body registration. Other details of the DBS-fMRI and anatomical data acquisition parameters can be 
found in our previous publication (11). 

2.2. Single subject fMRI analysis 
All fMRI data analyses were carried out using SPM12 (http://www.fil.ion.ucl.ac.uk). The acquired fMRI 
data were slice time corrected, motion corrected, rigidly registered to a T1-weighted image, non-linearly 
registered to a standard space Montreal Neurological Institute (MNI) brain, and spatially smoothed using 
a Gaussian kernel with a 6 mm full width at half maximum (Figure 2). To account for artifacts due to 
patient head motion during data acquisition, we used the Art toolbox 
(https://www.nitrc.org/projects/artifact detect) (20) to detect and remove volumes with motion >2 mm. 
Overall, for any given patient, this resulted in the removal of a maximum of 6 volumes (3.3%) from the 
total number of acquired volumes. Motion regression was implemented in the fMRI design matrix using 
6-degrees of motion (x, y, z, yaw, pitch and roll) before statistical parametric maps were extracted from 
the data. The 6-degrees of motion parameters were correlated with DBS ON/OFF block design to 
ascertain that the observed changes were related to DBS stimulation paradigm, and not related to patient 
head-motion. Statistical parametric maps (t-maps) were estimated from the preprocessed fMRI data using 
the designed 30-second DBS-ON/OFF paradigm. The data acquired for the first 30 seconds were 
discarded to establish a steady state. The hemodynamic response function was modelled using the 
canonical double gamma function, as it was found to be similar to BOLD fMRI response of DBS across 
brain regions and patients (20,21). 

2.3. Feature Selection Methods 
2.3.1. Parcel-based Feature Selection 
In our previous parcel-based LDA implementation, features used for training the classification model 
were obtained from the average t-value in 16 ROIs of motor function relevance – that span the motor 
circuit, supplementary motor area, and cerebellum. These motor regions have been confirmed to be 
engaged during STN- and GPi-DBS (22,23). ROIs from other regions such as the operculum and visual 
cortex were included to account for speech issues and visual disturbances experienced with nonoptimal 
settings (24,25). Additionally, ROIs from other areas that could be related to common adverse effects 
(e.g., speech and gait disturbances) observed in PD-DBS patients at non-optimal contacts and voltages 
were included in the feature vector. The 16 functional-atlas-derived ROIs included (26): left and right 
thalamus, left and right pallidum, left and right sensorimotor, supplementary motor area, left and right 
anterior cerebellum motor, left and right posterior cerebellum motor, left and right operculum, primary 
visual, secondary visual and dorsal attention. This resulted in 32 features for each DBS-fMRI response 
map (16 positive and 16 negative mean t-values corresponding to neuro-activations and deactivations 
respectively) (11). 
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2.3.2. Autoencoder-Based Feature Learning 
The autoencoder is a neural network-based model that is used for unsupervised learning purpose to 
discover underlying correlations among data and represent data in a smaller dimension. The AE has a 
symmetrical network architecture, which is mainly designed to encode the input into a compressed and 
meaningful feature presentation (latent space), and then decode it back such that the reconstructed input 
(output) is similar or identical to the original input. A typical AE network is composed of two sub-
networks popularly called encoder and decoder networks. The encoder is a compression function E that 
uses a kernel weight, activation function and bias (w, δ and b respectively) to map the input data x to a 
lower dimensional latent space z, which represents the latent space or bottleneck (27,28). The decoder is a 
recovery function D that maps the latent space z to the output x′ using kernel weight, activation function 
and bias (w′, δ′ and b′ respectively): 

 

� �  ���� � 	�
� � �� (1) 
  

� �  ���� � 	�
�� � �� (2) 
  

The goal of the AE network is to learn the mapping functions E and D: 

�: � � � �encoder� (3) 
  

�: � � � �decoder� (4) 
That satisfy: 
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where � is the expectation over the distribution of input x, and � is the reconstruction loss function, 
which measures the difference between the original input and reconstructed input from the decoder (29). 
The goal is to minimize the difference between input and reconstruction through the defined loss function. 

During the AE training process, the loss function is optimized using gradient back propagation. For 
simplicity and computational speed, L2 loss function such as mean square error (�MSE) is often chosen to 
compute the pixel wise difference (Equation 6). 
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However, it is widely accepted that L2 loss does not correlate well with human perception of image 
quality as it does not capture the intricate characteristic of the human visual system (30). In this work, a 
perceptual loss function based on the structural similarity index measure (SSIM) was used for the AE 
reconstruction loss. SSIM captures the difference in luminance, contrast, and structural information 
instead of simply computing pixel wise difference. The SSIM is defined as (31): 
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where µ ′x, σ′x represent the mean and covariance for x′ (similarly for x), σx′ x is the covariance of x′ and x. 
The values for c1, c2 stabilize the division with weak denominator. The SSIM-based loss function ( ���) 
is defined as: 

 �����, �� � 1 ) ***+,��, �� (8) 
 

By optimizing this loss function, the network was able to reconstruct visually meaningful images that are 
perceptually similar to the original input images. 

To extract associative features from the DBS-fMRI response maps without any prior information, we 
used the unsupervised convolutional AE network illustrated in Figure 3 to reduce the fMRI response 
maps from an initial dimension of 91 × 96 × 96 to a 256 × 3 × 3 latent vector, which has a length of 2304. 
All DBS-fMRI response maps were resized from the standard MNI dimension of 91 × 91 × 109 to a 
dimension of 91 × 96 × 96, which is suitable for our AE network. The resized response maps were also 
normalized between 0 to 1. The AE network produced reduced latent spaces that were used to form 
feature vectors for training the DBS classification models. 

2.4. Artificial Intelligence Methods for DBS Parameters Settings Classification 
In this study, we trained and tested five different AI models using the same feature vectors that were 
extracted (using the AE model) from the 122 DBS-fMRI response maps (32,33). The performance of the 
AE-based MLP, SVM, RF, KNN and LDA classification models were accessed to facilitate comparison 
with our previously published parcel-based LDA implementation (11). The KNN, RF, SVM and LDA 
distributions of the Python Scikit Learn package (34) were adapted in this work. 

In brief, the MLP is a fully connected neural networks that functions as universal approximators and can 
be trained to approximate virtually any smooth, measurable function (35–37). Other details of the MLP 
has been explained in previous studies (38,39). Our implementation of the MLP method is composed of 8 
blocks of hidden layers with a SoftMax activation function at the last layer to get the normalized 
classification probability for DBS parameter setting. Each neuron at any given hidden layer is fully 
connected to all neurons at the next hidden layer. Four dropout layers were added to the end of the first 4 
blocks with feature dropout percentage of 25%, 15%, 15%, 15% respectively to prevent potential over-
fitting. RF is an ensemble classifier that randomly builds multiple decision trees, that recursively partition 
data samples into two or more groups based on a specific splitting criterion such as Gini Index, 
Information Gain, and Gain Ratio (40,41). Other details of the RF method has been explained in previous 
studies (42–44). An SVM is a supervised AI method that defines a hyperplane to maximize the distance 
between any point in the training set and the defined hyperplane for accurate classification. The 
hyperplane is a decision boundary expressed in terms of a linear combination of functions parameterized 
by support vectors (45,46). More details about the SVM method have been previously published (47–49). 
The KNN is a supervised non-parametric classification method where unlabeled test data are labelled 
based on their similarity (using a distance metric) to samples in the training data (50,51). The LDA is a 
supervised dimension reduction and classification technique that finds an orientation matrix for the 
reduction of high dimensional feature vectors belonging to different classes to a lower dimensional 
feature space such that the projected feature vectors of a class on the lower dimensional space are well 
separated from the feature vectors of the other classes (52). We adopted the singular value decomposition 
solver for our current LDA implementation since the AE extracted features is quite large (2304 features) 
compared to 122 observations in our data set. A summary of the model parameters used for the tested AI 
classification methods are shown in Table 1. 
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2.5. Classification Model Training and Testing 
All model training and testing were implemented in Python 3.8 (Python Software Foundation, 
https://www.python.org/). The trained AE model was used to extract latent vectors from the 122 DBS-
fMRI response maps, which were in turn used as features for training the MLP, RF, SVM, KNN and 
LDA classification models. Testing of the classification models was carried out within a 5-fold cross 
validation framework over 50 epochs. Eighty percent of the entire dataset was used for model training and 
the rest 20% was used for testing while maintaining stratified partitioning. The performance of all 
classification models was accessed using the receiver operating characteristics curves (ROC), accuracy, 
recall, precision and F1 score. 

2.6. Latent Vector Visualization 
To visualize the latent feature vectors learned by the proposed AE model from the 122 DBS-fMRI data, 
we applied the t-Distributed Stochastic Neighbor Embedding (t-SNE) method (53,54), which facilitates 
the visualization of high dimensional data by giving each data point a location in two or three-
dimensional map. 

2.7. Robustness of Autoencoder-based DBS Classification Model 
Given that we used left-sided DBS-fMRI data for training our AE feature-extraction model, we 
investigated the robustness of the trained AE model to changes in the activation patterns of the input 
response maps. To mimic changes that can occur in DBS-fMRI responses because of differences in 
stimulation side and disease condition, the original left-sided (or nominal) response maps were passed 
through a left-right flip operation to displace the activated and deactivated regions horizontally yielding 
another set of 122 flipped response maps. Latent vectors were extracted from the flipped response maps 
using the same AE model that was trained on the nominal DBS-fMRI data. The latent feature vectors 
from the flipped response maps were separately used to train and test (also via a 5-fold cross validation) 
an MLP model for DBS parameter settings classification. The distribution of the latent vectors extracted 
from the nominal and flipped responses were compared using violin plots and cosine similarity index 
(CSI). 

3. Results 
The AE-based MLP, RF, SVM and LDA classifiers all showed a superior overall accuracy compared to 
our previously implemented parcel-based LDA method with a mean difference in overall accuracy of 
13% (Figure 4). Only the KNN classifier showed a lower overall accuracy (80%) compared to the 
previously developed parcel-based LDA classifier with 81% overall accuracy. 

A comprehensive comparison of the mean and standard deviation (from 5-fold cross validation) of the 
accuracy, precision, recall and F1 score of the AE-based MLP, RF, SVM, KNN and LDA classification 
models (trained and tested on the nominal DBS-fMRI response maps) is summarized in Table 2. The 
MLP showed the highest accuracy, precision and F1 score (96%, 95%, and 93%, respectively) compared 
to the other classification models. The RF yielded the highest recall of all the five classification models. 
Following a similar trend, the ROC curves for optimal and non-optimal predictions were highest for the 
MLP classifier with an area under curve (AUC) of 0.98 (Figure 5). The AUC for the RF, SVM, KNN and 
LDA methods were respectively 0.96, 0.97, 0.79 and 0.97. 

Representative nominal and flipped DBS-fMRI response maps, as well as the distribution of the AE-
extracted features from optimal and non-optimal DBS-fMRI responses are shown in Figure 6A and 6B. 
Despite the difference in the topographic pattern of the nominal and flipped response maps, the 
distributions of their respective AE-extracted features were similar with CSI values as high as 0.783 and 
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0.683 for the optimal and non-optimal response maps respectively (Figure 6C and 6D). The t-SNE 
visualization of the AE-extracted features for the entire patient cohort (122 data points) were clustered in 
a neuro-functionally meaningful manner for the nominal and flipped DBS-fMRI response maps (Figure 
7). Since the extracted features of the nominal and flipped responses are comparable, the accuracy of the 
AE-MLP classification model trained from both datasets was also similar with a difference of 4% (Figure 
8). 

 

4. Discussions 
In line with the recent search for a biomarker-based semi-automated rapid DBS optimization in PD 
patients, the AE neural network has been used as a feature extraction method for training MLP, RF, SVM, 
KNN and LDA classification models. In theory, the entire DBS-fMRI response map containing numerous 
features can be used for building the classification models, but doing so can quickly make calculations 
become laborious, less accurate and time consuming without a better understanding of the results (55).  

The low false negatives and positives of the MLP model is a desired metric in the drive for rapid semi-
automated DBS optimization and accounts for the high accuracy rate of the model. The AE-based KNN 
classification model gave the lowest accuracy, precision, recall and F1 score compared to the other AE-
based classification methods, which may indicate that the KNN method is not suitable for classifying 
such high dimensional DBS-fMRI data. To further allude to the unsuitability of the KNN method, all 
other AE-based classifiers (MLP, RF, SVM and LDA) gave a superior accuracy rate compared to our 
previous implementation of the parcel-based LDA classification method except the KNN classifier 
(Figure 4). The use of the neuro-functionally meaningful features in the current AE-based LDA 
implementation yielded a significant increase in overall accuracy from 81% (for our previous parcel-
based LDA implementation) to 93%, thereby highlighting the important role of an effective feature 
engineering method. 

The inclusion of dropout layers in the MLP network prevented potential over-fitting and improved its 
performance in the adopted 5-fold cross-validation framework. Also, the use of SSIM loss function in the 
AE network proved to be more robust compared to using MSE loss function, as SSIM seeks to maximize 
the similarity between the input and reconstructed image (output) of the AE network. 

The ROC curve analysis is also a good evaluative measure for determining the performance of various 
classification methods. We adopted the AUC to evaluate the performance of all five AE-based classifiers 
as it is widely used in medical research because of its meaningful explanation of the classification of 
various disease conditions (56). Among all four classification methods considered in our ROC analysis, 
the MLP method gave the optimal ROC with an AUC of 0.98, further showing the suitability of MLP for 
the classification of DBS parameter settings from fMRI data. The KNN performed the least with an AUC 
of 0.79. 

The effectiveness of a single AE model (trained using only left-sided or nominal DBS-fMRI responses) is 
evident in the neuro-functional clustering of the extracted features as depicted in the t-SNE plots for the 
nominal and flipped response maps. This neuro-functionality of the extracted features broadly enhances 
the classification of the DBS parameter settings from their corresponding response maps. The variability 
in the optimal and non-optimal DBS-fMRI data is well captured in the eigen structures extracted from the 
response maps by the AE feature-extraction model (Figure 7).  
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Though our left-right flipping of the nominal DBS-fMRI response maps to generate the flipped responses 
does not exactly capture the real-world differences that will be imposed on a DBS-fMRI acquisition by 
difference in stimulation side or disease condition, these results may indicate that the AE-based 
autonomous feature extraction method is robust to differences in response maps that change the activated 
and deactivated regions horizontally. Our results also suggests that the left-right flipping operation may 
be used for data augmentation of single sided DBS-fMRI data, which is potentially useful for training 
more robust deep learning (DL) models for DBS parameter optimization. 

A limitation of this work is the balance of the available data, which is composed of more non-optimal 
than optimal DBS-fMRI responses. However, the use of the AE-based unsupervised learning method may 
have reduced the effect of the data imbalance in the obtained results. The high F1 score of the models 
may suggest that the imbalance in our data is well tolerated by the AE-based MLP, RF, SVM and LDA 
classification methods, but not the KNN method (Table 2). Another drawback of this work is the limited 
number of available data set for model training and testing, which can be attributed to the relatively small 
number of PD patients that are able to gain access to DBS therapy (57–63). As more DBS-fMRI data 
become available, it may be possible to train a DL model that will predict optimal DBS parameters using 
features from a single fMRI acquisition as input, potentially reducing the TTO per patient further. 

The present data was used to investigate fMRI brain changes associated with different DBS contact and 
voltage settings. The availability of fMRI data with DBS frequency and pulse width parameters will 
facilitate a more robust classification model for DBS parameter optimization. As previously 
demonstrated, fMRI is an effective biomarker of optimal DBS stimulation (11). Such biomarker-based 
programming tool could be leveraged to decrease the TTO per patient and number of clinic visits required 
before DBS patients’ optimal settings are identified. This is particularly important as the number of 
possible stimulation parameters increases with modern DBS electrodes that have been reported to be more 
effective with broader therapeutic window (64). The expanded parameter space of modern DBS 
electrodes has made it intractable for clinicians to perform DBS parameter optimization manually within a 
clinically acceptable timeframe, thereby hindering the adoption of these newer electrodes. Further, 
programming could theoretically be performed in the absence of specialized DBS physicians in non-
expert centers. 

Finally, the unsupervised AE-based DBS classification methods with accuracies as high as 96% represent 
another step towards a digital health care tool for semi-automated fMRI-based DBS programming. As 
such, we propose a rapid semi-automated DBS programming protocol that can substantially reduce the 
TTO per patient from an average value of 1 year (based on the current standard-of-care clinical 
optimization procedure) to 1 day during a single clinical visit (Figure 9). Such automatic DBS 
optimization systems could be transformative in diseases where there is a latency in clinical feedback 
(e.g., dystonia) (17), or where clinical responses are difficult to evaluate (e.g., depression) (65,66). 
Together, these benefits could dramatically increase the number of patients able to benefit from DBS 
therapy worldwide, while minimizing the time (and perhaps financial burden) needed for DBS 
optimization per patient. 

 

5. Conclusion 
Since fMRI has previously been shown to be a good biomarker of optimized DBS, we developed an 
autoencoder-based model for unsupervised feature extraction from DBS-fMRI response maps obtained 
from PD patients undergoing left-sided DBS therapy. We showed that the autoencoder-extracted features 
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were neuro-functionally meaningful with robustness against subtle differences in the activated regions 
that may be caused by differences in disease condition and/or stimulation side during the acquisition of 
the training data. We then evaluated the performance of the extracted features in five AI classification 
methods. Among all five DBS parameter classification approaches tested, the AE-based MLP method 
gave the optimal accuracy, sensitivity, specificity, F1 score and AUC, which represents a much-desired 
improvement of our previously developed parcel-based LDA classification method for fMRI-based DBS 
parameter optimization. 
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Tables and Figures 
 

Table 1. Summary of model parameters used during the training of the multilayer perceptron (MLP), 
random forest (RF), support vector machine (SVM) and k-nearest neighbors (KNN) classification 
methods. RBF: Radial Basis Function. 

Methods Parameters Values 

MLP 

Number of layers 8 

Optimizer Adam 

Learning rate 0.001 

loss function Cross entropy 

Activation function ReLU 

RF 

Number of estimators/trees [2, 5] 

Minimum sample split [0.06, 0.20] 

Maximum depth None 

Minimum sample leaf 1 

Criterion "gini" 

Maximum feature "Auto" 

SVM 

Kernel Gaussian RBF 

C (Regularization parameter) 1 

Degree 3 

Gamma "scale" 

KNN 

Number of neighbors [2, 5] 

Weight functions ["uniform", "distance"] 

Algorithm "Auto" 

Leaf size 100 

LDA 
Solver ‘svd’ 

Absolute threshold 0.0001 

Covariance estimator None 
 

 

Table 2. Summary of accuracy, precision, recall and F1 score for the multilayer perceptron (MLP), 
random forest (RF), support vector machine (SVM), k-nearest neighbors (KNN) and linear discriminant 
analyses (LDA) classification methods. Parameter values represent mean ± standard deviation across the 
5-fold cross validation. 

Parameters MLP RF SVM KNN LDA 

Accuracy 0.96 ± 0.04 0.94 ± 0.05 0.92 ± 0.05 0.80 ± 0.08 0.93 ± 0.03 

Precision 0.95 ± 0.07 0.87 ± 0.01 0.77 ± 0.12 0.67 ± 0.28 0.89 ± 0.09 

Recall 0.92 ± 0.07 0.98 ± 0.04 0.97 ± 0.05 0.66 ± 0.18 0.87 ± 0.09 

F1 Score 0.93 ± 0.06 0.91 ± 0.08 0.85 ± 0.06 0.63 ± 0.20 0.87 ± 0.07 
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Figure 1. The acquired data consisted of fMRI data from left stimulated PD patients at optimal and non-
optimal contacts or voltages (A). fMRI data were acquired using a 30 s DBS ON/OFF cycling paradigm 
for 360 s (B). The sketch of the human head was adapted from Boutet et al., 2021, as permitted under the 
Creative Commons Attribution 4.0 International License. 
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Figure 2. The acquired fMRI data from each patient are slice time corrected, motion corrected, 
coregistered to an anatomical (T1) image, registered to MNI space before carrying out a statistical 
parametric mapping analysis to obtain t-maps. The obtained t-maps are then passed to an auto-encoder 
network for feature learning. 
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Figure 3. The network architecture for autoencoder (AE)-based feature extraction from fMRI response 
map feature learning (top). Number at each convolution block indicates the width, height, and depth of 
hidden feature map. The extracted AE-based features are then used to train AI models for the 
classification of the DBS-fMRI responses using the MLP, RF, SVM, KNN and LDA methods. 
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Figure 4. The mean accuracy of our previously obtained parcel-based linear discriminant analysis (PB-
LDA) method is compared to those of the autoencoder-based multilayer perceptron (MLP), random forest 
(RF), support vector machine (SVM), k-nearest neighbors (KNN) and linear discriminant analysis (LDA) 
methods. Error bars represent the standard deviation across the 5-fold cross validation. 
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Figure 5. Results of ROC analysis for the multilayer perceptron (MLP) (A), random forest (RF) (B), 
support vector machine (SVM) (C), k-nearest neighbors (KNN) (D) and linear discriminant analysis 
(LDA) (E) methods with the AUC (area) displayed on the panels. 
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Figure 6. Axial view of representative nominal (green) and flipped (yellow) DBS-fMRI response maps at 
optimal (A) and non-optimal (B) stimulation parameters. The violin plots show the distribution of the 
features extracted by the autoencoder model (trained on left or nominal DBS-fMRI responses) from the 
nominal and flipped responses at optimal (C) and non-optimal (D) stimulation parameters. The cosine 
similarity index (CSI) of the features extracted from the nominal and flipped response maps are also 
shown between the violin plots. 
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Figure 7. T-Distributed Stochastic Neighbor Embedding visualization of the latent vectors extracted from 
the DBS-fMRI response maps (of the entire patient cohort) using the autoencoder feature extraction 
model (trained on nominal or left DBS-fMRI responses only) indicate that the features obtained from the 
nominal (A) and flipped (B) DBS-fMRI response maps form clusters of optimal and non-optimal 
responses. 
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Figure 8. Confusion matrix of the autoencoder-based MLP classification model trained using features of 
the nominal (A) and flipped (B) DBS-fMRI response maps show comparable accuracies. 
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Figure 9. In the current empirical programming of DBS electrodes after the insertion surgery, the 
programming parameters (contact, voltage, frequency, and pulse width) are manually and sequentially 
adjusted until an optimal parameter combination is reached as determined by the neurologist (A). We 
propose a protocol that facilitates rapid optimization of DBS parameters using the fMRI and deep 
learning (DL) based feature extraction and classification models that were developed in this work (B). 
Such rapid semi-automated DBS programming protocol can substantially reduce the time to optimization 
per patient from an average value of 1 year (based on the current empirical optimization procedure) to 1 
day during a single clinical visit. 
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