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Abstract 

Background 

Alcohol use disorder (AUD) has a profound public health impact. However, understanding of 

the molecular mechanisms underlying the development and progression of AUD remain 

limited. Here, we interrogate AUD-associated DNA methylation (DNAm) changes within and 

across addiction-relevant brain regions: the nucleus accumbens (NAc) and dorsolateral 

prefrontal cortex (DLPFC). 

 

Methods 

Illumina HumanMethylation EPIC array data from 119 decedents of European ancestry (61 

cases, 58 controls) were analyzed using robust linear regression, with adjustment for technical 

and biological variables. Associations were characterized using integrative analyses of public 

gene regulatory data and published genetic and epigenetic studies. We additionally tested for 

brain region-shared and -specific associations using mixed effects modeling and assessed 

implications of these results using public gene expression data. 

 

Results 

At a false discovery rate ≤ 0.05, we identified 53 CpGs significantly associated with AUD status 

for NAc and 31 CpGs for DLPFC. In a meta-analysis across the regions, we identified an 

additional 21 CpGs associated with AUD, for a total of 105 unique AUD-associated CpGs (120 

genes). AUD-associated CpGs were enriched in histone marks that tag active promoters and our 

strongest signals were specific to a single brain region. Of the 120 genes, 23 overlapped with 

previous genetic associations for substance use behaviors; all others represent novel 

associations. 

 

Conclusions 

Our findings identify AUD-associated methylation signals, the majority of which are specific 

within NAc or DLPFC. Some signals may constitute predisposing genetic and epigenetic 

variation, though more work is needed to further disentangle the neurobiological gene 

regulatory differences associated with AUD. 

 

Main text 

Introduction 

 

 Alcohol use disorder (AUD), characterized by tolerance, withdrawal and/or craving with 

cessation of use, and continued alcohol use despite adverse social or health consequences, is a 

highly prevalent neuropsychiatric disease that affected approximately 28.6 million adults in the 

United States in 2021
1
. Given the profound impact on individuals and society, research in AUD-

relevant brain regions is critical to better understand the molecular mechanisms underlying the 

development and progression of AUD.  

 Epigenetic modifications, particularly DNA methylation (DNAm), are central to the 

interplay between genetic variation and environmental influences and may represent 

predisposing features to, or consequences of, alcohol use. This study presents an epigenome-

wide association study (EWAS) of AUD in the nucleus accumbens (NAc) and dorsolateral 
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prefrontal cortex (DLPFC) of postmortem brain comparing decedents with a history of AUD and 

well-matched controls. The NAc underlies cognitive processing of motivation, pleasure, and 

reward/reinforcement learning and is primarily implicated in the binge/intoxication stage of 

addiction, with a secondary role in the withdrawal/negative affect stage
2–4

. The DLPFC controls 

inhibition of impulsive responses, cognitive flexibility, planning, and abstract reasoning, and is 

involved in the preoccupation/anticipation stage of addiction
2
.  

Prior EWAS of alcohol-related behaviors in human postmortem brain have total sample 

sizes ranging from 46 to 96. Most studies have used the Illumina 450K or EPIC (~850K CpG sites) 

arrays, with AUD-associated differential DNAm found within Brodmann Area 9 (BA9; including 

parts of the dorsolateral and medial prefrontal cortex)
5,6

, the precuneus
7
, Brodmann Area 10 

(anterior-most portion of the prefrontal cortex)
8
, caudate nucleus

9
, and ventral striatum

9
. 

Another recent study assayed both 5mC methylation and hydroxymethylation from the BA10 

region of 50 decedents using methyl-CG binding domain sequencing, resulting in near-complete 

coverage of the 28 million possible methylation sites in the genome; no methylome-wide 

significant sites were found
10

. No overlapping sites have been reported across these studies, 

which is not surprising given the highly context-specific nature of DNAm, different analytic 

strategies, and small sample sizes.  

The present study examines epigenome-wide AUD-associated DNAm in brain using the 

largest sample size to date, N = 119 decedents non-overlapping those included in the efforts 

summarized above. We assayed DNAm from the NAc and DLPFC of the same decedents to shed 

light on AUD-associated DNAm variation that is shared across and unique to these brain 

regions. Shared DNAm associations across brain regions may indicate AUD-associated genomic 

variation influencing DNAm or brain-wide responses to AUD. Alternatively, AUD-associated 

DNAm that is specific to a single brain region may indicate a more localized neurobiological 

AUD signal. We consider both possibilities for this study, which reveals intricate relationships 

between AUD and DNAm. 

 

Methods and materials 

 

Human postmortem NAc and DLPFC samples 

 

Postmortem human NAc and DLPFC tissues were obtained at autopsy by the Lieber 

Institute for Brain Development Human Brain Repository
11–14

. Decedents with brain trauma, 

metastatic brain cancer, neuritic pathology, neurodegenerative diseases, HIV/AIDS, hepatitis, or 

other communicable diseases were excluded. At the time of tissue donation, the legal next-of-

kin completed a 39-item questionnaire to obtain medical, social, psychiatric, substance use, and 

treatment histories. Retrospective clinical diagnostic reviews combined data from autopsy 

records, toxicology testing, forensic investigations, neuropathological examinations, 

questionnaires, psychiatric/substance abuse treatment record reviews, and/or supplemental 

family informant interviews (when possible and needed). All data were compiled in detailed 

psychiatric narratives which were independently reviewed by two board-certified psychiatrists 

to determine lifetime psychiatric diagnoses according to the Diagnostic and Statistical Manual 

of Mental Disorders, Fifth Edition (DSM-5), criteria.  
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We defined AUD cases as decedents with a lifetime history of two or more DSM-5 AUD 

symptoms within a 12-month period, with or without positive postmortem ethanol toxicology. 

AUD controls had no lifetime history of DSM-5 AUD symptoms and postmortem ethanol 

toxicology of less than 0.06 g/dL. We matched
15

 AUD cases and controls based on age, sex, 

smoking status (based on cotinine or nicotine biomarker and next-of-kin reporting)
11

, major 

depression diagnosis (MDD), and other drug indicators (mainly selective serotine reuptake 

inhibitors [SSRIs]). Decedents with MDD were defined as those with a lifetime history of five or 

more DSM-5 MDD symptoms persisting for two weeks or longer. Decedents meeting DSM-5 

criteria for any other substance use or psychiatric disorder, besides AUD and MDD, were 

excluded. We included only decedents reported as white, aged 25 years old or older, and with 

no detectable opioids to minimize confounding effects. Sample characteristics are displayed in 

Table 1. 

 

DNAm data, quality control (QC), and pre-processing 

 

DNA was extracted from NAc and DLPFC (BA 46/9), following Lieber’s protocol
16,17

. 

DNAm was measured using the Illumina HumanMethylation EPIC array. Data quality 

assessment and pre-processing were conducted using minfi (v1.40.0)
18

. We excluded probes 

with low call rate, existence of a common single nucleotide polymorphism in the extension site, 

cross-reactive probes
19,20

, probes mapped to sex chromosomes based on hg19 annotation, and 

probes with low bead count. Probes were quantile normalized. No samples met exclusion 

criteria for low call rate (detection p > 0.01 for >1% of probes), mismatched sex, and 

methylated vs. unmethylated values <10. One assay chip produced outliers based on DNAm-

derived principal components (PCs), resulting in the removal of 5 samples for NAc and 3 

samples for DLPFC. CpGs were later annotated to genomic locations based on GRCh38 / hg38 

information from Zhou, et al.
21

, (https://zwdzwd.github.io/InfiniumAnnotation, accessed 

August 2022). After all QC and processing steps, we analyzed 769,135 CpG sites from 115 NAc 

samples and 767,700 CpG sites from 117 DLPFC samples (Table 1; Table S1).  

 

AUD EWAS analyses 

 

We used robust linear regression to compare DNAm between AUD cases and controls, 

with methylation M-values as the outcome. We calculated robust standard errors using White’s 

estimator in the sandwich package (v3.0.2)
22,23

. Analyses were adjusted for MDD (case vs. non-

case), age at death, sex, smoking (current vs. not), five DNAm-derived PCs, plate (P1 vs. P2, P1 

vs. P3), and row position on methylation chip (rows 1-4 vs. 5-8). Cell type composition 

references for human brain DNAm data are unavailable for NAc. Therefore, for both brain 

regions, PCs calculated from the DNAm data were included to correct for technical artifacts and 

cellular heterogeneity. Results were corrected for inflation using the empirical null distribution 

estimation method implemented in bacon (v1.18.0)
24

, and lambda values were calculated on 

bacon-corrected p-values. Meta-analysis of bacon-adjusted p-values for the 766,095 CpGs 

intersecting both analyses was performed using METAL, with correction for sample overlap
25

. 

Similarity of effects across brain regions was assessed using I
2
 heterogeneity statistics. 

Significance was assessed at false-discovery rate (FDR) ≤ 0.05
26

.  
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AUD-associated CpG tests against postmortem ethanol toxicology 

 

 Of the 58 decedents with AUD, 38 (66%) had positive postmortem ethanol toxicology. 

To assess if the significant AUD-associated CpGs displayed differential methylation by recent 

alcohol exposure, we used robust linear regression of methylation M-values on ethanol 

toxicology status (positive [≥0.06 g/dL] vs. negative [<0.06 g/dL]). This analysis was performed 

within AUD cases for the significant CpGs from the NAc, DLPFC, or meta-analysis and corrected 

for postmortem interval (hours) and all other covariates used in the AUD case/control EWASs. 

Significance was assessed at FDR ≤ 0.05
26

.  

 

Enrichment tests 

 

Gene set enrichment for known pathways was tested using functions from missMethyl 

(v1.32.0)
27

. From each EWAS (NAc, DLPFC, meta-analysis), we supplied gsameth with a list of 

significant CpGs, all tested CpGs for that analysis, and gene sets to test for enrichment. CpG-to-

gene mapping was based on Zhou et al.
21

 after unique gene symbols were converted to Entrez 

gene ids using the AnnotationDbi (v1.60.0)
28

 and org.Hs.eg.db (v3.16.0)
29

 packages. Only gene 

symbols with an Entrez gene id were considered. We allowed a single CpG to be annotated to 

multiple genes.  

Two-sided Fisher’s exact test for count data was used to test for enrichment of AUD-

associated probes in CpG (islands, shelves, and shores) and genic (promoters, 5’UTRs, exons, 

introns, and 3’UTRs) contexts using the stats package (v4.2.2). The annotatr (v1.24.0)
30

 and 

LOLA (v1.28.0)
31

 packages were used to intersect CpG’s hg38 positions with CpG and genic 

locations, respectively, with a minimum overlap of 2. We additionally used LOLA to test for 

enrichment of significant CpG positions with ChIP-seq histone modification sites (H3K27ac, 

H3K27me3, H3K36me3, H3K4me1, H3K4me3, H3K9ac, and H3K9me3) derived from Roadmap 

Epigenomics Consortium epigenomes cultured from brain cells or tissues
32

. All Roadmap 

epigenomes tested were generated from non-diseased decedents of varying age and sex (Table 

S2).  

 

Concordance with published EWAS of AUD and alcohol consumption  

 

 We compared our results with previously published EWAS of AUD or alcohol 

consumption in two ways to capture probe-level and overall concordance between our results 

and those of previous publications. We selected previous EWAS with large sample sizes 

(defined below), results reported by probe or coordinates, and DNAm assayed from blood or 

brain tissues. Three selected studies tested for associations with alcohol abuse, dependence, or 

use disorder in brain tissues
7,9,10

 (n ≥ 46), and two tested for associations with alcohol 

consumption in blood
33,34

 (n > 5,000). First, we performed a “look-up” of previously reported 

sites in our results. For CpGs that were tested in one of our EWAS analyses and identified as 

significant in a previous study, or among the top 20 CpGs if no significant results were reported, 

we calculated new Benjamini-Hochberg FDR-corrected p-values and declared “look-up” 

statistical significance based on FDR ≤ 0.05.  
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 Second, we requested the full summary statistics from Zillich et al.’s EWAS of AUD in 

five brain regions
9
 and Clark et al.’s BA10 whole genome methylation and hydroxymethylation 

AUD-association study
10

 to test for p-value enrichment in our study. These studies were 

selected because they had the most overlapping methylation sites with our study and tested 

DNAm in brain. For each combination of brain regions in Zillich et al. or methylation assays in 

Clark et al., we intersected results and subsequently tested for enrichment of the lowest 1% of 

p-values from our study in the lowest 1% of p-values from the previous publication. This 

threshold balanced between including too few sites, which could reduce power, and including 

too many sites, which may lead to false positive results. Testing was performed using the 

enrichmentAnalysis function in the shiftR package (v1.5), with 10,000 permutations
35

.  

 

Concordance with genome-wide association study (GWAS) results for alcohol behaviors 

 

 We used stratified linkage disequilibrium score regression (LDSC; v1.0.1)
36,37

 to calculate 

partitioned heritability estimates and test for enrichment of alcohol-associated genetic loci in 

annotation windows of 5 kb, 10 kb, 100 kb, 250 kb, and 500 kb around significant CpGs from 

our NAc, DLPFC, and meta-analysis results. We relied on summary statistics from GWAS of 

drinks per week
38

 and DSM-IV alcohol dependence
39

, both performed in European-ancestry 

individuals. 1000 Genomes Phase 3 “EUR” reference data
40

 was used to calculate linkage 

disequilibrium. We additionally used gwasrapidd (v0.99.14)
41

 to search for addiction related 

associations previously reported in the GWAS catalog
42

 for our significant genes.  

 

Linear mixed-effects modeling of brain region-shared and -specific AUD-associated DNAm 

 

We conducted a meta-analysis to identify CpGs with directionally consistent 

associations with AUD, albeit potentially with smaller effect sizes, across the two brain regions. 

CpGs that were significant in our NAc or DLPFC EWAS, but not in the meta-analysis, may have 

resulted from different methylation levels for that CpG in the two brain regions, or from 

associations that differed between AUD and methylation across the brain regions. To explicitly 

test these scenarios, we used linear mixed-effects modeling to test for differential CpG 

methylation by brain region, AUD, and a brain region × AUD interaction. CpGs associated with 

the AUD term have similar associations across NAc and DLPFC; CpGs associated with the brain 

region term have different methylation levels across the two; and CpGs associated with the 

AUD × brain region interaction have different associations with AUD depending on brain region 

(i.e., brain region-specific effects).   

To perform this modeling, we used a two-step approach to model within-subject 

differences in DNAm across brain regions and between-subject differences in AUD status. First, 

DNAm from each brain region was separately regressed on within-subject technical variables 

(PCs, plate, and row position on methylation chip) and the resulting residuals were carried 

forward. Next, a linear mixed-effects model was implemented with the lme4 package 

(v1.1.33)
43

, with residualized M-values as the outcome, MDD, age at death, sex, and smoking as 

adjustment variables, and AUD, brain region, and AUD × brain region as our effects of interest. 

This model included a random effect of ID to account for sampling two brain regions from the 

same decedent.  
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Using these results, we also identified differentially methylated regions (DMRs) for AUD, 

brain region, and their interaction using the comb-p function in ENmix (v1.34.02)
44,45

. For DMRs 

comprised of at least 2 CpGs, significance was assessed at a Sidak p-value ≤ 0.05. DMRs were 

annotated to genes with the nearest TSS using the annotatePeak function in ChIPSeeker 

(v1.36.0)
46

, with the TxDb.Hsapiens.UCSC.hg38.knownGene (v3.2.2)
47

 and org.Hs.eg.db 

(v3.16.0)
29

 packages.  

 

Profiling of expression across brain regions using the Allen Human Brain Atlas 

 

To assess if genes nearby brain region-shared and -specific AUD-associated DMRs also 

had similarly shared and specific gene expression patterns in non-AUD brains, we utilized 

microarray gene expression data from six postmortem brains provided by the Allen Human 

Brain Atlas (AHBA)
48

. We selected expression data from the middle frontal gyrus (MFG-i) region, 

which contains the DLPFC, and the NAc (labeled Acb in AHBA). For each microarray probe 

targeting a gene, or its synonym, annotated to a significant DMR from our linear mixed-effects 

modeling results, we performed a paired t-test for differences in expression across the two 

brain regions. The ABHA microarray platform was designed such that multiple probes for a gene 

mapped to different exons as much as possible
48

. Thus, we treated each probe as unique and 

did not collapse across gene expression probes. Technical replicates were not collapsed due to 

the wide range of replicate numbers per donor, per brain region (Table S3). Instead, we 

employed a bootstrap sampling approach with 1,000 iterations, where in each iteration one 

replicate per brain region from each donor was selected, and a paired t-test was performed. 

We rejected the null hypothesis of no difference in expression across brain regions if the 

median bootstrapped p-value was ≤ 0.05.  

 

Results 

 

EWAS of AUD 

 

 Figure 1 provides a flowchart of our data, analyses, and results. We identified 53 and 31 

CpGs significantly associated with AUD in NAc (λ = 1.03) and DLPFC (λ = 1.02), which were 

annotated to 65 and 36 genes, respectively. When combining results across brain regions, our 

meta-analysis identified 31 CpGs associated with AUD (λ = 1.03). Ten meta-analysis significant 

CpGs overlapped with significant CpGs from the NAc or DLPFC EWAS, though none were 

significant in all three analyses (Figure 2). In total, the EWAS analyses resulted in 105 CpGs 

associated with AUD annotated to 120 unique genes, which we carried forward as our primary 

results (Table S4). 

 

Differential methylation by recent alcohol exposure 

  

 A sensitivity analysis was conducted using decedents with AUD to test if recent alcohol 

exposure (defined by positive postmortem ethanol toxicology) influenced methylation among 

the 105 AUD-associated CpGs (Table S5). One CpG was significantly (FDR ≤ 0.05) associated with 

ethanol in the NAc (cg15747423; UST) and DLPFC analyses (cg25985151; DNAI1), respectively. 
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These results suggest that the CpG-AUD associations are largely robust to acute alcohol 

exposure around time of death. 

 

Enrichment tests 

 

 To characterize the AUD-associated CpGs, we performed several enrichment tests. We 

tested KEGG and GO pathway databases for enrichment using the 120 genes annotated for our 

AUD-associated CpGs. No pathways had FDR ≤ 0.05 (Table S6). In relation to CpG and genic 

locations, NAc AUD-associated CpGs were depleted in intergenic regions and enriched in 

islands, promoter regions, and 5’ UTRs (Figure 3; Table S7). No CpG or genic location 

enrichment/depletion was identified for the DLPFC AUD-associated CpGs. Meta-analysis AUD-

associated CpGs were enriched in promoters, 5’UTRs, and exons (Figure 3B, Table S7). In the 

brain-derived cell and tissue Roadmap Epigenomics consortium epigenomes, significant CpGs 

from the NAc EWAS and meta-analysis were significantly enriched in H3K27ac, H3K9ac, and 

H3K4me3 marks (Figure S1, Table S7).  

 

Concordance of results with published EWAS of AUD and alcohol consumption 

 

 We compared our results to five published EWAS of abuse, dependence, or use 

disorder
7,9,10

 or alcohol consumption
33,34

 performed in either blood
33,34

 or brain
7,9,10

 (Table S8). 

Dugué et al. tested for associations with alcohol consumption in blood (N = 5,606). Of 1,237 

CpGs available in our study out of their 1,415 significant CpGs
33

, three reached look-up 

significance in our NAc EWAS: cg03474926 (RALGDS), cg24678869 (DENND4B), and cg04162032 

(LYPD8). Additionally, ten genes were annotated to probes that reached significance in our 

primary results and Dugué et al., albeit for different probes (Figure 4). Lohoff et al. was the 

other large study that tested for alcohol consumption associations in blood (N = 8,161)
34

. While 

we did not identify any significant look-up results out of their 2,463 associated CpGs available in 

our study, 14 genes were annotated to significant probes in both our study and Lohoff et al., 

seven of which also overlapped with genes identified in Dugué et al.: YARS1, RABGGTB, TRA2B, 

RREB1, RALGDS, CDH23, and ANKRD11 (Figure 4).  

Of the three studies that assayed methylation in brain tissues
7,9,10

, we identified one 

CpG with look-up significance and three annotated genes that overlapped with our results. 

cg00402668 (intergenic) reached look-up significance in the DLPFC EWAS and was among the 

top 20 sites with AUD-associated hydroxymethylation in BA10 from Clark et al.
10

. No CpGs 

reached look-up significance when comparing our results with Hagerty et al. (precuneus) and 

Zillich et al. (anterior cingulate cortex, DLPFC [BA9], putamen, caudate nucleus, and ventral 

striatum)
7,9

. On a gene level, three genes annotated to significant probes in our study 

overlapped with genes annotated to significant probes from Hagerty et al. (Figure 4; CAPS2, 

PTPRN2, and SLIT3)
7
. No genes overlapped in comparison to Zillich et al

9
. 

Lastly, we compared the full summary statistics from our study with Clark et al.
10

 and 

Zillich et al.
9
, spanning six brain regions. When testing for enrichment of the top 1% of our 

results in the top 1% of Zillich et al.’s results, we identified significant enrichment for our NAc 

results in Zillich’s putamen and ventral striatum results but not for our DLPFC or meta-analysis 
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results (Table S9)
9
. We did not observe significant enrichment between our results and those 

from Clark et al. (Table S9)
10

.  

 

Concordance with GWAS results  

 

Stratified LDSC results did not indicate significant heritability enrichment of alcohol-

associated genetic loci in varying genomic windows around significant CpGs from our primary 

analyses (Table S10). Twenty-three genes annotated to significant CpGs from our primary 

analyses were previously associated with GWAS results for substance use phenotypes, some of 

which were also reported in prior EWAS of the same phenotypes (Table 2).  

 

Shared vs. brain region-specific effects 

 

 CpGs that reached significance in the NAc and DLFPC analyses had very little similarity in 

effect sizes (Pearson’s r = 0.22; Figure S2A) and high I
2
 heterogeneity values, compared with 

CpGs that reached significance in the meta-analysis, which had much higher similarity of effect 

sizes (Pearson’s r = 0.93; Figure S2B) and much lower I
2
 heterogeneity values (Table S11, Figure 

S2C). Thus, the meta-analysis identified CpGs with similar directions and effect, while significant 

CpGs from the within brain region EWAS analyses were more dissimilar, as expected. 

  To explicitly test for brain region-specific or -shared associations with AUD, we used 

linear mixed-effects modeling to test for differential CpG methylation by brain region, AUD, and 

a brain region × AUD interaction. Four CpGs had FDR ≤ 0.05 for the region term, indicating 

different methylation profiles across brain regions (Table S12). No CpGs reached genome-wide 

significance for the AUD or AUD × region terms.  

When testing DMRs, we identified five significantly associated with the brain region 

term and 13 significantly associated with the interaction term (Table S13). To test if genes 

annotated to these DMRs also had brain region-specific or -shared expression profiles, we used 

microarray expression from the AHBA MFG-i and Acb brain regions, representing the DLPFC and 

NAc, respectively. In total, 17 unique genes were annotated to significant DMRs, with 15 of 

these, or their synonyms, present in the AHBA data (4 from brain region term, 11 from 

interaction term). Three of the four brain region-annotated genes (75%) and two of the 11 

interaction-annotated genes (18%) had expression probes with median paired t-test values ≤ 

0.05, indicating different expression profiles in MFG-i and Acb brain regions (Figure S3; Table 

S13).  

 

Discussion 

 

We report the largest EWAS of AUD in postmortem human brain to date. In within-brain 

region EWAS analyses, we identified 53 CpGs (65 genes) associated with AUD for the NAc and 

31 CpGs (36 genes) associated with AUD in the DLPFC. No CpGs overlapped between the NAc 

and DLPFC analyses. When we meta-analyzed results across the two brain regions, accounting 

for sample overlap, we identified 31 CpGs significantly associated with AUD, ten of which 

overlapped with CpGs identified in the DLPFC or NAc EWAS. Only two of the 105 unique CpGs 
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from these analyses had evidence for association with ethanol toxicology, indicating that our 

results were robust to recency of drinking.  

We identified enriched overlap between significant CpGs from our NAc EWAS and meta-

analysis results and H3K27ac, H3K9ac, and H3K4me3 histone marks in non-diseased brain cells 

and tissues. H3K27ac is a classic marker of active enhancers and promoters, and H3K4me3 

marks are commonly associated with transcription activation in nearby genes. Given that we 

also identified enrichment in H3K9ac marks, typically associated with active promoters, but not 

in H3K4me1 marks, typically associated with gene enhancers, our results suggest promoter-

specific regulation of nearby genes. This hypothesis is corroborated by our findings of 

significant enrichment for NAc and meta-analysis significant CpGs in islands, gene promoter 

regions, 5’UTR, and exon regions.  

Prior EWAS of alcohol phenotypes in postmortem brain have not identified any genome-

wide significant sites that overlapped across studies. Our results followed this trend. However, 

when we further compared our results to previous EWAS findings of alcohol-use phenotypes in 

blood and brain, we identified four CpGs that were among the top hits of a previous study and 

reached look-up FDR significance in one of our primary results. Concordance across studies was 

also higher when considered at the gene level. For example, seven genes (YARS1, RABGGTB, 

TRA2B, RREB1, RALGDS, CDH23, and ANKRD11) were implicated in our study and two prior 

blood-based EWAS of alcohol consumption, and three genes (CAPS2, PTPRN2, and SLIT3) were 

annotated to significant CpGs in a previous EWAS in brain and also observed in our study. Some 

concordance was also evident in the enrichment of top CpGs from our NAc results in results 

from EWAS of alcohol dependence in putamen and ventral striatum. The ventral striatum 

contains the NAc, and is proximal to the putamen, suggesting greater concordance for nearby 

brain regions with similar functions. However, we did not identify enrichment between our 

DLPFC results and previous EWAS in BA9
9
, which correspond anatomically, or BA10

10
, which is 

nearby. As with the prior comparisons, this lack of overlap could be due to different sampling, 

analytic strategies, and current sample sizes and statistical power.  

Differing methylation levels across brain regions, regardless of disease status
49–51

, could also 

explain different associations with AUD across different brain regions. We formally tested this 

hypothesis to tease apart brain region-shared vs. -specific associations with AUD. Larger sample 

sizes would have benefited this analysis, as only four CpGs (all for the brain region term, 

suggesting different methylation levels across the regions) reached FDR significance. 

Nonetheless, we identified five DMRs for the brain region term and 13 DMRs with brain region-

specific associations with AUD. We followed up this analysis by testing for expression 

differences between the MFG-i, which contains the DLPFC, and the Acb (NAc) in the Allen 

Human Brain Atlas. As expected, only two of the eleven genes annotated to DMRs significant 

for the interaction term (i.e., brain region-specific effects) had evidence of different expression 

profiles across MFG-i and Acb, while three out of four genes annotated to the brain region-

associated DMRs had evidence of different expression patterns across brain regions. These 

analyses suggest that while harmonized analytic strategies and increased statistical power may 

increase discovery and overlap of results among studies, human brain-derived, alcohol-related 

epigenetic associations should be considered in as specific locales as possible, as associations 

found in one brain region may not translate to another. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.17.23300238doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.17.23300238
http://creativecommons.org/licenses/by-nc-nd/4.0/


We did not identify enrichment for GWAS variants of alcohol behaviors in the genomic 

regions surrounding our significant CpGs, suggesting that these DNAm sites were largely not 

genetically driven factors that predispose individuals to alcohol traits. At the gene level, 23 

genes were previously associated with addiction-related traits, many of which also had previous 

addiction-related EWAS associations. For example, NFIA, which encodes a member of the 

nuclear factor 1 (NF1) family of transcription factors. This gene was identified in our DLPFC 

analysis, a previous EWAS of alcohol consumption
34

, and in GWAS of drinks per week
38

, 

externalizing behaviors (including substance use)
52

, and smoking initiation
38

. Another gene, 

GRIN2A, encodes a member of the glutamate-gated ion channel protein family, and was 

identified in our DLPFC analysis and a previous alcohol consumption EWAS
34

. Variants in this 

gene were previously associated with externalizing behaviors, including substance use
52

, and 

with smoking initiation
38,53

. These converging associations could indicate that GWAS variants 

around these genes could impact methylation in the NAc and DLPFC specifically and potentially 

alter the key functions of these brain regions, contributing to the initiation of alcohol use. 

 Though this EWAS is the largest to date for AUD in postmortem human brain, statistical 

power remains limited, especially for complex models testing interactions and employing 

multiple testing correction. Additionally, this study’s focus on white decedents means that 

results may not be generalizable. We may also have reduced power due to the inclusion of 

decedents with a lifetime history of AUD, as opposed to an active AUD diagnosis at death, as 

some differentially methylated CpGs could have reverted to control levels if drinking had 

stopped for an extended period. Because we analyzed DNAm from bulk tissue, cell-type specific 

patterns for AUD-associated methylation were not captured. Single-cell sequencing would 

enable us to determine whether our brain region-shared and -specific DNAm changes are due 

to different cellular composition across these brain regions or if cells within each brain region 

also have distinct DNAm associations with AUD.  

Despite these limitations, our unique study design allowed us to integrate and compare 

associations with AUD across two brain regions important to the addiction cycle. Altogether, 

our results suggest that the strongest signals associated with AUD are brain region-specific, 

helping to illuminate potential gene regulatory mechanisms within these brain regions that may 

regulate response to AUD. We also identified many associations annotated to genes previously 

implicated in GWAS of substance use, particularly for cigarette smoking. These converging 

associations could indicate genetic variants at these genes altering methylation and 

predisposing an individual to a generalizable addiction liability for alcohol and other substance 

use. There are several explanations for the associations we identified that did not overlap with 

prior GWAS, including differential methylation at these sites reflecting consequences of 

excessive alcohol intake that may help explain neuroplastic changes in response to AUD, not 

predisposing factors. Larger sample sizes, meta-analyses, and other integrative efforts will help 

clarify these relationships, promote further understanding of the molecular mechanisms 

underlying AUD, and identify therapeutic options to help individuals with AUD.  
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Tables and Figures 

 

Table 1. Description of samples used for analysis (N = 119). 

 AUD status 

Variable Overall, N = 1191 Non-AUD, N = 611 AUD, N = 581 

Age at death 52 (13) 53 (13) 52 (12) 
Sex    

Female 24 (20%) 14 (23%) 10 (17%) 
Male 95 (80%) 47 (77%) 48 (83%) 

Smoking    
Current 63 (53%) 30 (49%) 33 (57%) 
Non-current 56 (47%) 31 (51%) 25 (43%) 

MDD    
No 41 (34%) 31 (51%) 10 (17%) 
Yes 78 (66%) 30 (49%) 48 (83%) 

Tox. for ethanol >= 0.06 g/dL    
Negative 81 (68%) 61 (100%) 20 (34%) 
Positive 38 (32%) 0 (0%) 38 (66%) 

Manner of death    

Accident 18 (15%) 4 (6.6%) 14 (24%) 
Homicide 1 (0.8%) 1 (1.6%) 0 (0%) 
Natural 62 (52%) 40 (66%) 22 (38%) 
Suicide 37 (31%) 16 (26%) 21 (36%) 
Unknown 1 (0.8%) 0 (0%) 1 (1.7%) 

Post-mortem interval (hrs.) 27 (9) 27 (9) 28 (10) 
Tissue    

DLPFC + NAc 113 (95%) 57 (93%) 56 (97%) 
DLPFC only 4 (3.4%) 2 (3.3%) 2 (3.4%) 
NAc only 2 (1.7%) 2 (3.3%) 0 (0%) 

1Mean (SD); n (%) 
 

 

Table 2. CpGs and annotated genes that were significant in our analyses and associated with 

alcohol or other substance use behaviors in published GWAS and EWAS. 

Probe Gene GWAS associations EWAS associations 

Significant in our NAc analysis:  

cg16163981 KCNF1 Smoking initiation
38

  

cg03751356 ZNF789 

Smoking initiation
38,53,54

  

Lifetime smoking index 

(capturing smoking duration, 

heaviness and cessation)
55

 

Current smoking
56

 

cg23088510 FAM53B 
Smoking initiation

38
 

Cocaine dependence
57

 
Current smoking

56,58
 

cg05114676 DPF3 Smoking initiation
38

  

cg24612305 TOM1L2 
Drinks per week

38,53
 

Smoking initiation
38,53

 
Current smoking

56
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Smoking cessation
38

  

cg21028171 LARGE1 Smoking initiation
38

  

Significant in our NAc and meta-analyses:  

cg03119639 GPR85 Smoking initiation
38

 
Prenatal cigarette 

exposure
56,59

 

cg25077654 PSMG1 Smoking initiation
38

  

Significant in our DLPFC analysis:  

cg01879507 NFIA 

Drinks per week
38

  

Externalizing behavior
52

 

Smoking initiation
38

 

Alcohol consumption
34

 

cg22217235 MYO1B Smoking initiation
38,53

  

cg03349057 ITIH4 Smoking initiation
60

  

cg25368989 LSAMP 
Smoking initiation

38
  

Age of smoking initiation
38

 
 

cg21343292 STAG1 
Cigarettes smoked per day

38,53
  

Smoking cessation
38

 
 

cg15112081 
EEF1AKMT4-

ECE2 
Drinks per week

38
  

cg23352885 PTPRN2 

Externalizing behaviour
52

 

Smoking initiation
38

  

Smoking status
61,62

 

Current smoking
56,63,64

 

Alcohol dependence
7
 

cg25683478 CDH23 Externalizing behavior
52

 Alcohol consumption
33,34,65

 

cg07945177 CAPS2-AS1 Smoking initiation
38

  

cg02911569 NUBPL Smoking initiation
38

  

cg13804024 ANKRD11 Drinks per week
38

 

Alcohol consumption
33,34,65

 

Current smoking
56,58,63,64,66,67

 

Prenatal cigarette exposure
59

 

Significant in our DLPFC and meta-analyses:  

cg10315231 EPHA3 
Drinks per week

38
 

Cigarettes smoked per day
38

 
 

cg04933990 GRIN2A 

Externalizing behavior
52

 

Smoking initiation
38,53

 

Age of smoking initiation
38,53

 

Alcohol consumption
34

 

Significant in our meta-analysis:  

cg02675896 MACIR Smoking initiation
38

  

cg21156771 HIKESHI Smoking initiation
38

  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.17.23300238doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.17.23300238
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 1. Overview of all data, analyses, and results.  
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Figure 2. Overlap of significant probes from NAc and DLPFC EWAS analyses and the 

corresponding meta-analysis across brain regions. 
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Figure 3. Enrichment of genomic features. Proportions of non-significant vs. significant CpGs 

were compared based on (A) CpG contexts and (B) gene-centric contexts. Stars represent 

significance of a two-sided Fisher’s exact test for count data, based on FDR-corrected p-values; 

p < 0.001 is ***, p < 0.01 is **, and p < 0.05 is *. 
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Figure 4. Gene-level concordance with previously published EWAS of AUD and alcohol 

consumption. This UpSet plot shows intersections between genes annotated to significant CpGs 

from our study (NAc, DLPFC, or meta-analysis) and previously published EWAS, considering only 

CpGs which passed the original publication’s significance threshold. Clark et al.’s results were 

not included, as no brain methylation or hydroxymethylation sites passed that study’s 

significance threshold. The comparison between our study and Zillich et al. did not have any 

overlapping genes.  
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