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Abstract 

Background. Interoception represents perception of the internal bodily state which is 

closely associated with social/emotional processing and physical health in humans. 

Understanding the mechanism underlying interoceptive processing, particularly its 

modulation, is thus of great importance. Given overlap between oxytocinergic 

pathways and interoceptive signaling substrates in both peripheral visceral organs and 

the brain, intranasal oxytocin administration is a promising approach for modulating 

interoceptive processing.  

Methods. In a double-blind, placebo-controlled, between-subject design, 80 healthy 

male participants were recruited to perform a cardiac interoceptive task during 

electroencephalograph (EEG) and electrocardiograph (ECG) recording to examine 

whether intranasal administration of the neuropeptide oxytocin can modulate 

interoceptive processing. We also collected data in a resting state to examine whether 

we could replicate previous findings. 

Results. Results showed that in the interoceptive task oxytocin increased interoceptive 

accuracy at the behavioral level which was paralleled by larger heartbeat-evoked 

potential amplitudes on the neural level. Heartbeat-evoked potential amplitudes were 

found to be positively correlated with interoceptive accuracy across groups. However, 

there were no significant effects of oxytocin on EEG or ECG during resting-state.  

Conclusions. These findings suggest that oxytocin may only have a facilitatory effect 

on interoceptive processing during task-based conditions. Our findings not only provide 

new insights into the modulation of interoceptive processing via targeting the 
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oxytocinergic system but also provide proof of concept evidence for the therapeutic 

potential of intranasal oxytocin in mental disorders with dysfunctional interoception. 

 

Clinical Trials Registration 

Registry name: UESTC-neuSCAN-83 

URL: 

https://register.clinicaltrials.gov/prs/app/action/ViewOrUnrelease?uid=U0002QSK&ts

=14&sid=S000BB9A&cx=-xxsuzb  

Registration number: NCT05245708 
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Introduction 

Interoception refers to perception of the internal state of one’s own body including 

cardiac, hunger, temperature, pain and respiratory signals (1,2). It plays an important 

role in social and high-level cognitive processing, including empathy, emotional 

memory, learning and decision-making (3–8). Interoceptive dysfunction has been 

associated with psychiatric disorders including anxiety, depression, addiction and 

alexithymia (9,10,2) as well as physical health problems, such as obesity and diabetes 

(11,12). Thus, understanding the mechanism underlying interoceptive processing, and 

particularly whether it can be modulated, is of great importance. 

Oxytocin (OT) is a hypothalamic neuropeptide that has been shown to have 

numerous modulatory effects on social behaviors and emotional processing in both 

animals and humans (13,14), although direct evidence for its effects on interoceptive 

processing is limited. While OT receptors are distributed widely in visceral organs such 

as the heart and stomach, which are afferent hubs of interoceptive signals, the 

interoceptive neural pathway, including the insula and dorsal anterior cingulate cortex, 

also overlaps with brain networks underpinning OT’s regulatory effects on human 

behavior (15–17). It has therefore been proposed that OT can affect the interoceptive 

signal transmission of almost every modality and provide information about the internal 

environment related to homeostasis (18). In humans, findings of OT’s effects on 

interoceptive processing are divergent, depending on the paradigms used in different 

studies. Betka et al. (19) found that in alcohol users, while intranasal OT reduced 

interoceptive accuracy (IAc) in a heartbeat counting task (HCT) it increased IAc 
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measured in a heartbeat discrimination task. Using a revised heartbeat detection task 

whereby participants made a button press every time they felt a heartbeat, OT was found 

to have no significant effects on IAc, but when participants were simultaneously 

presented with social stimuli, OT decreased IAc, possibly due to OT acting to switch 

attention away from interoceptive signals towards external social stimuli (20). These 

divergent findings could be due to that the way IAc being measured in these cardiac 

interoceptive paradigms is highly dependent on individuals’ ability to subjectively 

perceive their heartbeat, which may introduce confounding effects from time estimation 

and prior knowledge of heartbeat (21–23). Thus, a more objective index is preferable 

for examining OT’s effects on interoceptive processing and the heartbeat-evoked 

potential (HEP) could be a promising alternative. 

The HEP is a scalp event-related potential that reflects cortical processing of 

cardiac interoceptive signals (24). It is usually locked in a time window of 200-600 ms 

after R waves at frontal, frontocentral and central electrodes (1,25–27) and has been 

proposed as a neurophysiological marker for interoception (1,28). Using the HCT, 

Montoya et al. (27) found that the HEP amplitude was significantly larger in good 

heartbeat perceivers relative to poor ones. Pollatos and Schandry (24) confirmed this 

finding using the same HCT and further found a positive correlation between the 

cardiac IAc scores and the HEP amplitude. However, until now there is only one study 

that has investigated OT’s effects on the HEP and reported that OT had no significant 

effects on resting-state HEP responses in both healthy individuals and those with 

borderline personality disorder (29). This still leaves open the possibility that intranasal 
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OT can modulate the HEP when participants are performing a cardiac interoceptive task. 

The present study therefore combined electrocardiograph (ECG) and 

electroencephalograph (EEG) recordings in the HCT to investigate whether OT could 

modulate the HEP as an objective neurophysiological marker for interoceptive 

processing. Based on previous findings of close associations between the HEP and 

empathy and emotional recognition (3,30), as well as findings of OT facilitating 

empathy and emotion recognition (31,32), we hypothesized that OT would increase 

amplitudes of the HEP compared with placebo (PLC). For behavioral responses, two 

indices were collected with IAc measuring individuals’ ability to perceive internal 

cardiac signals and interoceptive sensibility (IS) measuring their confidence for IAc 

(33). In the same vein as our hypotheses for the HEP, we predicted an enhancement 

effect of OT on interoceptive processing at the behavioral level (but see Betka et al., 

2018). We also collected data in a resting state to examine whether we could replicate 

previous findings (29). 

Materials and Methods 

Participants and treatment 

Eighty healthy male participants (mean age = 20.65 years, SD = 1.77) were recruited 

for the present randomized, double-blind, PLC-controlled, between-subject 

pharmacological study. The sample size was adequate to achieve a power of > 90% 

(effect size = 0.8, α = 0.05) for an independent t-test analysis based on a priori power 

analysis using the G*Power v.3.1 toolbox (34). Participants were all free of current or 
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past psychiatric, neurological or other medical conditions. They were instructed to 

abstain from smoking, alcohol and caffeine for 24 hours and not to have any food or 

drinks except water for 2 hours prior to the experiment. Participants who reported great 

difficulty in feeling their heartbeat and perceiving it based on prior knowledge of their 

heartbeat were excluded (6 participants). Another 2 participants were excluded due to 

technical problems during data recording (1 participant) or as an outlier in the EEG data 

(1 participant). Consequently 37 participants in the OT group and 35 participants in the 

PLC group were included in final data analyses. To control for potential confounding 

effects from mood changes and personality traits, participants completed Chinese 

versions of validated questionnaires before treatment, including the Autism Spectrum 

Quotient (35), State-Trait Anxiety Inventory (36), Beck Depression Inventory (37,38), 

and Behavioral Inhibition System and Behavioral Activation System Scale (39). The 

Positive and Negative Affect Schedule (40) was completed 3 times: when participants 

arrived (pre-treatment), 45 minutes after treatment but before the task (post-treatment) 

and immediately after completing the task (post-task) to check for changes in mood 

during the whole experiment. 

Participants were randomly assigned into two groups (OT vs. PLC) and self-

administered either OT (OT-spray, Sichuan Defeng Pharmaceutical Co. Ltd, China) or 

PLC (identical ingredients with the OT-spray but without OT, i.e., sodium chloride and 

glycerin) nasal spray. 24 international units (IU) of OT or PLC were administered with 

3 puffs to each nostril following a standardized protocol (41). 45 minutes after treatment, 

participants first performed an associative learning task (duration: 20 minutes; reported 
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elsewhere) followed by a resting-state recording (4 minutes) and the HCT (around 3 

minutes) while undergoing EEG and ECG measurements (see Fig. 1A). All participants 

provided written informed consent before the experiment. All procedures conformed 

with the latest version of the Declaration of Helsinki and were approved by the ethical 

committee of the University of Electronic Science and Technology of China. 

Fig. 1 (A) Experimental protocol. (B) Timeline of the resting-state recording 

and the heartbeat counting task. License: Icons were obtained from flaticon.com 

under the free license with attribution. 

Experimental task 

During the resting-state recording, participants were asked to sit comfortably and look 

at a white cross fixation against a black background on the computer monitor for 4 

minutes (see also Al et al., 2021; Schmitz et al., 2020). The HCT was developed based 

on Schandry (43), in which participants were instructed to focus attention on their own 

heartbeats and count times of heartbeats silently (see Fig. 1B). Optimized instruction 

was used to minimize confounding effects from time estimation and prior knowledge 

of heartbeat (21,22). Participants were clearly informed that it was not allowed to use 

other methods such as by feeling their pulse as further aids for heartbeat detection. The 
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HCT consisted of one practice session (10 s) and three formal sessions (25 s, 35 s and 

40 s). Participants had no idea about the length of each counting session. The start and 

stop of each heartbeat counting session were signaled by the appearance and 

disappearance of a heart symbol. When a white fixation cross was presented after each 

counting session, participants were asked to verbally report the number of their counted 

heartbeats. Participants were then instructed to rate their level of confidence in their 

heartbeat perception (i.e., IS). IAc was calculated using the following formula: 

1/N ∑ (1 − (|recorded heartbeats –  counted heartbeats|)/ recorded heartbeats) 

Where N = 3 corresponds to the number of counting sessions. Higher scores (maximum 

= 1) indicate higher accuracy in perceiving heartbeats. IS was calculated by the average 

of confidence ratings after the three sessions. 

ECG data acquisition and analyses  

The ECG data was recorded using a BIOPAC MP150 system (BIOPAC Systems, Inc.; 

ECG100C module) at a sampling rate of 1000 Hz. Two electrodes were placed on 

participants’ lower left leg and the right wrist. The ECG data was processed using the 

AcqKnowledge software (Version 4.4, Biopac Systems Inc., CA, USA) in accordance 

with the manual. The raw data were band-pass filtered (0.5-35 Hz) to remove baseline 

drift and high-frequency noise. All data were manually inspected and data quality was 

high. Time points of R waves were detected using the find circle function and confirmed 

by visual inspection. R-R intervals were then extracted and imported into the Kubios 

software (http://kubios.uku.fi) for high-frequency heart rate variability (HRV) analyses. 
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EEG data acquisition and analyses 

The EEG was recorded at a sampling rate of 500 Hz using a 64-channel ActiCap system 

with a Quick Amp amplifier (Brain Products GmbH, Germany). Signals of all channels 

were online referenced to the Cz electrode with the ground on a medial prefrontal 

electrode (the international 10-20 system). Electrode impedances were kept below 5 

k. Offline EEG data was analyzed using the EEGLAB 14.1.1 toolbox (44). The raw 

EEG data was down-sampled to 250 Hz and filtered with a Hamming windowed sinc 

FIR filter separately for high- and low-pass filters (high-pass: 0.1 Hz, -6 dB cutoff: 0.05 

Hz; low-pass: 40 Hz, -6 dB cutoff: 45 Hz). After re-referencing to the average reference, 

an independent component analysis (ICA) was conducted to reject components of eye 

movement, muscle and cardiac artifacts. To remove residual artifacts, epochs with 

voltage values exceeding ± 80 µV were further deleted. An average of 11.07% of trials 

were excluded from further analyses. 

For the HEP, EEG data was extracted from 200 ms before and 800 ms after the 

peak of R waves. Based on previous studies (1,26), a time window of 480-600 ms was 

used to calculate the mean HEP amplitude at frontocentral and central electrodes (FC1, 

FCz, FC2, FC4, C1, Cz, C2, C4), two locations previously reported to show strong HEP 

responses (1,24,26,45).  

Statistical analyses 

Independent t-tests were conducted to compare group differences on questionnaire 

scores, IAc and IS. For physiological and neural data, independent t-tests were also 

performed on the heart rate (HR), HRV and mean amplitude of the HEP in the resting-
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state and task conditions respectively. Furthermore, correlations between behavioral, 

physiological and neural measurements were analyzed using Pearson or Spearman 

correlations depending on distribution of the data. Correlation differences between 

treatments were tested using the Fisher z-transformation test. 

Results 

Demographics and questionnaires 

Independent t-tests on personality traits revealed no significant group differences (see 

Table 1). There were also no significant group differences of both pre- and post-

treatment measures of mood (see Table 2). 

Tables 

Table 1. Statistics of age and questionnaire scores of personality traits 

Measurements OT (M ± SD) PLC (M ± SD) t_values p_values 

Age 20.59±1.64 20.57±1.85 0.056 0.955 

Autism Spectrum Quotient (ASQ) 23.41±5.32 21.31±5.17 1.691 0.095 

State-Trait Anxiety Inventory     

-Trait Anxiety Inventory (TAI) 42.00±7.37 42.51±8.70 -0.271 0.787 

-State Anxiety Inventory (SAI) 38.84±6.64 40.69±8.96 -0.998 0.322 

Beck Depression Inventory (BDI-Ⅱ) 8.54±6.94 9.06±7.83 -0.297 0.768 

Behavioral Inhibition System and 

Behavioral Activation System Scale 

    

-Behavioral Inhibition System (BAS)  22.95±5.07 24.77±4.42 -1.625 0.109 

-Behavioral Activation System (BIS)  14.95±3.34 15.43±2.68 -0.674 0.503 

Values are presented as mean ± SD. OT: oxytocin; PLC: placebo. 

Table 2. Statistics of the Positive and Negative Affect Schedule scores 

  
OT (M ± SD) PLC (M ± SD) t-values p-values 

Positive and Negative Affect Schedulepre-treatment     

-Positive 
 

25.86±6.37 25.94±6.43 -0.052 0.959 

-Negative 
 

14.38±4.74 16.74±7.01 -1.684 0.097 

Positive and Negative Affect Schedulepost-treatment     

-Positive 
 

23.57±7.30 23.31±7.37 0.147 0.884 
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-Negative 
 

13.32±5.49 13.11±4.54 0.176 0.861 

Positive and Negative Affect Schedulepost-task     

-Positive 
 

22.08±6.78 23.97±7.05 -1.160 0.250 

-Negative 
 

11.84±4.74 11.89±3.45 -0.049 0.961 

Values are presented as mean ± SD. OT: oxytocin; PLC: placebo. 

Resting-state condition 

HR and HRV 

Independent t-tests on HR and HRV revealed no significant group differences in the 

resting-state condition (ps ≥ 0.164). 

HEP 

To examine whether there was an effect of OT on the resting-state HEP, mean HEP 

amplitudes were extracted for each participant. An independent t-test showed no 

significant group difference of the mean HEP amplitudes (0.22 ± 0.44 vs 0.07 ± 0.44, 

t(70) = 1.395, p = 0.167). 

Task-based condition-HCT 

HR and HRV 

Independent t-tests revealed no significant group differences for HR and HRV in the 

task-based condition (ps ≥ 0.285). 

IAc and IS 

Independent t-tests were employed to analyze group differences of IAc and IS in the 

HCT and showed that IAc in the OT group was significantly higher than in the PLC 

group (0.77 ± 0.15 vs 0.68 ± 0.19, t(70) = 2.264, p = 0.027, Cohen’s d = 0.53; Fig. 2A). 

However, no significant group difference was found for IS (5.86 ± 1.48 vs 5.92 ± 1.57, 

t(70) = -0.165, p = 0.870; Fig. 2B). 
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Fig. 2 Interoceptive accuracy (A) and sensibility (B) in the OT and PLC groups 

measured in the heartbeat counting task. 

HEP 

To examine whether there was an effect of OT on the HEP in the HCT, mean HEP 

amplitudes were calculated for each participant. An independent t-test showed that the 

group difference in mean HEP amplitudes was significant with HEP amplitudes in the 

OT group being larger than in the PLC group (0.26 ± 0.41 vs 0.04 ± 0.30, t(70) = 2.650, 

p = 0.011, Cohen’s d = 0.61; Fig. 3). 

 

Fig. 3 The HEP component and topographical maps at frontocentral and central 

electrodes following OT and PLC treatments in the heartbeat counting task. 

Correlations 

Pearson correlation analyses found a marginal positive correlation between HRV and 
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IAc in the HCT following PLC (r = 0.333, p = 0.050) but not OT treatments (r = 0.209, 

p = 0.215; Fig. 4A). Fisher z-transformation test showed no significant correlation 

difference between the two groups (Fisher z-score = 0.544, p = 0.586). Furthermore, 

Spearman correlation analyses showed a significant positive correlation between IAc 

and HEP amplitudes across groups (r = 0.249, p = 0.035; Fig. 4B). 

 

Fig. 4 (A) A positive correlation between interoceptive accuracy and heart rate 

variability following PLC but not OT treatments. (B) A positive correlation 

between interoceptive accuracy and HEP amplitudes across treatment groups. 

Discussion 

The present study recorded participants’ behavioral, ECG and EEG data related to 

cardiac interoceptive signals to investigate whether intranasal OT could modulate 

interoceptive processing. Our behavioral results revealed that OT significantly 

increased IAc compared to PLC in the HCT. This enhancement effect at the behavioral 

level was accompanied by lager HEP amplitudes following OT relative to PLC 

treatments on the neural level. HEP amplitudes were found to be positively correlated 

with IAc in the HCT across groups. Additionally, there was also a positive correlation 

between IAc and HRV in the PLC but not the OT group. However, we found no 
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evidence for significant effects of OT on modulating the HR and HRV in both 

conditions or HEP amplitudes in the resting-state condition. 

More specifically, participants in the OT group exhibited higher IAc in the HCT 

relative to the PLC group, suggesting that OT enhances the ability to perceive cardiac 

interoceptive signals in healthy participants. Consistent with these behavioral findings, 

at the neural level we found that OT significantly increased HEP amplitudes. Given that 

the HEP has been proposed as a neurophysiological marker of interoceptive processing 

(1,28), higher amplitudes of the HEP also suggest a faciliatory effect of OT on 

interoceptive processing. Although no studies have directly investigated effects of OT 

on task-based HEP, previous studies have demonstrated positive associations between 

HEP amplitudes recorded during the face affective-judgment and physical-judgment 

tasks and empathic concern scores (3). The HEP has also been found to show stronger 

responsivity to emotional video clips relative to neutral ones (30). Given previous 

studies demonstrating the effects of OT on improving empathy, emotional recognition, 

and self-referential bias (31,46–48) and previous findings of close associations between 

interoceptive processing and empathy, emotional recognition, and self-processing (49–

52), it is not surprising that we observed a faciliatory effect of OT on interoceptive 

processing at both the behavioral and neural levels. Furthermore, we also found a 

positive correlation between IAc and HEP amplitudes in all samples in the HCT, which 

is in line with previous studies demonstrating that individuals with higher IAc show 

larger HEP than those with lower IAc (24,26). For IS, we did not find significant 

treatment effects in the HCT which is consistent with previous studies reporting the 
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independence between IAc and IS in the HCT (26,33). 

Note that the faciliatory effect of OT on interoceptive processing seems 

contradictory with previous findings particularly at the behavioral level. In healthy 

participants, Yao et al. (20) conducted a revised heartbeat detection task whereby 

participants were instructed to tap to indicate their heartbeats. Findings showed that 

while OT had no significant effects on IAc and related neural activity in the 

interoceptive network, when participants were simultaneously presented with social 

stimuli (neutral and emotional faces) OT decreased IAc, possibly by switching attention 

away from interceptive signals towards external salient social cues via enhancing the 

anterior insula responses and their control over the posterior insula. The divergence 

between findings in this previous study and the present one could be firstly due to 

different cardiac interoceptive paradigms used and secondly that Yao et al. (20) 

conducted the experiment during fMRI scanning where stronger noise may interfere 

with heartbeat perception compared to during EEG recording. Another study found that 

OT decreased IAc in the HCT in both heavy and light social drinkers but increased IAc 

only in heavy drinkers in the heartbeat discrimination task (integrating interoceptive 

and external signals) (19). Different participant populations and interoceptive 

paradigms thus may contribute to contradictory findings between the present study and 

Betka et al. (2018). These interpretations are also in accordance with previous findings 

that OT’s effects on human behavior can be influenced by the nature of contexts, 

individual differences, and experimental tasks (13,53). 

To replicate previous findings, we also measured the HEP in the resting-state 
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condition but found no modulatory effect of OT on resting-state HEP. This is consistent 

with a previous study which also reported an absence of effects of OT on the resting-

state HEP response in both healthy controls and borderline personality disorder patients 

(29). We also measured HR and HRV responses in both resting-state and task-based 

conditions and showed no significant effects of OT on these two indices in the two 

conditions. These findings thus lend support for a null effect of OT on these two 

parasympathetic indices (54–56), although findings in this field are controversial given 

differences of within- vs. between-subject design and administered dosages of OT 

(57,58). The absence of effects of OT on HR also helps exclude the possible 

confounding effect of the HR on IAc in the HCT (26,59,60). Furthermore, a marginally 

positive correlation was found between IAc and HRV in the HCT following PLC 

treatment, which was in accordance with a previous study demonstrating that 

individuals with higher HRV showed higher IAc than those with lower HRV (61). This 

positive correlation was blunted by OT treatment possibly due to OT increasing IAc 

and thus inducing a right-skewed distribution of IAc as suggested by the scatter plot. 

Several limitations should be acknowledged in the present study. First, only males 

were recruited and thus findings may not be generalizable to females. Second, only 

cardiac interoceptive signals were measured and we therefore cannot determine 

whether OT’s faciliatory effects can be extended to other modalities of interoceptive 

signals from such as respiration, intestines and stomach, which need to be explored in 

future studies. Third, the construct validity of precisely measuring IAc using the HCT 

is controversial since participants’ performance can be influenced by time estimation 
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and prior knowledge of heartbeat (22,62,63). Although optimized instruction was used 

to minimize confounding effects from time estimation and prior knowledge of heartbeat 

(21,22), we still cannot completely exclude potential confounding effects. Future 

studies are needed to develop new optimal paradigms for measuring interoception.  

In conclusion, the present study examined the impact of OT on the HEP as a 

neurophysiological marker of interoceptive processing and demonstrated an 

enhancement effect of OT on HEP amplitudes relative to PLC in the HCT. This neural 

effect is paralleled by a higher IAc following OT treatment on the behavioral level, with 

the IAc being positively correlated with HEP amplitudes. We also replicate previous 

findings of null effects of OT on resting-state HEP and cardiac responses. These 

findings together highlight a facilitatory effect of OT on cardiac interoceptive 

processing in the HCT. Our study not only provides new insights into interoceptive 

processing and its oxytocinergic modulation but also proof of concept evidence for the 

therapeutic potential of intranasal OT in disorders with dysfunctional interoception 

such as borderline personality disorder, major depressive disorder and obsessive-

compulsive disorder (64–66).  
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