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ABSTRACT 10 

Modern clinical trials can capture tens of thousands of clinicogenomic measurements per 11 

individual. Discovering predictive biomarkers, as opposed to prognostic markers, is challenging 12 

when using manual approaches. To address this, we present an automated neural network 13 

framework based on contrastive learning—a machine learning approach that involves training a 14 

model to distinguish between similar and dissimilar inputs. We have named this framework the 15 

Predictive Biomarker Modeling Framework (PBMF). This general-purpose framework explores 16 

potential predictive biomarkers in a systematic and unbiased manner, as demonstrated in 17 

simulated “ground truth” synthetic scenarios resembling clinical trials, well-established clinical 18 

datasets for survival analysis, real-world data, and clinical trials for bladder, kidney, and lung 19 

cancer. Applied retrospectively to real clinicogenomic data sets, particularly for the complex task 20 

of discovering predictive biomarkers in immunooncology (IO), our algorithm successfully found 21 

biomarkers that identify IO-treated individuals who survive longer than those treated with other 22 

therapies. In a retrospective analysis, we demonstrated how our framework could have 23 

contributed to a phase 3 clinical trial (NCT02008227) by uncovering a predictive biomarker 24 

based solely on early study data. Patients identified with this predictive biomarker had a 15% 25 

improvement in survival risk, as compared to those of the original trial. This improvement was 26 

achieved with a simple, interpretable decision tree generated via PBMF knowledge distillation. 27 

Our framework additionally identified potential predictive biomarkers for two other phase 3 28 

clinical trials (NCT01668784, NCT02302807) by utilizing single-arm studies with synthetic 29 

control arms and identified predictive biomarkers with at least 10% improvement in survival 30 

risk. The PBMF offers a broad, rapid, and robust approach to inform biomarker strategy, 31 

providing actionable outcomes for clinical decision-making.  32 
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INTRODUCTION 33 

The promise of precision medicine lies in treating patients with therapies that precisely target 34 

their unique diseases.1,2 Using biomarkers to select a study population more likely to benefit 35 

from a therapeutic effect is crucial for increasing the efficiency of clinical trials in demonstrating 36 

effectiveness.3 For example, the impact of biomarkers on drug development is highlighted by 37 

compelling findings in the BIO 2021 report,4 which shows that drug development programs 38 

integrating patient preselection biomarkers have a striking two-fold increase in the likelihood of 39 

approval, reaching 15.9%. However, discovering predictive biomarkers - characteristics that 40 

identify individuals more likely to experience a favorable treatment effect compared to those 41 

without such characteristics - is a complex and challenging endeavor. The intricate interplay of 42 

genetics and environmental factors, coupled with the complexity of disease biology and 43 

treatments, makes the discovery of predictive biomarkers a daunting task. The scarcity of 44 

comprehensive data, which is often due to acquisition or technical difficulties, presents 45 

challenges to the accurate representation of diverse populations, disease subtypes, and treatment 46 

cohorts, further compounding this discovery challenge. Moreover, the presence of numerous 47 

prognostic factors often hinders the ability to pinpoint the predictive biomarker within the 48 

studied patient population. The advent of next-generation sequencing technologies providing 49 

large-scale profiling of gene mutations, transcript expression and protein, have both increased 50 

our opportunity to find predictive biomarkers as well as further complicated the task.5 Finally, 51 

even if a putative biomarker is found, translational applicability must be assessed with 52 

independent validation cohorts, adding further complexity and cost. 53 

Nevertheless, there are clinically validated predictive biomarkers for certain targeted therapies, 54 

exemplified by the identification of BCR-ABL and EGFR mutations guiding the use of receptor 55 
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tyrosine kinase inhibitors in cancer treatment.6 Despite these significant achievements, a 56 

considerable gap remains in the availability of predictive biomarkers, particularly for therapies 57 

that indirectly target the disease, like those for immunooncology (IO), which modulates the 58 

immune system rather than the tumor, and therefore lacks an obvious molecular biomarker 59 

hypothesis. Although PD-L1 expression,7 microsatellite instability,8 and tumor mutation burden 60 

(TMB)9 serve as validated predictive biomarkers for IO, only a subset of responsive patients 61 

exhibit positivity for these markers.10 With an expanding array of novel targeted therapies, 62 

immunotherapies, and their combinations under investigation in clinical trials, the development 63 

of methodologies for identifying predictive biomarkers becomes imperative to advance precision 64 

medicine and optimize the efficacy of emerging treatments. 65 

To address the challenge of predictive biomarker discovery, traditional regression methods such 66 

as Cox proportional hazards (PH) modeling11 have been widely employed. However, these 67 

methods necessitate the explicit enumeration of covariates and interactions, a task that becomes 68 

impractical as the number of features increases, particularly in scenarios involving a diverse set 69 

of clinical and -omic features. More recently, algorithms have been developed that aim to 70 

discover predictive biomarkers without requiring such explicit specifications. These approaches 71 

utilize algorithms designed to maximize the difference in target outcomes between subgroups 72 

with different treatments.12,13 Unfortunately, even these advanced approaches encounter 73 

challenges in identifying a predictive signal in the presence of noisy data or features that 74 

uniformly influence all arms (i.e., are prognostic) and often result in overfitting. 75 

 We therefore developed a novel approach, the predictive biomarker modeling framework 76 

(PBMF), designed for end-to-end predictive biomarker discovery and evaluation (Fig. 1). This 77 

framework, now available to the research community, centers around a neural network ensemble 78 
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model featuring a contrastive loss function that ensures the learning of a multivariate biomarker 79 

that is specific to a target treatment of interest but not to a control treatment (see description in 80 

the results section below). The biomarker score cutoff and sample prevalence constraints are also 81 

components of the model’s training objective (loss function), abrogating the need for post-hoc 82 

tuning. Additionally, we provide tools for generating simulated data to benchmark the model, 83 

along with features to distill the model into an interpretable, deployable biomarker.  84 

Here, we provide a diverse body of empirical evidence showcasing the robust predictive 85 

biomarker discovery capability of the PBMF across various scenarios, including simulated 86 

biomarker discovery, well-established clinical datasets for survival analysis, real-world data, and 87 

randomized controlled clinical trials. Notably, the PBMF outperformed existing approaches in 88 

subgroup identification within both simulated and real data sets. Furthermore, we illustrate how 89 

the PBMF retrospectively contributed to patient selection in a phase 3 clinical trial by uncovering 90 

a predictive biomarker based solely on phase 2 trial data. This discovery led to a 15% 91 

improvement in efficacy in the original trial, achieved through a straightforward decision tree 92 

generated via PBMF knowledge distillation. Finally, we show how the PBMF may also 93 

retrospectively contribute to patient selection for two additional phase 3 clinical trials, using only 94 

single-arm early phase trial data with synthetic control arms, leading to at least a 10% 95 

improvement in efficacy versus the original trials. 96 

RESULTS 97 

Predictive biomarkers, contrastive learning, and model architecture 98 

We define a predictive biomarker, B, as a tool categorizing a population into positive (B+) or 99 

negative (B–) for the biomarker, specific to a given treatment. B can encompass various patient 100 
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measurements (e.g., age, blood counts, RNA gene expression). The biomarker is predictive if the 101 

B+ subpopulation is selectively enriched for individuals benefitting from a treatment of interest 102 

(“treatment”), but not a comparator one (“control”; Fig. 1a). Similarly, the B– subpopulation 103 

should be selectively enriched for those not benefiting from any treatment, or perhaps benefiting 104 

instead from a comparator (Fig. 1a). In contrast, a prognostic biomarker is characterized by 105 

similar benefit irrespective of treatment (Fig. 1a, bottom). 106 

With this definition, we formulated the PBMF to distinguish between two patient populations 107 

based on their differential response to treatments, i.e. contrastive learning. Specifically, the 108 

training objective of the PBMF (i.e. its loss function) actively maximizes the differences in 109 

outcomes for a given treatment (similar to pushing apart dissimilar items in contrastive learning) 110 

for B+ versus B– patients. Simultaneously, it minimizes the differences in outcomes for the 111 

control arm (similar to bringing similar items closer in contrastive learning). By doing so, the 112 

network is trained to contrast the effects of two treatments across the biomarker-defined groups, 113 

effectively learning the distinctive features that separate patient responses. More formally from a 114 

technical perspective, the loss function is defined as the log difference between control and 115 

treatment log-rank test statistics (Fig. 1b; Methods). In plain terms, this has the effect of 116 

maximizing the separation of survival curves (or generally, for any time-to-event curves) 117 

between B+ and B– in the subpopulation receiving the treatment (i.e. large log-rank test statistic) 118 

while minimizing the separation for the subpopulation receiving the control. The model therefore 119 

optimizes for predictive biomarker behavior (Fig. 1a, 1b). For applications requiring a particular 120 

biomarker prevalence, the PBMF can be run with an optional constraint (specifically, a 121 

penalization term) to encourage a predefined B+ prevalence proportion. 122 
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We designed the PBMF to be flexible and usable by the technical community (via an application 123 

programming interface). In particular, its modular design allows use of any neural network-based 124 

machine learning model, including deep, convolutional, and attention-based networks. The 125 

PBMF can use data from any modality (e.g., genomics, clinical, imaging), without restriction on 126 

the number or type (e.g., categorical or continuous; Fig. 1b). The PBMF outputs a “confidence” 127 

(i.e. probability) score from 0 to 1, which can be used (strictly speaking as a likelihood) to assign 128 

a sample to the B+ or B– subpopulation. 129 

Model implementation and extensions 130 

Overfitting poses a significant challenge in biomarker discovery, due to heterogeneity in patient 131 

populations and large numbers of features, particularly when attempting to predict the efficacy of 132 

one treatment over another rather than that of a single treatment. The PBMF therefore 133 

incorporates an established solution to increase model robustness by allowing training of a 134 

diverse collection of models (i.e. n independently trained neural networks), also known as an 135 

ensemble (Fig. 1c, left), and then aggregating the ensemble predictions to yield a better 136 

prediction than any ensemble constituent. Model diversity is achieved by allowing each model to 137 

learn with a unique random subset of samples and features (akin to the machine learning 138 

principle of bagging14; Table S1). Following model training, we provide a solution whereby one 139 

can optionally remove poor performing models in the ensemble, i.e. model pruning, which can 140 

further enhance ensemble performance (Fig. 1c, right).  141 

Finally, an opaque neural network in the PBMF-generated biomarker may compromise 142 

confidence and hinder applicability in clinical settings. To address this, the PBMF incorporates 143 

an optional pipeline for simplifying the model (‘model distillation’) into a parsimonious, 144 
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interpretable decision tree. This is achieved by training a decision tree classifier on the subset of 145 

samples for which the ensemble had the highest confidence scores (Fig. 1e). This decision tree 146 

thus transforms the candidate predictive biomarker into a simple set of rules, facilitating 147 

seamless integration into the design of future clinical studies (Fig. 1d, 1e). 148 

PBMF identification of predictive biomarkers in diverse simulated biomarker discovery 149 

scenarios 150 

To facilitate benchmarking, we generated synthetic data sets representing realistic combinations 151 

of features and time-to-event data (i.e., survival), mirroring conditions commonly encountered in 152 

real-world scenarios (Fig. 2a). Benchmarking was performed across 100 replicates, with 153 

performance reported on held-out test data sets from each replicate. We compared performance 154 

only across PBMF and Virtual Twins15 (VT) methods, as SIDES16 (subgroup identification based 155 

on differential effect search) failed to solve the simulated scenarios. 156 

The objective of the first benchmarking scenario was to discover a predictive signal in the 157 

presence of a prognostic signal. This scenario comprised 3 features, 2 predictive and 1 158 

prognostic; importantly, the predictive signal was present only as a combination of the two 159 

predictive features (Fig. 2a). The PBMF yielded an area under the precision-recall curve 160 

(AUPRC) of 0.918 ± 0.047 (mean ± standard deviation) and outperformed a competing method, 161 

VT (AUPRC = 0.858 ± 0.029) (Fig. 2b, Table S2).  162 

Real-world scenarios often involve the presence of noninformative features, complicating the 163 

extraction of the underlying predictive signal. In our second benchmarking scenario, we retained 164 

the original 3 features (2 predictive, 1 prognostic) and introduced additional varying numbers of 165 

features containing random noise (n = 7, 17, 37). Remarkably, the PBMF consistently 166 
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outperformed VT with 7 (PBMF AUPRC = 0.834 ± 0.050; VT AUPRC = 0.746 ± 0.039) or 17 167 

(PBMF AUPRC = 0.768 ± 0.044; VT AUPRC = 0.690 ± 0.040) random features (Fig. 2c). With 168 

37 random features, both approaches exhibited similar performance (PBMF AUPRC = 0.650 ± 169 

0.033; VT AUPRC = 0.644 ± 0.036). 170 

We hypothesized that in noisy scenarios, the ensemble PBMF might incorporate suboptimal 171 

constituent models. Our third benchmark explored the impact of model pruning on enhancing 172 

ensemble performance. When employing only the top quartile (p75) or top decile (p90) models 173 

within the ensemble, we observed a marked improvement in PBMF performance, particularly in 174 

the presence of some (n = 7) or many (n = 37) random features (Fig. 2d). This pruning strategy 175 

outperformed VT, but it necessitated a larger ensemble (1024 versus 128) to achieve stable 176 

performance (Fig. 2d). 177 

Our final benchmarking scenario investigated how the performance of the PBMF scales with the 178 

size of the training data set. In the simple case of 3 total features (2 predictive and 1 prognostic; 179 

i.e., benchmark 1), both the PBMF and VT methods exhibited diminished performance when 180 

training data were reduced from 1000 to 250 samples (Fig. 2e, Table S2). Despite this reduction, 181 

the PBMF still outperformed the VT (PBMF AUPRC = 0.786 ± 0.066; VT AUPRC = 0.752 ± 182 

0.091). In the more complex scenario of 2 predictive, 1 prognostic, and 7 random features (i.e., 183 

benchmark 2), the performance of the PBMF matched or exceeded that of VT at all training data 184 

sizes tested (n = 250, 500, 1000, 2000, 4000; Fig. 2e). Although VT performance reached a 185 

plateau at 1000–2000 samples, the PBMF demonstrated continuous improvement and superior 186 

performance; notably, at the largest training data size tested (n = 4000), the PBMF (AUPRC = 187 

0.967 ± 0.008) significantly outperformed the VT method (AUPRC = 0.788 ± 0.027). Lastly, the 188 
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introduction of model pruning further enhanced PBMF performance at training data sizes greater 189 

than 500. 190 

PBMF identification of predictive biomarkers in across a diversity of clinical studies 191 

Having established the success of the PBMF in simulated scenarios, we benchmarked the PBMF, 192 

VT, and SIDES across a diversity of 9 clinical studies, including real-world data, various cancer 193 

and non-cancer indications, and phase 1, 2, and 3 clinical trials. Overall, the PBMF markedly 194 

outperformed all other methods by consistently identifying predictive biomarkers (Fig. 3a). We 195 

detail the results of our benchmarking in the sections to follow. 196 

Identification of predictive biomarkers in commonly used clinical datasets for survival 197 

analysis 198 

We evaluated PBMF against VT and SIDES with well-characterized clinical datasets used in 199 

common practice for time-to-event statistical modeling (specifically survival analysis).17,18 We 200 

utilized breast cancer19,20 and diabetic retinopathy21 datasets, as these were the most feature-rich 201 

and appropriate for a predictive biomarker discovery task. 202 

First, we benchmarked the PBMF against VT and SIDES for identifying a biomarker predictive 203 

of longer survival with hormone therapy + tamoxifen versus chemotherapy across the two 204 

available independent breast cancer data sets. Models were trained on the Rotterdam breast 205 

cancer cohort22 and subsequently tested on the German breast cancer study cohort.19 On the 206 

training data set, the PBMF (B+: hazard ratio [HR] = 0.71, confidence interval [CI] = 0.54–0.94, 207 

P = 1.69e-2; B–: HR = 1.91 CI = 1.48–2.48, P = 9.37e-7) and VT (B+: HR = 0.56, CI = 0.44–208 

0.70, P = 4.98e-7; B–: HR = 1.81, CI = 1.30–2.52, P = 4.32e-4) methods successfully identified 209 
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a predictive biomarker, whereas SIDES found a prognostic biomarker (Fig. 3b, Fig. S1, Fig. 4a). 210 

On the test data set, only the PBMF generalized as a predictive biomarker (B+: HR = 0.63, CI = 211 

0.48–0.83, P = 1.02e-3; B–: HR = 0.89, CI = 0.50–1.57, P = 6.84e-1), whereas both VT and 212 

SIDES were prognostic.  213 

We next benchmarked the PBMF against VT and SIDES for identifying a biomarker predictive 214 

of longer time to vision loss with laser therapy versus no treatment in a study for treating diabetic 215 

retinopathy. On the training split of the data, the PBMF (B+: HR = 0.27, CI = 0.13–0.55, P = 216 

3.67e-4; B–: HR = 0.69, CI = 0.38–1.24, P = 2.13e-1) identified the strongest predictive 217 

biomarker (Fig. S1). VT (B+: HR = 0.38, CI = 0.21–0.70, P = 1.88e-3; B–: HR = 0.55, CI = 218 

0.28–1.09, P = 8.81e-2), and SIDES (B+: HR = 0.38, CI = 0.09–1.52, P = 1.71e-1; B–: HR = 219 

0.46, CI = 0.29–0.74, P = 1.51e-3) found mostly prognostic biomarkers (Fig. S1a). In particular, 220 

for VT, the biomarker from the training data appears to enrich for reduced time to vision loss 221 

within each treatment, which is opposite to the desired behavior (Fig. S1b). This therefore 222 

discounts the otherwise favorable generalization of VT on the test split of the data (Fig. 3b, Fig. 223 

4a). In contrast, the PBMF (B+: HR = 0.38, CI = 0.17–0.81, P = 2.26e-4; B–: HR = 0.55, CI = 224 

0.29–1.04, P = 6.62e-2) identified a predictive biomarker, albeit with a prognostic component 225 

(Fig. 3b, Fig. 4a). 226 

Predictive biomarker identification in immunooncology 227 

Encouraged by our promising results from simulated biomarker scenarios and well-established 228 

clinical datasets for survival analysis, we asked whether the PBMF would excel over VT and 229 

SIDES in the challenging predictive biomarker discovery space of immunooncology, specifically 230 

for immune checkpoint inhibitor (ICI) therapy. We trained and tested models on each of three 231 
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phase 3 clinical trials (JAVELIN 101, NCT02684006; IMmotion 150, NCT01984242; 232 

POSEIDON, NCT03164616) for three different ICI therapies given in a first-line setting 233 

(avelumab, atezolizumab, durvalumab, respectively) for either renal cell carcinoma or non-small 234 

cell lung cancer (NSCLC). SIDES failed to find a predictive biomarker on the training data for 235 

IMmotion 150 and JAVELIN 101, whereas both the PBMF and VT consistently found a 236 

predictive biomarker on the training data for all three clinical trials (Fig. S1a).  237 

On the test data for IMmotion 150, the PBMF trended the best towards a predictive biomarker, as 238 

it enriched for both for patients that had better survival across treatments within the B+ group 239 

(HR = 0.49, CI = 0.13–1.92, P = 3.08e-1), as well as across biomarker status within the ICI 240 

treatment (Fig. 4b). In contrast, although VT similarly trended towards a predictive biomarker 241 

(Fig. 3b), the B+ group across treatments trended towards worse survival than the B– group (Fig. 242 

4b). When testing on JAVELIN 101, only the PBMF (B+: HR = 0.52, CI = 0.33–0.80, P = 3.32e-243 

3; B–: HR = 1.03, CI = 0.68–1.56, P = 8.81e-1) generalized as a predictive biomarker. The 244 

PBMF identified a B+ group characterized by longer survivors in the avelumab + axitinib arm of 245 

interest versus all other groups and arms (Fig. 3b, Fig. 4b). Although VT appears to have found a 246 

generalizable predictive biomarker as well (B+: HR = 0.43, CI = 0.28–0.65, P = 5.48e-5; B–: HR 247 

= 1.26, CI = 0.81–1.96, P = 3.10e-1), examination of the Kaplan-Meier plots suggests that it 248 

instead identified a B+ group treated with the control therapy, sunitinib, that had worse survival 249 

versus all other groups and arms (Fig. 4b). Finally, when testing on POSEIDON, once again only 250 

the PBMF identified a predictive biomarker that can generalize (Fig. 3b, Fig. 4b; B+: HR = 0.33, 251 

CI = 0.13–0.80, P = 1..4e-2; B–: HR = 1.10, CI = 0.67–1.80, P = 7.06e-1).  252 
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In summary, PBMF demonstrated superior performance in all three phase 3 clinical trials for 253 

immune checkpoint inhibitor therapies, consistently identifying predictive biomarkers where 254 

SIDES failed and VT misidentified beneficial groups. PBMF reliably pinpointed patient groups 255 

with improved survival outcomes, highlighting its potential as a robust tool for predictive 256 

biomarker discovery 257 

Predictive biomarker identification with real-world data 258 

Randomized controlled phase 3 clinical trials are often considered the gold standard for tasks like 259 

predictive biomarker discovery analysis. these datasets often take a significant amount of time to 260 

accumulate and require substantial investments. With the increasing availability of real-world 261 

evidence (RWE), we have chosen to benchmark PBMF against VT and SIDES despite 262 

challenges associated with the use of RWD, including issues related to inconsistent data quality, 263 

comparability, and bias.23,24 To facilitate this comparison, we curated a Tempus NSCLC real-264 

world data cohort specifically to evaluate first-line ICI therapy versus chemotherapy (see 265 

methods for more details). 266 

On the training data set, only the PBMF and VT yielded a biomarker with predictive value for 267 

ICI over chemotherapy, whereas SIDES exhibited a trend toward prognostic behavior (Fig. S1). 268 

On the test data set, only the PBMF (B+: HR = 0.26, CI = 0.09–0.71, P = 9.02e-3; B–: HR = 269 

1.20, CI = 0.50–2.85, P = 6.86e-1) demonstrated enrichment for longer survivors specific to ICI 270 

therapy, indicating the discovery of a predictive biomarker that can generalize (Fig. 3b, Fig. 4c). 271 

In contrast, VT failed to generalize in the test data set (B+: HR = 0.48, CI = 0.18–1.30, P = 272 

1.49e-1; B–: HR = 0.84, CI = 0.36–1.96, P = 6.83e-1), despite very strong predictive behavior 273 

observed in the training data set. The trend towards prognostic behavior failed to generalize for 274 
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SIDES (B+: HR = 1.17, CI = 0.29–4.72, P = 8.27e-1; B–: HR = 0.52, CI = 0.24–1.10, P = 8.72e-275 

2).  276 

 277 

Identification of individuals with improved survival outcomes to inform phase 3 trial 278 

design with early-stage clinical trial data 279 

One critical application of predictive biomarker discovery is to inform the patient selection 280 

strategy for phase 3 clinical trials by using data from earlier phases. Building on the promising 281 

results from immunooncology and real-world data, we evaluated the PBMF against VT and 282 

SIDES in the context of representative clinical trial decision-making. Models were trained on 283 

clinicogenomic phase 2 trial data (POPLAR,25 NCT01903993), and tested on phase 3 trial data 284 

(OAK,26 NCT02008227). This evaluation aimed to determine which model could effectively 285 

guide patient selection for second-line atezolizumab therapy versus chemotherapy in NSCLC 286 

(i.e., the OAK trial), relying solely on data from earlier studies.  287 

Both PBMF (B+: HR = 0.30, CI = 0.19–0.48, P = 2.57e-7; B–: HR = 2.41, CI = 1.41–4.11, P = 288 

1.25e-3) and VT (B+: HR = 0.38, CI = 0.24–0.60, P = 3.72e-5; B–: HR = 1.14, CI = 0.72–1.78, 289 

P = 5.76e-1) identified a predictive signal from the phase 2 POPLAR training data. SIDES 290 

identified a mixed predictive and prognostic signal (B+: HR = 0.42, CI = 0.14–1.21, P = 1.08e-1; 291 

B–: HR = 0.75, CI = 0.54–1.05, P = 9.51e-2) (Fig. S1). Importantly, when the three models 292 

trained on POPLAR study data were applied as a hypothetical patient selection biomarker for the 293 

phase 3 OAK trial test data, only the PBMF generalized as a predictive biomarker (Fig. 3b, Fig. 294 

4d; B+: HR = 0.59, CI = 0.47–0.74, P = 4.26e-6; B–: HR = 0.84, CI = 0.60–1.15, P = 2.27e-1). 295 
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Both VT (B+: HR = 0.70, CI = 0.53–0.92, P = 9.95e-3; B–: HR = 0.62, CI = 0.48–0.80, P = 296 

2.27e-4) and SIDES (B+: HR = 0.64, CI = 0.37–1.11, P = 1.13e-1; B–: HR = 0.66, CI = 0.54–297 

0.80, P = 3.07e-5) yielded only prognostic biomarkers (Fig. 3b, Fig. 4d). Compared with the 298 

biomarker-evaluable population (BEP) in the OAK trial (Fig. S4), the PBMF B+ subpopulation 299 

yielded a ~9% decrease in risk of death for atezolizumab versus docetaxel treatment (PBMF, HR 300 

= 0.59; OAK BEP HR = 0.65). Thus, to hypothetically inform strategies for patient selection in 301 

phase 3 clinical trials, only the PBMF successfully identified a predictive, high-prevalence 302 

biomarker from phase 2 data that generalized to phase 3 results. 303 

A discovery pipeline for predictive biomarker prototypes  304 

Given the consistent ability of the PBMF to identify a predictive biomarker, particularly in 305 

clinical trial settings, we devised an end-to-end biomarker discovery pipeline that generates a 306 

human-understandable predictive biomarker prototype, poised for translation into clinical 307 

settings (Fig. 5a). We utilized the PBMF ensemble-pruned model described in the preceding 308 

section (Fig. 3b, Fig. 4d), which was trained solely on phase 2 clinical trial data (Fig. 5b), to 309 

identify a predictive biomarker (Fig. S2a–c, Methods). Utilizing a consensus score across the 310 

models within the ensemble, we determined an optimal biomarker probability score cutoff to 311 

classify B+ and B– samples, subsequently referred to as pseudo-labels (Fig. 5d, Methods). These 312 

pseudo-labels were then used for the distillation of the complex neural network original PBMF 313 

model into a simple interpretable model—a decision tree—that could inform a strategy for a 314 

clinical study (Fig. 5d, Fig. S2a–c, Methods). 315 

Use of knowledge distillation from the PBMF neural network to produce a simple decision 316 

tree with improved predictive value 317 
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Similar to the original PBMF from which it was derived, the distilled decision tree PBMF 318 

biomarker was predictive on both the phase 2 trial training data (B+: HR = 0.46, CI = 0.3–0.7, P 319 

= 2.6e-4; B–: HR = 1.34, CI = 0.8–2.2, P = 0.2) and phase 3 trial test (B+: HR = 0.55, CI = 0.43–320 

0.7, P = 8.05e-7; B–: HR = 0.86, CI = 0.64–1.16, P = 0.3) data sets (Fig. 5e). Importantly, the 321 

HR of the distilled decision tree was improved by approximately 7% compared with the original 322 

PBMF (original PBMF HR = 0.59; distilled decision tree PBMF HR = 0.55; see Fig. 5c, e), 323 

owing to the reduction in prevalence from 80% to 64%. Notably, the original PBMF had a ~9% 324 

decrease in risk of death within the B+ atezolizumab versus docetaxel-treated subpopulation 325 

relative to the BEP in the OAK trial, and the distilled decision tree PBMF had a ~15% decrease 326 

in risk of death (distilled PBMF HR = 0.55; original PBMF HR = 0.59; OAK BEP trial-reported 327 

HR = 0.65, OAK intent-to-treat HR = 0.73).  328 

Upon scrutinizing the decision tree of the distilled PBMF, we observed that the predictive 329 

biomarker comprises a specific subset of clinical and genomic features: the maximum circulating 330 

tumor DNA ctDNA allele frequency (MSAF), sum of longest diameter of target lesions at 331 

baseline (blSLD), and mutation status on the MLL2, TSC1, ATM, PDGFRA and LRP1B genes 332 

(Fig. 5d). Collectively, all these features drive the predictive nature of the biomarker. With the 333 

exception of ATM mutations, which were both predictive and prognostic (POPLAR: mutation 334 

[Mut] B+ HR = 0.33, wild type [Wt] B– HR = 0.776; OAK: Mut B+ HR = 0.43, Wt B– HR = 335 

0.68) but with a notably low prevalence (28 patients for ATM B+/Mut and 205 for the distilled 336 

PBMF B+), each individual feature fell short in matching the biomarker prevalence or the 337 

consistent, predictive signal of the collective (Fig. S3, Table S3). Furthermore, in comparison 338 

with a commonly described single-feature ICI biomarker, blood TMB,27-29 the PBMF more 339 
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robustly enriched for longer survival for both the training and test clinical trial data sets (Fig. 5e, 340 

f; Table S4).  341 

Predictive biomarker discovery with synthetic control arms 342 

Early phase trials are often single-arm studies, complicating efforts to derive biomarkers specific 343 

to a treatment of interest. Recent FDA guidance suggests common30 or external31 control arms 344 

might be used in certain settings to minimize redundancy, especially for and motivated in large 345 

part by Oncology drug discovery. We therefore evaluated our approach in this ‘synthetic control 346 

arm’ scenario, whereby we used a fraction of phase 3 control arm data exclusively for model 347 

training alongside phase 2 single-arm trial data. 348 

In the context of pre-treated advanced clear cell renal carcinoma (ccRCC), PBMF, VT, and 349 

SIDES all identified a predictive biomarker for ICI therapy on the training data from the 350 

nivolumab arm of phase 2 CheckMate 010 (NCT01354431) and a synthetic control arm from a 351 

random subset of patients receiving everolimus from phase 3 CheckMate 025 (NCT01668784; 352 

Fig. S1). However, only the PBMF generalized to the test dataset on the combined population 353 

from phase 1 CheckMate 009 (NCT01358721) and phase 3 CheckMate 025 trials (Fig. 3b, Fig. 354 

4e; excluding those from CheckMate 025 used for training; B+: HR = 0.60, CI = 0.38–0.96, P = 355 

3.44e-2; B–: HR = 0.96, CI = 0.49–1.87, P = 9.12e-1). SIDES trended towards a prognostic 356 

biomarker (B+: HR = 0.58, CI = 0.34–0.99, P = 4.75e-2; B–: HR = 0.82, CI = 0.47–1.41, P = 357 

4.65e-1), whereas VT did not generalize, as it displayed a predictive biomarker for the control 358 

arm (B+ HR = 0.85, CI = 0.51–1.44, P = 5.52e-1; B–: HR = 0.49, CI = 0.28–0.96, P = 1.38e-2). 359 

Overall, the PBMF identified a B+ subpopulation with a 12% decrease in risk of death when 360 

treated with nivolumab versus everolimus, relative to the BEP in the combined CheckMate 009 361 
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and 025 trials (Fig. 3b, Fig. S4; PBMF HR = 0.60; CheckMate 009 and 025 BEP HR = 0.68; 362 

CheckMate 025 BEP trial-reported HR = 0.69; CheckMate 025 intent-to-treat HR = 0.73). 363 

The PBMF also generalized well in an additional independent cohort examining atezolizumab 364 

versus chemotherapy in locally advanced or metastatic urothelial carcinoma (mUC). In this 365 

analysis, we included all available input features at baseline (Age, sex, ECOG, pIL-8 expression, 366 

and liver metastasis) and on-treatment (pIL-8 after 6 weeks) to evaluate their association with 367 

overall survival. On the training data from the atezolizumab arm from phase 2 IMvigor210 368 

(NCT02951767, NCT02108652) and a synthetic control arm from a random subset of patients 369 

receiving chemotherapy from phase 3 IMvigor211 (NCT02302807), only the PBMF and VT but 370 

not SIDES yielded a biomarker with predictive value of atezolizumab over chemotherapy (Fig. 371 

S1). Similarly, on the test dataset (IMvigor 211 excluding patients used for the training synthetic 372 

control arm), both PBMF (B+: HR = 0.73, CI = 0.54–0.99, P = 4.25e-2, B–: 0.87, CI = 0.66–373 

1.15, P = 3.14e-1) and VT (B+: HR = 0.71, CI = 0.53–0.95, P = 2.21e-2; B–: HR = 0.90, CI = 374 

0.67–1.20, P = 4.59e-1) generalized well as a predictive biomarker (Fig. 3b, Fig. 4e). This 375 

corresponded to a 10% and 12% decrease in risk of death, respectively, when treated with 376 

atezolizumab versus chemotherapy, relative to the BEP in the IMvigor 211 trial (Fig. 3b, Fig. S4; 377 

PBMF HR = 0.73; VT HR = 0.71; IMvigor 211 BEP HR = 0.81; IMvigor 211 intent-to-treat HR 378 

= 0.85).  379 

 380 

DISCUSSION 381 

Across diverse, challenging benchmarks spanning simulated scenarios through informing 382 

strategies for patient selection in clinical trials, the PBMF outperformed other methods for 383 
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discovering predictive biomarker signals. Among comparator methods, only the PBMF found 384 

signals that were consistently predictive across training and test data sets. Along with the 385 

PBMF’s ability to accurately identify known IO biomarkers from phase 2/3 trials, we also 386 

showed that the PBMF can nominate a novel composite biomarker from a set of clinicogenomic 387 

features that outperformed blood TMB. 388 

We emphasize here the importance of the predictive constraint embedded in the PBMF. A 389 

common pitfall in biomarker discovery is to focus only on identifying populations with enhanced 390 

responses to a specific treatment.32 In these cases, one cannot distinguish between a biomarker 391 

that is prognostic versus one that enriches for better responses specifically in a treatment of 392 

interest. Thus, the PBMF loss function enforces the constraint that a biomarker must be 393 

considered in the context of a control treatment.  394 

Beyond its contrastive loss function, the PBMF stands out as a unique end-to-end API for 395 

predictive biomarker discovery. The results presented here underscore the superior performance 396 

of an ensemble PBMF consisting of fully connected neural networks. At the same time, our API 397 

is versatile and compatible with any differentiable model. This flexibility makes it possible to 398 

explore predictive biomarker signals using input features from single or multiple modalities, or 399 

diverse data representations, including various combinations thereof. For instance, an attention-400 

based transformer model could effectively model unstructured data such as clinical notes. This 401 

opens the door to leveraging pretrained models, e.g. large-language models or other patients’ 402 

embeddings derived from foundation models, to imbue the PBMF with prior knowledge, 403 

potentially enabling successful predictive biomarker discovery even in situations with limited or 404 

noisy data.33 Lastly, the PBMF provides tools to refine a biomarker toward a particular 405 
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downstream application, i.e., prevalence constraints, simulations, and knowledge distillation, for 406 

clinical deployment.  407 

In our patient selection strategy example, we successfully distilled a complex ensemble neural 408 

network model into a simple decision tree. In this regard, we can view the PBMF as a highly 409 

effective search function, as we required the complex model to discern whether a predictive 410 

signal exists and what features may drive it. Alternatively, one could model patient risk through 411 

a multivariate Cox PH model with interaction terms for treatment. Although this approach may 412 

theoretically achieve similar results, it may be impractical to implement. Whereas the gradient 413 

descent within the PBMF will implicitly traverse the vast expanse of potential feature 414 

combinations and interactions, one would have to systematically and explicitly test every single 415 

potential case when using a Cox PH model. Further, the PBMF accounts for treatment effects 416 

simultaneously within its loss function, whereas a Cox PH model requires enumeration of each 417 

hypothesized treatment-feature interaction.  418 

We concede that there are limitations of the PBMF, although most are common to any biomarker 419 

nomination process. First, there is no guarantee that a predictive signal exists amongst the 420 

available features in a given cohort. Indeed, many well-established clinical datasets for survival 421 

analysis contain only age and/or sex features, and only prognostic biomarkers can be found with 422 

any modeling approach. Related, with the known challenge of limited data sets and high 423 

heterogeneity in patient populations, the PBMF cannot be used to determine whether the data are 424 

adequate and representative of the target population and biology. Nevertheless, it is noteworthy 425 

that the PBMF demonstrated superior performance in scenarios with small data sizes. In 426 

situations with substantial data, PBMF scaled with data size, whereas the performance of the VT 427 

method reached a plateau. Second, the ensemble PBMF may be unable to maintain its magnitude 428 
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of predictive power when distilled into a simple model, as there is often a tradeoff between a 429 

biomarker’s predictive power and its parsimony.34 However, the enhanced interpretability of the 430 

model may contribute to a better understanding of the biological factors underpinning the 431 

predictive signal of the biomarker. More generally, with any biomarker nomination process, 432 

there is the risk of overfitting to the training data and lack of generalization when the biomarker 433 

is deployed prospectively. Encouragingly, at least within the scope of the current study, the 434 

PBMF provided concordant results between training and test sets and to a greater degree than the 435 

comparator methods. Third, while the PBMF outperformed other methods in discerning 436 

predictive signals from noisy or prognostic features, we might still find that strongly prognostic 437 

features can impede the identification of predictive signals, and therefore our method could 438 

potentially gain more from prior feature selection. Fourth, the PBMF’s contrastive loss function 439 

formulation tends to attenuate the discovery of biomarkers that show a modest positive effect in 440 

the control treatment but a more substantial benefit in the treatment of interest. Finally, the 441 

PBMF is a discovery tool, and any biomarker hypothesis requires prospective clinical 442 

validation.35-37 443 

Specific considerations and limitations apply when using any predictive biomarker method to 444 

inform late-stage clinical trial decision-making. As alluded to earlier, data availability is often 445 

limiting. The success of the PBMF in identifying potential predictive biomarkers from real-world 446 

data and from using synthetic control arms is thus promising. Future work will be required to 447 

know whether synthetic control arms from non-randomized evidence (i.e. real-world data) could 448 

be used; any such exploration would need to carefully consider the substantial heterogeneity 449 

within patient populations. A related point is that it is often difficult to ensure that cohorts are 450 

comparable across studies, as the intent-to-treat clinical trial design guarantees only within-trial 451 
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comparisons. Moreover, considering the rising trend of combination therapies, it will be crucial 452 

to investigate the PBMF’s performance across various arms and their pairwise combinations. As 453 

our study is retrospective in nature, an important next step would be to validate the PBMF 454 

prospectively in a future clinical study. Finally, future work can explore the tradeoff between 455 

data maturity, ability to extract a predictive signal, and phase 3 trial investment decision timing. 456 

Our benchmarks nonetheless demonstrate that with the availability of the appropriate data, the 457 

PBMF could nominate a predictive biomarker that is likely to outperform the original study 458 

design in selecting patients who would derive greater benefit from the new treatment in a phase 3 459 

study. The use of the PBMF has the potential to improve strategies for patient selection over 460 

what can be achieved with conventional study designs.  461 

METHODS 462 

Predictive biomarker loss function 463 

The PBMF (Fig. 1) uses as input time-to-event data with censoring, a treatment label, and a 464 

feature matrix (n patients by f features). The feature matrix X ∈ �f is used as the input to a fully 465 

connected neural network of user-defined depth and width.  466 

The goal of the neural network is to assign patients to either the B+ or B– group. To refine this 467 

categorization, we employed a contrastive learning approach in which patients in the B+ group, 468 

when under treatment, show an improvement in survival times compared with those in the B– 469 

group. Conversely, in the control arm, the model aims to minimize the differences in survival 470 

times between the two biomarker groups according to the principle of contrastive learning.38-40 471 
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The distinction or similarity in survival times is quantified using log-rank test statistics41 within 472 

each treatment arm as follows: 473 
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� pair represents the expected number of events for the treatment �, under B+ 475 

and B–, respectively. The �	

, �	

� pair depicts the observed events within the treatment a for B+ 476 

and B–, respectively. 477 

Formally, the expected and observed events are defined as follows: 478 
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where the treatment arm is defined by a ∈{Treatment (Tr), Control (CR)} and the indicator 479 

function I(Ai = a) determines whether the patient i is under treatment a or not. The biomarker 480 

group is defined by the output of the neural network where b ∈ {positive (+), negative (–)}. 481 

Therefore, each patient i has a probability of being labeled as being in the positive (��

) or 482 

negative (��
�) group. Ci represents the censoring status of patient I, and λi is a scalar independent 483 

on the parameters of the neural network and can be precalculated (see Meier et al.42). Ωt is the 484 

number of observed events at time t, and Nt is the number of subjects at risk at time t.  485 
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The log-rank test for the treatment and control is then defined as: 486 
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The contrastive nature of the loss function is evident in its formulation as follows: 487 

• Treatment arm optimization: For patients receiving the actual treatment, the model 488 

maximizes the survival time difference between B+ and B– groups. This is quantified by 489 

the treatment log rank test score, LR(Tr). 490 

• Control arm optimization: For the control group, the model minimizes the survival time 491 

difference between the two biomarker groups. This is quantified by the control log rank 492 

test score, LR(Cr). 493 

The contrastive loss for the predictive biomarker is then defined as the ratio between the control 494 

log rank test score by the treatment log-rank test score: 495 

"�##� � ��	��
��	��
. 

The custom contrastive loss is the ratio of two log-rank tests computed over the time-to-event 496 

data, grouped by the treatment label, and stratified by the neural network output score. During 497 

optimization, the neural network learns a set of parameters that outputs scores to maximize the 498 

separation (i.e., larger log-rank test statistic) for the treatment while minimizing the separation 499 

(i.e., smaller log-rank test statistic) for the control. This ensures that the neural network will learn 500 
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to generate a predictive biomarker score, since it will only stratify patients for a specific 501 

treatment.  502 

We also integrated a population prevalence term to the loss to enable the model to identify a 503 

predictive biomarker given a specific desired minimal population (minP) such that: 504 
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The loss_p will have a minimum value of 0 when minP is equal to the population of B+. Finally, 505 

the composite PBMF loss function takes the following form: 506 

��## �  -� � "�##� � -� � "�##�, 507 

where ω1 and ω2 dictate the contribution of each loss component. For example, when ω2 = 0, the 508 

PBMF finds a population with the best predictive power independent of the number of patients, 509 

and when ω2 = 0.5 the PBMF identifies a predictive biomarker of the treatment at a 50% patient 510 

prevalence.  511 

Biomarker scoring 512 

The output of the neural network (B ∈ �2) is composed of two units representing the B+ and B– 513 

scores {b+, b–}. Scores are then passed through a SoftMax activation to convert the network 514 

scores into probabilities. Thus, the biomarker scores for a given patient i can be expressed as:  515 
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The probability of the negative biomarker can be written as B– = (1 – B+). In this way, B+ values 517 

close to 0 indicate B– and values close to 1 indicate B+. We assume the B+ to be contained 518 

within the neuron at index 0 from the output of the neural network. However, because the loss 519 

function does not have control of the directionality of the assignments, B+ can be arbitrary  520 

placed in neuron at the index 0 or 1. Therefore, after training and when making predictions, we 521 

corrected the B+ by computing the HR between the B+ and B– within the treatment arm as 522 

.����	����� � ∑ ��/ ∑ ��

∑ ��/ ∑ ��
. Thus, an HRTreatment < 1 defines the B+ in the neuron 0, whereas an 523 

HRTreatment > 1 defines the biomarker positive in the neuron 1. 524 

With ensemble of neural networks, for a given patient * and a total of / neural network models, 525 

we generated a set of scores 0��,�

 , … , ��,�


 2 and computed a consensus score defined by the 526 

average score over all the models in the patient * such that ��

 � �

�
∑ ��,�


�
��� . 527 

Feature and patient subsetting during model training 528 

A random subset of patients and features can be specified (Table S1) to guard against model 529 

overfitting. Patient subsetting is performed before model loss computation, and a different subset 530 

of patients will be excluded at each gradient update. Feature subsetting is performed before 531 

model training, and the given model will only train on the feature subset; when training an 532 

ensemble, each model will utilize its own unique random subset. During ensemble model 533 

evaluation, no patients or features are excluded. 534 

PBMF ensemble model pruning 535 
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Under the assumption that some models in the ensemble perform poorly and damage the entire 536 

ensemble’s performance, we implemented the following model pruning approach. We first 537 

binarized the set of scores, 0��,�

 , … , ��,�


 2, generated from the trained ensemble, using the default 538 

0.5 score threshold for the PBMF. Using this N patients by M models binary matrix, R, we then 539 

compute an N × N patient agreement matrix, A, by calculating the proportion of models that 540 

assigned two different patients to the same class43: 541 

��� � 1/ � �	��� � ���
�

���

 

A contains 1 along its diagonal, is symmetric, and contains values ∈ [0,1]. Patients with similar 542 

scores across each model in the ensemble will tend to have higher values; those with dissimilar 543 

scores will have lower values. Each column or row of A represents how consistently patients 544 

were assigned to a particular class by the models in the ensemble, from the reference point of one 545 

patient.  546 

We then computed the Pearson correlation between each column in A with each column in R to 547 

generate an N × M matrix, C, of correlation coefficients that represents how well the patient 548 

scores from an individual model in the ensemble correlate with the patient agreement matrix. We 549 

assumed that only a minority of models have poor performance, such that we should keep 550 

models that agree on how patients should be scored and discard models that disagree. This was 551 

done by selecting a percentile, e.g., the 90th percentile of all the correlations. By thresholding on 552 

the value in C associated with this percentile, the models were sorted by the number of times that 553 

each model exceeded the threshold, to generate a 1 × M vector of counts. We then thresholded on 554 

the value associated with our percentile in this vector to return the final subset of models, MS, 555 
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that exceed this threshold. A new consensus score was then computed as the average score across 556 

the reduced set of models in the ensemble. 557 

Model distillation: pseudo-labeling  558 

The distribution of scores generated from the ensemble is used to identify patients with “high-559 

quality” predictions, i.e., those whose distributions are heavily skewed toward 0 (strongly B–) or 560 

1 (strongly B+).  561 

To identify the patients with the best high-quality scores, we choose a 0.5 cut point and add an 562 

offset value ε, such that the biomarker label for a patient i* is defined as:  563 

�� � 3 �
 *4 �# � 0.5 � 7�� *4 8# 9 0.5 � 7�� :*�)���&� ��;&� 8�#&
< 

We set ε ∈ {0, 0.1, 0.2, 0.3, 0.4} and then fitted a Cox PH model to compute the hazard ratios 564 

between the treatment and the control arms for both the B+ and B–. The optimal ε score is 565 

extracted by determining the maximum difference between the absolute log of the B+ and B– 566 

hazard ratios.  567 

�%�*)�" 7 � Max��� 0|"��A.���


B  "��A.���

�B|2 

We then applied the optimal ε to compute a reduced set of patients with high-quality scores. 568 

Model distillation: tree-based model explainability 569 

Once the high-quality population is defined, a tree classifier (python sklearn44 tree classifier 570 

package, max_depth = 3, random_seed = 0) is fit, using the input features and the B+ and B– as 571 
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the labels. The goal of the tree classifier is to define a simple rule that approximates the neural 572 

network–derived predictive biomarker. The tree model was then applied to the test data sets.  573 

VT implementation 574 

We implemented the VT approach proposed by Foster et al.15 as follows. We used a random 575 

survival forest model45 to predict time-to-event based on the log-rank test loss (pySurvival46). 576 

We built two survival models {MT, MC}, where T and C refer to the population under treatment 577 

and under the control, respectively. Each model was trained using only its respective population. 578 

We then computed the difference in risk score between the treatment and control models to 579 

define the counterfactual risk score ri = MT(i) – MC(i) for any given patient i.  580 

To stratify patients into B+ and B–, we computed the median value of the counterfactual risk 581 

score distribution across all patients and assigned to B+ those patients below the median score 582 

(low risk) and to B– those with a counterfactual risk score above the median. Consequently, this 583 

design choice intrinsically classified patients evenly, 50% being assigned to B+ and the 584 

remaining 50% to B–. This can potentially lead to an overestimation of favorable results in data 585 

sets where the predictive biomarker prevalence is 50%. 586 

For simulations, model hyperparameters were tuned as described in Supplemental Information 587 

and Table S5. Model hyperparameters for identifying predictive biomarkers for clinical studies is 588 

described in Table S1. 589 

SIDES implementation 590 

The SIDES algorithm was set for survival analysis using the time and event features as the 591 

targets and the treatment versus control setting. The features used were the same as those used 592 
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for PBMF and VT and depended on the analyzed data set. We used the R implementation of 593 

SIDES provided by the SIDES authors (sides.dylib, CSIDES.r, and stochSIDES_util.R). We 594 

selected the best biomarker sorted by the adjusted P value and assigned it as B+. The discovered 595 

predictive biomarker rule was then validated in a given independent test set. Model 596 

hyperparameters for identifying predictive biomarkers for clinical studies is described in Table 597 

S1. 598 

Synthetic data generation 599 

We generated 10,000 patients for each data set. For a given replicate, 2000 patients (20%) were 600 

randomly selected, without replacement. Among those selected, a 50-50 training/test split was 601 

performed. Evaluation metrics are reported only from the test set. Proportional hazard 602 

assumptions were imposed to induce each one of the behaviors (Fig. 2a). The ability of each 603 

methodology to correctly call the biomarker was measured by recording the precision, recall, and 604 

AUPRC of a holdout test data set (2000 patients for each data set). 605 

The generation of synthetic data sets involves three stages. Initially, a set of covariates with 606 

predetermined level of correlation and prevalence is defined (Fig. 2a). These covariates establish 607 

subgroups for which desired hazard ratios will be generated. For the parametric model, the 608 

cumulative hazard is 609 

.�	�
 � �	�!
 exp	E�
�F
 

Where Xi is a vector of covariates associated to the parameters β. The β parameters used to 610 

sample survival times can be estimated after setting the HR requirements between groups. For 611 
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example, assuming a treatment variable and a predictive biomarker, we can define the following 612 

hazard ratios: 613 

.�"#���#$,%
 &' %�  �  .�� 

.����	�����,%
 &' %�  �  .�� 

.�%
,���	����� &' "#���#$  �  .�( 

.�%�,���	����� &' "#���#$  �  .�). 614 

The time-independent part of .�	�
 can be expanded as: 615 

.�~ exp 	F������� � F*�H1� � F����*�����H1�
. 616 

Replacing for each one of the cases in equation 1, we obtain the following equations: 617 

log	.��
 � F*� 

log	.��
 � F*� � F����*� 

log	.�(
 � F��� � F����*� 

log	.�)
 � F���. 618 

Random survival times are then obtained using the technique outlined in Crowther and Lambert 619 

(2013),47  620 

�� � (  log 	L
�&H%	E�
�F
,

�
!
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 621 

where λ and γ and are the scale and shape parameters, and u is a random variable sampled from 622 

the uniform distribution U(0, 1). Note that additional censoring, not covered in this work, can 623 

also be introduced. 624 

Real-word and clinical data sets 625 

Hyperparameters (Table S1) were tuned for the PBMF, VT, and SIDES for each clinical dataset, 626 

using only training data. 627 

The Rotterdam breast cancer cohort20 (863 patients) was used as a training data set, and the 628 

German breast cancer study cohort19 (686 patients) was used as a test data set. We selected only 629 

patients treated with hormone-based treatments and chemotherapy. The 7 features used for 630 

training the PBMF are age, menopause, tumor size, tumor grade, number of nodes, pr 631 

(progesterone receptor status), and er (estrogen receptor status). We trained the model using 632 

overall survival and death. 633 

The DIABETIC retinopathy study21 evaluates the treatment of laser coagulation to delay diabetic 634 

retinopathy. In this study, 197 patients underwent treatment in one eye, while the other eye 635 

remained untreated. The treatment eye, right or left, was randomized. Treating each eye as an 636 

individual sample resulted in 394 observations in the dataset. The event of interest was the time 637 

from the start of treatment to the time when visual acuity dropped below 5/200 for two visits in a 638 

row. Censoring was caused by death, dropout, or the end of the study. Age, diabetes type, and 639 

risk score were included as the features of this dataset. Diabetes type was a binary feature 640 

indicating juvenile diabetes (diagnosis before age 20) or adult. Risk score was defined by the 641 
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Diabetic Retinopathy Study, and a score greater than 6 out of 12 indicates high risk. The dataset 642 

was split into training and testing at a prevalence of 50% (random seed = 0).  643 

The randomized phase 2 clinical trial IMmotion150 evaluated the efficacy of atezolizumab (anti-644 

PD-L1) alone or in combination with bevacizumab (anti-VEGF) versus sunitinib (RTK inhibitor) 645 

in treatment-naive metastatic renal cell carcinoma (mRCC). Data from IMmotion150 was 646 

downloaded from Yuen et al.48 and comprised a total of 248 patients with no missing values (84 647 

atezolizumab, 81 sunitinib, and 83 atezolizumab + bevacizumab). Available features on this 648 

dataset: age, sex, liver metastasis, previous nephrectomy, T-cell effector signature score, Plasma 649 

IL8, SLD (sum of longest tumor diameter) and sample type (primary / metastatic). IMmotion150 650 

dataset was split into training / testing with a 50% prevalence, stratified by treatment and overall 651 

survival event (random seed = 0). The PBMF was trained to discriminate between atezolizumab 652 

+ bevacizumab against sunitinib using overall survival time and event as endpoints (Fig. 3). 653 

The JAVELIN Renal 101 trial evaluated the effectiveness of avelumab (PD-L1) plus axitinib 654 

(chemotherapy) versus sunitinib in advanced renal cell carcinoma (aRCC). Clinical response, 655 

PD-L1 status and RNA derived signatures (pathway scores) were downloaded from the 656 

biomarker analysis publication reported by Motzer et al..49 A total of 59 signatures were using 657 

including tumor microenvironment-derived signatures (e.g., T-cells, B-cells, Macrophages) and 658 

pathway-derived signatures (e.g., cell cycle, lipid metabolism, cell-cell signaling) and PD-L1 659 

status (Table S8). In total 726 patients (372 sunitinib, 354 avelumab+axitinib) were retrieved. 660 

The data was split into training and testing with a 50% prevalence (random seed = 0) stratified 661 

by treatment and survival event. The PBMF was trained to identify a sub-population predictive 662 
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of avelumab+axitinib against sunitinib using progressive free survival time and event as 663 

endpoints.  664 

POSEIDON is a phase 3 randomized clinical trial that evaluated the efficacy of durvalumab plus 665 

tremelimumab plus chemotherapy and durvalumab plus chemotherapy against chemotherapy 666 

alone in first-line metastatic non-small-cell lung cancer (mNSCLC).50 In this study, we focused 667 

on peripheral blood RNA seq data for durvalumab + chemotherapy (114 patients) and 668 

chemotherapy alone (114 patients) treatment arms. RNA seq data was Log2(TPM+0.001) 669 

transformed, and we extracted a set of custom and publicly available tumor microenvironment-670 

related signatures51 (Table S9) using the median score across genes. Dataset is split into training / 671 

testing with a 50% prevalence (random seed = 0) stratified by treatment and event. PBMF was 672 

trained using to identify predictive biomarker of durvalumab + chemotherapy against 673 

chemotherapy alone using overall survival time and event as endpoints.  674 

Data from the Tempus NSCLC cohort were selected from the Tempus deidentified multimodal 675 

database.52 Patients were included if they were diagnosed with a primary or metastatic NSCLC 676 

diagnosis on or after 2016, confirmed by histology, and received chemotherapy or ICIs as first 677 

treatment. For these patients, real-world overall survival was calculated using treatment start date 678 

as the index date. RNA expression (batch-corrected and transformed to transcripts per million) 679 

data was obtained for pre-treatment samples. In the case of patients with multiple biopsies, only 680 

the closest one to treatment start date was selected. ssGSEA (corto R package) was run per RNA 681 

sample for the 50 cancer hallmark gene sets (msigDB C5).53,54 A total of 201 patients with stage 682 

4 NSCLC undergoing chemotherapy (84) or immunotherapy (117) were selected. The data set 683 

was equally split into training and testing (50% each) and stratified by treatment (random seed = 684 

0). The training set had 42 patients with chemotherapy and 58 with immunooncology treatment; 685 
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and the testing set had 42 patients with chemotherapy and 59 with immunooncology treatment. 686 

We used overall survival and death as endpoints for training the PBMF model. 687 

The POPLAR and OAK clinical trials were used to represent phases 2 and 3, respectively, to 688 

evaluate the efficacy of atezolizumab as a second-line therapy for patients unresponsive to first-689 

line platinum-based chemotherapy in the NSCLC population. The therapeutic potential of 690 

atezolizumab was compared against that of docetaxel. The dataset, sourced from Gandara et al.,27 691 

encompasses ctDNA from blood samples in addition to patient demographics and clinical 692 

biomarkers, as detailed in Table S6. We conducted a prevalence-based ranking of ctDNA genes 693 

from patients in the POPLAR trial, identifying the top 20 genes that exhibit a minimum 694 

prevalence of 20% across the combined data set from both atezolizumab and docetaxel cohorts. 695 

The PBMF was not trained by using progression-free survival, and this outcome was used for 696 

testing only. POPLAR trial data were used for training the PBMF, and OAK was used for 697 

independent evaluation. We used the overall survival time and event as endpoints. The PBMF 698 

ensemble model performance is depicted in Fig. 5c. 699 

The CheckMate prospective clinical trials 009, 010, and 025 were designed to evaluate the 700 

efficacy of nivolumab (PD-1 blockade) against everolimus (mTOR inhibition) in advanced clear 701 

cell renal carcinoma (ccRCC). RNA sequencing (RNA-seq) and whole-exome sequencing 702 

(WES) derived features were obtained from Braun et al.55 The PBMF was trained using the 703 

phase 2 CheckMate 010 clinical trial data and validated on the combined populations of 704 

CheckMate 025 and CheckMate 009. We included only patients with a complete set of features, 705 

excluding any with missing data. Consequently, 199 patients out of the available 311 had all 706 

complete features. Among these, 25 patients were from the Phase 2 (CheckMate 010) clinical 707 

trial. As CheckMate 010 did not have a control arm, we randomly selected 25 patients from the 708 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.01.31.24302104doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.31.24302104


36 

CheckMate 025 everolimus arm to match the number of patients treated with nivolumab. The 709 

remaining patients from CheckMate 009 and the Phase 3 CheckMate 025 trial were utilized for 710 

independent validation (i.e. test data set). Overall survival time and event status were used as 711 

endpoints for training the PBMF. The performance of the PBMF model on the test data set after 712 

pruning is presented in Figs. 3, 4e and the complete list of features used for training are shown in 713 

the Table S7. 714 

IMvigor210 is a single-arm phase 2 clinical trial evaluating the efficacy of atezolizumab as a first 715 

(1L) or second (2+) line of treatment in locally advanced or metastatic urothelial carcinoma 716 

(mUC). IMvigor211 is a randomized phase 3 clinical trial that evaluated the efficacy of 717 

atezolizumab compared to chemotherapy in metastatic urothelial carcinoma as a second (2+) line 718 

of treatment. Data from IMvigor210 and 211 was downloaded from supplementary material of 719 

Yuen et al..48 Both studies reported a total of 1222 patients. We only kept patients without 720 

missing values and filtered out all patients that were treated with Atezo as a first line of treatment 721 

in order to match the phase 3 (IMvigor211) population. In total we obtained 691 patients (422 722 

atezolzumab and 269 chemotherapy). For training, we selected all patients from the IMvigor210 723 

atezolizumab arm. As control, we selected 100 patients from the chemotherapy arm from the 724 

IMvigor211 phase 3 trial. For test data, we used all the patients on the phase 3 (IMvigor211), 725 

except the patients from chemotherapy that were used during training. The features in these 726 

cohorts include: age, sex, liver metastasis, ECOG, plasma IL8 at baseline (C1D1) and after 727 

treatment IL8 (C3D1) as well as plasma IL8 ratio (C3D1/C1D1). Therefore, this analysis is not 728 

limited to baseline measurements as on-treatment increased expression of plasma IL8 are known 729 

to be predictive of worse overall survival for atezolizumab and not for chemotherapy 48. The 730 
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PBMF was trained to identify predictive biomarkers of atezolizumab against chemotherapy using 731 

overall survival time and event in the IMvigor210 cohort and validated on the IMvigor211 trial. 732 

 733 

 734 

Statistical modeling and model evaluation metrics 735 

Hazard ratios and 95% confidence intervals were computed by fitting a univariate Cox 736 

proportional hazards model (lifelines Python package) to the survival data, within a given PBMF 737 

biomarker group, and using the treatment as the only covariate. P-values for hazard ratios were 738 

computed with a Wald test. When comparing survival distributions across treatments for a given 739 

biomarker group, a logrank test statistic and its associated p-value was computed and reported. 740 

Because our analyses are all retrospective, we avoid specifying statistical significance thresholds 741 

and instead faithfully report all p-values. 742 

Model performance on synthetic datasets was evaluated using the AUPRC metric. This was 743 

chosen because we assume that identification of biomarker positive individuals is most important 744 

for biomarker discovery, and that a minority of individuals will be biomarker positive for any 745 

given real data cohort. Therefore, metrics that equally weight model performance in identifying 746 

biomarker positives and negatives, such as area under the receiving operator characteristic curve, 747 

may be poor choices. AUPRC was not reported for clinical datasets due to lack of ground truth. 748 

 749 

Data availability 750 
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Data for breast cancer cohorts is available at the following URL: https://www.uniklinik-751 

freiburg.de/imbi/stud-le/multivariable-model-building.html. Data for diabetic retinopathy cohort 752 

is available within the R survival package.17 Data for POPLAR and OAK studies was accessed 753 

from Gandara et al.27 Data from Tempus may be purchased for use (https://www.tempus.com). 754 

IMmotion150, IMVigor210 and IMVigor211 data can be obtained directly from Yuen et al.48  755 

supplementary material.  CheckMate data can be downloaded from the supplementary 756 

information from Braun et al.55 publication. JAVELIN 101 Renal can be obtained directly from 757 

Motzer et al..49 publication. POSEIDON data underlying the findings described in this 758 

manuscript may be obtained in accordance with AstraZeneca’s data sharing policy described at 759 

https://astrazenecagrouptrials.pharmacm.com/ST/Submission/Disclosure. Data for studies 760 

directly listed on Vivli can be requested through Vivli at www.vivli.org. Data for studies not 761 

listed on Vivli could be requested through Vivli at https://vivli.org/members/enquiries-about-762 

studies-not-listed-on-the-vivli-platform/. The AstraZeneca Vivli member page is also available 763 

outlining further details: https://vivli.org/ourmember/astrazeneca/. Requests to access these 764 

datasets should be directed to www.vivli.org.  765 

Code availability 766 

Code for the PBMF and to reproduce the analyses and simulations in this manuscript will be 767 

made publicly available on Github. 768 
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Figure legends 

Fig. 1: Detailed schematic of the PBMF. a, Discrimination between predictive and prognostic 

biomarkers, with the subdivision into B+ and B– cohorts. B+ is indicative of patients who benefit 

from treatment as opposed to the control, and B– signifies a lack of superiority of treatment or an 

advantage in the control group. b, The PBMF trains a set (N) of neural networks, each 

independently trained on clinical trial data with a contrastive loss function. The loss is designed 

to enhance the differential impact of B+ versus B– in the treatment group and concurrently 

minimize B+ influence over B– in the control arm. c, The ensemble of PBMF models 

synthesizes into a consolidated predictive score, refining the model collection by filtering out 

non-contributory models to retain only those with significant impact. d, High-confidence patient 

samples are identified through biomarker pseudo-labeling, which then serve to construct an 

interpretable, simplified decision tree model, categorizing patients as B+ or B–. e, External 

dataset validation of the PBMF model affirms the biomarker's predictive capacity, demonstrating 

the model’s reliability from ensemble to simplified tree representation, thus reinforcing its utility 

in clinical trial stratification. OS, overall survival; PFS, progression-free survival; DFS, disease-

free survival. 

Fig. 2: Simulated and benchmark tests. a, Synthetic data set generation and behavior. A 

predictive biomarker is generated by ‘predictive feature 1’ and ‘predictive feature 2’ (top left), 

which creates a particular Kaplan-Meier plot, showing the differential effect in the treatment 

(Trt) and control arms (Ctrl; bottom right). ‘Prognostic feature 1’ has a different effect when 

added to ‘predictive feature 1’ (top right). Random features with no structure can be added 

(‘random feature 1’ and ‘random feature 2’; bottom left). b, AUPRC for the test set comparing 

the PBMF model developed for a data set containing 3 features (2 predictive, 1 prognostic) in 
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orange against VT in blue. The training was performed on 1000 data points, with 100 training-

test split replicates c, Effect of the number of random features in the AUPRC for PBMF and VT. 

The PBMF model contains 128 ensembles of 5 features chosen from data sets with 10, 20, and 

40 total features, in which only 2 are predictive and 1 is prognostic. Models are trained with 

1000 data points, with 100 training-test split replicates. d, Effect of the number of models in the 

ensemble for PBMF (128 vs 1024) against VT at two different levels of noise (10 and 40 total 

features; 5 features chosen). Models are trained with 1000 data points, with 100 training-test split 

replicates. e, Effect of the training size on AUPRC for VT (blue), PBMF (orange), and two 

different levels of post-pruning (top quartile [p75, green] and top decile [p90, red] percentile of 

models). The data set contained 10 total features (2 predictive, 1 prognostic, and 7 random). 

PBMF ensemble models comprised 128 models containing only 5 features from the 10. Boxplot: 

centerline, median; box limits, quartile 1 and 3; box whiskers, 1.5x interquartile range; 

diamonds, outliers; dots, data points. 

Fig. 3: Evaluation of PBMF for predictive biomarker identification on real data sets 

against other methods. a, Hazard ratios for SIDES, VT, and PBMF methods across all 9 test 

datasets and across treatments for each biomarker status, B+ and B–. Points are connected if they 

represent hazard ratios computed for biomarker groups within the same dataset. Shaded areas 

correspond to the bounding box defined by the maximum and minimum hazard ratios for each 

method, for a given biomarker status, B+ and B–. b, Forest plot illustrating the performance 

comparison of PBMF with VT and SIDES methodologies, applied to test data sets. Shown are 

the hazard ratios and 95% confidence intervals from a Cox proportional hazards model fit to 

each treatment comparison within a biomarker status. Patient numbers (N) are shown to the left 
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of the forest plot, where Trt = the treatment for which the predictive biomarker was desired (e.g. 

IO for TEMPUS) and Ctrl = the comparator treatment (e.g. chemotherapy for TEMPUS).  

Fig. 4: Kaplan-Meier curves for evaluation of PBMF for predictive biomarker 

identification on real data sets against other methods. Kaplan-Meier curves per treatment and 

biomarker status (from PBMF, VT, or SIDES), as evaluated on the a, test data from well-

established clinical datasets for survival analysis (breast cancer and retinopathy), b, 

immunooncology clinical trial test data (IMmotion 150, JAVELIN 101, and POSEIDON), c, 

TEMPUS real-world data test set, d, OAK phase 3 clinical trial test data set, and e, clinical trial 

test data that utilized synthetic control arms (CheckMate 009 + CheckMate 0025 and IMvigor 

211). Timeline is in months. Hormone, hormone therapy; chemo, chemotherapy; atezo, 

atezolizumab. 

Fig. 5: Application of PBMF in the design of biomarker-driven clinical trials. a, Overview 

of the proposed integrative framework for the discovery of predictive biomarkers in phase 2 

trials to enhance phase 3 trial design, incorporating initial data acquisition from early-phase 

trials, PBMF analysis, biomarker optimization through interpretable models, and subsequent 

application in clinical trial planning. b, Clinical trial data and endpoints collection: Kaplan-Meier 

curves for the discovery (POPLAR phase 2 clinical trial) and the test (OAK Phase 3) data sets. c, 

Identification of predictive biomarker: using the discovery data set (POPLAR trial) the PBMF 

successfully finds a biomarker that identifies which patients will survive longer on atezolizumab 

but not docetaxel. This biomarker generalizes to the OAK trial test data. d, Refinement of 

predictive biomarker: the enhancement of the predictive biomarker involves pruning to eliminate 

spurious models from the ensemble (left) and the subsequent derivation of a rule set that 

encapsulates the biomarker's predictive power (right). Red lines, B+; blue lines, B–; line 
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thickness is proportional to number of patients in parenthesis. e, Patient stratification using the 

simplified predictive biomarker identified in the POPLAR trial and subsequently applied to the 

OAK trial. f, Comparison of the predictive biomarker against blood TMB in the discovery 

(POPLAR) and test (OAK) data sets, with an additional evaluation of the biomarker on 

progression-free survival (PFS), despite the PBMF's initial training on overall survival (OS). 

Numbers of patients is shown for each treatment and biomarker status. Shown are the hazard 

ratios and 95% confidence intervals from a Cox proportional hazards model fit to each treatment 

comparison within a biomarker status. Atezo, atezolizumab; Doce, docetaxel. 
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