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Abstract  
Despite great progress on methods for case-control polygenic prediction (e.g. schizophrenia vs. 

control), there remains an unmet need for a method that genetically distinguishes clinically related 

disorders (e.g. schizophrenia (SCZ) vs. bipolar disorder (BIP) vs. depression (MDD) vs. control); such a 

method could have important clinical value, especially at disorder onset when differential diagnosis 

can be challenging. Here, we introduce a method, Differential Diagnosis-Polygenic Risk Score (DDx-

PRS), that jointly estimates posterior probabilities of each possible diagnostic category (e.g. SCZ=50%, 

BIP=25%, MDD=15%, control=10%) by modeling variance/covariance structure across disorders, 

leveraging case-control polygenic risk scores (PRS) for each disorder (computed using existing 

methods) and prior clinical probabilities for each diagnostic category. DDx-PRS uses only summary-

level training data and does not use tuning data, facilitating implementation in clinical settings. In 

simulations, DDx-PRS was well-calibrated (whereas a simpler approach that analyzes each disorder 

marginally was poorly calibrated), and effective in distinguishing each diagnostic category vs. the rest. 

We then applied DDx-PRS to Psychiatric Genomics Consortium SCZ/BIP/MDD/control data, including 

summary-level training data from 3 case-control GWAS (N=41,917-173,140 cases; total N=1,048,683) 

and held-out test data from different cohorts with equal numbers of each diagnostic category (total 

N=11,460). DDx-PRS was well-calibrated and well-powered relative to these training sample sizes, 

attaining AUCs of 0.66 for SCZ vs. rest, 0.64 for BIP vs. rest, 0.59 for MDD vs. rest, and 0.68 for control 

vs. rest. DDx-PRS produced comparable results to methods that leverage tuning data, confirming that 

DDx-PRS is an effective method. True diagnosis probabilities in top deciles of predicted diagnosis 

probabilities were considerably larger than prior baseline probabilities, particularly in projections to 

larger training sample sizes, implying considerable potential for clinical utility under certain 

circumstances. In conclusion, DDx-PRS is an effective method for distinguishing clinically related 

disorders. 
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Introduction 

Great progress has been made in methods for case-control polygenic prediction (e.g. schizophrenia 

vs. control)1–8. However, in clinical practice the most pressing challenge is often to distinguish related 

disorders from each other as well as controls (e.g. schizophrenia (SCZ) vs. bipolar disorder (BIP) vs. 

depression (MDD) vs. control), especially at disorder onset when differential diagnosis can be 

challenging. The importance of maximizing the utility of genetic predictions for clinical practice is well-

recognized9, but progress on genetically distinguishing related disorders has been limited; a recent 

study proposed a method to distinguish inflammatory-arthritis causing diseases using genome-wide 

significant variants10, but this approach is unlikely to perform well for highly polygenic disorders such 

as psychiatric disorders, for which the contribution of genome-wide significant variants is 

limited1,2,8,11,12.  

 Here, we introduce a new method, Differential Diagnosis-Polygenic Risk Score (DDx-PRS), to 

distinguish related disorders from each other and from controls. DDx-PRS models the 

variance/covariance structure of disorder liabilities13 and polygenic risk scores (PRS) across disorders, 

leveraging case-control PRS computed using all genome-wide variants3,5–7. DDx-PRS uses prior 

disorder probabilities (which can be flexibly specified by a clinician) and applies Bayes’ Theorem to 

compute posterior probabilities of each diagnostic category (e.g. SCZ=50%, BIP=25%, MDD=15%, 

control=10%). We apply DDx-PRS to predict SCZ vs. BIP vs. MDD vs. control in simulated data and in 

empirical data from the Psychiatric Genomics Consortium8,14–16. We also apply DDx-PRS to simulated 

data at larger training sample sizes to obtain projections of future clinical utility. 

 

Results 

Overview of methods 

DDx-PRS distinguishes cases from clinically related disorders (e.g. SCZ vs. BIP vs. MDD vs. control), 

estimating posterior probabilities of each diagnostic category using case-control GWAS summary 

statistics for each disorder (as training data) and prior clinical probabilities (e.g. a unform prior of 25% 

for each diagnostic category). DDx-PRS consists of 4 steps: (1) estimate prior probabilities of each 

possible configuration of liabilities; (2) compute case-control PRS for each disorder; (3) estimate 

analytical variances and covariances across disorders of liabilities and case-control PRS (overall and 

for each configuration of liabilities); and (4) estimate posterior probabilities for each test sample. Each 

step is summarized below; details are provided in the Methods section. We have publicly released 

open-source software implementing DDx-PRS (see Code Availability). DDx-PRS has low computational 

cost, excluding the time required to compute case-control PRS (see Methods). 

 In step 1, DDx-PRS relies on the fact that, for n disorders, there exist 2n possible configurations 

of liabilities (above or below the liability threshold for each disorder13), e.g. 8 possible configurations 

for 3 disorders; the mapping from configurations of liabilities to diagnostic categories is informed by 

the PGC classifications used in ref. 8,14–16 (Table 1). Given prior clinical probabilities of each diagnostic 

category, DDx-PRS estimates prior probabilities of each configuration of liabilities by assuming random 

sampling of liabilities within each diagnostic category. We note that the prior clinical probability for 

help-seeking individuals will typically be much larger than the population prevalence. For simplicity, 

we assume a clinical prior probability of 25% for each of SCZ, BIP, MDD and control for the main 

analyses presented in this paper; however, in application of DDx-PRS, the prior can be specified flexibly 

by the physician based on e.g. psychiatric examination, questionnaires and/or disorder prevalence in 

a specific clinical setting. 
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 In step 2, DDx-PRS computes case-control PRS for each disorder (on the observed scale) using 

an existing method (in this paper, we use PRS-CS5) and transforms the PRS to their respective liability 

scales17. Case-control PRS are computed for both the test samples and samples from an external 

reference panel such as 1000 Genomes18; the external reference panel does not include phenotypes, 

and as such does not constitute a tuning data set. 

In step 3, DDx-PRS estimates (i) overall variances and covariances of liabilities for each 

disorder using cross-trait LDSC19, (ii) overall variances and covariances of liability-scale case-control 

PRS for each disorder using the external reference panel (e.g. 1000 Genomes18)—in particular, this 

accounts for sample overlap across controls for different disorders in GWAS training data increasing 

correlation between the case-control PRS19,20, and (iii) overall covariances between liabilities and case-

control PRS, based on analytical computations. DDx-PRS then estimates truncated multivariate normal 

probability densities of liabilities and case-control PRS for each configuration of liabilities using 

analytical derivations. 

 In step 4, DDx-PRS applies Bayes’ Theorem to estimate posterior probabilities of each 

configuration of liabilities for each test sample, conditional on their case-control PRS. Letting 𝑐𝑗  denote 

configuration 𝑗 and 𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖  denote the case-control PRS for each disorder of individual 𝑖, these posterior 

probabilities can be expressed as 

 

𝑃(𝑐𝑗|𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖) = 𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 

𝑖|𝑐𝑗)𝑃(𝑐𝑗) 𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖)⁄     Eq. 1 

 

where 𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖|𝑐𝑗) denotes the probability density of 𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 

𝑖  given configuration 𝑐𝑗  (computed from the 

output of step 3); 𝑃(𝑐𝑗) denotes the prior probability of configuration 𝑐𝑗  (specified in step 1); and 

𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖) denotes the probability density of 𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 

𝑖  summed across all configurations weighted by the 

prior probabilities, i.e. 𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖) = ∑ 𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 

𝑖|𝑐𝑗′)𝑃(𝑐𝑗′)𝑗′ . The posterior probabilities of each 

configuration of liabilities are subsequently combined into posterior probabilities of each diagnostic 

category using the information in Table 1.  

 We compare the results of DDx-PRS to the results of a simpler method, Marginal-PRS (Table 

2). Briefly, Marginal-PRS consists of 3 steps: (1) compute the marginal disorder probabilities 𝑃(𝑆𝐶𝑍), 

𝑃(𝐵𝐼𝑃) and 𝑃(𝑀𝐷𝐷) using univariate densities for each disorder separately17; (2) compute the 

control probability as 𝑃(𝑐𝑜𝑛𝑡𝑟𝑜𝑙) = (1 − 𝑃(𝑆𝐶𝑍))(1 − 𝑃(𝐵𝐼𝑃))(1 − 𝑃(𝑀𝐷𝐷)); and (3) rescale 

these four probabilities to add up to 1. We note two important limitations of Marginal-PRS compared 

to DDx-PRS. First, Marginal-PRS does not model the covariance structure between the respective case-

control PRS. Second, when computing marginal disorder probabilities, Marginal-PRS does not account 

for the other disorders (e.g., when computing 𝑃(𝑆𝐶𝑍), Marginal-PRS incorrectly assumes that non-

SCZ individuals are all controls). 

DDx-PRS and Marginal-PRS do not require additional tuning data to train parameters 

connecting case-control PRS to probabilities of each diagnostic category. Although methods that do 

not require tuning data are more practical, for completeness we also considered two methods that 

do require tuning data: DDx-PRS-tuned and Direct-tuned (Table 2 and Methods). DDx-PRS-tuned uses 

a tuning dataset to estimate the multivariate probability densities of 𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑  in step 2 above more directly 

(while still modelling the eight configurations 𝑐𝑗). Direct-tuned applies Bayes’ Theorem as in Eq. 1 to 

the four diagnostic categories directly (i.e. using four diagnostic categories instead of the eight 

configurations in Table 1), estimating the multivariate probability densities of 𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑  in these four 

categories directly from the tuning data. In our main analyses, we use cross-cohort tuning data (we 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.24302228doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302228


 -5- 

also investigated the performance of these methods using within-cohort tuning data, although we 

caution that it is much less likely that this type of data - matched with respect to sampling location, 

ancestry, and genotyping platform - will be available in practice).  

We assessed the performance of each method in classifying each diagnostic category vs. the 

rest (SCZ vs. rest, BIP vs. rest, MDD vs. rest, and control vs. rest). Calibration was assessed using the 

Integrated Calibration Index (ICI)21, defined as the weighted absolute difference between the 

predicted probability and the true probability. Briefly, the ICI is computed by estimating the true 

probabilities compared to the predicted probability using a locally estimated scatterplot smoothing 

(loess)-based smoothing function, and subsequently assessing the average absolute difference 

between the predicted and true probabilities, weighted by the density of predicted probabilities; it 

thus reflects the average error of the predicted probabilities (ICI=0 reflects perfect calibration). 

Prediction accuracy was assessed using the area under the ROC curve (AUC)22. 

 We evaluated the performance of each method using data from the SCZ, BIP and MDD 

working groups of the Psychiatric Genomics Consortium (PGC; see Data Availability). The full PGC data 

that we analyzed consisted of the European-ancestry case-control GWAS summary statistics for SCZ8 

(N=53,386 cases and 77,258 controls), BIP14 (N=41,917 cases and 371,549 controls), and MDD15,16 

(N=173,140 cases and 331,433 controls) (Methods and Table S1). The test data consisted of merged 

PGC case-control cohorts comprising 11,460 individuals of European ancestry (2,865 of each of SCZ, 

BIP, MDD, control), subdivided into 4 test cohorts within which SCZ, BIP, MDD, and control samples 

were matched with respect to country and genotyping platform (Methods and Table S2). For each 

disorder-specific PGC case-control cohort that was included in one of the 4 merged test cohorts, we 

constructed corresponding training data sets (used to compute case-control PRS for each disorder) 

that excluded that PGC case-control cohort.  

 

Simulations 

We simulated data based on the genetic architectures of SCZ8, BIP14 and MDD15,16, with liability-scale 

SNP-heritabilities23 of 0.24, 0.19 and 0.09, population prevalences of 1%, 2% and 16%, liability-scale 

case-control PRS 𝑟2 (ref.24) of 0.10, 0.09 and 0.04, respectively, and genetic correlations of 0.70 for 

SCZ-BIP, 0.35 for SCZ-MDD and 0.45 for BIP-MDD (collectively matching our empirical findings; see 

Methods). We simulated individual-level data for 1,000 SNPs (of which 50% were causal) in training 

samples whose sample size was selected to attain the specified case-control PRS 𝑟2 and 1,000 test 

samples for each diagnostic category (SCZ, BIP, MDD, controls). We introduced sample overlap of 

controls in SCZ, BIP and MDD training data to mimic empirical data, which includes substantial overlap 

of controls20. We simulated a small number of SNPs (M) and training samples (N) to limit 

computational cost, while noting that PRS 𝑟2  primarily depends on M/N, so that simulations at 

reduced values of both M and N are appropriate3. Because linkage disequilibrium (LD) does not impact 

cross-disorder architectures conditional on the above parameter values, we simulated genotypes 

without LD. Case-control PRS were computed using Bpred, which analytically computes posterior 

mean causal effects sizes under a point-normal prior in the special case of no LD3. We simulated 

individual-level SNP data (instead of directly simulating case-control PRS values in test samples) to 

also assess the performance of the complexities of transforming case-control PRS values to the liability 

scale (see Methods). We analyzed 50 simulation replicates for each simulation. We assessed the 

performance of DDx-PRS and Marginal-PRS (Table 2) in classifying each diagnostic category vs. the rest 

(SCZ vs. rest, BIP vs. rest, MDD vs. rest, and control vs. rest). Calibration was assessed using the ICI21, 
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defined as the weighted absolute difference between the predicted probability and the true 

probability, and prediction accuracy was assessed using the area under the ROC curve (AUC)22. 

The calibration of DDx-PRS and Marginal-PRS are reported in Figure 1a and Table S3. DDx-PRS 

was well-calibrated with a mean ICI (±SE) of 0.024±0.001 (averaged across the four comparisons), 

whereas Marginal-PRS was substantially less well-calibrated with a mean ICI of 0.055±0.002. Marginal-

PRS suffered particularly poor calibration in the comparison of control vs. rest (mean ICI of 

0.108±0.006) because Marginal-PRS systematically underestimates the three disorder probabilities 

and overestimates the control probability, as observed in comparisons of true probability vs. predicted 

probability for each diagnostic category (Figure 2). In addition to computing the mean ICI across 

simulation replicates, we computed concatenated ICI for simulated data that was concatenated across 

simulation replicates (Figure 1a and Table S3). The concatenated ICI (averaged across the four 

comparisons) was much lower than the mean ICI for DDx-PRS (0.010 vs. 0.024), likely because the 

concatenated results were less noisy due to 50 times larger test sample size. However, the 

concatenated ICI was only very slightly smaller than the mean ICI for Marginal-PRS (0.054 vs. 0.055), 

which we interpret as follows. The ICI reflects prediction error due to both noise and method 

miscalibration, and the concatenated ICI reduces the noise (most important for DDx-PRS) but not the 

method miscalibration (most important for Marginal-PRS). The absolute difference between the mean 

ICI and concatenated ICI is larger for DDx-PRS than for Marginal PRS, because noise for a well-

calibrated method always increases the ICI whereas noise for a miscalibrated method can either 

increase or decrease the ICI. 

The prediction accuracy of DDx-PRS and Marginal-PRS are reported in Figure 1b and Table S3. 

The accuracy of DDx-PRS averaged across the four comparisons (mean AUC of 0.650±0.001) was 

slightly higher than the accuracy of Marginal-PRS (average AUC of 0.639±0.001). The difference in AUC 

was most pronounced for the comparison of MDD vs. rest (0.618±0.002 for DDx-PRS vs. 0.575±0.002 

for Marginal-PRS) because DDx-PRS explicitly models the other disorders, whereas Marginal-PRS 

incorrectly assumes that non-MDD individuals are all controls. This has most impact for MDD because 

the genetic distance(MDD,control) is much smaller than distance(SCZ,control) or distance(BIP,control) 

due to the higher prevalence of MDD (Figure 1 of ref.20). The concatenated AUC (averaged across the 

four comparisons) were slightly smaller than the mean AUC (0.645 vs. 0.650 for DDx-PRS and 0.635 

vs. 0.639 for Marginal-PRS), likely due to very slight heterogeneity across simulation replicates that 

slightly reduced the strength of the association between the genetic risk scores and the diagnostic 

category in the concatenated data (see Methods). 

As an additional point of reference, we also compared the accuracy of DDx-PRS in case vs. rest 

comparisons to the accuracy of DDx-PRS in case vs. control comparisons (Table S4). (We note that the 

power to distinguish SCZ vs. control, BIP vs. control, and MDD vs. control was comparable for DDx-

PRS, Marginal-PRS and the standard case-control PRS; Table S4.) We anticipated that distinguishing 

case vs. rest would be a harder problem than distinguishing case vs. control, given the positive genetic 

correlations between disorders. Indeed, case vs. rest accuracy was lower than case vs. control 

accuracy for SCZ (AUC of 0.678±0.001 for SCZ vs. rest, 0.745±0.002 for SCZ vs. control) and BIP 

(0.629±0.002 for BIP vs. rest, 0.701±0.002 for BIP vs. control)—but slightly higher than case vs. control 

accuracy for MDD (0.618±0.002 for MDD vs. rest, 0.610±0.002 for MDD vs. control), because MDD 

cases are genetically more similar to controls than to SCZ cases and BIP cases (Figure 1 of ref.20). 

Interestingly, we observed that the AUC of SCZ vs. rest (0.678±0.001) was lower than the average of 

the AUCs of SCZ vs. control, SCZ vs. BIP, and SCZ vs. MDD (0.695), consistent with the fact that a sample 

with equal numbers of controls, BIP cases and MDD cases and controls is more genetically similar to 
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SCZ cases than each population considered separately (because averaging populations reduces 

genetic distance25) and hence more difficult to distinguish from SCZ cases. We also note that, despite 

the large genetic correlation between SCZ and BIP (0.70), there is significant potential to distinguish 

SCZ vs. BIP (AUC 0.632±0.002).  

We performed six secondary analyses. First, we compared DDx-PRS to Marginal-PRS across all 

6 pairs of diagnostic categories (SCZ vs. BIP, SCZ vs. MDD, BIP vs. MDD, SCZ vs. control, BIP vs. control, 

MDD vs. control), instead of 4 pairs of one diagnostic category vs. rest. Analogous to Figure 1, DDx-

PRS attained substantially better calibration and slightly higher accuracy than Marginal-PRS (Figure S1 

and Table S5). Second, we assessed the calibration of DDx-PRS and Marginal-PRS using calibration 

slope3, instead of ICI. Analogous to Figure 1a, DDx-PRS attained substantially better calibration than 

Marginal-PRS (e.g. 0.073±0.004 vs. 0.151±0.006 for mean absolute difference of slope from 1; Figure 

S2 and Table S6). Third, we repeated our simulations while doubling the GWAS training sample size. 

Once again, DDx-PRS attained substantially better calibration than Marginal-PRS (with ICI values 

similar to Figure 1a) and slightly higher accuracy than Marginal-PRS (with AUC values larger than Figure 

1b for both methods, as expected) (Figure S3 and Table S7). Fourth, we repeated our simulations while 

decreasing the genetic correlation for SCZ-BIP from 0.7 to 0.3. Once again, we observed that DDx-PRS 

attained better calibration and slightly higher accuracy than Marginal-PRS, with both methods 

attaining higher accuracy than in our main simulations due to better discrimination between SCZ and 

BIP (Figure S4 and Table S8). Fifth, we repeated our simulations without sample overlap among 

controls of SCZ, BIP and MDD. We determined that our results were largely unchanged (Figure S5 and 

Table S9). Sixth, we repeated our simulations with unequal test sample sizes for the four diagnostic 

categories. We determined that our results were largely unchanged, with DDx-PRS remaining well-

calibrated when the assumed prior probabilities were equal to the true prior probabilities (Figure S6a-

e); when the prior probabilities were misspecified, results were miscalibrated in the expected 

direction (Figure S6f-m).   

We conclude that DDx-PRS was well-calibrated, and well-powered in distinguishing each 

diagnostic category vs. rest for the simulated training sample sizes. 

 

DDx-PRS distinguishes SCZ, BIP, MDD and controls in PGC data 

We applied DDx-PRS to distinguish 4 diagnostic categories (SCZ, BIP, MDD, control) in data from the 

Psychiatric Genomics Consortium (PGC). The full PGC data that we analyzed consisted of European-

ancestry case-control GWAS summary statistics for SCZ8 (N=53,386 cases and 77,258 controls), BIP14 

(N=41,917 cases and 371,549 controls), and MDD15,16 (N=173,140 cases and 331,433 controls) 

(Methods and Table S1). The test data consisted of merged PGC case-control cohorts comprising 

11,460 individuals of European ancestry (2,865 of each of SCZ, BIP, MDD, control), subdivided into 4 

test cohorts within which SCZ, BIP, MDD, and control samples were matched with respect to country 

and genotyping platform (GER (N=3,368), UK1 (N=1,136), UK2 (N=6,080), USA (N=876); see Methods 

and Table S2). For each disorder-specific PGC case-control cohort that was included in one of the 4 

merged test cohorts, we constructed corresponding training data sets (used to compute case-control 

PRS for each disorder) that excluded that PGC case-control cohort. We computed standard errors (SE) 

on our results based on variation across our four test cohorts, while noting that this does not account 

for variation in the training data. (We note that there is substantial sample overlap between controls 

of each disorder in training data20, but that DDx-PRS is robust to this overlap; see Simulations). We 

assessed the performance of DDx-PRS and Marginal-PRS in classifying each diagnostic category vs. the 

rest, assessing calibration using ICI21 (where 0 is optimal) and prediction accuracy using AUC22.   
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The calibration of DDx-PRS and Marginal-PRS are reported in Figure 3a and Table S10. DDx-

PRS was well-calibrated with a mean ICI (±SE) of 0.026±0.003 (averaged across the four comparisons), 

whereas Marginal-PRS was substantially less well-calibrated with a mean ICI of 0.060±0.003. 

Analogous to simulations (Figure 1a), Marginal-PRS suffered particularly poor calibration in the 

comparison of control vs. rest (ICI of 0.118±0.003), because Marginal-PRS systematically 

underestimates the three disorder probabilities and overestimates the control probability, as 

observed in comparisons of true probability vs. predicted probability for each diagnostic category 

(Figure 4). We also computed concatenated ICI for PGC data that was concatenated across the 4 test 

cohorts (Figure 3a and Table S10). The concatenated ICI (averaged across the four comparisons) was 

slightly smaller than the mean ICI for DDx-PRS (0.023 vs. 0.026), likely because the concatenated 

results were slightly less noisy due to 4 times larger test sample size. However, the concatenated ICI 

was only very slightly smaller than the mean ICI for Marginal-PRS (0.059 vs. 0.060), analogous to 

simulations. 

 The prediction accuracy of DDx-PRS and Marginal-PRS are reported in Figure 3b and Table 

S10. DDx-PRS attained similar prediction accuracy (mean AUC of 0.642±0.007) as Marginal-PRS (mean 

AUC of 0.643±0.007), including similar prediction accuracy for each diagnostic category vs. rest (Figure 

3b). Analogous to simulations (Figure 1b), the relative performance of DDx-PRS vs. Marginal-PRS was 

strongest for the MDD vs. rest comparison. Results for concatenated AUC (concatenated across the 4 

test cohorts) were very similar to results for mean AUC. 

 We also compared the accuracy of DDx-PRS in case vs. rest comparisons to the accuracy of 

DDx-PRS in case vs. control comparisons (Table S11). Case vs. rest accuracy was lower than case vs. 

control accuracy for SCZ (AUC of 0.655±0.010 for SCZ vs. rest, 0.728±0.016 for SCZ vs. control), BIP 

(0.639±0.013 for BIP vs. rest, 0.720±0.013 for BIP vs. control), and MDD (0.591±0.009 for MDD vs. rest, 

0.618±0.017 for MDD vs. control; non-significant difference), similar to results in simulations. We also 

observed significant potential to distinguish SCZ vs. BIP (AUC 0.633±0.003; Table S12), despite the 

large genetic correlation between SCZ and BIP (0.70). 

 We performed four secondary analyses. First, we repeated our analyses while analysing the 

four test cohorts separately. We observed similar results for all four test cohorts individually as for the 

mean results in Figure 3 (Figure S7). Second, we compared DDx-PRS to Marginal-PRS across all 6 pairs 

of diagnostic categories (SCZ vs. BIP, SCZ vs. MDD, BIP vs. MDD, SCZ vs. control, BIP vs. control, MDD 

vs. control), instead of 4 pairs of each diagnostic category vs. rest. Analogous to Figure 3, DDx-PRS 

attained substantially better calibration and similar accuracy as Marginal-PRS (Figure S8 and Table 

S12). Third, we assessed the calibration of DDx-PRS and Marginal-PRS using calibration slope3, instead 

of ICI. Analogous to Figure 3, DDx-PRS attained better calibration than Marginal-PRS (Figure S9 and 

Table S13). Fourth, we repeated our analyses at different QC thresholds (less strict QC for SNPs and/or 

stricter QC for individuals; see Methods). Results were similar to our primary results reported in Figure 

3 (Figure S10 and Table S14). 

We conclude that DDx-PRS was well-calibrated, and well-powered in distinguishing each 

diagnostic category vs. rest relative to the PGC training sample sizes analysed. 

 

Comparison of DDx-PRS to methods that require tuning data 

An advantage of DDx-PRS is that it does not require additional tuning data to train parameters 

connecting case-control PRS to probabilities of each diagnostic category, offering practical advantages 

for implementation. However, for completeness, we also compared the performance of DDx-PRS to 

two methods that do require tuning data: DDx-PRS-tuned and Direct-tuned (Table 2 and Methods). 
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We primarily focused on cross-cohort tuning, in which the tuning data set is from a different cohort 

than test data (but we also report results for within-cohort tuning). For every possible choice of tuning 

cohort and test cohort in PGC data (4x3=12 analyses, as we analysed four tuning/test cohorts; Table 

S2), we restricted tuning data to 200 samples from each of the four diagnostic categories (total 

Ntuning=800) and evaluated the performance of each method in test data. 

 The calibration of DDx-PRS, DDx-PRS-tuned and Direct-tuned are reported in Figure 5a and 

Table S15. The three methods attained similar calibration with mean ICIs (±SE) averaged across the 

four comparisons of 0.026±0.002, 0.032±0.004, and 0.030±0.002 respectively (Figure 5a and Table 

S15). A comparison of true vs. predicted probabilities further illustrated that the three methods had 

similar calibration (Figure 6). We also computed concatenated ICI for PGC data that was concatenated 

across 4 test cohorts for DDx-PRS (which does not use tuning data) or 12 pairs of tuning-test cohorts 

for DDx-PRS-tuned and Direct-tuned. The concatenated ICI (averaged across the four comparisons) 

were slightly smaller than the mean ICI, analogous to Figure 3a. 

 The prediction accuracy of DDx-PRS, DDx-PRS-tuned and Direct-tuned are reported in Figure 

5b and Table S15. The three methods attained comparable prediction accuracies with mean AUCs 

(±SE) of 0.0642±0.0039, 0.0637±0.0034, and 0.0634±0.0040, respectively. Results for concatenated 

AUC were very similar to results for mean AUC, analogous to Figure 3b. 

 We performed three secondary analyses. First, we compared DDx-PRS to DDx-PRS-tuned and 

Direct-tuned in simulations (Methods). We determined that DDx-PRS, DDx-PRS-tuned and Direct-

tuned yielded comparable results (Figure S11 and Table S16). Second, we repeated our PGC analyses 

with smaller tuning data sets (Ntuning=4x100 and Ntuning=4x50 respectively). We determined that the 

results were minimally affected by smaller tuning sample size (Figure S12 and Table S17). Third, we 

compared DDx-PRS to DDx-PRS-tuned and Direct-tuned using within-cohort tuning (Ntuning=4x200), in 

which the tuning data set is from the same cohort as test data (although this type of tuning data is 

much less likely to be available in clinical settings). We observed minimal performance improvement 

of DDx-PRS-tuned and Direct-tuned using within-cohort tuning, and that results for DDx-PRS, DDx-

PRS-tuned and Direct-tuned remained comparable (Figure S13 and Table S18).  

We conclude that DDx-PRS produces comparable results to DDx-PRS-tuned and Direct-tuned; 

thus, DDx-PRS is likely to be preferred in most settings (as it does not require tuning data).  

 

Projections of clinical utility at larger training sample sizes 

We sought to assess the clinical utility of DDx-PRS in PGC data and in projections to larger training 

sample sizes. For each diagnostic category (SCZ, BIP, MDD, control), we computed the true diagnosis 

probability in each decile of predicted diagnosis probability (similar to previous studies of clinical 

utility26–29. 

 Results for PGC data are reported in Figure 7 (dashed black curve) and Table S19. The top 

decile of predicted diagnosis probability yielded true diagnosis probabilities of 0.49 for SCZ, 0.44 for 

BIP, 0.33 for MDD and 0.47 for controls (close to the predicted diagnosis probabilities; Table S20), 

substantially above baseline probabilities of 0.25.  

 We computed projections to larger training sample sizes by directly simulating case-control 

PRS (instead of simulating individual-level SNP data; Figure 1 and Figure 2) at different values of % of 

SNP-heritability captured by case-control PRS, ranging from 40% (similar to PGC data; 42-47%) to 100% 

(a best-case scenario, but already approximately attained for height30) (Methods). Results for 

projections to larger training samples sizes are reported in Figure 7 (solid blue curves) and Table S19. 

In simulations at SNP-heritability captured by case-control PRS equal to 40%, the top decile of 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.24302228doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302228


 -10- 

predicted diagnosis probability yielded true diagnosis probabilities of 0.49 for SCZ, 0.38 for BIP, 0.39 

for MDD and 0.47 for controls, approximately recapitulating analyses of PGC data. In simulations at 

SNP-heritability captured by case-control PRS equal to 100%, the top decile of predicted diagnosis 

probability yielded true diagnosis probabilities of 0.67 for SCZ, 0.54 for BIP, 0.48 for MDD and 0.57 for 

controls, implying considerable potential for clinical utility. 

 We performed two secondary analyses. First, we repeated the above analyses for DDx-PRS-

tuned and Direct-tuned. We determined that results were similar to DDx-PRS (Figure S14 and Table 

S21). (We did not perform these analyses for Marginal-PRS, as this method is not well-calibrated; 

Figure 1a and Figure 3a.) Second, we performed simulations at the exact empirical values of % of SNP-

heritability captured by case-control PRS, yielding results that were close to the empirical results 

(Figure S15 and Table S22).  

 We conclude that DDx-PRS has considerable potential for clinical utility at larger training 

sample sizes under certain circumstances (see Discussion). 

 

Discussion 

Differential diagnosis is a common clinical challenge, specifically for disorders that are phenotypically 

(and genetically) similar; in particular, psychiatric disorders often present with non-specific symptoms 

at disorder onset, but tools to support differential diagnosis are limited. Here, we developed a new 

method, DDx-PRS, to distinguish related disorders from each other as well as controls by modeling 

variance/covariance structure across disorders, leveraging case-control PRS and prior clinical 

probabilities for each diagnostic category. We determined that DDx-PRS is well-calibrated and well-

powered based on the training sample sizes analysed, outperforming a simpler method (Marginal-

PRS) in both simulated data and empirical PGC data. A strength of DDx-PRS is that is does not use 

additional tuning data to train parameters connecting case-control PRS to probabilities of each 

diagnostic category. When comparing DDx-PRS to methods that do require additional tuning data 

(DDx-PRS-tuned and Direct-tuned), we determined that DDx-PRS produced comparable results, 

confirming that DDx-PRS is an effective method that is likely to be preferred in most settings as it does 

not require tuning data. We also assessed the clinical utility of DDx-PRS in projections to larger training 

sample sizes, indicating considerable potential for future clinical utility under certain circumstances 

(see below). 

 We are currently aware of only one previous method for distinguishing different disorders 

using genetic data (G-PROB)10. Unlike DDx-PRS, G-PROB uses only genome-wide significant variants. 

This may be suitable for distinguishing inflammatory arthritis-causing diseases for which G-PROB was 

developed, as these diseases are relatively less polygenic11,12; however, this approach will have limited 

utility for highly polygenic disorders such as psychiatric disorders, for which the contribution of 

genome-wide significant variants is limited1,2,8,11,12 (e.g., for SCZ, 2.4% of liability-scale variance is 

explained by genome-wide significant variants vs. 7.3% explained by a PRS using all genome-wide 

SNPs8). As G-PROB computes risk based on log(OR) effect-sizes, it is unclear how to extend this method 

to a genome-wide prediction framework. Furthermore, G-PROB is similar to Marginal-PRS in that the 

disorder probabilities are computed separately for every diagnostic category and later combined into 

a multi-diagnostic outcome, thus lacking the advantages obtained by modeling the 

variance/covariance structure across disorders (as in DDx-PRS). Finally, G-PROB aims to distinguish 

different disorders but does not additionally distinguish disorder cases from controls, the problem 

that we focus on here. 
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 DDx-PRS has considerable potential for clinical utility, subject to several important 

considerations. First, increasing the probability for a diagnostic category in differential diagnosis can 

be clinically useful; for example, for SCZ/BIP/MDD/control, increasing probability from a prior baseline 

risk of 25% to genetically informed risk of ~50% may guide clinicians in selecting interventions such as 

preventive psychotherapy, targeted follow-up, and psychoeducation pertaining to risk factors and 

early symptoms, which can provide important benefits31,32. However, we caution that a diagnostic 

probability of ~50% for psychiatric disorders does not justify starting psychiatric medication due to 

significant potential side effects33,34. Second, for clinical utility it is important to select individuals at 

moderate disorder risk (e.g. 25%); increasing diagnostic category probability from e.g. a prior baseline 

risk of 1% to genetically informed risk of 3% (or of 95% to 97%) is not clinically useful. Patients at ultra-

high risk (UHR)35,36 for psychosis (as occurring in SCZ), who are already systematically identified in 

Mental Health Care37 and at increased risk not only for psychosis (long-term risk of 38%)38 but also for 

other disorders36, could be a suitable group for implementing DDx-PRS in clinical care. Third, other 

examples of clinical utility are (i) to distinguish between schizophrenia, bipolar disorder, and 

depression with psychotic features in patients who present with a psychosis39 by specifying a lower 

prior control probability, or (ii) to distinguish between bipolar disorder and depression in patients who 

present with a depressive episode by specifying lower SCZ and control prior probabilities. Fourth, 

ethical aspects should carefully be considered40–42. Specifically, not all individuals may be interested 

to know their risk for SCZ/BIP/MDD: informed consent should be thoroughly provided by trained 

professionals prior to testing, and opt-out of genetic testing should be made very easy (if not the 

default). Fifth, future clinical intervention studies will be needed to ultimately determine the clinical 

utility. Sixth, we note that, although we have emphasized psychiatric disorders in this study, DDx-PRS 

has potential for clinical utility in other settings; for example, previous studies have emphasized the 

importance of distinguishing inflammatory arthritis-causing diseases10, latent autoimmune diabetes 

vs. type 2 diabetes43, and asthma vs. COPD vs. asthma-COPD overlap syndrome44. 

We note several limitations of this study. First, DDx-PRS has been developed for within-

ancestry prediction, and extending DDx-PRS to cross-ancestry prediction45–47 is an important direction 

for future research to ensure equitable application of genetic prediction. Important progress to 

improve cross-ancestry prediction accuracy has already been made29,29,48–52; we additionally highlight 

the importance of improving the calibration of cross-ancestry prediction53. Second, DDx-PRS provides 

predictions based on polygenic effects of common variants with small effects5; extending DDx-PRS to 

also include rare variants with large effects (such as 22qdel in SCZ54,55) is a direction for future research. 

Even though rare variants may contribute little to prediction accuracy at the group level, rare variants 

with large effects have high clinical value for individuals who are carriers. Third, in the methods that 

require tuning data, we did not consider complex multiclass predictors such as XGBoost, which have 

proven useful in applications involving many predictive features56. However, given that we consider 

only three predictive features (the case-control PRS for SCZ, BIP and MDD) for four diagnostic 

categories, we anticipate that such predictors would provide little benefit. Fourth, the predicted 

posterior disorder probabilities computed by DDx-PRS depend strongly on the prior probabilities, 

which may be misspecified. However, the relative change between the prior and posterior diagnostic 

category probability is robust to misspecification of the prior, and thus still informative. Nevertheless, 

further developing strategies to specify accurate prior disorder probabilities (such as screening for 

UHR37) is an important direction for future research. Fifth, integrating risk factors that are strongly 

correlated with the case-control PRS (e.g. family history) requires further investigation, and model 
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adjustments may be required57–59. Despite these limitations, DDx-PRS offers a novel and useful 

method for leveraging genomic information to inform differential diagnosis.   
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Methods 

DDx-PRS method 

DDx-PRS consists of 4 steps: (1) estimate prior probabilities of each possible configuration of liabilities; 

(2) compute case-control PRS; (3) estimate analytical variances and covariances across disorders of 

liabilities and case-control PRS (overall and for each configuration of liabilities); and (4) estimate 

posterior probabilities for each test sample. We describe each step in detail below. 

 

Step 1. Estimate prior probabilities of each possible configuration of liabilities. 

DDx-PRS relies on the fact that, for n disorders, there exist 2n possible configurations, 𝑐, of liabilities 

(above or below the liability threshold for each disorder13), e.g. 8 possible configurations for 3 

disorders; the mapping from configurations of liabilities to diagnostic categories is informed by the 

PGC classifications used in ref. 8,14–16 (Table 1). Given prior clinical probabilities of each diagnostic 

category, DDx-PRS estimates prior probabilities of each configuration of liabilities by assuming random 

sampling of liabilities within each diagnostic category. We note that the prior clinical probability will 

typically be much larger than the population prevalence for help-seeking individuals. For simplicity, 

we assume a clinical prior probability of 25% for each of SCZ, BIP, MDD and control for the main 

analyses presented in this paper; however, in application of DDx-PRS, the prior can be specified flexibly 

by the physician based on e.g. psychiatric examination, questionnaires and/or disorder prevalence in 

a specific clinical setting. 

 Specifically, the pairwise genetic correlations SCZ-BIP, SCZ-MDD and BIP-MDD are estimated 

with cross-trait LDSC19. (We note that cross-trait LDSC is robust to sample overlap in controls in 

training data.19) We assume that the correlation of environmental effects equals the genetic 

correlation60,61; thus, the variance-covariance matrices of environmental and genetic effects are 

specified in the full population, which are added to obtain the variance covariance matrix of liabilities 

in the full population. Based on the liability thresholds corresponding to the respective disease 

prevalences (𝐾𝑆𝐶𝑍 = 0.01, 𝐾𝐵𝐼𝑃 = 0.02, 𝐾𝑀𝐷𝐷 = 0.16)8,14,62, normal theory gives the expected 

prevalence of the eight configurations in Table 1 in the full population (e.g. 0.0024 for configuration 

𝑐1, 0.0017 for configuration 𝑐2, 0.0022 for configuration 𝑐3 and 0.0037 for configuration 4, comprising 

the diagnostic category SCZ in Table 1). These are now proportionally scaled to add up to the specified 

prior probability (i.e. 25% for the main analyses in this paper) of diagnostic category (e.g. 𝑃(𝑐1) =

0.0591 for configuration 𝑐1, 𝑃(𝑐2) = 0.04215 for  𝑐2, 𝑃(𝑐3) = 0.0554 for  𝑐3 and 𝑃(𝑐4) = 0.0934 

for  𝑐4, add up to 0.25 for the diagnostic category SCZ in Table 1). To aid interpretation of the results, 

we specified the prior probabilities of diagnostic categories throughout this paper at 25% for each of 

SCZ, BIP, MDD and controls. However, we note that the prior probabilities can be specified flexibly, 

based on e.g. questionnaires, incidence of psychiatric diagnoses in a specific clinical setting, and/or 

psychiatric examination by a psychiatrist. 

 Step 1 of DDx-PRS is computationally fast, with a running time of <10 seconds (excluding the 

running time of cross-trait LDSC). 

 

Step 2. Compute case-control PRS. 

DDx-PRS computes case-control PRSs by applying PRS-CS5 in two datasets: 1000G18 and the PGC test 

data (see below). The case-control PRSs are scaled to their respective liability scales13 by (i) setting 

𝑁𝑒𝑓𝑓  as input in PRS-CS, and (ii) multiplying the posterior mean betas outputted by PRS-CS by 

{𝐾𝐷
2(1 − 𝐾𝐷)2} {𝑧𝐷

2 ∗ 0.5(1 − 0.5)}⁄  where 𝐾𝐷  is the prevalence of the respective disorder (i.e. SCZ, 
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BIP or MDD) and 𝑧𝐷  the height of the normal distribution at the liability threshold corresponding to 

𝐾𝐷  23 (more details on applying PRS-CS are provided below; all analyses in this paper are restricted to 

European ancestry). 

In brief, the intuition of this transformation is that by specifying 𝑁𝑒𝑓𝑓 as input in PRS-CS, the 

posterior mean beta’s will be on the standardized observed scale with 50-50 case-control 

ascertainment20, which are then transformed to the liability scale with Eq 23 of ref.23. We note that 

case-control PRS on the liability scale have the property that the slope of regressing the liability on 

this PRS has an expected value of 1. A detailed description and evaluation of transforming case-control 

PRS to the liability scale is provided in ref.17. We note that the posterior mean betas could have also 

been computed with SBayesR6 (or any other Bayesian polygenic scoring method that has been shown 

to be well-calibrated17). 

We use the individual-level 1000G data to compute the variances/covariances of the case-

control PRS (see step 3). However, we note these variances/covariances could have also been 

estimated using summary-level LD data from 1000G in combination with the posterior mean betas, 

which would make DDx-PRS a method fully based on summary statistics. Nevertheless, in our analyses, 

we used the individual-level 1000G data, because 1000G is publicly available and there is no significant 

computational advantage of used summary-level LD data from 1000G instead of individual-level 

1000G data. Instead of 1000G, any other population reference sample could have been used as well 

for this purpose. However, we specifically did not use the test data to estimate the 

variances/covariances of the case-control PRS, to ensure full independency of the test data from the 

data used to train DDx-PRS. 

The computational cost of step 2 of DDx-PRS depends on the PRS method being applied, e.g. 

PRS-CS5. 

 

Step 3. Estimate analytical variances and covariances across disorders of liabilities and case-control 

PRS (overall and for each configuration of liabilities). 

For all configurations 𝑐 of liabilities (i.e. the eight rows in Table 1), we compute the means and 

covariances of case-control PRSs and liabilities as follows.  

 First, we consider the general population (i.e. not conditioned on case/control status) 

represented in the 1000G data. In the 1000G data, we estimate the variances and covariances of the 

case-control PRSs. We note that the variances of the case-control PRSs in the full population equal the 

variances explained by the case-control PRSs on their respective liability scales, i.e. 𝑣𝑎𝑟(𝑃𝑅𝑆) =

𝑟𝑙𝑖𝑎𝑏~𝑃𝑅𝑆
2 , because the case-control PRSs are well-calibrated on their respective liability scales and 

because the variance of the liabilities is modelled to be 1 (more details are described in ref.17). (We 

note that estimating and accounting for correlations between case-control PRS across disorders 

accounts for sample overlap in controls in training data.) We define the following variance/covariance 

matrix Σ: 

 

(
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𝜎𝑃𝑅𝑆𝑀𝐷𝐷

2 𝜎𝑃𝑅𝑆𝑀𝐷𝐷 ,𝑙𝑖𝑎𝑏𝑆𝐶𝑍
𝜎𝑃𝑅𝑆𝑀𝐷𝐷 ,𝑙𝑖𝑎𝑏𝐵𝐼𝑃

𝜎𝑃𝑅𝑆𝑀𝐷𝐷,𝑙𝑖𝑎𝑏𝑀𝐷𝐷

𝜎𝑃𝑅𝑆𝑆𝐶𝑍 ,𝑙𝑖𝑎𝑏𝑆𝐶𝑍
𝜎𝑃𝑅𝑆𝐵𝐼𝑃 ,𝑙𝑖𝑎𝑏𝑆𝐶𝑍

𝜎𝑃𝑅𝑆𝑀𝐷𝐷,𝑙𝑖𝑎𝑏𝑆𝐶𝑍
𝜎𝑙𝑖𝑎𝑏𝑆𝐶𝑍

2 𝜎𝑙𝑖𝑎𝑏𝑆𝐶𝑍 ,𝑙𝑖𝑎𝑏𝐵𝐼𝑃
𝜎𝑙𝑖𝑎𝑏𝑆𝐶𝑍 ,𝑙𝑖𝑎𝑏𝑀𝐷𝐷

𝜎𝑃𝑅𝑆𝑆𝐶𝑍 ,𝑙𝑖𝑎𝑏𝐵𝐼𝑃
𝜎𝑃𝑅𝑆𝐵𝐼𝑃 ,𝑙𝑖𝑎𝑏𝐵𝐼𝑃

𝜎𝑃𝑅𝑆𝑀𝐷𝐷,𝑙𝑖𝑎𝑏𝐵𝐼𝑃
𝜎𝑙𝑖𝑎𝑏𝑆𝐶𝑍 ,𝑙𝑖𝑎𝑏𝐵𝐼𝑃

𝜎𝑙𝑖𝑎𝑏𝐵𝐼𝑃

2 𝜎𝑙𝑖𝑎𝑏𝐵𝐼𝑃 ,𝑙𝑖𝑎𝑏𝑀𝐷𝐷

𝜎𝑃𝑅𝑆𝑆𝐶𝑍 ,𝑙𝑖𝑎𝑏𝑀𝐷𝐷
𝜎𝑃𝑅𝑆𝐵𝐼𝑃,𝑙𝑖𝑎𝑏𝑀𝐷𝐷

𝜎𝑃𝑅𝑆𝑀𝐷𝐷 ,𝑙𝑖𝑎𝑏𝑀𝐷𝐷
𝜎𝑙𝑖𝑎𝑏𝑆𝐶𝑍 ,𝑙𝑖𝑎𝑏𝑀𝐷𝐷

𝜎𝑙𝑖𝑎𝑏𝐵𝐼𝑃 ,𝑙𝑖𝑎𝑏𝑀𝐷𝐷
𝜎𝑙𝑖𝑎𝑏𝑀𝐷𝐷

2
)
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The upper-left 3x3 submatrix follows directly from the described estimates in the 1000G data. The 

covariances 𝜎𝑃𝑅𝑆𝐴 ,𝑙𝑖𝑎𝑏𝐵
 are computed by 𝑟𝐴

2 ∗ 𝑟𝑔𝐴𝐵
∗ √ℎ𝑙𝐵

2 /ℎ𝑙𝐴
2  , where 𝑟𝐴

2 = 𝜎𝑃𝑅𝑆𝐴

2  represents the 

variance explained in 𝑙𝑖𝑎𝑏𝐴 by case-control 𝑃𝑅𝑆𝐴;  ℎ𝑙𝐴
2  (resp. ℎ𝑙𝐵

2 ) the liability scale SNP-heritability of 

A (resp. B) estimated with LD score regression (based on the baseline LD v2.0 model63–65); and 𝑟𝑔𝐴𝐵
 the 

genetic correlation between disorder A and B estimated with cross-trait LD score regression19 (we 

note that cross-trait LDSC is robust to sample overlap in controls in training data.). The variances 𝜎𝑙𝑖𝑎𝑏𝐴

2  

equal 1 per model assumptions of the liability scale, and the covariances 𝜎𝑙𝑖𝑎𝑏𝐴,𝑙𝑖𝑎𝑏𝐵
 are estimated by 

assuming the correlation of environmental effects are equal to the genetic correlation (see also step 

1). The means equal (0,0,0,0,0,0) in the general population; this fully defines this six-dimensional 

normal distribution in the general population. In our application, the (cross-trait) LD score regression 

is based on the training data (i.e. summary statistics) of the PGC data (see below). The values of Σ 

inferred in this study are reported in Table S23. 

 The variances/covariances and means in all 8 configurations 𝑐 of liabilities (i.e. the eight rows 

in Table 1) follow by iteratively applying theory of the truncated normal distribution, as described 

previously66,67 where truncation is based on the respective disease prevalences (𝐾𝑆𝐶𝑍 = 0.01, 𝐾𝐵𝐼𝑃 =

0.02, 𝐾𝑀𝐷𝐷 = 0.16) and their corresponding liability thresholds (𝑡ℎ𝑟𝑒𝑠ℎ𝑆𝐶𝑍 = 2.326, 𝑡ℎ𝑟𝑒𝑠ℎ𝐵𝐼𝑃 =

2.054, 𝑡ℎ𝑟𝑒𝑠ℎ𝑀𝐷𝐷 = 0.994). The variances/covariances and means in all 8 configurations 𝑐 of 

liabilities are reported in Table S23. 

For every configuration 𝑐𝑗, this provides the means and variances/covariances of the 

distribution of the three case-control PRS for SCZ, BIP and MDD, which are approximately normally 

distributed (even though the liabilities are no longer normally distributed after truncating, the case-

control PRS are still approximately normally distributed due to the limited proportion (<<1) of variance 

explained in liabilities by the PRS). Thus, for every value of 𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖 = (𝑃𝑅𝑆𝑆𝐶𝑍,𝑖 , 𝑃𝑅𝑆𝐵𝐼𝑃,𝑖 , 𝑃𝑅𝑆𝑀𝐷𝐷,𝑖), 

the density 𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖|𝑐𝑗) in configuration 𝑐𝑗  is defined by the properties of the multivariate normal 

distribution.  

The running time of step 3 of DDx-PRS is <10 seconds. 

 

Step 4. Estimate posterior probabilities for each test sample. 

In step 4, DDx-PRS applies Bayes’ Theorem to estimate posterior probabilities of each configuration 

of liabilities for each test sample, conditional on their case-control PRS. Letting 𝑐𝑗  denote configuration 

𝑗 and 𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖  denote the case-control PRS for each disorder of individual 𝑖, these posterior probabilities 

can be expressed as  

 

𝑃(𝑐𝑗|𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖) = 𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 

𝑖|𝑐𝑗)𝑃(𝑐𝑗) 𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖)⁄     Eq. 1 

 

where 𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖|𝑐𝑗) denotes the probability density of 𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 

𝑖  given configuration 𝑐𝑗  (computed from the 

output of step 3); 𝑃(𝑐𝑗) denotes the prior probability of configuration 𝑐𝑗  (computed in step 1); and 

𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖) denotes the probability density of 𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 

𝑖  summed across all eight configurations weighted by 

the prior probabilities, i.e. 𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖) = ∑ 𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 

𝑖|𝑐𝑗′)𝑃(𝑐𝑗′)𝑗′ . The posterior probabilities of each 

configuration of liabilities are subsequently combined into posterior probabilities of each diagnostic 
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category using the information in Table 1 (e.g. ∑ 𝑃(𝑐𝑗′|𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖)

4
𝑗′=1  provides the posterior probability of 

the diagnostic category SCZ).  

Step 4 of DDx-PRS is computationally fast, with a running time < 1 minute in analysis of the 

concatenated PGC data (N=11,460; see below). 

 

Marginal-PRS method 

We compare the results of DDx-PRS to the results of a simpler method, Marginal-PRS (Table 2). 

Marginal-PRS works in three steps: (1) estimate marginal disorder probabilities; (2) estimate 

probability to be a control; (3) rescale probabilities to add up to 1.  

 

Step 1. Estimate marginal disorder probabilities. 

Marginal-PRS computes the marginal disorder probabilities, 𝑃(𝑆𝐶𝑍|𝑃𝑅𝑆𝑆𝐶𝑍,𝑖), 𝑃(𝐵𝐼𝑃|𝑃𝑅𝑆𝐵𝐼𝑃,𝑖) and 

𝑃(𝑀𝐷𝐷|𝑃𝑅𝑆𝑀𝐷𝐷,𝑖) one disorder at the time using the Bayesian polygenic score Probability 

Conversion (BPC) approach17. Briefly, for every disorder 𝐴, the BPC approach transforms the case-

control PRS to its liability scale and models the mean and variance of the PRS based on 1000G data 

(analogue to step 2 of DDx-PRS). Subsequently, Bayes’ Theorem is applied to estimate the posterior 

probability of being a case for disorder 𝐴 as 𝑃(𝐷𝐴 = 1|𝑃𝑅𝑆𝐴) =

𝑃(𝑃𝑅𝑆𝐴|𝐷𝐴 = 1)𝑃(𝐷𝐴 = 1) 𝑃(𝑃𝑅𝑆𝐴)⁄ . The prior probability 𝑃(𝐷𝐴 = 1) directly follows from the 

prior probability of the diagnostic categories in Table 1. Marginal-PRS assumes that those with 𝐷𝐴 =

0 are random controls (which is not correct as these contain an over representation of the two other 

diagnostic categories).  

 

Step 2. Estimate probability to be a control. 

Marginal-PRS computes the probability to be a control as 𝑃(𝑐𝑜𝑛𝑡𝑟𝑜𝑙) = (1 − 𝑃(𝑆𝐶𝑍))(1 −

𝑃(𝐵𝐼𝑃))(1 − 𝑃(𝑀𝐷𝐷)). 

 

Step 3. Rescale probabilities to add up to 1. 

Marginal-PRS rescales these four probabilities to add up to 1. We note two important limitations of 

Marginal-PRS compared to DDx-PRS. First, Marginal-PRS does not model the covariance structure 

between the respective case-control PRS. Second, when computing marginal disorder probabilities, 

Marginal-PRS does not account for the other disorders (e.g., when computing 𝑃(𝑆𝐶𝑍), Marginal-PRS 

incorrectly assumes that non-SCZ individuals are all controls). 

 

Methods that require tuning data: DDx-PRS-tuned & Direct-tuned 

DDx-PRS and Marginal-PRS do not require additional tuning data to train parameters connecting case-

control PRS to probabilities of each diagnostic category. We also considered two methods that do 

require tuning data: DDx-PRS-tuned and Direct-tuned (Table 2). The tuning data consists of individuals 

from the four diagnostic categories (SCZ, BIP, MDD and controls) with the case-control PRS for SCZ, 

BIP and MDD. The tuning data is completely independent from both the training data and the test 

data. 

 

DDx-PRS-tuned 

DDx-PRS consists of the same 4 steps as DDx-PRS: (1) estimate prior probabilities of each possible 

configuration of liabilities; (2) compute case-control PRS; (3) estimate analytical variances and 

covariances across disorders of liabilities and case-control PRS (overall and for each configuration of 
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liabilities); and (4) estimate posterior probabilities for each test sample. We describe the difference 

between DDx-PRS-tuned and DDx-PRS in detail below.  

 

Step 1. Estimate prior probabilities of each possible configuration of liabilities. 

Step 1 of DDx-PRS-tuned is the same as step 1 of DDx-PRS (see above). 

 

Step 2. Compute case-control PRS. 

DDx-PRS-tuned computes case-control PRSs by applying PRS-CS5 in two datasets: the PGC tuning data 

and the PGC test data (see below). The tuning data is used to estimate the variance explained by 𝑃𝑅𝑆𝐴 

(𝑟𝐴
2) based on case vs. control analyses for disorder 𝐴 as is commonly done, i.e. by regressing 

case/control status on the PRS with subsequently transforming the variance explained to the liability 

scale24 (note that DDx-PRS approximates 𝑟𝐴
2 based on 1000G data; see steps 2 and 3 of DDx-PRS). 

Subsequently, DDx-PRS-tuned uses the tuning data to scale the 𝑃𝑅𝑆𝐴 such that 𝑣𝑎𝑟(𝑃𝑅𝑆𝐴) = 𝑟𝐴
2 

based on data of controls (as an approximation of data of the general population; this replaces step 2 

in DDx-PRS). The scaling parameters of 𝑃𝑅𝑆𝐴 are based on the tuning data and then also applied on 

every test sample.  

 

Step 3. Estimate analytical variances and covariances across disorders of liabilities and case-control 

PRS (overall and for each configuration of liabilities). 

Step 3 of DDx-PRS-tuned is almost the same as step 3 of DDx-PRS (see above). The only difference is 

that in DDx-PRS-tuned, the variance/covariance of the case-control PRS (i.e. the upper-left quadrant 

of Σ above) is based on the case-control PRS in the PGC tuning data (see step 2 of DDx-PRS-tuned).  

 

Step 4. Estimate posterior probabilities for each test sample. 

Step 4 of DDx-PRS-tuned is the same as step 4 of DDx-PRS (see above). 

 

Other than these two adjustments in steps 2 and 3 of DDx-PRS, DDx-PRS-tuned follows the rest of step 

3 and the full steps 1 and 4 of DDx-PRS precisely (specifically, also still modelling the eight 

configurations 𝑐𝑗). Thus, compared to DDx-PRS, DDx-PRS-tuned takes away the uncertainty that comes 

from the assumptions made to assess 𝑟𝐴
2 based on 1000G data17. 

 

Direct -tuned 

Direct-tuned uses a simpler and more direct approach than DDx-PRS-tuned. Direct-tuned consists of 

4 steps: (1) specify prior probabilities of each diagnostic category; (2) compute case-control PRS; (3) 

estimate variances and covariances across case-control PRS (for the diagnostic categories); and (4) 

estimate posterior probabilities for each test sample. We describe each step in detail below. 

 

Step 1. Specify prior probabilities of each diagnostic category. 

The prior probabilities of each diagnostic category need to be specified as input for Direct-tuned. 

(Contrary to DDx-PRS, Direct-tuned does not estimate the prior probabilities of each possible 

configuration of liabilities; Table 1)  

 

Step 2. Compute case-control PRS. 

DDx-PRS-tuned computes case-control PRSs by applying PRS-CS5 in two datasets: the PGC tuning data 

and the PGC test data (see below). 
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Step 3. Estimate variances and covariances case-control PRS (for the diagnostic categories). 

For each diagnostic category 𝑑𝑐𝑗  (i.e., SCZ/BIP/MDD/control), Direct-tuned estimated the 

variance/covariances of the case-control PRS in the PGC tuning data (see below). Thus, for every value 

of 𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖 = (𝑃𝑅𝑆𝑆𝐶𝑍,𝑖 , 𝑃𝑅𝑆𝐵𝐼𝑃,𝑖 , 𝑃𝑅𝑆𝑀𝐷𝐷,𝑖), the density 𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 

𝑖|𝑑𝑐𝑗) in diagnostic category 𝑑𝑜𝑗  is 

estimated directly from the tuning data.  

 

Step 4. Estimate posterior probabilities for each test sample. 

For each test sample, the posterior probability of diagnostic category 𝑑𝑜𝑗  follows from Bayes’ Theorem 

 

 𝑃(𝑑𝑐𝑗|𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖) = 𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 

𝑖|𝑑𝑐𝑗)𝑃(𝑑𝑐𝑗) 𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖)⁄    Eq. 2 

 

where 𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖|𝑑𝑐𝑗) denotes the probability density of 𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 

𝑖 given diagnostic category 𝑑𝑜𝑗  (computed 

directly from the tuning data); 𝑃(𝑑𝑐𝑗) denotes the prior probability of diagnostic category 𝑑𝑜𝑗; and 

𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖) denotes the probability density of 𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 

𝑖  summed across all four diagnostic categories 

weighted by the prior probabilities, i.e. 𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 
𝑖) = ∑ 𝑃(𝑃𝑅𝑆⃑⃑⃑⃑ ⃑⃑⃑⃑ 

𝑖|𝑑𝑐𝑗′)𝑃(𝑑𝑐𝑗′)𝑗′ .  

 

Main simulations with individual-level SNP data 

We simulated data based on the genetic architectures of SCZ8, BIP14 and MDD15,16, with liability-scale 

SNP-heritabilities23 ℎ𝑙
2 of 0.24, 0.19 and 0.09, population prevalences of 1%, 2% and 16%, and liability-

scale case-control PRS variance explained24 𝑟2 of 0.10, 0.09 and 0.04, respectively, and genetic 

correlations of 0.70 for SCZ-BIP, 0.35 for SCZ-MDD and 0.45 for BIP-MDD (in line with our empirical 

findings; see below).  

We simulated individual-level data for 𝑀 = 1,000 SNPs, of which 50% were causal for all three 

disorders (i.e. number of causal SNPs 𝑀𝑐 = 500) and 50% were non-causal for all three disorders. In 

line with previous work67,68, liability-scale SNP effect sizes (𝛽𝑖,𝑙𝑆𝐶𝑍, 𝛽𝑖,𝑙𝐵𝐼𝑃 and 𝛽𝑖,𝑙𝑀𝐷𝐷) were drawn 

from a three dimensional normal distribution with variances ℎ𝑙𝑆𝐶𝑍
2 /𝑀𝑐 , ℎ𝑙𝐵𝐼𝑃

2 /𝑀𝑐 and ℎ𝑙𝑀𝐷𝐷
2 /𝑀𝑐 ; and 

covariances 
1

𝑀𝑐
𝑟𝑔|𝑆𝐶𝑍−𝐵𝐼𝑃√(ℎ𝑙𝑆𝐶𝑍

2  ℎ𝑙𝐵𝐼𝑃
2 ), 

1

𝑀𝑐
𝑟𝑔|𝑆𝐶𝑍−𝑀𝐷𝐷√(ℎ𝑙𝑆𝐶𝑍

2  ℎ𝑙𝑀𝐷𝐷
2 ), and 

1

𝑀𝑐
𝑟𝑔|𝐵𝐼𝑃−𝑀𝐷𝐷√(ℎ𝑙𝐵𝐼𝑃

2  ℎ𝑙𝑀𝐷𝐷
2 ). Effective allele frequencies (𝐸𝐴𝐹) of 𝑀 = 1,000 SNPs were drawn 

from a uniform distribution [0.01,0.5]. Individuals were simulated one-by-one by 

 

1. Randomly assigning 𝑀 = 1,000 genotypes 𝐺𝑖 (i.e. 0, 1 or 2 effective alleles) with the 

probabilities given by the 𝐸𝐴𝐹𝑠 while assuming Hardy-Weinberg equilibrium  

2. Defining genetic liabilities as 𝑔𝑙𝐷 = ∑𝛽𝑖,𝑙𝐷(𝐺𝑖 − 2𝐸𝐴𝐹𝑖)/√2𝐸𝐴𝐹𝑖(1 − 𝐸𝐴𝐹𝑖), for 𝐷 in SCZ, 

BIP and MDD 

3. Defining liabilities as 𝑙𝐷 = 𝑔𝑙𝐷 + 𝑒𝑙𝐷, for 𝐷 in SCZ, BIP and MDD. The environmental effects 

𝑒𝑙𝐷 are drawn from a three-dimensional normal distribution of 𝑒𝑙𝑆𝐶𝑍, 𝑒𝑙𝐵𝐼𝑃 and 𝑒𝑙𝑀𝐷𝐷, with 

variances 1 − ℎ𝑙𝑆𝐶𝑍
2 , 1 − ℎ𝑙𝐵𝐼𝑃

2  and 1 − ℎ𝑙𝑀𝐷𝐷
2 ; and covariances 𝑟𝑔|𝑆𝐶𝑍−𝐵𝐼𝑃√((1 −

ℎ𝑙𝑆𝐶𝑍
2 ) (1 − ℎ𝑙𝐵𝐼𝑃

2 )), 𝑟𝑔|𝑆𝐶𝑍−𝑀𝐷𝐷√((1 − ℎ𝑙𝑆𝐶𝑍
2 ) (1 − ℎ𝑙𝑀𝐷𝐷

2 )), and 𝑟𝑔|𝐵𝐼𝑃−𝑀𝐷𝐷√((1 −

ℎ𝑙𝐵𝐼𝑃
2 ) (1 − ℎ𝑙𝑀𝐷𝐷

2 )) (i.e. assuming the correlation of environmental effects is equal to the 

correlation of genetic effects).  
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4. Defining disorder status as 𝐷 = 1 when 𝑙𝐷 > 𝑡ℎ𝑟𝑒𝑠ℎ𝐷  with 𝑡ℎ𝑟𝑒𝑠ℎ𝐷  (resp. 𝑇𝐵) corresponding 

to a population prevalence of 𝐾𝐷, for 𝐷 in SCZ, BIP and MDD 

5. Subsequently, every individual was assigning to one of the diagnostic categories (SCZ, BIP, 

MDD or control) based on the link between the configurations of liabilities and the PGC 

classification in Table 1. 

 

Individuals were simulated until the required number of nonoverlapping cases and controls were 

obtained: in training samples whose sample size was selected to attain the specified case-control PRS 

𝑟2 (690/690 cases/controls for SCZ, 1,411/1,411 for BIP, and 4,542/4,542 for MDD)69 and 1,000 test 

samples for each diagnostic category (SCZ, BIP, MDD, controls). We also simulated 500 random 

individuals (i.e. not conditioned on case/control status) to serve as analogue of the population 

reference sample in applying DDx-PRS (see step 2 and 3 above). 

We introduced sample overlap of controls in SCZ, BIP and MDD training data to mimic 

empirical data, which includes substantial overlap of controls20. Specifically, the correlation of error-

terms was set at 0.2 for SCZ-BIP, 0.1 for SCZ-MDD and 0.1 for BIP-MDD roughly following the empirical 

findings of the intercept of cross-trait LDSC19,20. From these correlation of error terms, the sample 

overlap is given by the following formula20 

 

𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝,𝐴0𝐵0 = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚 ∗  4𝑁𝐴0𝑁𝐵0√(
1

4𝑁𝐴1
+

1

4𝑁𝐴0
) (

1

4𝑁𝐵1
+

1

4𝑁𝐵0
) Eq. 3 

 

resulting in a sample overlap of controls of 395 for SCZ-BIP, 354 for SCZ-MDD and 506 for BIP-MDD.  

After running the three case-control GWAS on the training samples, case-control PRS were 

computed using Bpred, which analytically computes posterior mean causal effects sizes under a point-

normal prior in the special case of no LD3. We simulated individual-level SNP data (instead of directly 

simulating case-control PRS values in test samples) to also assess the performance of the complexities 

of transforming case-control PRS values to the liability scale (see Methods). We analyzed 50 simulation 

replicates for each simulation. 

We simulated a small number of SNPs (M) and training samples (N) to limit computational 

cost, while noting that PRS 𝑟2  primarily depends on M/N, so that simulations at reduced values of 

both M and N are appropriate3. Because linkage disequilibrium (LD) does not impact cross-disorder 

architectures conditional on the above parameter values, we simulated genotypes without LD. 

In the results displayed in Figure 1, we note that the concatenated AUC (averaged across the 

four comparisons) were slightly smaller than the mean AUC (0.645 vs. 0.650 for DDx-PRS and 0.635 

vs. 0.639 for Marginal-PRS), which can be explained as follows. The 50 simulation replicates are fully 

independent, resulting in different causal SNP effect sizes and slightly different heritabilities and 

genetic correlations across simulation replicates. Thus, all simulation replicates are essentially from 

different populations that are very similar but not 100% identical, and concatenating data will 

introduce some very slight heterogeneity to the data causing the decrease of the AUC (we note 

estimates of the AUC are in principle sample-size independent). The slight discrepancy across 

simulation replicates is expected to also impact the ICI, but is obscured for the ICI because the ICI is 

not sample-size independent. 
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Psychiatric Genomics Consortium data 

The empirical analyses were conducted using data from the Psychiatric Genomics Consortium (PGC)70. 

The full PGC data that we analyzed consisted of European-ancestry case-control GWAS data for SCZ8 

(76 PGC case-control cohorts; N=53,386 cases and 77,258 controls), BIP14 (36 PGC case-control 

cohorts; N=41,917 cases and 371,549 controls), and MDD15,16 (34 PGC case-control cohorts; 

N=173,140 cases and 331,433 controls, consisting of the data from ref.16 excluding 23andMe) (Table 

S1). We constructed 4 test cohorts by merging selected PGC case-control cohorts; constructed 

nonoverlapping training data sets for each disorder-specific PGC case-control cohort that was included 

in one of the 4 test cohorts; applied QC; and computed case-control PRS using PRS-CS and Plink 1.9. 

We ran S-LDSC and cross-trait LDSC using the full PGC data. Each of these steps is detailed below.  

 

Construction of 4 test cohorts. 

The 4 test cohorts were constructed by merging selected PGC case-control cohorts of SCZ8, BIP14 and 

MDD15. Control test samples were selected from the set of MDD controls, which have more stringent 

criteria for being labeled as a control (Table 1)15. SCZ cases were matched to BIP cases by merging PGC 

case-control cohorts that were from the same country and had at least 200,000 overlapping SNPs on 

their genotyping chip; BIP cases were matched to MDD cases with the same criteria. Combining the 

SCZ-BIP match with the BIP-MDD match also assured an accurate SCZ-MDD match (as confirmed with 

sensitivity analyses; see below). This resulted in 4 merged test cohorts: GER, UK1, UK2 and USA. From 

these test cohorts, subjects were randomly selected to obtain sample sizes of exactly 25% of each of 

SCZ, BIP, MDD and control (the main prior used throughout this study). The resulting test data 

consisted of 11,460 individuals (2,865 of each of SCZ, BIP, MDD, control): 3,368 in the GER test cohort, 

1,136 in UK1, 6,080 in UK2, and 876 in USA. An overview of the PGC case-control cohorts included in 

the four test cohorts is provided in Table S2.  

 When applying methods that require tuning data (DDx-PRS-tuned & Direct-tuned), we 

primarily focused on cross-cohort tuning, designating one test cohort as the tuning cohort and another 

test cohort as the test cohort. This resulted in 4x3=12 tuning/test cohort pairs used for analyses. We 

restricted tuning data to 200 samples from each of the four diagnostic categories (total Ntuning=800) 

and evaluated the performance of each method in test data. In addition to cross-cohort tuning, we 

also conducted analyses based on within-cohort tuning in the cohorts GER and UK2 (for UK1 and USA, 

the sample sizes were too small for assessing model performance after excluding 800 samples for 

tuning). 

 

Construction of training data sets for each disorder-specific PGC case-control test cohort 

For each disorder-specific PGC case-control cohort that was included in one of the 4 test cohorts, we 

constructed corresponding training data sets (used to compute case-control PRS for each disorder) 

that excluded that PGC case-control cohort. (We note that the 4 test cohorts included only case 

samples from SCZ and BIP PGC case-control cohorts, and both case and control samples from MDD 

PGC case-control cohorts; see above). For PGC SCZ case-control cohort X, the SCZ training data 

consisted of the full SCZ data excluding PGC SCZ case-control cohort X, the BIP training data consisted 

of the full BIP data, and the MDD training data consisted of the full MDD data (and analogously for 

PGC BIP case-control cohort X and PGC MDD case-control cohort X). We tested for sample overlap of 

controls from each PGC MDD case-control cohort X (used as controls in the 4 test cohorts) and PGC 

SCZ (resp. BIP) case-control cohorts; when such overlap was identified, the overlapping PGC SCZ (resp. 

BIP) case-control cohort was excluded from the SCZ (resp. BIP) training data for PGC MDD case-control 
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cohort X. With this strategy, we assured independence between training and test data, while also 

retaining maximum sample size of the training data. We note that the training data was slightly 

different across PGC case-control cohorts as different PGC training case-control cohorts were held 

out, but given the held-out samples are <<10% of the full training samples this had a negligible impact 

on our results (as confirmed with sensitivity analyses; see below). The precise training data thus used 

to compute the case-control PRS for every PGC case-control cohort is reported in Table S1. 

 We performed two sets of sensitivity analyses. First, we verified in the 1000G data that the 

case-control PRS obtained based on these slightly different training data sets had very high 

correlations (>0.94 for SCZ, >0.93 for BIP, >0.95 for MDD; see Table S24). We note that despite these 

very large correlations among case-control PRS, it is still crucial to exclude the test data from the 

training data, as the inflation in 𝑟2 can be profound even when the test data is only a small fraction of 

the training data71. We also note that the slight heterogeneity thus introduced in the test data could 

result in slight conservative bias of our findings. Second, we computed the 𝑟2 contrasting the SCZ 

cases (resp. BIP cases) to their matched SCZ controls (resp. BIP controls) based on the original PGC 

case-control cohorts, and verified that this 𝑟2 was highly similar when contrasting the SCZ cases (resp. 

BIP cases) to the matched MDD controls in the merged test cohorts used in this study (see Table S25). 

 When applying methods that require tuning data (DDx-PRS-tuned and Direct-tuned), instead 

of just test data and training data we have 4 sample sets: (i) test data; (ii) tuning data; (iii) training data 

used to compute PRS in tuning samples (training_for_tuning); and (iv) training data used to compute 

PRS in test data (training_for_test). As described above, of the 4 available test cohorts, we designate 

one as the test cohort and one as the tuning cohort, for a total of 4x3=12 tuning/test cohort pairs. The 

training_for_test and training_for_tuning data are specified as described above (see Table S1). We 

note that this has the consequence that there is slight overlap between the training_for_tuning data 

and the test data. We consider this overlap to be of minor importance, for two reasons. First, there is 

still no overlap between the training_for_test data and the test data. Second, even if the overlap 

between the training_for_tuning data and the test data improved prediction in test samples, it would 

do so only for DDx-PRS-tuned and Direct-tuned (and not DDx-PRS, which does not use tuning data). 

Given that DDx-PRS achieves comparable (or slightly better) performance as DDx-PRS-tuned and 

Direct-tuned (see Figure 5), any such impact must be minor, and would lead to conservative reporting 

of relative results for DDx-PRS (our recommended method) vs. DDx-PRS-tuned and Direct-tuned. 

  

Quality control 

Quality control of SNPs was based on previous work72. We selected SNPs with imputation INFO>0.9 

and MAF>0.10 in both the training and testing data, and we took the intersection of these SNPs with 

the HapMap3 SNPs included in the PRS-CS LD reference panel (see below). As a secondary analyses to 

this strict SNP-QC, we also performed analyses retaining SNPS with INFO>0.3 and MAF>0.01 (results 

in Figure S10 and Table S14). 

 For quality control of subjects, we tested for sample overlap of controls between the PGC 

MDD case-control cohorts (used as diagnostic category ‘control’ in this study) and PGC SCZ (resp. BIP) 

case-control cohorts; when such overlap was found, the respective PGC SCZ (resp. BIP) case-control 

cohort was excluded from the SCZ (resp. BIP) training data to compute the SCZ (resp. BIP) case-control 

PRS in the respective PGC MDD case-control cohort. Furthermore, in secondary analyses, we applied 

stricter subject QC to also exclude individuals from the analyses who were outliers with respect to 

principal component analyses of the merged cohorts (based on visual screening), SNP missingness 
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>5% pre-imputation, and discrepancy between reported and genotypic sex (results in Figure S10 and 

Table S14). 

 

Applying PRS-CS and Plink 1.9 to compute case-control PRS  

The case-control PRS in PGC and in 1000G were computed using PRS-CS (version Jun 4, 2021q)5. In 

short, sample size in the input GWAS results for PRS-CS was set at Neff73 resulting in posterior mean 

betas on the standardized observed scale with 50/50 case/control ascertainment20, which were 

subsequently transformed to the liability scale23. (Details of thus transforming the PRS to the liability 

scale are described in ref.17; the default PRS-CS command for PRS-CS-auto was used, i.e. “--a=1 --b=0.5 

--phi=None --beta_std=False --n_iter=1000 --thin=5 --n_burnin=500 ---seed=None”). We note that the 

posterior mean betas could have also been computed with SBayesR6 or any other Bayesian polygenic 

scoring method that has been shown to be well-calibrated (see ref.17 for details).  

The lability-scale posterior mean betas were used to compute case-control PRS in PGC and in 

1000G with Plink 1.9 (v1.90b7; command “--score header sum center”)74. The allele frequencies for 

the “--score" command were read from 1000G with the “--read-freq” command (the default of Plink 

is to estimate the allele frequencies from the test data), thereby assuring (i) full independency of the 

test data and (ii) that DDx-PRS can also be applied on a single individual only.  

 

S-LDSC and cross-trait LDSC analyses 

Based on the full PGC data described above, S-LDSC with the baseline-LD (v2.0) model63–65 estimated 

the liability-scale SNP-heritabilities as 0.23 for SCZ, 0.19 for BIP and 0.09 for MDD, assuming 

population prevalences of 0.01, 0.02 and 0.16 respectively. Cross-trait LDSC19 estimated genetic 

correlations of 0.71 for SCZ-BIP, 0.34 for SCZ-MDD and 0.45 for BIP-MDD, and cross-trait LDSC 

intercept (equal to the correlations of error terms20) of 0.24 for SCZ-BIP, 0.07 for SCZ-MDD and 0.09 

for BIP-MDD. These liability scale SNP heritabilities and genetic correlation estimates are used as input 

in steps 1 and 3 of DDx-PRS and steps 1 and 3 of DDx-PRS-tuned (see above), and as input parameters 

for simulations (see above).  

 

Simulations of case-control PRS directly for projections of clinical utility at larger training sample sizes 

We computed projections to larger training sample sizes by directly simulating case-control PRS 

(instead of simulating individual-level SNP data; see Main simulations above) at different values of % 

of SNP-heritability captured by case-control PRS, ranging from 40% (similar to PGC data; 42-47%) to 

100%. Again, data were simulated with liability-scale SNP-heritabilities23 ℎ𝑙
2 of 0.24, 0.19 and 0.09, 

population prevalences of 1%, 2% and 16%, and genetic correlations of 0.70 for SCZ-BIP, 0.35 for SCZ-

MDD and 0.45 for BIP-MDD (in line with our empirical findings; see above).  

 In this simulation, we first simulated the liability scale genetic component as a three-

dimensional normal distribution with variances ℎ𝑙𝑆𝐶𝑍
2 , ℎ𝑙𝐵𝐼𝑃

2  and ℎ𝑙𝑀𝐷𝐷
2 ; covariances 

𝑟𝑔|𝑆𝐶𝑍−𝐵𝐼𝑃√(ℎ𝑙𝑆𝐶𝑍
2  ℎ𝑙𝐵𝐼𝑃

2 ), 𝑟𝑔|𝑆𝐶𝑍−𝑀𝐷𝐷√(ℎ𝑙𝑆𝐶𝑍
2  ℎ𝑙𝑀𝐷𝐷

2 ), and 𝑟𝑔|𝐵𝐼𝑃−𝑀𝐷𝐷√(ℎ𝑙𝐵𝐼𝑃
2  ℎ𝑙𝑀𝐷𝐷

2 ); and means 

0,0,0. We assumed to environmental correlation equal to the genetic correlation, and simulated 

environmental effects as a three-dimensional normal distribution with variances 1 − ℎ𝑙𝑆𝐶𝑍
2 , 1 − ℎ𝑙𝐵𝐼𝑃

2  

and 1 − ℎ𝑙𝑀𝐷𝐷
2 ; covariances 𝑟𝑔|𝑆𝐶𝑍−𝐵𝐼𝑃√((1 − ℎ𝑙𝑆𝐶𝑍

2 ) (1 − ℎ𝑙𝐵𝐼𝑃
2 )), 𝑟𝑔|𝑆𝐶𝑍−𝑀𝐷𝐷√((1 − ℎ𝑙𝑆𝐶𝑍

2 ) (1 −

ℎ𝑙𝑀𝐷𝐷
2 )), and 𝑟𝑔|𝐵𝐼𝑃−𝑀𝐷𝐷√((1 − ℎ𝑙𝐵𝐼𝑃

2 ) (1 − ℎ𝑙𝑀𝐷𝐷
2 )); and means 0,0,0. Liabilities were computed as 

𝑙𝐷 = 𝑔𝑙𝐷 + 𝑒𝑙𝐷, and disease status as 𝐷 = 1 when 𝑙𝐷 > 𝑡ℎ𝑟𝑒𝑠ℎ𝐷 , for 𝐷 in SCZ, BIP and MDD. Every 
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individual was assigning to one of the diagnostic categories (SCZ, BIP, MDD or control) based on the 

link between the configurations of liabilities and the diagnostic categories in Table 1. 

 We then added an error term to the genetic components such that (i) the resulting case-

control PRS explained the specified amount of variance 𝑟2 in liability (e.g. for the parametrization of 

case-control PRS explaining 60% in SCZ, 𝑟2 was specified at 0.6 ∗ 0.24 = 0.144), and (ii) the 

correlation of the case-control PRS was equal to the empirically observed correlation of the case-

control PRS in 1000G (0.5 for SCZ-BIP, 0.3 for SCZ-MDD and 0.3 for BIP-MDD; for larger of % of SNP-

heritability captured by case-control PRS, the correlation between PRS was set to converged to the 

𝑟𝑔). Subsequently, the case-control PRS were scaled such that 𝑣𝑎𝑟(𝑃𝑅𝑆𝐷) = 𝑟𝐷
2, for 𝐷 in SCZ, BIP and 

MDD, thereby assuring the PRS were well-calibrated on the liability scale.  

 DDx-PRS was applied to this simulated data. We verified that our empirical findings were 

similar to simulated results at the exact empirical parameters for both simulating PRS directly (as 

described here) and simulating individual-level SNP data (described above; see Figure S15 and Table 

S22). 

 

 

Data availability 

The full case-control GWAS results for Schizophrenia, Bipolar Disorder and Major Depressive Disorder 

can be downloaded from the website from the Psychiatric Genomics Consortium (PGC): 

https://pgc.unc.edu/for-researchers/download-results/. To analyze individual level data of the PGC 

and GWAS results from subset of the full case-control data, a secondary analysis proposal is required 

to apply for collaboration.  

 

 

Code availability 

DDx-PRS software: https://github.com/wouterpeyrot/DDxPRS 

PRS-CS software: https://github.com/getian107/PRScs 

Plink1.9 software: https://www.cog-genomics.org/plink/ 
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Tables & Figures  

 

 

  Configuration of liabilities     

 

liabSCZ 

>threshSCZ 

liabBIP 

>threshBIP 

liabMDD 

>threshMDD 

  

Number   

Diagnostic  

category 

𝒄𝟏 1 1 1  SCZ* 

𝒄𝟐 1 1 0  SCZ* 

𝒄𝟑 1 0 1  SCZ* 

𝒄𝟒 1 0 0  SCZ 

𝒄𝟓 0 1 1  BIP 

𝒄𝟔 0 1 0  BIP 

𝒄𝟕 0 0 1  MDD 

𝒄𝟖 0 0 0   Control** 

 

Table 1. Overview of configurations of liabilities and disorder classification. 

For schizophrenia (SCZ), bipolar disorder (BIP) and major depressive disorder (MDD), we list the eight 

configurations of liabilities (i.e. liability (liab) above or below the liability threshold (thresh) for each 

disorder) and the corresponding diagnostic category. *These would likely be diagnosed as 

schizoaffective disorder following DSM-5 classification criteria (or as comorbid SCZ and MDD for 

configuration 𝑐3), but are labelled here as SCZ in line with ref.8. **Controls are unaffected by SCZ, BIP 

and MDD but could potentially have other disorders. 

 

 

Method 

Uses summary 

statistics only 

Models multivariate 

density  

Models eight 

configurations 

DDx-PRS yes yes yes 

Marginal-PRS yes no no 

DDx-PRS-tuned no yes yes 

Direct-tuned no yes no 

 

Table 2. List of methods for genetically distinguishing different disorders. 

We list the methods for genetically distinguishing different disorders evaluated in this paper, and 

indicate whether they use summary statistics only (as opposed to summary statistics plus tuning data), 

whether they model multivariate density (across four diagnostic categories or eight configurations 

from Table 1), and whether they specifically model the all configurations from Table 1. 
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Figure 1. Calibration and accuracy of DDx-PRS and Marginal-PRS in simulations. 

We report the calibration (Integrated Calibration Index; ICI) and accuracy (area under the ROC curve; 

AUC) for the comparisons of schizophrenia (SCZ) vs. rest, bipolar disorder (BIP) vs. rest, major 

depressive disorder (MDD) vs. rest, control vs. rest and the mean across these four comparisons, for 

two methods: Marginal-PRS (red) and DDx-PRS (blue). Results are based on 50 simulation replicates; 

mean values are displayed in light red and light blue, and results based on data concatenated across 

50 replicates are displayed in dark red and dark blue. Error bars denote standard errors. Numerical 

results are reported in Table S3. 
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Figure 2. Calibration curves of DDx-PRS and Marginal-PRS in simulations. 

We report the true diagnosis probability vs. the predicted diagnosis probability for the comparisons 

of schizophrenia (SCZ) vs. rest, bipolar disorder (BIP) vs. rest, major depressive disorder (MDD) vs. rest, 

and control vs. rest, for two methods: Marginal-PRS (red) and DDx-PRS (blue). Results are based on 

concatenated data across 50 simulation replicates. The calibration curves are plotted using a locally 

estimated scatterplot smoothing (loess)-based smoothing function. The Integrated Calibration Index 

(ICI) equals the average absolute difference between the calibration curve and the line y=x (plotted in 

black), weighted by the density of the predicted diagnosis probabilities (displayed in the shaded 

histograms and in the color-intensity of the calibration curves). AUC, area under the ROC curve.  
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Figure 3. Calibration and accuracy of DDx-PRS and Marginal-PRS in PGC data. 

We report the calibration (Integrated Calibration Index; ICI) and accuracy (area under the ROC curve; 

AUC) for the comparisons of schizophrenia (SCZ) vs. rest, bipolar disorder (BIP) vs. rest, major 

depressive disorder (MDD) vs. rest, control vs. rest and the mean across these four comparisons, for 

two methods: Marginal-PRS (red) and DDx-PRS (blue). The training data consisted of case-control 

GWAS summary statistics for SCZ, BIP and MDD; the test data consisted of independent PGC samples 

subdivided in four test cohorts that were matched with respect to country and genotyping platform 

(total N=11,460, with 2,865 for each of SCZ, BIP, MDD and control). The mean values across these four 

test cohorts are displayed in light red and light blue, and results based on data concatenated across 

these four test cohorts are displayed in dark red and dark blue. Error bars denote standard errors. 

Numerical results are reported in Table S10. 
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Figure 4. Calibration curves of DDx-PRS and Marginal-PRS in PGC data. 

We report the true diagnosis probability vs. the predicted diagnosis probability for the comparisons 

of schizophrenia (SCZ) vs. rest, bipolar disorder (BIP) vs. rest, major depressive disorder (MDD) vs. rest, 

and control vs. rest, for two methods: Marginal-PRS (red) and DDx-PRS (blue). The calibration curves 

are plotted using a locally estimated scatterplot smoothing (loess)-based smoothing function. Results 

are based on the concatenated data across the four PGC test cohorts (total N=11,460, with 2,865 for 

each of SCZ, BIP, MDD and control). The Integrated Calibration Index (ICI) equals the average absolute 

difference between the calibration curve and the line y=x (plotted in black), weighted by the density 

of the predicted diagnosis probabilities (displayed in the shaded histograms and in the color-intensity 

of the calibration curves). AUC, area under the ROC curve.  
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Figure 5. Calibration and accuracy of DDx-PRS, DDx-PRS-tuned and Direct-tuned in PGC data. 

We report the calibration (Integrated Calibration Index; ICI) and accuracy (area under the ROC curve; 

AUC) for the comparisons of schizophrenia (SCZ) vs. rest, bipolar disorder (BIP) vs. rest, major 

depressive disorder (MDD) vs. rest, control vs. rest and the mean across these four comparisons, for 

three methods: DDx-PRS (blue), DDx-PRS-tuned (green) and Direct-tuned (orange). The training data 

consisted of case-control GWAS summary statistics for SCZ, BIP and MDD; the test data consisted of 

independent PGC samples subdivided in four test cohorts that were matched with respect to country 

and genotyping platform (total N=11,460, with 2,865 for each of SCZ, BIP, MDD and control). For 

tuning for DDx-PRS-tuned and Direct-tuned, 4x3=12 tuning/test cohort-pairs were analysed with 

tuning data restricted to 200 samples from each of SCZ, BIP, MDD and control (total Ntuning=800). The 

mean values across these four test cohorts (DDx-PRS) resp. 12 tuning/test cohort-pairs (DDx-PRS-

tuned and Direct-tuned) are displayed in light blue, light green and light orange, and results based on 

data concatenated across these four test cohorts (resp. 12 tuning/test cohort-pairs) are displayed in 

dark blue, dark green and dark orange. Error bars denote standard errors. Numerical results are 

reported in Table S15. 
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Figure 6. Calibration curves of DDx-PRS, DDx-PRS-tuned and Direct-tuned in PGC data. 

We report the true diagnosis probability vs. the predicted diagnosis probability for the comparisons 

of schizophrenia (SCZ) vs. rest, bipolar disorder (BIP) vs. rest, major depressive disorder (MDD) vs. rest, 

and control vs. rest, for three methods: DDx-PRS (blue), DDx-PRS-tuned (green) and Direct-tuned 

(orange). Results are based on the concatenated data across the four PGC test cohorts (DDx-PRS) resp. 

12 tuning/test cohort-pairs (DDx-PRS-tuned and Direct-tuned). The calibration curves are plotted 

using a locally estimated scatterplot smoothing (loess)-based smoothing function. The Integrated 

Calibration Index (ICI) equals the average absolute difference between the calibration curve and the 

line y=x (plotted in black), weighted by the density of the predicted diagnosis probabilities (displayed 

in the shaded histograms and in the color-intensity of the calibration curves). AUC, area under the 

ROC curve.  
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Figure 7. Projections of clinical utility at larger training sample sizes. 

We report the true diagnosis probability per decile of predicted diagnosis probability for the 

comparisons of schizophrenia (SCZ) vs. rest, bipolar disorder (BIP) vs. rest, major depressive disorder 

(MDD) vs. rest, and control vs. rest, for one method: DDx-PRS. Empirical results in PGC data are 

reported as black points (error bars in grey) connected with dashed black lines; error bars denote 1.96 

times the SE across the four PGC test cohorts. Simulations results at various values of SNP-heritability 

captured by case-control PRS (40%, 60%, 80% and 100%) are reported as blue points connected with 

solid blue lines, with varying colour intensity. The baseline diagnosis probability (i.e. prior clinical 

probability) equals 0.25 for each of SCZ, BIP, MDD and control (dashed grey horizontal lines). PGC 

results for DDx-PRS-tuned and Direct-tuned are reported in Figure S14 and Table S21. Numerical 

results, including error bars for all data points, are reported in Table S19. The values of the predicted 

diagnosis probabilities are reported in Table S20. 
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