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ABSTRACT 

Background: Alcohol misuse is associated with altered punishment and 

reward processing. Here, we investigated neural network responses to reward 

and punishment and the molecular profiles of the connectivity features 

predicting alcohol use severity in young adults. 

Methods: We curated the Human Connectome Project data and employed 

connectome-based predictive modeling (CPM) to examine how functional 

connectivity (FC) features during wins and losses associated with alcohol use 

severity in 981 young adults. Alcohol use severity was quantified by the first 

principal component of principal component analysis of all drinking measures 

of the Semi-Structured Assessment for the Genetics of Alcoholism. We 

combined the CPM findings and JuSpace toolbox to characterize the 

molecular profiles of the network connectivity features of alcohol use severity. 

Results: The connectomics predicting alcohol use severity appeared specific, 

comprising less than 0.12% of all connectivity features. These connectivities 

featured the medial frontal, motor/sensory, and cerebellum/brainstem 

networks during punishment processing and medial frontal, fronto-parietal, 

and motor/sensory networks during reward processing. Spatial correlation 

analyses showed that these networks were associated predominantly with 

serotonergic and GABAa signaling. 

Conclusions: A distinct pattern of network connectivity predicted alcohol use 

severity in young adult drinkers. These network features were associated with 

the serotonergic and GABAa signaling. These “neural fingerprints” help in 

elucidating the impact of alcohol misuse on the brain and providing evidence 

of new targets for future intervention. 

 

Keywords: alcohol use disorder, alcohol misuse, fMRI, connectome, 

neurotransmitter, receptor 
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1. Introduction 

1.1 Reward and punishment processing in alcohol misuse 

People may engage in drinking because of the positive (e.g., elevated 

sociability and physical relaxation) and/or the negative reinforcing (e.g., 

amelioration of negative emotions) effects of alcohol (Koob and Volkow, 2016). 

Distinguishing the mechanisms of positive and negative reinforcement helps 

in understanding of pathophysiology of craving (Yu Chen and Li, 2023) and 

how reward and punishment processing may interact with self-control in the 

etiological processes of alcohol misuse (Kahn et al., 2018). 

 Brain imaging provides a venue to elucidating the neural bases of altered 

reward and punishment processing in alcohol misuse. For instance, higher 

levels of reward sensitivity may contribute to alcohol misuse, as did lower 

ventral striatal activity during reward anticipation (Moreno Padilla et al., 2017). 

A study using both the Human Connectome Project (HCP) and Genetic 

Neuroimaging (IMAGEN) datasets reported higher functional connectivity of 

the medial orbitofrontal cortex, a reward area, and impulsivity in heavy 

drinkers (Cheng et al., 2019). In contrast, in our recent study, we 

demonstrated that loss rather than win reactivity along with fronto-striatal 

responses during a gambling task captured individual variation in alcohol use 

severity in a neurotypical sample (Li et al., 2022). In a reward go/no-go task 

where participants needed to initiate action or to inhibit an action to win 

money and/or avoid monetary loss, heightened punishment sensitivity 

enhanced the neural activities of avoidance and, in turn, contributed to alcohol 

misuse (Le et al., 2019). This literature together highlights the relevance of 

psychological and neural processes of reward and punishment processing to 

the pathophysiology of alcohol misuse. 

 

1.2 Functional connectomics of individual traits and neuropsychiatric 

diagnoses 
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Connectome-based predictive modeling (CPM) is a data-driven approach 

for developing predictive models of brain behavior relationships and individual 

variability (Finn et al., 2015; Shen et al., 2017). The model also allows 

“computational lesion” to reveal features that are important in prediction (Feng 

et al., 2018). With CPM investigators extracted and summarized the most 

relevant connectivity features that were cross-validated in test data, and 

provided an estimate of the accuracy at which these features predict 

individual traits, including fluid intelligence (Finn et al., 2015), sustained 

attention (Rosenberg et al., 2016), mean sleep duration (Mummaneni et al., 

2023), creative ability (Beaty et al., 2018), and drug craving (Antons et al., 

2023), or clinical conditions, including akinetic rigidity of Parkinson’s disease 

(Wu et al., 2023) and binge drinking (Tong et al., 2021). For instance, with 

longitudinal multisite functional magnetic resonance imaging (fMRI) data 

collected at ages 14 and 19 to assess whole-brain patterns of functional 

organization that predict alcohol use, a recent study identified networks 

associated with vulnerability for future and current problem drinking (Antons et 

al., 2023). These studies of CPM characterized the systems-level neural 

markers that predict individual variation in health and illness. 

 

1.3 Molecular profiles of functional brain networks 

A critical approach to complementing systems-level findings is to 

investigate the molecular profiles of the neural networks identified of MRI. A 

tool for spatial correlation analyses of MRI data with nuclear imaging derived 

neurotransmitter maps, JuSpace provides a biologically meaningful 

framework to this end (Dukart et al., 2021) and offers novel insight into 

disease mechanisms and associated clinical features (Premi et al., 2023). For 

instance, in a study of frontotemporal dementia, investigators associated the 

altered patterns of grey matter volume (GMV) with the distribution of 

dopamine and acetylcholine pathways in mutation carriers and showed more 
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widespread involvement of dopamine, serotonin, glutamate and acetylcholine 

pathways in symptomatic individuals (Pengo et al., 2023). Another work 

focused on a population of unmedicated first-episode schizophrenia and 

reported GMV alterations in association with the expression of serotonin, 

dopamine, and gamma amino butyric acid (GABA) receptors and/or 

transporters (Jingli Chen et al., 2023). Other studies combined MRI findings 

and JuSpace mapping to investigate the patterns of volumetric atrophy in link 

with changes in neurotransmitter pathways in Parkinson's disease (Ren et al., 

2023), multiple sclerosis (Fiore et al., 2023), and primary progressive aphasia 

(Premi et al., 2023). 

Investigators have also combined multimodal brain imaging with JuSpace 

to link systems and molecular findings. Using functional connectivity density 

mapping of resting-state fMRI data along with a Go/No-Go task (outside 

scanner), Cui and colleagues reported spatial correlation with the ability of 

behavioral inhibition in the patterns of expression of gene categories involving 

cellular and synaptic elements of the cerebral cortex and ion channel activity 

as well as the serotonergic system (Cui et al., 2023). An earlier study 

employed both resting-state fMRI and structural MRI and associated changes 

in GMV and intrinsic connectivities with serotonergic, dopaminergic and μ-

opioid receptor systems in heavy cannabis users (Hirjak et al., 2022). Tang 

and colleagues investigated volumetric atrophy, glucose hypometabolism, and 

neurotransmitter distribution utilizing both MRI and positron emission 

tomography data in Rasmussen's encephalitis (Tang et al., 2022). Another 

study conducted meta-analytic co-activation analyses on lesion masks of 

individuals who acquired antisocial behaviors following their brain lesions and 

implicated multiple cortical and subcortical areas as well as the serotoninergic 

system (Dugre and Potvin, 2022). 

Together, this literature supports the combination of MRI and JuSpace 

tools to associate systems and molecular profiles of cerebral dysfunction to 
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better understand the pathophysiology of neurological and psychiatric 

conditions, including alcohol misuse. 

 

1.4 The present study 

Here, we applied CPM to fMRI data of a gambling task obtained from the 

Human Connectome Project (HCP). We characterized the connectivity 

features that predicted drinking severity. The gambling task involved win 

(reward) and loss (punishment) processing, and our previous study 

highlighted loss and fronto-striatal reactivities more than win reactivities in 

distinguishing individual severity of alcohol use (Li et al., 2022). In our first aim, 

we tested the hypotheses that whole-brain connectivity features during loss as 

compared to win processing would likewise better characterize alcohol use 

severity in this HCP sample of young adults. In our second aim, we combined 

the CPM findings and the JuSpace toolbox to investigate how the maps of 

connectivity features of alcohol use severity related to the molecular profiles 

and to better understand the molecular and cellular mechanisms underlying 

alcohol misuse. 

 

2 Materials and Methods 

2.1 Dataset and demographics 

With permission from the HCP (Van Essen et al., 2012) and as in our 

previous work (Ide et al., 2020; Li et al., 2020; Peng et al., 2020; Li et al., 

2021a; Li et al., 2021b; Li et al., 2022), we employed the 1200 Subjects 

Release (S1200) data set, which includes 3T MR imaging and behavioral data 

collected of the gambling task from 1080 subjects. A total of 981 subjects (473 

men; mean ± SD = 27.9 ± 3.6 years; 508 women, 29.6 ± 3.6 years) were 

included in this study, after exclusion of 99 with head movements > 2 mm in 

translation or 2 degrees in rotation or for whom the images failed in 

registration to the template. All subjects were physically healthy with no 
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severe neurodevelopmental, neuropsychiatric or neurological disorders. 

Because men and women differed significantly in age, age and sex were 

included as covariates in all analyses. The study was carried out in 

accordance with the latest version of the Declaration of Helsinki. HCP was 

approved by the Washington University Institutional Review Board (IRB 

#201204036).  

 

2.2 Clinical measures 

We assessed drinking severity based on 15 intrinsically associated 

measures of alcohol consumption in the past year, as evaluated by the Semi-

Structured Assessment for the Genetics of Alcoholism. With principal 

component analysis (PCA) to reduce the dimensionality of the 15 parameters, 

we used the first principal component or PC1 as a quantitative index of 

alcohol use severity. It should be noted that some of the 15 measures needed 

to be flipped in sign to reflect severity of drinking. PC1 but no other PC’s had 

an eigenvalue > 1 and accounted for 60.73% of the variance of the data.  

 

2.3 Neuroimaging data acquisition  

Participants completed two runs of a gambling task each with 4 blocks 

(~3 m and 12 s each run) – 2 each of reward and punishment, each with more 

win than loss trials and more loss than win trials – and a fixation period 

(baseline, 15 s) between blocks (Barch et al., 2013). Preprocessing and 

plotting was conducted using SPM8 and the BioImage Suite, as described in 

the Supplement.  

 

2.4 Functional connectivity and connectome-based predictive modeling 

(CPM)  

Whole-brain functional connectivity analyses were conducted using the 

BioImage suite. Network nodes were defined using the Shen 268-node brain 
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atlas, which includes the cortex, subcortex and cerebellum. Task connectivity 

was calculated based on the ‘raw’ task time courses (punishment block only 

or reward block only). This involved computation of mean time courses for 

each of the 268 nodes (i.e., average time course of voxels within the node) for 

use in node-by-node pairwise Pearson’s correlations. R values of the 268x268 

connectivity matrices represented the strength of connection between two 

individual nodes. 

CPM was conducted using validated custom MATLAB scripts (Shen et al., 

2017). CPM took group connectivity matrices and behavioral data (in this case 

PC1) as inputs to generate a predictive model of PC1 from connectivity 

matrices. Edges and PC1 from the training dataset were correlated using 

regression analyses to identify positive and negative predictive networks. 

Positive and negative networks were networks for which higher and lower 

edge weights (connectivity), respectively, were associated with PC1. While 

both networks were used for predicting PC1, they were by definition 

independent as a single edge could not be both a positive and negative 

predictor. Single subject summary statistics were then created as the sum of 

the significant edge weights in each network and entered into predictive 

models assuming linear relationships with PC1. The resultant polynomial 

coefficients (linear equation including slope and intercept) were then applied 

to the test dataset to predict PC1. We employed leave-one-out cross-

validation, where a single “left-out” participant’s predicted value was 

generated by taking the data from all other participants as the training dataset 

in an iterative manner until all participants had a predicted value. Model 

performance (i.e., correspondence between predicted and actual values) was 

assessed using Spearman’s rho correlations. In leave-one-out cross-

validation, analyses in the leave-one-out folds were not truly independent and 

the number of degrees of freedom was thus overestimated for parametric p-

values of correlation. Instead of parametric testing, we therefore performed 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.06.24302417doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.06.24302417
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

permutation testing. To generate the null distributions for significance testing, 

we randomly shuffled the correspondence between PC1’s and connectivity 

matrices 1,000 times and re-ran the CPM analysis with the shuffled data. 

Based on the null distributions, the p-values for leave-one-out predictions 

were calculated. 

 

2.5 Correlation with neurotransmitters  

JuSpace (https://github.com/juryxy/JuSpace) allows for spatial correlation 

analyses between cross-modal neuroimaging data (Dukart et al., 2021). 

JuSpace consists of a group of Matlab functions together with PET imaging 

maps of various receptor and transporter systems, each with a distinct atlas. 

All receptor and transporter maps were derived of an average of 6 to 174 

healthy volunteers and linearly rescaled to a minimum of 0 and a maximum of 

100. To determine the neurochemical basis underlying the neural networks of 

drinking severity, we computed the spatial correlations of the SPM T maps 

derived from whole brain regression each of “punishment-baseline” and 

“reward-baseline” against drinking PC1 and JuSpace maps of serotonin 

receptor (including 5-HT1a_1, 5-HT1a_2, 5-HT1b_1, 5-HT1b_2, 5-HT2a_1, 5-

HT2a_2, 5-HT4); cannabinoid type I receptor (CB1); dopamine receptor 

(including D1,D2_1,D2_2); dopamine synthesis capacity receptor (FDOPA); 

gamma-aminobutric acid receptor (including GABAa_1, GABAa_2); mu opioid 

receptor (including MOR_1,MOR_2); metabotropic glutamate receptor 

(including mGluR5_1, mGluR5_2, mGluR5_3); dopamine transporter (DAT); 

noradrenaline transporter (NAT); serotonin transporter (including SERT_1, 

SERT_2, SERT_3); vesicular acetylcholine transporter (including VAChT_1, 

VAChT_2, VAChT_3). Pearson correlation coefficients between the T map 

and these neurotransmitter maps were calculated across the 119 brain 

regions of the neuromorphometrics atlas in JuSpace (Dukart et al., 2021) 
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excluding all white matter and cerebrospinal fluid regions. Pearson's 

correlation with p < 0.05 were considered significant. 

 

3. Results 

3.1 Predicting drinking severity PC1: loss processing 

3.1.1 CPM of loss processing 

In CPM of loss-related processing in the gambling task (Figure 1A), the 

connectomics (positive and negative networks combined) successfully 

predicted drinking severity PC1 (r = 0.25, p = 0.001), as did connectivity within 

the positive (r = 0.24, p = 0.001) and negative (r = 0.25, p = 0.001) networks 

separately (Figure 1B).  

3.1.2 Network anatomy of loss processing 

We summarized positive and negative networks based on the 

connectivities between macroscale brain regions (Figure 2A). Note that brain 

regions are presented in approximate anatomical order, such that longer-

range connections are represented by longer lines. The network anatomies 

were complex and included connections between frontal, temporal, parietal 

lobes, cerebellum, and brainstem. Despite this complexity, these networks 

appeared to be quite specific, with positive and negative networks together 

including only 39 edges (17 positive, 22 negative), or less than 0.11% of all 

possible connections correlated with drinking severity PC1. Highest-degree 

nodes (i.e., nodes with the most connections) for the positive network 

included a temporal node with connections to prefrontal, parietal, limbic, 

cerebellar and other temporal nodes and prefrontal nodes with connections to 

occipital and temporal cortex. Highest-degree nodes for the negative network 

also included a temporal node with connections to the insula, limbic nodes as 

well as with connections to cerebellar and other temporal nodes. Both 

networks included short- and long-range connections. All edges showing 

significant correlation with PC1 are shown in Supplementary Table S1. 

To characterize the networks of loss processing, we summarized the 

patterns of connectivity based on the number of connections within and 

between canonical neural networks (Shen et al., 2013) (Figure 2B). By 
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definition, positive and negative networks do not contain overlapping 

connections; a single edge cannot be part of both a positive and a negative 

network. However, positive and negative networks included connections 

within and between similar large-scale canonical neural networks. The 

positive networks included relatively more connections, involving the medial 

frontal, frontoparietal, and motor/sensory networks. The negative networks 

included relatively more connections between motor/sensory and medial 

frontal; between visual association and fronto-parietal; and between fronto-

parietal and cerebellar networks. The positive network was further 

characterized by more within-network connections across medial frontal and 

fronto-parietal and motor/sensory and cerebellar networks, whereas the 

negative network included more within-network connections for motor/sensory 

and medial frontal networks. 

3.1.3 Neurotransmitters associated with network predictors of alcohol use 

severity: loss processing 

Cross-region spatial correlation analyses revealed a significant link 

between the network correlates of alcohol severity PC1 and serotonergic (5-

HT) and GABAergic densities (Figure 3A). The 5-HT system involved 

specifically the 5-HT1a receptors and the GABAergic system involved the 

GABAa2 receptors (Figure 3B). 

 

3.2 Predicting drinking severity: win processing  

3.2.1 CPM of win processing 

In CPM of win processing in the gambling task (Figure 4A), the overall 

model (positive and negative networks combined) successfully predicted 

drinking severity PC1 (r = 0.25, p = 0.001), as did connectivity within the 

positive (r = 0.25, p = 0.001) and negative (r = 0.25, p = 0.001) networks 

separately (Figure 4B).  

 

3.2.2 Network anatomy of win processing 

Network anatomies for both networks were complex and included 

connections between frontal, temporal, parietal, cerebellum and brainstem 
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lobes (Figure 5A). However, the spatial extent of both positive and negative 

networks together included only 44 edges (24 positive, 20 negative), or less 

than 0.12% of all possible connections correlated with drinking severity PC1. 

Highest-degree nodes (i.e., nodes with the most connections) for the positive 

network included a prefrontal node with connections to temporal, occipital and 

limbic nodes, temporal node with connections to cerebellar, subcortical and 

other temporal nodes. Highest-degree nodes for the negative network also 

included a temporal node with connections to insula, cerebellar, brainstem 

nodes, temporal node with connections to insula, limbic and other temporal 

nodes. Both networks included short- and long-range connections. Compared 

to loss processing, win processing involved more functional connections of 

prefrontal, subcortical, and brainstem networks. All edges showing significant 

correlation with PC1 are shown in Supplementary Table S2. 

Likewise, we summarized the connectivities based on the number of 

connections within and between canonical neural networks (e.g., 

frontoparietal, motor/sensory) for the positive and negative networks (Figure 

5B). The positive networks included relatively more connections of medial 

frontal, fronto-parietal, and motor/sensory networks. The negative network 

included relatively more connections between motor/sensory and medial 

frontal. The positive network was further characterized by more within-network 

connections across medial frontal and fronto-parietal and motor/sensory and 

cerebellar networks, whereas the negative network included more within-

network connections for motor/sensory and medial frontal networks.  

 

3.2.3 Neurotransmitters associated with network predictors of alcohol use 

severity: win processing 

As with loss processing, cross-region spatial correlation analyses 

revealed a significant link between the network correlates of alcohol severity 

PC1 and serotonergic (5-HT) and GABAergic densities during win processing 

(Figure 6A). The 5-HT system involved specifically the 5-HT1a receptors and 

the GABAergic system involved the GABAa2 receptors (Figure 6B). 

4. Discussion 
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In this study, we demonstrated the utility of a connectome-based machine 

learning approach in predicting alcohol use severity using whole-brain 

functional connectivities in a gambling task. The connectomics predominantly 

involving medial frontal, motor/sensory, and cerebellum/brainstem networks 

during punishment processing and those involving medial frontal and fronto-

parietal, motor/sensory networks during reward processing predicted drinking 

severity. Further, with JuSpace, we demonstrated in spatial correlation 

analyses that these networks were associated specifically with 5-HT1a and 

GABAa signaling. Together, these findings highlight connectivity markers of 

alcohol use severity and the molecular profiles of these markers in young 

adults.   

 

4.1 Connectivity features that predict drinking severity 

With connectivity features of both loss and win processing during 

gambling, CPM successfully predicted drinking severity. Although the specific 

features varied, the positive networks included connections amongst the 

medial frontal, motor/sensory, and fronto-parietal networks, and the negative 

networks included connections between motor/sensory and medial frontal; 

between visual association and fronto-parietal; and between fronto-parietal 

and cerebellar networks for both loss and win processing. In contrast, 

whereas loss processing involved positive temporal, prefrontal, subcortical 

network connections and negative temporal and limbic, including insula, 

connections, win processing involved positive network connections between 

temporal and limbic, between prefrontal and occipital and negative network 

connections amongst insula, prefrontal, and temporal cortices. 

These findings are broadly consistent with reports of dysfunctional 

activation of the network nodes during psychological processes of importance 

to habitual drinking. For instance, an earlier work associated duration of 

alcohol use with lower activation in the right inferior frontal gyrus extending to 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.06.24302417doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.06.24302417
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

superior temporal gyrus during inhibitory control, which was not observed for 

age-related changes in nondrinkers (Hu et al., 2016). Another study 

demonstrated cue-craving circuits that involved connectivities with the frontal, 

parietal, and temporal brain regions in AUD participants vs. controls (Hornoiu 

et al., 2023). Whereas it is challenging to relate these activity or connectivity 

findings directly to the connectomics features identified in the current study, it 

appears that the same brain regions may participate in various psychological 

processes that conduce to alcohol consumption via their wide network 

connectivities. 

On the other hand, these connectivity results contrasted with our earlier 

findings that loss but not win reactivities distinguished individual variation in 

drinking (Li et al., 2022) and suggested connectivity features as additional 

neural markers of alcohol use severity. Secondly, shared connectivity features 

of loss and win processing suggest the potential roles of saliency circuit 

dysfunction in alcohol misuse. The current findings can also be discussed with 

earlier CPM studies of drinking or other substance use. For instance, 

Rapuano and colleagues demonstrated that both resting and reward-related 

connectomics in developing brains may predict risk for substance use, as 

reflected in e.g., substance-related behavioral measures and family history of 

drug use (Rapuano et al., 2021). Another study applied CPM to the 

International Neuroimaging Data-sharing Initiative database and identified 

functional connectivity from the DMN to the sensorimotor, opercular, and 

occipital network in predicting empathy in healthy subjects but not in abstinent 

drinkers, suggesting individual variation in the degree and pattern of network 

disruption as a result of chronic alcohol exposure (Yao et al., 2022). Other 

studies of CPM reported connectivities of the motor/sensory, salience, and 

executive control networks during cue exposure in prediction of dependence 

severity in male smokers (Lin et al., 2022) and of stronger motor/sensory 

within-network connectivity, and reduced connectivity between the 
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motor/sensory and medial frontal, default mode, and frontoparietal networks in 

distinguishing opioid from other substance use disorders (Lichenstein et al., 

2021).  

An important question concerns whether the connectomics features would 

predict future drinking, as was successfully demonstrated for reward-related 

fMRI data in a treatment study of cocaine use disorders (Yip et al., 2019). In a 

magnetoencephalography (MEG) study of adolescents described the 

relationship between functional Connectivity (FC) during an inhibitory control 

(IC) task and development of heavy drinking over a two-year period. The 

results showed that higher beta-band FC in the prefrontal and temporal 

regions at baseline predicted higher levels of future alcohol consumption. 

Further, greater future alcohol consumption was associated with more severe 

reduction in the same FC’s (Anton-Toro et al., 2023). Another study showed 

that greater severity of binge drinking in college students was negatively 

associated with connectivity between the DMN and ventral attention network, 

although CPM failed to identify a generalizable predictive model of 

longitudinal changes in connectivity edges over follow-up of two years (Tong 

et al., 2021). It remains to be seen whether the current network markers 

predict future alcohol use and identify individuals at risk for AUD.    

 

4.2 Molecular profiles of the connectivity networks 

We examined the molecular profiles of the network markers, and the 

results highlighted the role of the GABAergic and serotonergic signaling in 

alcohol use severity. This finding is consistent with a large body of clinical and 

preclinical research implicating the GABAergic and serotonergic systems in 

alcohol misuse (Davies, 2003; Maccioni and Colombo, 2019; Andersen et al., 

2021; Logge et al., 2022).  

Alcohol mimics the activity of GABA by binding to GABA receptors and 

inhibits neuronal activities, leading to widespread suppression of brain 
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function. Other studies implicated the GABAergic systems in dependent 

drinking. For instance, injection of muscimol, a GABAa receptor agonist, in the 

ventral tegmental area elevated voluntary drinking in alcohol-preferring AA 

rats (Dudek and Hyytia, 2016). In a study quantifying the levels of transcript 

expression of GABAa receptor mRNA in postmortem brain tissues, those with 

a diagnosis of AUD who died of cirrhotic liver disease (suggesting higher level 

of alcohol use) as compared to controls has significantly higher expression of 

the transcripts in dorsolateral prefrontal and primary motor cortices (Ashton et 

al., 2022).  

Preclinical work demonstrated the roles of 5-HT1A-dependent regulation 

of binge drinking from short- to longer-term alcohol exposure that involves the 

dentate gyrus of the hippocampus (Belmer et al., 2022). In a drinking-in-the-

dark (DID) paradigm to model chronic binge-like voluntary alcohol 

consumption in mice, selective partial activation of 5-HT1A receptors by 

tandospirone (5-HT1A partial agonist) prevented alcohol withdrawal-induced 

anxiety-related behavior and binge-like ethanol intake. Further, DID-elicited 

deficits in neurogenesis in the dorsal hippocampus were reversed by chronic 

treatment with tandospirone (Belmer et al., 2018). An earlier study 

characterized the opposing effects of stimulation of somatodendritic 5-HT1A 

receptors at lower doses and postsynaptic 5-HT1A receptors at higher doses 

on alcohol intake in Long-Evans rats (McKenzie-Quirk and Miczek, 2003). In 

PET imaging of 5-HT1A receptor binding in alcohol-naïve rhesus, the binding 

potential increased in the raphe nuclei (vs. the cerebellum as a reference 

region) after chronic ethanol self-administration. Further, baseline 5-HT1A 

binding in the raphe nuclei showed a positive correlation with average daily 

ethanol self-administration (Hillmer et al., 2014). In a large sample of 

adolescents, 5-HTTLPR low-activity allele carriers exposed to higher levels of 

family conflict were more likely to engage in alcohol misuse than non-carriers 

(Kim et al., 2020). 
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Together, the current findings are consistent with this previous body of 

work implicating GABAergic and serotonergic signaling in alcohol misuse. 

However, many other studies implicated the glutamatergic (Morris et al., 1986; 

Bliss and Collingridge, 1993; White et al., 2000), dopaminergic (Travis E. 

Baker et al., 2019), cannabinoid (Ridge et al., 2009), and GABAb (Marron 

Fernandez de Velasco et al., 2023) signaling in alcohol misuse. Some of 

these systems which have yet to be covered by the JuSpace toolbox need to 

be further investigated along with the network markers of alcohol use severity. 

 

4.3 Limitations and conclusions 

A few limitations need to be considered for this study. First, the networks 

identified from CPM included nodes from Shen’s atlas of 268 ROIs, whereas 

the neurotransmitter maps were of 119 brain regions. This discrepancy may 

have accounted for the missing links with other neurotransmitter systems. 

Second, the HCP data represent a non-clinical sample; it thus remains to be 

seen whether the current findings can be generalized to alcohol use disorders. 

Third, alcohol misuse involves many other comorbidities, including smoking 

and internet gaming disorder (Zhou et al., 2022) as well as depression and 

anxiety (Amanda L. Baker et al., 2012; Debell et al., 2014) that may implicate 

changes in cerebral connectomics. Although a recent study of a large cohort 

of adolescents highlighted resting-state connectivity features across the 

majority of networks more strongly predictive of drinking than smoking 

(Gazula et al., 2023), it remains to be seen whether the connectivity features 

identified here are specific to alcohol use severity. Finally, many large-scale 

studies have characterized the gray matter volumetric and thickness and 

white matter integrity markers of alcohol misuse (Galinowski et al., 2020; 

Harper et al., 2021; Logtenberg et al., 2022; Rane et al., 2022). Future studies 

can examine how functional and structural markers compare in the effect size 

of prediction and whether the combination of multimodal imaging makers 
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improves the performance of CPM. 

In conclusion, this study demonstrates that patterns of whole-brain 

connectivity during loss and win processing can predict drinking severity and 

these connectivity markers are associated with the serotonergic and GABAa 

signaling. These findings demonstrate that individual differences in 

connectivity within large-scale neural networks as implicated in punishment 

and reward responses contribute to the severity of alcohol misuse outcomes. 

As such, these “neural fingerprints” may represent appropriate targets for 

future intervention efforts. 
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Figure 1. Macroscale network connectivities of loss processing in predicting 
drinking PC1. (A) shows positive (red) and negative (blue) networks in 
correlation with PC1. Larger spheres indicate nodes with more edges, and 
smaller spheres indicate fewer edges. For the positive network, higher edge 
weights (i.e., connectivity) predicted more severe drinking. For the negative 
network, lower edge weights predicted more severe drinking. (B) illustrates 
the correlation between actual (x-axis) and predicted (y-axis) drinking PC1 
values generated using CPM.  
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Figure 2. Macroscale network connectivities of loss processing in predicting 
drinking PC1. (A) Positive and negative networks summarized by connectivity 
between macroscale brain regions during punishment blocks. From the top, 
brain regions are presented in approximate anatomical order, such that 
longer-range connections are represented by longer lines. (B) Positive and 
negative and the sum of positive and negative networks. Cells represent the 
total number of edges connecting nodes within and between each network, 
with a higher number indicating a greater number of edges. Abbreviations: MF, 
medial frontal; FP, fronto-parietal; DMN, default mode; Mot, motor/sensory; VI, 
visual a; VII, visual b; Vas, visual assoc; SAL, salience; SC, subcortical; CBL, 
cerebellum/ brainstem. 
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Figure 3. Correlations between T values of whole-brain regression of the 
contrast “loss-baseline” against PC1 and neurotransmitter distribution maps. 
(A) T maps and neurotransmitter correlation analysis results (red/blue each 
represents positive/negative Pearson's r). (B) Transporter or receptor systems 
that are significantly associated with T maps. Abbreviations: 5-HT,5-
hydroxytryptamine (serotonin); CB1, cannabinoid type 1; D, dopamine 
receptor; DAT, dopamine transporter; FDOPA, fluorodopa, an analog of L-
DOPA to assess the nigrostriatal dopamine system; GABAa, gamma-
aminobutyric acid a; MOR, mu opioid receptor; NAT, noradrenaline transporter; 
SERT, serotonin transporter; VAChT, vesicular acetylcholine transporter; 
mGluR5, metabotropic glutamate type 5. 
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Figure 4. Macroscale network connectivities of win processing in predicting 
drinking PC1. (A) shows positive (red) and negative (blue) networks. For the 
positive network, higher edge weights (i.e., connectivity) predict more severe 
drinking. For the negative network, lower edge weights predict more severe 
drinking. Larger spheres indicate nodes with more edges, and smaller 
spheres indicate fewer edges. (B) illustrates the correlation between actual (x-
axis) and predicted (y-axis) drinking severity values generated using CPM.  
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Figure 5. Macroscale network connectivities of win processing in predicting 
drinking PC1. (A) Positive and negative networks summarized by connectivity 
between macroscale brain regions during punishment blocks. From the top, 
brain regions are presented in approximate anatomical order, such that 
longer-range connections are represented by longer lines. (B) Positive and 
negative and the sum of positive and negative networks. Cells represent the 
total number of edges connecting nodes within and between each network, 
with a higher number indicating a greater number of edges. Abbreviations: MF, 
medial frontal; FP, frontal parietal; DMN, default mode; Mot, motor/sensory; VI, 
visual a; VII, visual b; Vas, visual assoc; SAL, salience; SC, subcortical; CBL, 
cerebellum/ brainstem. 
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Figure 6. Correlations between T values of whole-brain regression of the 
contrast “win-baseline” against PC1 and neurotransmitter distribution maps. 
(A) T maps and neurotransmitter correlation analysis results (red/blue each 
represents positive/negative Pearson's r). (B) Transporter or receptor systems 
that are significantly associated with T maps. Abbreviations: 5-HT,5-
hydroxytryptamine (serotonin); CB1, cannabinoid type 1; D, dopamine 
receptor; DAT, dopamine transporter; FDOPA, fluorodopa, an analog of L-
DOPA to assess the nigrostriatal dopamine system; GABAa, gamma-
aminobutyric acid a; MOR, mu opioid receptor; NAT, noradrenaline transporter; 
SERT, serotonin transporter; VAChT, vesicular acetylcholine transporter; 
mGluR5, metabotropic glutamate type 5. 
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