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Abstract 43 

Research on brain expression quantitative trait loci (eQTLs) has illuminated the genetic 44 

underpinnings of schizophrenia (SCZ). Yet, the majority of these studies have been centered on 45 

European populations, leading to a constrained understanding of population diversities and disease 46 

risks. To address this gap, we examined genotype and RNA-seq data from African Americans (AA, 47 

n=158), Europeans (EUR, n=408), and East Asians (EAS, n=217). When comparing eQTLs 48 

between EUR and non-EUR populations, we observed concordant patterns of genetic regulatory 49 

effect, particularly in terms of the effect sizes of the eQTLs. However, 343,737 cis-eQTLs 50 

(representing ~17% of all eQTLs pairs) linked to 1,276 genes (about 10% of all eGenes) and 51 

198,769 SNPs (approximately 16% of all eSNPs) were identified only in the non-EUR populations. 52 

Over 90% of observed population differences in eQTLs could be traced back to differences in 53 

allele frequency. Furthermore, 35% of these eQTLs were notably rare (MAF < 0.05) in the EUR 54 

population. Integrating brain eQTLs with SCZ signals from diverse populations, we observed a 55 

higher disease heritability enrichment of brain eQTLs in matched populations compared to 56 

mismatched ones. Prioritization analysis identified seven new risk genes (SFXN2, RP11-282018.3, 57 

CYP17A1, VPS37B, DENR, FTCDNL1, and NT5DC2), and three potential novel regulatory 58 

variants in known risk genes (CNNM2, C12orf65, and MPHOSPH9) that were missed in the EUR 59 

dataset. Our findings underscore that increasing genetic ancestral diversity is more efficient for 60 

power improvement than merely increasing the sample size within single-ancestry eQTLs datasets. 61 

Such a strategy will not only improve our understanding of the biological underpinnings of 62 

population structures but also pave the way for the identification of novel risk genes in SCZ.  63 

Keywords: eQTLs; Schizophrenia; GWAS signals; Population diversity  64 
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Introduction 65 

Genome-wide association studies (GWAS) have identified 287 risk loci associated with 66 

schizophrenia (SCZ)1. Yet, the underlying mechanisms of these loci in disease development and 67 

progression remain poorly understood. Primarily, over 80% of GWAS risk loci reside in non-68 

coding regions, devoid of protein-coding sequences, making it challenging to attribute them to 69 

specific genes. Moreover, predicting the regulatory effect of these loci proves challenging due to 70 

their tendency for gene-specific and tissue-specific effects. One effective strategy for gaining 71 

insights into their functions involves the integration of SCZ GWAS signals with expression 72 

quantitative trait loci (eQTLs), utilizing genotype and expression data from post-mortem brains. 73 

These brain eQTLs establish crucial links between risk genomic regions and gene expression levels, 74 

prioritizing potential disease risk genes through methods such as colocalization and transcriptome-75 

wide association study (TWAS).  76 

Past brain eQTL studies primarily focused on European (EUR) ancestry2–6. Global population 77 

diversity has not been adequately represented. Cross-population studies have shown that these 78 

European ancestry based models do not effectively predict gene expression in other ancestral 79 

groups7. This limitation weakens the power to detect TWAS associations in genetically diverse 80 

samples. While multi-ancestry eQTL meta-analyses in the human brain improve statistical power 81 

in uncovering risk loci shared across populations, key genetic variants regulating expression in 82 

specific underrepresented populations remain largely uncharted. The benefits of having brain 83 

eQTLs in diverse populations have not been thoroughly documented. Identifying eQTLs specific 84 

to biomedically underrepresented groups like African Americans (AA) and East Asians (EAS) can 85 

better understand the genetic contributions to disease susceptibilities and outcomes in these 86 

populations7. These populations have unique genetic variants and linkage disequilibrium (LD) 87 
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patterns. Additionally, previous studies have shown that combining eQTLs from different 88 

ancestries can enable fine-mapping of causal variants and uncover potential novel mechanisms of 89 

brain disorders8,9.  Thus, the question of how to effectively leverage difference to uncover potential 90 

novel mechanisms of brain disorders is a significant topic in the field. 91 

To enhance the diversity in brain eQTL mapping and improve the interpretation of SCZ GWAS 92 

across populations, we performed brain eQTL mapping in three major ancestries. Our data pool 93 

comprised genotype and RNA-seq data of AA (n= 158) and EUR (n= 408) from the 94 

PsychENCODE Consortium and EAS (n= 217) from the Chinese Human Brain Bank 95 

(Supplementary Table 1). We juxtaposed non-EUR results against EUR to systematically examine 96 

differences and similarities in the brain eQTLs. Further, we investigated the contributing factors 97 

for eQTL differences across populations. By applying diverse population brain eQTLs to TWAS 98 

and colocalization analysis of SCZ GWAS, we identified new risk genes and pathways. Lastly, we 99 

identified likely causal variants by multi-ancestry fine-mapping. The two key questions we sought 100 

to answer are: 1) what drives the brain eQTL differences across populations? 2) what do we gain 101 

by studying brain eQTLs in diverse populations? 102 

Results 103 

To capture brain eQTLs across diverse populations, we utilized high-density genotype data 104 

alongside high-throughput RNA-sequencing from prefrontal cortices. We derived AA (n = 158) 105 

and EUR (n = 408) data from the BrainGVEx project of the PsychENCODE Consortium. We 106 

generated EAS (n = 217) data from the Chinese Human Brain Bank (Fig. 1). Following rigorous 107 

quality checks and preprocessing (Extended Data Fig. 1 and Extended Data Fig. 2), we compiled 108 

expression data for 18,939 genes and genotype data at 6.4 million autosomal single nucleotide 109 
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polymorphisms (SNPs) across the three groups. Aligning the samples with the 1000 Genomes 110 

Project reference populations, principal component analysis (PCA) confirmed the ancestry origins 111 

of donors (Fig. 2a). We ensured sample identity consistency by comparing the genotypes from the 112 

DNA and RNA samples. See methods for additional details. 113 

Characterizing the cis-acting eQTLs in European, East Asian, and African American 114 

population 115 

We separately conducted cis-eQTLs mapping in the EUR, EAS, and AA samples using a 5% 116 

empirical gene-level false discovery rate (FDR) threshold. This yielded 1,966,209 significant 117 

eQTL signals covering 11,622 genes (eGenes) and 1,226,769 SNPs (eSNPs) across the populations 118 

(see Fig. 2b and Supplementary Table 2). Specifically, we identified 1,616,818 eQTL signals 119 

spanning 10,236 eGenes and 1,025,004 eSNPs for EUR; 562,058 eQTLs incorporating 5,000 120 

eGenes and 416,025 eSNPs for EAS; and 143,736 eQTLs covering 3,039 eGenes and 121,079 121 

eSNPs for AA. To identify credible SNP sets harboring plausible causal variants in cis-eQTLs, we 122 

applied a fine-mapping method named SuSiE10 to each population's eQTL results. The results 123 

showed 966 credible SNP sets for 757 eGenes in the EUR cohort, 826 sets for 726 eGenes in EAS, 124 

and 847 sets for 746 eGenes in AA (Supplementary Tables 3-5). 125 

To investigate the genomic features of these cis-eQTLs, we evaluated the SNP distributions and 126 

locations relative to various functional regions. 20% of cis-eQTLs in both EUR and non-EUR 127 

populations were located within 10kb of transcription start site (TSS) regions (Fig. 2c). According 128 

to the chromatin states predicted by Genomic Regulatory Elements and Gwas Overlap algoRithm 129 

(GREGOR)11 for prefrontal cortical tissue, eSNPs from the non-EUR populations were 130 

significantly enriched in TSSs, promoters, and transcribed regulatory promoters or enhancers 131 
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(PBonferroni < 0.05), identical to the observation in the EUR data. Moreover, using transcription 132 

factor binding site (TFBS)  annotation for 51 TFs, 46 and 49 TFs were significantly enriched with 133 

cis-eQTLs in the AA and EAS populations respectively (PBonferroni < 0.05). All these TFBS were 134 

also significantly enriched with cis-eQTLs in the EUR population. 135 

To maximize the power of our population-based datasets, we employed METAL to amalgamate 136 

the cis-eQTLs data from all three populations. This meta-analysis generated 598,193 eQTLs, 137 

correlating 436,456 eSNPs with 5,209 eGenes (with a stringent P<2.5e-6) as depicted in Fig. 138 

2b. However, meta-analysis does not consider the LD differences among the populations. We thus 139 

used SuSiEx16 to identify likely causal variants regulating expression by incorporating the LD 140 

reference data from different populations. In total, SuSiEx identified 2,121 credible SNP sets for 141 

1,801 eGenes in the 3-population combined data.  Further details from the meta-analysis and fine-142 

mapping results can be found in Supplementary Table 6.  143 

Population shared eQTLs showed similar regulatory effect across population 144 

To evaluate the effect sizes across populations, we conducted a correlation test of effect size values 145 

between the EUR and non-EUR populations. The effect sizes of the shared eQTLs between the 146 

non-EUR and EUR were highly concordant (0.910 for eQTLs comparing EAS to EUR and 0.944 147 

for AA to EUR; Fig 3a). To assess the robustness of the concordant effect size, we examined eQTL 148 

slopes in the different populations. We looked at eQTLs obtained from the nominal, permutation, 149 

and conditional tests, separately. eQTLs with smaller p-values or larger effect sizes showed greater 150 

consistency across populations (Extended Data Fig. 3). Considering that sample size and 151 

heterogeneity may influence the results, we randomly down-sampled the EUR data to match the 152 

size of the non-EUR data. The results were similar to the results comparing all samples, showing 153 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 16, 2024. ; https://doi.org/10.1101/2024.02.13.24301833doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.13.24301833


highly concordant effect sizes across populations (see Fig. 3c, Extended Data Fig. 3). In addition, 154 

we compared the slope of the down-sampled EUR data with GTEx data (also of EUR). We 155 

randomly sub-sampled 100 times and obtained a distribution of correlation values (R2). The mean 156 

R2 was 0.94, which was not significantly different from the correlation between the EUR and non-157 

EUR population. We therefore concluded that the effect sizes of eQTLs in diverse populations 158 

were mostly stable across human populations. 159 

We evaluated the replicated rate (π1), which gauges the true positive rate for the eQTLs identified 160 

in the non-EUR populations that were also associated in the EUR population. The replicated rate 161 

was π1(EAS-EUR) = 0.86 and π1(AA-EUR) = 0.91 (see Fig.3b). The π1 for the non-EUR 162 

populations in EUR was slightly but significantly lower than the π1 between two EUR cohorts, as 163 

represented by the GTEx cis-eQTL data (prefrontal cortex) in our EUR eQTL data (π1(GTEx-164 

EUR) = 0.86, p-value = 0.023). To ensure a fair comparison of the replication rate of detected cis-165 

eQTLs in non- EUR data, we adjusted the EUR data to reflect the smaller sample size of the non-166 

EUR data. This adjustment enabled us to determine how many non-EUR cis-eQTLs were 167 

confirmed in the adjusted EUR dataset. The adjusted results revealed a concordant trend: the 168 

replicated rate between different populations was still slightly lower than that within the same 169 

population assuming the same sample size (EUR-nonEUR average π1 = 0.68, EURadjusted-EUR 170 

average π1 = 0.72, p-value = 0.037) (see Fig. 3d). 171 
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Population differences in brain cis-eQTLs are mainly caused by differences in SNP allele 172 

frequency while differences in effect size are small and uncertain 173 

Here we defined those eQTLs that were exclusively observed in a single population as population-174 

specific eQTLs. Upon analyzing the cis-eQTLs overlapping between populations, we identified 175 

343,737 cis-eQTLs that were exclusively observed in the non-EUR populations, as detailed in 176 

Supplementary Table 2. This number represents approximately 17% of all eQTL pairs. These 177 

eQTLs involved 1,276 genes (about 10% of all eGenes) and 198,769 SNPs (around 16% of all 178 

eSNPs, Fig. 2d-f.). Specifically, there were 292,254 cis-eQTLs involving 165,300 eSNPs and 937 179 

eGenes that were observed only in the EAS population and 51,483 cis-eQTLs involving 33,469 180 

eSNPs and 339 eGenes that were observed only in the AA population. 181 

To further characterize these non-EUR-specific eQTLs, we analyzed the variance, taking into 182 

account both the eQTL slope (effect size) and differences in allele frequency between populations. 183 

We found that more than 90% of the population differences in variance were attributable to 184 

differences in allele frequency. Moreover, to delve deeper into the distinctive characteristics of the 185 

eQTLs exclusive to the non-EUR groups, we leveraged two statistics, the fixation index (FST) and 186 

the minor allele frequency (MAF), retrieved from the 1000 Genomes Selection Browser12. A high 187 

FST value indicates that the measured locus has diverged over time in the populations. As expected, 188 

eSNPs detected only in the EAS or AA population displayed a significantly elevated FST when 189 

juxtaposed against eSNPs shared across populations (Wilcoxon test P < 2.2e-16). Meanwhile, the 190 

non-EUR-specific eSNPs showed higher MAF values in their respective source populations 191 

(Wilcoxon test P < 2.2e-16;) than in EUR. Of the 343,737 eQTLs absent in the EUR data, 309,363 192 
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were likely due to inadequate statistical power because they have smaller MAF in the EUR than 193 

non-EUR population. Furthermore, 70,980 were rare in the EUR population (MAF1KG < 0.05). 194 

For the rest the eQTLs for which population differences could not be explained by differences in 195 

MAF, a test for differences in eQTL slopes (effect sizes) was also conducted between the EUR 196 

and non-EUR populations. The z-score of each independent eQTLs from conditional analysis was 197 

calculated based on effect size and its standard deviation. Here the null hypothesis was that the 198 

difference in eQTL effect size between the populations equals zero. No eQTL pairs detected by 199 

conditional analysis could reject the null hypothesis. We then investigated if any eQTLs exhibited 200 

opposite effect directions across populations. None of the independent eQTLs from the conditional 201 

analysis displayed such effects. We relaxed our eQTL threshold using a nominal p-value < 0.05. 202 

Only 534 eQTLs involving eighteen genes exhibited opposing eQTL effects between the EUR and 203 

non-EUR populations. For example, the bitter taste receptor gene TAS2R31 showed opposite 204 

directions of eQTLs in EAS and EUR (Fig. 3e), which could be replicated using the blood eQTLs 205 

from a previous study7,13.  206 

In conclusion, the variance in population differences can be largely attributed to differences in 207 

allele frequency. The influence of effect size differences, on the other hand, appears to be minimal 208 

and inconclusive. 209 

Brain eQTLs from matched population can improve interpretation of SCZ GWAS  210 

To determine if eQTLs detected from a specific population could explain the disease GWAS 211 

signals and SNP-based disease heritability better than eQTLs from non-matching populations, we 212 

undertook a two-step analysis. Firstly, we gathered SCZ GWAS summary statistics for the EUR, 213 

EAS, and AA populations from previously published studies14–16. We employed the partitioned 214 
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LD-score regression (LDSR)17 approach to assess the GWAS signal enrichment of these eQTLs. 215 

eQTLs identified in the EAS population demonstrated a markedly higher enrichment in EAS-based 216 

GWAS signals than eQTLs identified in the EUR population. Conversely, eQTLs identified in the 217 

EUR population showed a greater enrichment for EUR-based GWAS signals than the eQTLs from 218 

the EAS cohort. Both of these enrichments were statistically significant (Welch Modified Two-219 

Sample t-Test P-value < 0.001, Fig. 4a and 4b). 220 

Besides the SNP heritability enrichment of all eQTLs, we also compared the significance of the 221 

GWAS signals for population-unique eSNPs. We found that population-unique eSNPs tended to 222 

have smaller p-values of disease association (i.e., stronger associations) in the corresponding 223 

population than in the mismatched population (Welch Modified Two-Sample t-Test P < 0.001), 224 

indicating the ability of population-unique eSNPs to explain the disease association and propose 225 

the relevant gene, which will be missed when only one population is studied.  226 

SCZ risk genes identified using eQTLs and GWAS from non-EUR population 227 

To uncover risk genes and pathways for SCZ in non-EUR populations, we used TWAS, regulatory 228 

Trait Concordance (RTC)18, and summary data-based mendelian randomization (SMR)19 to 229 

prioritize SCZ candidate risk genes in non-EUR populations and compared them with risk genes 230 

identified in the EUR (see Methods). In total, we prioritized ten risk genes in the EAS 231 

(Supplementary Tables 7-9). It is worth noting that our TWAS analysis of AA data did not reveal 232 

any significant associations. This lack of association in AA data might be attributed to the 233 

relatively small sample size available from the AA SCZ GWAS. 234 

Seven SCZ candidate risk genes (SFXN2, RP11-282018.3, CYP17A1, VPS37B, DENR, FTCDNL1, 235 

and NT5DC2) uniquely discovered in the EAS population were assessed for allele frequency. From 236 
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these seven genes, two of them were located in chromosome 10 and five of them were located in 237 

the chromosome 12. The eSNPs for these genes showed lower allele frequency in the EUR 238 

population than in EAS. For instance, the GWAS signal chr12:123286491:A:G in the gene 239 

VPS37B was found to be significant in the EAS population with a high AF of 0.48. In contrast, 240 

this association was not significant in the EUR population with a markedly lower allele frequency 241 

of 0.04. A parallel pattern emerged with the eSNP for VPS37B, with a markedly higher frequency 242 

(chr12:123306558:G:A, MAF=0.24) in EAS than in the EUR (MAF = 0.04). These results further 243 

confirm that allele frequency differences between populations can explain most of the 244 

discrepancies between the EUR and EAS GWAS and the eQTL results (Supplementary Table 10).  245 

Novel potential SCZ regulatory variations were refined utilizing brain eQTLs from non-246 

EUR population 247 

Three of the ten risk genes identified in the EAS population were shared with the EUR population 248 

(CNNM2, C12orf65, and MPHOSPH9), but differences in genetic architecture between 249 

populations were still apparent. For example, two distinct significant SNPs in EAS and in EUR 250 

were associated with SCZ on chromosome 10 (GWASEUR: chr10:104850632:G:A with GWAS p-251 

value = 6.4E-13; GWASEAS: chr10:104657300:T:C with GWAS p-value = 5.4E-12).  Using 252 

eQTLs with GWAS signals in EAS and EUR separately, colocalization and SMR analysis 253 

prioritized these two distinct GWAS SNPs to the same risk gene CNNM2 in the two populations, 254 

respectively.  255 

To further investigate if these signals are located within any regulatory elements, we utilized the 256 

non-coding variant annotation database (NCAD)20 to annotate their regulatory information. Our 257 

findings revealed that all the EAS GWAS risk SNPs are situated in enhancer regions 258 
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(Supplementary Table 11). The EAS GWAS risk SNPs near the CNNM2 showed the strongest 259 

evidence. Furthermore, we used the Lineage-specific Brain Open Chromatin Atlas21 to investigate 260 

whether this enhancer region shows different effects in major brain cell types. The results did not 261 

show any cell type differences, which indicates the enhancer effect exists universally in major 262 

brain cell types (Extended Data Fig. 4a-c). Integrating these insights, we discovered strong 263 

evidence for multiple regulatory regions among the EAS eSNPs-chr10:104654577:T:C, which 264 

have a high LD with CNNM2 GWAS SNPs (LD R2 = 1, p-value < 0.00001). Additionally, our 265 

dual luciferase reporter assay results confirmed that the EAS eSNPs C-allele at 266 

chr10:104654577:T:C significantly enhances luciferase activity compared to the reference vector, 267 

as detailed in the Extended Data Fig. 4d-e. 268 

High-confidence putative causal variants of SCZ using multi-ancestry brain eQTLs 269 

To identify high-confidence putative causal variants from multiple populations, we applied 270 

colocalization to our fine-mapped eQTLs and SCZ GWAS signals. In total, we identified four 271 

SNP-gene-disease triplets in which the SNP colocalized with both gene expression and SCZ 272 

GWAS (Supplementary Table 12, PiPcoloc = PiPGWAS × PiPcis-eQTLs > 0.1). The top genes with 273 

PIPcoloc > 0.1 include FURIN, ZNF823, RHOA, and VWA5A (Fig. 4c). As an example, we identified 274 

the strongest putative SCZ causal SNP for FURIN-chr15:91426560:G:A. This SNP is located in 275 

the 3' untranslated regions (UTRs) of FURIN. Notably, this variant did not reach genome-wide 276 

significance in the EAS population (P = 1.06E-3) likely due to limited statistical power. Our result 277 

strongly supported that this causal variant is shared across populations, with causal probabilities 278 

of 1. Previous study has also implicated the variant in both the EUR and EAS populations13.  279 
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Discussion 280 

In this study, we have created a brain transcriptome resource and identified eQTLs in the prefrontal 281 

cortex, specifically focusing on non-European populations. Our findings address the initial 282 

inquiries raised in the introduction. Firstly, we investigated the driver behind the variation in brain 283 

eQTLs across different populations. We found that differences in allele frequency and LD are 284 

instrumental in connecting disease susceptibility to gene expression regulation. This finding 285 

greatly augments our comprehension of genetic influences on gene expression in the human brain. 286 

Secondly, when examining brain eQTLs from diverse populations, we gained power to explain the 287 

GWAS heritability, uncover novel risk genes, and fine-map risk variants. We observed a 288 

pronounced enrichment of disease heritability among eQTLs in matched populations. In the non-289 

EUR cohort, the allele frequencies and LD configurations facilitated the identification of seven 290 

novel SCZ risk genes. Additionally, we identified four high-confidence putative causal SCZ 291 

variants. These results highlight the utility of studying non-European cohorts. 292 

Population differences appear to be more pronounced at the allele frequency level but are less so 293 

at the effect size level. In general, the estimated π1 of eQTLs from non-EUR populations in EUR 294 

is lower compared to the rate observed between down-sampling-EUR and the EUR population 295 

cohort. Despite the relatively small sample size and statistical power, we still detected a significant 296 

number of 343,737 cis-eQTLs including 232,254 EAS eQTLs and 51,483 AA eQTLs that were 297 

significant only in the non-EUR populations. While over half of eSNPs in our non-EUR dataset 298 

were population-unique, 80% of eGenes identified in the non-EUR were also eGenes in the EUR 299 

data, but associated with different SNPs. The consistency of our observations with prior research 300 

involving diverse populations, including studies on gene expression22,23, methylation24, and 301 

chromatin accessibility25, confirms the shared regulatory patterns across different populations. 302 
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Interestingly, some eQTLs showed contrasting effects across populations. ~0.1% of the non-EUR-303 

specific eQTLs displayed opposing directions in effect size.  A notable example of this is the eQTL 304 

rs2599400-TAS2R31, which showed opposite effects in different populations. Blood eQTLs from 305 

EAS26, EUR, and AFR7 also support this observation. Prior studies have underscored the 306 

population-specific variations in TAS2R31, linking these variations to differing sensitivity to the 307 

bitter taste27. It is important to further investigate these discrepancies in gene expression regulation 308 

among populations as they influence phenotypes. However, it should be noted that lack of 309 

replication across all these studies limited our power to detect opposite-effect eQTLs. 310 

Our findings underscore that enhancing genetic ancestral diversity is more efficient for power gain 311 

than increasing the sample size within large-scale eQTLs datasets. Through our benchmarking of 312 

eQTLs across three populations, we have established robust capabilities for identifying eQTLs 313 

with a MAF greater than 0.2 and an effect size of 0.6 (Extended Data Fig. 5). Our power analysis 314 

indicates that more than 30,000 individuals of European ancestry is needed to uncover all eQTLs 315 

with MAF of 0.01 in this population, based on the estimated effect size of eQTLs exclusively 316 

observed in non-EUR populations (Extended Data Fig. 5). For example, one the eQTL pair 317 

(chr12:123306558:G:A-VPS37B) would require 3,215 EUR samples based on the power estimate 318 

because of the low frequency in the EUR population (MAF = 0.04).  However, the MAF of this 319 

eSNP is 0.22 in EAS, which reduces the required sample size from 3,215 to 246. Thus, 320 

incorporating a more diverse population would not only reveal numerous regulatory variants that 321 

are rarer in EUR but more prevalent in non-EUR groups. Advancing towards a broader, more 322 

diverse human reference dataset will facilitate more comprehensive investigations into the impact 323 

of human demography on eQTL detection, thereby deepening our understanding of the distribution 324 

and influence of genetic regulation in the human brain.    325 
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Differences in the genetic architecture underlying gene expression can help us to prioritize new 326 

risk genes. Notably, prior research has reported that disease-associated loci tend to be skewed 327 

towards variants with higher allele frequency in the discovery population, indicating that limited 328 

statistical power may result in "missing" disease-association signals. Incorporating diverse 329 

samples can enhance our ability to uncover the etiology of the disease. In our study, we identified 330 

seven new SCZ risk genes using the non-EUR population, including VPS37B in the EAS 331 

population. VPS37B is associated with calcium-dependent protein binding, providing new 332 

evidence to support the involvement of the calcium-related pathway in SCZ risk in the EAS 333 

population28. Another interesting candidate highlighted in our study was CYP17A1 (RTC = 0.99). 334 

The corresponding GWAS signal was significant in the EAS and EUR populations (PEAS = 4.5E-335 

8; MAFEAS = 0.48; PEUR = 2.6E-13; MAFEUR =0.30), while the corresponding eSNP in EAS 336 

population (MAF=0.48) showed extremely low frequency in EUR population (MAF<0.001).  337 

CYP17A1 notably serves as an enzyme important for the production of glucocorticoids and sex 338 

hormones, such as estrogen, which have been linked to schizophrenia29–31 . 339 

Besides enhancing the power for detecting risk genes, the inclusion of brain eQTLs from diverse 340 

populations improves the ability to fine-map SCZ GWAS loci, identifying new regulatory variants 341 

which have the potential to regulate downstream gene expression. This approach aids in 342 

interpretation, thereby facilitating subsequent computational and experimental functional 343 

investigations. Our result revealed a potential novel regulatory region near the population-shared 344 

risk gene CNNM2. This discovery showcases the power of leveraging diverse populations.  345 

By leveraging the multi-ancestry information, trans-ancestry fine-mapping also helped us identify 346 

high-confidence putative causal variants. In addition to previously validated genes, our study 347 

uncovered another significant finding at chr3:50297330:A:G-RHOA-SCZ through trans-ancestry 348 
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colocalization. RHOA encodes a member of the Rho family of small GTPases, pivotal in signal 349 

transduction cascades by toggling between inactive GDP-bound and active GTP-bound states.  350 

Some limitations of our study merit attention. Our sample size is still relatively small. Our analysis 351 

suggests that expanding the sample size would capture a larger set of eQTLs. The small sample 352 

size could have significantly impacted the comprehensiveness of our findings. The modest sample 353 

size of the AA eQTL dataset and the SCZ GWAS cohort likely led to the failure of TWAS in the 354 

AA population.  355 

In conclusion, we presented a novel genome-wide map of human brain gene expression regulation. 356 

Importantly, this resource bridges the gap between neuropsychiatric GWAS and brain gene 357 

expression profiling in non-European populations. Our study emphasizes the significance of this 358 

new atlas of brain gene expression regulation in non-European populations for advancing our 359 

understanding of human diversity, addressing health disparities, and developing precision 360 

medicine. 361 

Materials and methods 362 

Sample collection and sequencing 363 

We collected 217 prefrontal cortical samples of Han Chinese ancestry from the National Human 364 

Brain Bank for Development and Function32,33; the samples were handled according to the 365 

standardized operational protocol of the China Human Brain Banking Consortium, under the 366 

approval of the Institutional Review Board of the Institute of Basic Medical Sciences, Chinese 367 

Academy of Medical Sciences, Beijing, China (Approval Number: 009-2014).  368 
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We sequenced 217 samples following the BGISEQ-500 protocol outsourced to BGI. 1μg genomic 369 

DNA was randomly fragmented by Covaris, the fragmented DNA was selected by Agencourt 370 

AMPure XP-Medium kit to an average size of 200-400bp, followed by adapter ligation, PCR 371 

amplification, and the products were recovered by the AxyPrep Mag PCR clean up kit. The double-372 

stranded PCR products were heat-denatured and circularized by the splint oligo sequence. The 373 

single-strand circle DNA (ssCir DNA) was formatted as the final library and qualified by QC. 374 

Sequencing was performed on BGISEQ-500 platform with an average depth of 10X.  375 

Total RNA was extracted from the brain tissue using Trizol (Invitrogen, Carlsbad, CA, USA) 376 

according to manufacturers’ instructions. Then, total RNA was qualified and quantified using a 377 

Nano Drop and Agilent 2100 bioanalyzer (Thermo Fisher Scientific, MA, USA). Ribo-zero 378 

method was used to remove the rRNA. Purified mRNA was fragmented into small pieces with 379 

fragment buffer at an appropriate temperature. The cDNAs were purified by magnetic beads.  After 380 

purification, A-Tailing Mix and RNA Index Adapters were added by incubating to carry out end 381 

repair. The cDNA fragments with adapters were amplified by PCR, and the products were purified 382 

by Ampure XP Beads. The library was validated on the Agilent Technologies 2100 bioanalyzer 383 

for quality control. The final library was amplified with phi29 (Thermo Fisher Scientific, MA, 384 

USA) to make DNA nanoball (DNB), DNBs were loaded into the patterned nanoarray and single 385 

end 50 base reads were generated on BGISEQ500 platform. 386 

Data quality control 387 

Raw sequencing reads were filtered to get clean reads by using SOAPnuke (v1.5.6)34, and 388 

FastQC35 was used to evaluate the quality of sequencing data via several metrics, including 389 

sequence quality per base, sequence duplication levels, and quality score distribution for each 390 
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sample. The average quality score for overall DNA and RNA sequences was above 30, indicating 391 

that a high percentage of the sequences had high quality.  392 

Variant identification  393 

Clean DNA sequencing reads were mapped to the human reference genome hg19 (GRCh37) using 394 

BWA-MEM algorithm (BWA v. 0.7.128)36. Ambiguously mapped reads (MAPQ <10) and 395 

duplicated reads were removed using SAMtools v. 1.2937 and PicardTools v. 1.1 respectively. 396 

Genomic variants were called following the Genome Analysis Toolkit software (GATK v. 3.4.4.6) 397 

best practices.  398 

Population validation, imputation, and filtering 399 

We used PLINK to infer the genomic ancestry of each sample in this study by combining our 400 

genotype data and the genotype data from the 1000 Genomes Project38; no sample was excluded. 401 

Using Michigan Imputation Server41, EAS genotypes were imputed into the 1000 Genomes Project 402 

phase 3 EAS reference panel by chromosome and subsequently merged. Imputed genotypes were 403 

filtered for LD R2 < 0.3, Hardy-Weinberg equilibrium p-value < 10e-6 and MAF < 0.05, resulting 404 

in ~ 6 million autosomal SNPs.  405 

For AA population, genotypes were imputed into the 1000 Genomes Project phase 3 AA reference 406 

panel by chromosome and subsequently merged. To further confirm the ancestry of the African 407 

American samples, all AA samples were evaluated for their ancestry with three broad population 408 

groups with PC1 ≥ 25% AFR and < 25% AMR, < 25% EAS, < 25% SAS; clustering of individuals 409 

in each broad population group with the 1000 Genomes Project reference populations are shown 410 

in Fig.2a. 411 

Sex check and sample swap identification 412 
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The sex of each sample was inferred with SNPs using PLINK. In the EAS cohort, two samples 413 

were identified as sex-mismatched and were subsequently removed in downstream analysis. 414 

Quality control was performed on genotypes using sample Binary Alignment Map (BAM) files to 415 

detect any sample identity swaps between the RNA and DNA experiments.  The QTLtools match 416 

function39 confirmed that all samples were appropriately matched. 417 

Gene expression quantification and quality control 418 

The RNA-sequencing reads were mapped using STAR (2.4.2a)40 and the genes and transcripts 419 

quantification was performed using RSEM (1.3.0)41. Raw read counts were log-transformed using 420 

R package VOOM42, thereafter filtering those with log2(CPM) < 0 in more than 75% of the 421 

samples. Mitochondrial DNA and X and Y chromosome-derived transcripts were excluded. 422 

Samples with a Z-score (measured for inter-sample connectivity) less than -3 were also discarded. 423 

Finally, quantile normalization was utilized to equalize distributions across samples. 424 

Covariate selection 425 

To measure technical covariates, quality control metrics were collected using STAR, PicardTools 426 

v1.139 and RNASeQC. Principal components of the metrics data were calculated and included as 427 

SeqPCs for covariate selection. Hidden covariates were measured using probabilistic estimation 428 

of expression residuals (PEER)43 and found to be significantly correlated with technical and 429 

biological covariates such as experimental batch, RNA Integrity Number (RIN), sex, and age of 430 

death. Based on the Bayesian information criterion (BIC) score, redundant covariates were 431 

removed to avoid overfitting. A forward and backward selection procedure was followed, and 432 

PEER hidden factors and known covariates were added. The covariate with the higher BIC score 433 

was selected for subsequent QTL mapping. PEER was run with varying numbers of inferred 434 

hidden factors: 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50, independently. 435 
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cis-eQTL mapping 436 

Cis-eQTL mapping was performed using QTLtools, accounting for PEER factors, with a defined 437 

cis window spanning one megabase upstream and downstream of the gene/intron cluster body. 438 

Using the PEER from gene expression matrix, twenty hidden covariates were identified and 439 

adjusted. To detect all available QTLs, QTLtools was conducted in nominal pass mode. To identify 440 

the best nominal associated SNP per phenotype, QTLtools was executed in the permutation pass 441 

mode. Additionally, to identify SNPs with independent effects on regulating gene expression, 442 

QTLtools was run in the conditional pass mode. SNPs with P-values below the threshold of the 443 

permutation threshold is classified as significant QTLs. 444 

To address potential sample size disparities that could impact the results, the EUR data were 445 

randomly sampled with various sample size (150, 200, 250, 300, 350, and 400) and applied the 446 

same analytical pipeline while exploring the relationship between sample size and number of QTLs. 447 

eQTL meta-analysis 448 

The SNP-gene pairs with a genome-wide P value reaching the threshold of 10e-6 for each 449 

population were collected and performed the meta-analysis. Standard fixed-effects meta-analysis 450 

were used to combine all data into a single regression model by METAL44. The meta-analysis 451 

assumes a fixed-effects size, as well as constant error variance, across all data.  452 

eQTL fine-mapping 453 

The initial step of fine-mapping involved using the in-sample LD of the three populations. We 454 

extracted common variants with MAF > 5% from each group and used PLINK to determine the 455 

LD regions of these common variants for each population. To eliminate strand flipping and 456 

alignment issues, multi-allelic variations and indels were removed. Next, SuSiEx was applied to 457 
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merge the eQTLs summary statistics from the three groups. Credible set is defined as a set of 458 

putative causal variants. A credible set was discarded if it lacked genetic variants reaching genome-459 

wide significance (p < 1e-6) in either the population-unique eQTLs or cross-population meta-460 

eQTLs. By considering prior knowledge and the observed data, this method provides a posterior 461 

probability (PIP) for each variant being the causal one in the associated region. Variants with high 462 

PIPs are then considered strong candidates for functional follow-up studies. 463 

Functional enrichment 464 

To determine functional enrichment, GREGOR48 was performed to test the eQTL enrichment. 465 

GREGOR calculated the enrichment value based on the observed and expected overlap within 466 

each annotation. To conduct our analysis, the 15-state ChromHMM model BED (Browser 467 

Extensible Data) files from the Roadmap Epigenetics Project45, and 78 consensus transcription 468 

factor and DNA-protein binding site BED files existing in multiple cells  were downloaded. Fifty 469 

binding proteins showed cortical brain expression in EAS and AA populations data46.  470 

The fraction of shared eQTLs between non-EUR and EUR populations 471 

Sharing rate was assessed based on significant eQTLs in the discovery dataset by estimating the 472 

proportion of true associations (π1) on the distribution of corresponding p-values of the overlapping 473 

eQTLs in the replication dataset47.   474 

FST and MAF analysis 475 

Fixation index (FST) was estimated using vcftools following the Weir and Cockerham approach 476 

for each eSNP48. The population-divergent SNPs were defined as those with FST >= 0.05 and 477 

population-shared SNPs as those with FST < 0.05. To generate the list of population-unique  QTLs 478 
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and population-shared QTLs, we collected the overlap of eQTLs from the pairwise comparisons 479 

of the list of AA eQTLs, EAS eQTLs, and EUR eQTLs. Finally, Fisher’s exact test was performed 480 

between population-unique  QTLs and population-shared QTLs to test the contribution of MAF in 481 

the QTL comparison. 482 

Variance explained 483 

Variance explained, which combines the effect size (beta) and frequency of the allele (f), can be 484 

considered an approximate measure of a causal variant's importance within a population. Variance 485 

is approximated using the formula 2f(1 – f)log(beta)²/(π²/3)49. Although these variants often exhibit 486 

similar odds ratios across populations, their allele frequencies may differ. By considering both the 487 

effect size (OR) and the frequency of the risk allele (f), the variance explained offers a valuable 488 

approximation of a causal variant's significance within a given population. 489 

Power estimation 490 

We used R to calculate the sample size needed to achieve a given power level in a chi-square test, 491 

based on an assumed effect size and a significance threshold. This analysis starts by setting initial 492 

values for power, effect size, and p-value threshold. Then, the critical chi-square statistic required 493 

to meet the power level is computed. A function, calculate_ncp, is defined to calculate the non-494 

centrality parameter from the p-value and degrees of freedom, adjusting for the critical chi-square 495 

statistic. Subsequently, the non-centrality parameter is computed for the given power and p-value 496 

threshold. Another function, af_n_relation, is created to determine the relationship between allele 497 

frequency and sample size, incorporating the effect size and the non-centrality parameter. Finally, 498 

the code iteratively solves for the sample size corresponding to a range of allele frequencies, thus 499 
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enabling the determination of the necessary sample size for different allele frequencies to maintain 500 

the specified power level in the chi-square test. 501 

Partitioned LDSR 502 

Partitioned LD score regression v1.0.150 was used to measure the enrichment of GWAS summary 503 

statistics in each functional category by accounting for LD. Brain QTL annotations were created 504 

by eSNP, mapped to the corresponding 1000 Genome reference panel. LD scores were calculated 505 

for each SNP in the QTL annotation using an LD window of 1cM in 1000 Genomes European 506 

Phase 3 and 1000 Genomes Asian Phase 3 separately. Enrichment for each annotation was 507 

calculated by the proportion of heritability explained by each annotation divided by the proportion 508 

of SNPs in the genome falling in that annotation category. We then applied Welch Modified Two-509 

Sample t-Test on enrichment values generated from QTLs in the two populations. 510 

Colocalization 511 

Conditional association was used to test for evidence of colocalization. This method compares the 512 

p-value of association for the lead SNP of an eQTL before and after conditioning on the GWAS 513 

hit. The equation for the regulatory trait concordance (RTC) Score is as follows: RTC= (NSNPs in 514 

an LD block/RankGWAS_SNP)/ NSNPs in an LD block. The rank denoted the number of SNPs, which 515 

when used to correct the expression data, has a higher impact on the QTL than the GWAS SNPs. 516 

RTC values close to 1.0 indicated causal regulatory effects. A threshold of 0.9 was used to select 517 

causal regulatory elements. 518 

Colocalization of fine-mapped variations from complex traits and cis-eQTL correlations were 519 

performed. Based on complex trait and cis-eQTL fine-mapping data, a posterior inclusion 520 
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probability of colocalization for a variant was calculated as a product of PIP for GWAS and PIP 521 

for the cis-eQTLs (PIPcoloc = PIPGWAS * PIPcis-eQTLs). 522 

Summary-data-based Mendelian randomization  523 

SMR19 was applied on SCZ GWAS summary data to prioritize candidate genes. Significant QTLs 524 

identified in the previous analysis (FDR < 0.05), were combined with filtered GWAS summary 525 

data (p < 5e-8) to perform the SMR test. In general, we used the default parameters suggested by 526 

the developers of the SMR software. These included the application of heterogeneity independent 527 

instruments (HEIDI) testing, filtering out hits that arose from significant linkage with 528 

pleiotropically associated variants (LD cutoff of P = 0.05 in the HEIDI test, as suggested by SMR). 529 

Genes with an empirical P that passed Bonferroni correction in the SMR test and a P > 0.05 in the 530 

HEIDI test were considered as risk genes. 531 

Prioritizing genes underlying GWAS hits using TWAS 532 

In this research, we initially developed gene expression prediction models for distinct populations 533 

using MetaXcan software51. Following this, we integrated these models with GWAS (Genome-534 

Wide Association Studies) summary statistics specifically focused on schizophrenia. This 535 

integration aimed to generate gene-level z-scores representing the association of the genetically-536 

determined expression for a gene from its prediction model with the phenotype. TWAS enabled 537 

us to compute P-values and subsequently prioritize genes in relation to their association with 538 

schizophrenia risk. 539 

Plasmid construction  540 

We obtained the 55 bp SNP-centered DNA sequence from UCSC Genome Browser 541 

(GRCh38/hg38), then added the sticky end of restriction enzymes KpnI and NheI at both ends of 542 
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the 55bp sequence to synthesis primers. Primer annealing to obtained double-strand sequence and 543 

then inserted into pGL3-Promoter Vector (Promega) using FastDigest enzymes (ThermoFisher) 544 

and T4 DNA Ligase (Invitrogen). We valid the vector sequence using sanger sequence by primer 545 

GLP2 and RVP3. 546 

Dual Luciferase Reporter Assay 547 

For transfection, we used SH-SY5Y and HS-683 cells to perform the experiments. Transfecting 548 

cells at 50-60% confluency, cells were co-transfected with 500ng reconstruction vector and 10ng 549 

pRL-TK using Lipofectamine 3000 Transfection Reagent ( ThermoFisher ) in 24 well plates. After 550 

48h transfection, using Dual Luciferase Reporter Assay Kit (Promega) to measure the firefly 551 

luciferase activity and renilla luciferase activity, the luminescence was detected using Tube 552 

Luminometer (Berthold Sirius).  553 
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 554 

Fig. 1. Study design. We examined genotype and RNA-seq data from African Americans (AA), 555 

Europeans (EUR), and East Asians (EAS) to identify expression quantitative trait loci (eQTLs) 556 

unique to non-European populations and their role in schizophrenia risk. 557 
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 568 

Fig. 2: Identification and characterization of eQTLs. a) PCA plot showing the population structure 569 

of individuals in our study as well as the 1000 Genomes Project. AFR: African; AMR: American; 570 

EAS: East Asian; EUR: European; b) Circos manhattan plot of significant eQTL genes among the 571 

three populations with highlighted top 50 fine-mapped eGenes. d-f) Upset plot showed overlap 572 

among the significantly associated eQTL pairs (d) eGenes (e) as well as eSNPs (f) between 573 

populations. 574 

 575 

 576 

 577 

 578 



 579 

Fig. 3: Analysis of the regulatory patterns.a) relationship between sample size and the # of 580 

detected eQTLs. b) Effect sizes for common (MAF> 1%) sentinel cis-eQTLs across EA and AA 581 

populations; c) Comparison of MAF between population-shared and non-EUR unique eSNPs; d) 582 

downsampling to estimate π1 between non-European and European eQTLs . e) example of opposite 583 

effect eQTL TAS2R31- rs2599400. 584 
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 592 

Fig. 4: Explanation of SCZ GWAS signals and prioritization of candidate genes. a) integration 593 

strategies; b) GWAS enrichment results from LDSR. ***: Welch Modified Two-Sample t-Test P 594 

< 0.001; c) Fine-mapped colocalization results. Each point represents an eQTL pais, the x-axis 595 

represents the GWAS pip for that eSNP, and the y-axis represents the eQTL pip for that eSNP. 596 

Red points represent pipGWAS*pipeQTL>0.1 and are labeled with the eGene 597 
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Data availability 603 
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Extended Data Figure 1: Overview of methods and QC pipeline for EAS samples. 754 
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 755 
Extended Data Figure 2: Preprocessing of RNA-sequencing and whole-genome sequencing 756 
(WGS) data of EAS samples. a, Sex-mismatch checked by WGS data. b, Population PCA plot 757 
with 1000G genotype data. c, Imputation accuracy. d, Sex-mismatch checked by Xist expression. 758 
e, PCA plot for EAS samples. f, Distribution of Z-score. 759 
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 760 
Extended Data Figure 3: Effect size correlation of population-shared eQTLs between EUR and 761 
non-EUR population. (a-c) nominal pass; (d-f) permutation pass 762 
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 763 
Extended Data Figure 4: Regulatory effect across glutamate neuron, GABA neuron, 764 
oligodendrocytes, and microglia for new regulatory SNPs within population-shared risk genes 765 
for (a) CNNM2, (b)C12orf65, (c) MPHOSPH9. (d) Dual luciferase reporter assay for EAS eSNP 766 
at risk gene CNNM2. (f) eQTL result for the eSNP and expression risk gene CNNM2 in EAS 767 
cohort 768 
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 769 
Extended Data Figure 5: The sample size required for well-powered brain eQTL detection in 770 
diverse populations. (a) The percentage of brain eQTLs detected power under different 771 
sample sizes and effect sizes is shown as a function of log-scaled sample size. (b) The 772 
required sample size achieving 80% power based on the effect size estimated form 773 
non-EUR specific eQTLs. 774 
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