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 2 

ABSTRACT: 1 

Background: 2 

Atrial Fibrillation (AF) is a common and clinically heterogeneous arrythmia. Machine 3 

learning (ML) algorithms can define data-driven disease subtypes in an unbiased fashion, but 4 

whether the AF subgroups defined in this way align with underlying mechanisms, such as high 5 

polygenic liability to AF or inflammation, and associate with clinical outcomes is unclear. 6 

Methods:  7 

We identified individuals with AF in a large biobank linked to electronic health records 8 

(EHR) and genome-wide genotyping. The phenotypic architecture in the AF cohort was defined 9 

using principal component analysis of 35 expertly curated and uncorrelated clinical features. We 10 

applied an unsupervised co-clustering machine learning algorithm to the 35 features to identify 11 

distinct phenotypic AF clusters. The clinical inflammatory status of the clusters was defined 12 

using measured biomarkers (CRP, ESR, WBC, Neutrophil %, Platelet count, RDW) within 6 13 

months of first AF mention in the EHR. Polygenic risk scores (PRS) for AF and cytokine levels 14 

were used to assess genetic liability of clusters to AF and inflammation, respectively. Clinical 15 

outcomes were collected from EHR up to the last medical contact.  16 

Results:  17 

The analysis included 23,271 subjects with AF, of which 6,023 had available genome-18 

wide genotyping. The machine learning algorithm identified 3 phenotypic clusters that were 19 

distinguished by increasing prevalence of comorbidities, particularly renal dysfunction, and 20 

coronary artery disease. Polygenic liability to AF across clusters was highest in the low 21 

comorbidity cluster. Clinically measured inflammatory biomarkers were highest in the high 22 

comorbid cluster, while there was no difference between groups in genetically predicted levels of 23 
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 3 

inflammatory biomarkers. Subgroup assignment was associated with multiple clinical outcomes 1 

including mortality, stroke, bleeding, and use of cardiac implantable electronic devices after AF 2 

diagnosis. 3 

Conclusion: 4 

Patient subgroups identified by unsupervised clustering were distinguished by 5 

comorbidity burden and associated with risk of clinically important outcomes. Polygenic liability 6 

to AF across clusters was greatest in the low comorbidity subgroup. Clinical inflammation, as 7 

reflected by measured biomarkers, was lowest in the subgroup with lowest comorbidities. 8 

However, there were no differences in genetically predicted levels of inflammatory biomarkers, 9 

suggesting associations between AF and inflammation is driven by acquired comorbidities rather 10 

than genetic predisposition.	  11 
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 4 

INTRODUCTION 1 

Atrial fibrillation (AF) is the most common arrhythmia encountered in clinical practice,1 2 

and is associated with increased mortality,2 stroke,3 heart failure (HF),3 myocardial infarction,4,5 3 

dementia,6 and decreased quality of life.7 AF is a complex, dynamic, and heterogeneous condition, 4 

and there is considerable variation in the age at onset, arrhythmia burden, presence of risk factors, 5 

severity of symptoms, and incidence of complications among affected individuals.8-18 6 

Heterogeneity is likewise evident in response to AF treatments, including antiarrhythmic drugs 7 

and catheter-based ablation.19,20 This interindividual variation suggests complex gene-8 

environment interactions and the existence of multiple AF subtypes with differing mechanistic 9 

underpinnings.  10 

Two sources of risk that may contribute to AF heterogeneity, and by extension, AF 11 

subgroups, are genetic susceptibility to AF and inflammation, which itself may be due to acquired 12 

or genetic factors. Indeed, polygenic liability  conferred by common variants is associated with 13 

risk of AF and multiple clinical outcomes.21-26 Additionally, multiple lines of evidence support a 14 

significant role for inflammation in the pathophysiology of AF. For example, elevated levels of 15 

inflammatory biomarkers27 and polymorphisms in genes encoding inflammatory cytokines28-31 are 16 

associated with AF risk; and inflammatory infiltrates are observed in atria of AF patients.32 17 

Moreover, many AF risk factors (e.g., HF, coronary artery disease [CAD], hypertension [HTN], 18 

obesity) and biologic mechanisms (e.g., fibrosis, thrombogenesis) are themselves associated with 19 

increased inflammation,25,26,33 and AF itself can promote inflammation and perpetuate atrial 20 

remodeling and arrhythmia.34,35 However, the contributions of genetic susceptibility to AF and 21 

inflammation, both acquired and genetically driven, to AF phenotypic subgroups has not been 22 

reported. 23 
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 5 

The emergence of advanced machine learning (ML) methods has facilitated data-driven 1 

subtyping of complex, heterogeneous cardiovascular diseases such as HTN,36 HF,37 and 2 

pulmonary arterial hypertension.38 ML-derived phenotypic AF subgroups have been identified in 3 

post hoc analyses in observational registries.39,40 These studies, however, did not explore the 4 

mechanistic or genetic basis of subgroups. Therefore, there is no consensus regarding the 5 

classification of AF subtypes based on their underlying mechanisms, particularly with respect to 6 

patients in clinical care.41,42  7 

We hypothesized that contemporary ML methods applied to a large clinical AF population 8 

will identify distinct subtypes with different polygenic liability of AF, inflammatory state, and 9 

clinical outcomes.   10 
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MATERIALS AND METHODS 1 

The study protocol was approved by the Vanderbilt University Medical Center (VUMC) 2 

Institutional Review Board (VUMC IRB# 181403). 3 

 4 

Data source: 5 

Clinical data were derived from the Synthetic Derivative (SD), a de-identified version of the 6 

Vanderbilt University Medical Center’s Electronic Health Record (EHR) intended to support 7 

research.43-45 For the subset of participants with genetic information, genotype data were 8 

obtained from BioVU, the Vanderbilt biobank linked to the SD that contains DNA samples and 9 

genetic data derived from clinical blood samples that would otherwise be discarded.46,47  10 

 11 

Study population: 12 

Subjects with AF were identified using a random-forest classifier applied to routinely collected 13 

clinical features. A list of features, including International Classification of Diseases codes (ICD 14 

codes), Current Procedural Terminology (CPT) codes, text strings, and medications were used in 15 

the classifier (Table S1). Every instance of each feature was identified and timestamped across 16 

the EHR for each subject. The instance/date pairs were used to generate 3 scoring metrics for 17 

each feature: strength (number of distinct days with a mention), persistence (number of days 18 

between first and last mention of a feature), and durability (ratio between feature persistence and 19 

total record length). The date of the first qualifying feature (e.g., code or text mention) for atrial 20 

fibrillation was used as date of AF first recognition for each subject. The classifier was trained 21 

and validated locally and demonstrated superior performance compared to conventional 22 

phenotyping approaches such as ICD codes. Analyses were limited to subjects receiving ongoing 23 
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 7 

care at our institution, defined as ≥3 outpatient visits to primary care or cardiology over 5 years. 1 

Clustering was based on feature values at the time of AF first recognition in the EHR. Subjects 2 

with missing predictors or outcome data were excluded. When available, genome-wide 3 

genotyping data for subjects was obtained from BioVU. Genetic analyses were restricted to 4 

subjects of European and African ancestries due to the small number (n=48) of subjects from 5 

other ancestries with genotype data. A summary of inclusion and exclusion criteria is presented 6 

in Figure S1. 7 

 8 

Predictor features: 9 

Clustering used 35 clinical features selected as relevant for AF by two cardiologists 10 

(GD, QSW), and included demographics, body mass index (BMI), elements of the CHA2DS2-11 

VASc score, sleep apnea, presence of cardiac implantable electronic devices, left ventricular 12 

systolic dysfunction, thyroid disease, and valvular heart disease. Features were extracted from 13 

the de-identified EHR using a variety of techniques including queries of demographics, 14 

anthropometric measures, diagnosis and procedure codes, and natural language processing of 15 

clinical notes and procedure reports. A description of features and definitions is presented in 16 

Supplemental File 1. Only features prior to or on the day of AF first recognition were utilized 17 

for clustering. An exception was made for BMI due to sparsity of weight/height measures, 18 

where the closest value to AF first recognition - before or after - was used. As described 19 

below, an initial pairwise analysis confirmed that the 35 selected features were not themselves 20 

highly correlated.  21 

 22 

 23 
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 8 

Outcomes: 1 

 Clinical outcomes included mortality, bleeding-related hospitalization, stroke, 2 

pacemaker implantation, implantable cardioverter defibrillator (ICD) implantation, 3 

cardioversion, and AF ablation. Inflammatory burden in clusters was assessed using clinical 4 

inflammatory biomarker levels ascertained within 6 months of first AF mention. Polygenic 5 

risk scores, derived from published GWAS, were used to assess genetic liability to AF and 6 

imputed inflammatory cytokine levels (further details below). Outcomes were required to first 7 

appear in the medical record at least one day after the first mention of AF. A full description of 8 

outcomes and definitions is presented in Supplemental File 2. 9 

 10 

Genetic data, AF polygenic risk score calculation, and imputed cytokine calculation 11 

Genotyping data for BioVU subjects were acquired using the Illumina Multi-Ethnic 12 

Genotyping Array (MEGA) platform. QC was performed using PLINK v1.90b6.17, and 13 

included duplicate removal, sex-check, and removal of one of each pair of related individuals 14 

(pi-hat>0.2). Data were then pre-processed using the HRC-1000G-check tool v4.2.11 and 15 

imputed using the Michigan Imputation server and the 10/2014 release of the 1,000 Genomes 16 

cosmopolitan reference haplotypes.  17 

Genetic predisposition to AF within clusters was assessed using a previously published 18 

polygenic risk score (PRS) that comprises 1,168 SNPs 19 

(https://www.pgscatalog.org/score/PGS000035/).48 In our dataset, 8 SNPs did not pass QC and 20 

hence the PRS value was computed by summing the product of allele weighting and allele 21 

dosage across 1,160 available SNPs. The raw scores were then normalized to the sample mean 22 
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 9 

and standard deviation. The SNPs and associated weights included in the AF PRS are presented 1 

in Supplemental File 3. 2 

Genetic predisposition for inflammation between clusters was assessed using genetically 3 

predicted cytokine levels, as previously described by Mosley et al.49 Briefly, using published 4 

GWAS summary statistics of measured cytokine levels, we calculated a PRS value (“imputed 5 

cytokine level”) of BioVU subjects for each cytokine of interest with at least one SNP meeting 6 

genome-wide significance (GWS) in published summary statistics.49 Again, PRS were computed 7 

by summing the product of allele weighting and allele dosage across the SNPs passing GWS.  8 

Imputed cytokine levels of 41 cytokines that met inclusion criteria were created. To 9 

validate that imputed cytokine levels were capturing a clinically relevant predisposition to 10 

disease, we conducted phenome-wide association studies (PheWAS) for each cytokine PRS in 11 

Vanderbilt’s de-identified EHR. Of 41 imputed cytokines, 13 had at least one significant 12 

association (FDR <0.1) with clinical phenotype and were used in downstream analyses. A 13 

summary of imputed cytokines selection is presented in Figure S2, and the results of validation 14 

PheWAS of all the included cytokines are available for download in the supplemental material.  15 

 16 

Clustering: 17 

 Due to requirements of the clustering algorithm, continuous variables such as age and 18 

BMI were converted into categories. Age was categorized into <50, 50-70, and > 70 years at first 19 

AF mention in EHR. BMI was categorized into <18 Kg/m2, 18-24.99 Kg/m2, 25-29.99 Kg/m2, 20 

30-39.99 Kg/m2, and >=40 Kg/m2. Transformed data were analyzed using the BlockCluster 21 

package, employing the coclusterBinary function specifically designed for binary data, and 22 

therefore all feature elements were coded in the form of dummy variables. The clustering 23 
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 10 

methodology requires the number of clusters to be prespecified, which in this case was set to 3 1 

clusters based on the distribution of features. The clustering algorithm involves estimating a 2 

latent mixture block model, and simultaneously conducts block clustering in both subject and 3 

features sets. The number of clusters were prespecified to 3 based on the number of features 4 

used.  5 

Other statistical considerations and analyses 6 

Statistical analyses were performed with the R statistical program (v4.3.1), and primarily 7 

using the “Blockcluster” (4.5.3), “Hmisc” (v5.1.1), and “rms” (v6.7.1) packages. Unless 8 

otherwise specified, continuous variables are presented as median (interquartile range), and 9 

categorical variables as counts (percentage). Differences in measured inflammatory biomarkers 10 

among clusters were assessed using one way ANOVA. The associations of cluster assignment 11 

with normalized AF PRS and imputed cytokine levels from genetic data were determined using 12 

an ordinal regression model. The models tested the association between PRS as continuous 13 

variables and cluster assignment, and included age, sex, and 4 principal components of ancestry 14 

as covariates. For all these sets of tests, false discovery rates (FDRs) were calculated from the 15 

nominal p-values using the R function p.adjust using the Benjamini & Hochberg option. FDRs 16 

less than 0.1 were considered statistically significant. A Cox proportional hazards regression 17 

model was used to test the association of cluster assignment and time-to-event mortality, 18 

adjusting for age of first AF mention and CHA2DS2-VASc score. The functions adjustedsurv and 19 

adjusted_surv_quantile of the package adjustedCurves (v0.10.1) were used to create the adjusted 20 

survival curves and adjusted median survival estimates. For other outcomes, unadjusted cox 21 

proportional hazards regression models were used to test the association of cluster assignment 22 

and time-to-event outcomes.   23 
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 11 

RESULTS 1 

 2 

Cohort characteristics: 3 

 We identified 23,271 subjects with AF meeting inclusion criteria. The cohort median age 4 

was 68 years (IQR: 59-76), 42.6% female, and 90.4% self-reported White. The most prevalent 5 

comorbidity was hypertension (62.3%), followed by renal dysfunction (36.8%), coronary artery 6 

disease (CAD) (35.8%), and fluid-electrolyte disorders (25.9%). Heart failure was also common 7 

(18.4%), and 12.1% of patients had history of left ventricular systolic dysfunction (Table 1).  8 

The median follow-up after AF first mention was 5.4 (IQR:2.8-8.6) years. Mortality 9 

during follow-up was 14%, with a median time to death of 4.5 years (IQR 1.6-7.8) after first AF 10 

mention. Approximately half of subjects (55.2%) received antiarrhythmic drug therapy, usually 11 

initiated shortly after diagnosis (median 14.6 days, IQR 0.0-401.5). Cardioversion was 12 

performed in approximately one fifth of the subjects (19.9%) and AF ablation in 8.1%. Device 13 

placement was common, with pacemaker implantation in 13.7% of subjects and 8.5% 14 

undergoing ICD implantation. Stroke occurred in 12.3% of subjects while bleeding events were 15 

rare (Table 2).  16 

 17 

Feature exploration: 18 

To gain additional insight into the phenotypic architecture of our cohort prior to 19 

clustering, we conducted a series of exploratory analyses. We first assessed pairwise correlations 20 

between features to identify patterns among variables, detect pairs of highly correlated features 21 

that could affect clustering, and inform a priori estimates of the expected number of groups 22 

derived by clustering. The selected features were not highly correlated (all r<0.5), and all were 23 
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 12 

retained for clustering analyses. Based on initial visual evaluation, we estimated that clustering 1 

of would result in approximately 3 distinct phenotypic subgroups based on correlation clustering 2 

(Figure 1A). We then conducted data dimensionality reduction using principal component 3 

analysis (PCA) and evaluation of variable contributions to components using a loading plot 4 

(Figure 1B). This revealed that comorbidity burden, particularly left ventricular systolic 5 

dysfunction, fluid-electrolyte disorders, coronary artery disease, and renal dysfunction, were the 6 

main contributors to principal component (PC) 1, while age group was the main contributor for 7 

PC2. Analysis of PC associations with mortality revealed that PC1 values were associated with 8 

increased risk of death (PC1 interquartile OR 1.99, 95% CI: 1.91-2.07). 9 

 10 

Unbiased clustering of features at AF diagnosis:  11 

The co-clustering algorithm blockcluster groups subjects and features simultaneously to 12 

identify blocks of subjects with similar characteristics. Based on results above, 3 clusters of 13 

subjects were prespecified, but also identified 3 distinct groups of predictors determining cluster 14 

assignment. Clusters were distinguished by increasing burden of comorbidities (Figure 2A), 15 

particularly renal dysfunction, fluid-electrolyte disorders, and CAD, as shown in Figure 2B. 16 

Based on comorbidity burden, we defined groups as “Low”, “Mid”, and “High” comorbidity 17 

clusters. Figure S3 shows that other comorbidities demonstrated similar patterns of distribution 18 

across clusters, but the magnitude was less pronounced than renal dysfunction, coronary artery 19 

disease, and fluid-electrolyte disorders (Figure S3).  20 

 21 

 22 

Association of clusters with clinical outcomes:  23 
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Unadjusted survival differed significantly among clusters (Median survival 23.2 years 1 

[95% CI 22-greater than 25] for Low cluster, 16.7 years [95% CI 15.1-18.5] for Mid cluster, and 2 

9.5 years [95% CI 8.3-10.9] for High cluster), with a dose-response effect observed between 3 

increasing cluster comorbidity burden and worse survival (Figure 3A). A similar relationship 4 

was seen with mortality when the 3 key variables determining cluster assignment (renal 5 

dysfunction, CAD, fluid-electrolyte disorders) were considered (Figure 3B, Median survival >25 6 

years when all these variables were absent, 20.2 years [95% CI 19.1-22.3] with one variable 7 

present, and 13.6 years [95% CI 12.5-15.1] with two or three variables present). Furthermore, 8 

when adjusting for age and CHA2DS2-VASc score at the time of first AF mention, cluster 9 

assignment remained significantly associated with survival (adjusted median survival 22.02 10 

years [95% CI 21.34-23.17] for Low cluster, 13.98 years [95% CI 13.51-14.53] for Mid cluster, 11 

and 7.96 years [95% CI 7.39-8.64] for High cluster, Figure 3C). 12 

Like survival, there was a significant difference in unadjusted event-rates for stroke, 13 

bleeding, pacemaker placement, ICD placement, ablation, and cardioversion. Again, clusters 14 

with greater burden of comorbidities had more events observed for these outcomes (Figure 4, 15 

figure S4). In general, patients in the “High” cluster were more likely to have episodes of stroke 16 

or bleeding and ICD implantation, while patients in the “Low” cluster were more likely to have 17 

ablations and cardioversions. Patients in the “Mid” cluster were most likely to have pacemaker 18 

implantation. Antiarrhythmic drug therapy was comparable across clusters (Figure S4). 19 

 20 

Association of clusters with AF polygenic risk, measured inflammatory biomarkers, and imputed 21 

cytokine levels:  22 
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There was a significant difference among clusters with respect to genetic liability to AF 1 

assessed by normalized AF PRS after adjustment for age, sex, and first 4 principal components 2 

of ancestry, with the highest genetic susceptibility to AF seen in the “Low” comorbidity cluster 3 

and lowest genetic susceptibility to AF in the “High” comorbidity clusters (Figure 5). 4 

We compared clusters with respect to clinically ascertained levels of C-reactive protein, 5 

erythrocyte sedimentation rate, and white blood cell count measured within 6 months of AF first 6 

mention. There was a significant association between AF cluster and measured inflammatory 7 

biomarkers (Table 3): all biomarkers (p<0.001 for each) had lowest values in the “Low” 8 

comorbidity cluster and highest values in the “High” comorbidity cluster, with intermediate 9 

values in “Mid” cluster.  10 

The PheWAS of genetically predicted circulating cytokines identified 13 markers (IFN-11 

GR1, IL-10RB, IL-17F, IL-17RD, IL-1RL2, IL-1RN, IL-23R, IL-34, IL-37, IL6R, IL-6ST, 12 

TNFRSF-11B, TNFRSF-6B) to take forward in this analysis. After accounting for multiple 13 

comparison testing, there were no significant differences among clusters with respect to 14 

genetically imputed levels for these inflammatory cytokines and cytokine-associated circulating 15 

proteins. The normalized imputed cytokine levels values overall and by cluster are presented in 16 

Supplemental File 4. 17 

  18 
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DISCUSSION 1 

We conducted an analysis of 23,271 subjects with atrial fibrillation from a large tertiary 2 

medical center that identified 3 phenotypic disease clusters associated with mortality, stroke, and 3 

bleeding. Cluster membership was largely driven by comorbid diseases, in particular the 4 

presence of renal dysfunction, CAD, and fluid-electrolyte disturbances. Greater comorbidity 5 

burden across groups was associated with higher levels of clinically measured inflammatory 6 

biomarkers and inversely associated with a polygenic predisposition for AF. There was no 7 

detectable difference among groups with respect to genetic predisposition to inflammation as 8 

ascertained by imputed cytokine levels.  9 

Many of our findings are in agreement with prior studies reporting data-driven subgroups 10 

of AF, and thereby expands and strengthens the existing evidence base.39,40 For example, two 11 

earlier studies (n= 9,749 and 2,458 subjects, respectively), both using observational cohorts and 12 

hierarchical clustering, identified 3-4 clusters, including clusters comprising subjects with young 13 

age or low comorbidity burden and a cluster with CAD as driving feature. Additionally, both 14 

studies reported associations between cluster assignment and major adverse cardiovascular 15 

events. Like these studies, we observed a similar number of clusters, with CAD and other 16 

comorbidities (renal dysfunction and fluid-electrolyte disturbances) as key drivers of cluster 17 

assignment and an association of cluster assignment with mortality, stroke, bleeding, 18 

cardioversion, ablation, and cardiac implantable electronic device (CIED) implant. The present 19 

study adds to the evidence base of data-driven analyses of AF phenotypic architecture and 20 

supports the importance of comorbidities as determinates of interindividual variability in AF 21 

outcomes.  22 
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Our work also extends previous work in important ways. One notable distinction from 1 

prior studies is the size of the study population, which comprised over 23,000 subjects from a 2 

large medical center with dense phenotype data and more than 5 years of follow-up after AF first 3 

mention in the EHR. This population is more than twice the size of earlier reports and was 4 

sufficiently large to enable more detailed analyses of AF phenotypic architecture including 5 

evaluation of a broader range of comorbidities, inflammatory markers, and polygenic risk. For 6 

example, we identified renal dysfunction as an important determinate of cluster assignment, a 7 

finding that has not been previously reported. This observation warrants replication in other 8 

studies but suggests a previously underappreciated contribution of renal dysfunction to AF 9 

phenotypic heterogeneity, especially in clinical populations.  10 

The current report also provides new insights into potential mechanisms underlying AF 11 

subgroups, including clinically acquired and genetically determined inflammation as well as 12 

genetic susceptibility to AF itself. We observed higher levels of clinically measured 13 

inflammatory biomarkers in clusters with more comorbidities. However, there were no 14 

differences with respect to genetically predicted levels of inflammatory cytokines. This suggests 15 

that observed epidemiologic associations between inflammation and AF are driven by acquired 16 

comorbidities and/or environmental factors rather than a genetic predisposition to increased 17 

inflammation. These observations could explain, at least in part, the lack of universal efficacy of 18 

anti-inflammatory agents as AF therapies50-53, and further support the importance of 19 

cardiovascular risk factor optimization in the management of AF.  20 

We also observed greater polygenic risk for AF in groups with lower comorbidity burden, 21 

with genetic risk highest in the lowest burden of CAD and other comorbidities. Clinically, this 22 

cluster has many similarities with a group of patients previously referred to as having “lone AF”. 23 
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Collectively, in the context of prior literature, our findings suggest that observed phenotypic 1 

variability in AF, in part, is distributed along a gradient with differing contributions of genetic 2 

risk and acquired comorbidity. This framework for understanding AF heterogeneity, 3 

incorporating both environmental and genetic factors, aligns with clinical experience and has 4 

been previously articulated in a theoretical context.54 However, to our knowledge, our analysis is 5 

the first to empirically demonstrate the complementary roles of comorbidity and genetic liability 6 

as major drivers of phenotypic variability using hypothesis-free methods.  7 

Limitations 8 

Even though we took steps to improve quality and completeness of EHR-derived data, 9 

including restricting the analysis to subjects receiving longitudinal care in our health system, 10 

misclassification and under-ascertainment of clinical phenotypes and outcomes, notably 11 

mortality which may be under-estimated in the EHR, are possible due to misdiagnosis or 12 

underdiagnosis. Additionally, measured biomarkers were not prospectively collected and 13 

therefore are susceptible to ascertainment bias. Only a portion of patients included had genetic 14 

data available which limited the power of the imputed cytokine analyses. It is also possible that 15 

imputed cytokines did not capture sufficient genetic variability of cytokine levels; we attempted 16 

to minimize this issue by only using imputed cytokines validated by phenome-wide scanning in 17 

the analyses.  18 

 19 

Conclusions 20 

Patient subgroups identified by unsupervised clustering were associated with differing 21 

risk of mortality, stroke, bleeding, and ICD implant. These groups were distinguished by 22 

comorbidity burden and polygenic liability to AF, which were inversely correlated. Clinical 23 
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inflammation, as reflected by higher measured biomarker levels, was associated with increasing 1 

comorbidity burden, but there were no differences in genetically predicted levels of 2 

inflammatory biomarkers, consistent with the idea that inflammatory burden is driven by 3 

acquired comorbidities. 4 
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 1 

Fig. 1: Overall exploration, and correlation of clinical variables used as predictors in 2 

clustering algorithm 3 

 4 

A) Observed correlation between clinical predictors used for clustering. There were no highly 5 

correlated features (r<0.5). Correlation clustering of features suggest approximately 3 groups 6 

(separated by vertical red lines in top horizontal axis) B) Principal component analysis of 7 

predictors reveal PC1 is mainly determined by comorbidity burden, while PC2 is mostly 8 

determined by age at time of AF diagnosis and BMI. There is an association between positive 9 

PC1 and death during follow up (p<0.001). Abbreviations: AF: Atrial fibrillation, CAD: 10 

coronary artery disease, BMI: Body mass index, COPD: Chronic obstructive pulmonary disease, 11 

PAD: Peripheral arterial disease, LVSD: Left ventricular systolic dysfunction, ICD: Implantable 12 

cardioverter defibrillator, OSA: Obstructive sleep apnea, DM: Diabetes mellitus, HTN: 13 

Hypertension, PC: Principal component.  14 
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Fig. 2: Clustering assignment and feature prevalence at AF diagnosis time by cluster 1 

 2 
 3 
A) Heatmap of cluster assignment by participant and feature. Each row represents a participant, 4 

and each column a feature. White denotes absence of feature at AF first mention time while red 5 

presence of feature. Renal dysfunction, fluid-electrolyte disorders, and CAD are the most 6 

striking features which determine participant cluster assignment. B) Comorbidity burden for 7 

renal dysfunction, fluid-electrolyte disorders, and CAD distribution across clusters. 8 

Abbreviations: AF: Atrial fibrillation, VHD: Valvular heart disease, CAD: coronary artery 9 

disease, BMI: Body mass index, COPD: Chronic obstructive pulmonary disease, PAD: 10 

Peripheral arterial disease, LVSD: Left ventricular systolic dysfunction, ICD: Implantable 11 
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cardioverter defibrillator, OSA: Obstructive sleep apnea, DM: Diabetes mellitus, HTN: 1 

Hypertension, Rheum: Rheumatologic diseases 2 
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Fig. 3: Survival by cluster assignment and by burden of renal dysfunction, coronary artery 1 

disease, and fluid-electrolyte disorders 2 

 3 
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 10 
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 13 
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 15 

 16 

A) Kaplan-Meier curves demonstrating observed survival by cluster assignment. B) Kaplan-17 

Meier curves demonstrating observed survival by burden of renal dysfunction, coronary artery 18 

disease (CAD), and fluid-electrolyte disorders. C) Predicted survival by cluster assignment 19 

adjusted for age at CHA2DS2-VASc score at time of first AF mention. The solid line represents 20 

point-estimate and the shaded area the 95% point-wise confidence interval. Abbreviations: AF: 21 

Atrial fibrillation, CAD: coronary artery disease.  22 
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Fig. 4: Unadjusted clinical outcomes during follow up by cluster assignment  1 

 2 

A)  Kaplan-Meier curves demonstrating observed stroke-free survival by cluster assignment. B) 3 

Kaplan-Meier curves demonstrating observed major bleeding-free survival by cluster 4 

assignment. C) Observed cumulative cardioversion event rate by cluster assignment. D) 5 

Observed cumulative atrial fibrillation ablation event rate by cluster assignment. E) Observed 6 

cumulative ICD implantation event rate by cluster assignment. C) Observed cumulative 7 
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pacemaker implantation event rate by cluster assignment. Abbreviations: AF: Atrial fibrillation, 1 

ICD: Implantable cardioverter-defibrillator.   2 
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Fig. 5: Normalized atrial fibrillation polygenic risk score by cluster adjusted for age, sex, 1 

and first 4 principal components of ancestry 2 
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 17 

Normalized (Z-score) of atrial fibrillation polygenic risk score (AF PRS) by cluster group 18 

adjusted for first 4 principal components of ancestry, age at first AF mention, and sex. Data are 19 

presented as median predicted values after adjustment (dot) and pointwise 95% confidence 20 

interval (bars). Abbreviations: AF: Atrial fibrillation, PRS: Polygenic risk score.  21 
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Table 1: Baseline characteristics of the included participants at time of first AF mention in 1 

EHR  2 

 3 
 4 

Characteristic All participants (n=23,271) 
Age, years 68 (59-76) 
Female Sex 9,908 (42.6)  
Self-reported Race  

  White 21,032 (90.4) 
  Black 1,782 (7.7) 
  Asian 177 (0.8) 
  Native American 36 (0.2)  
  Islander 31 (0.1) 
  Unknown 213 (0.9)  
Ethnicity  

  Non-Hispanic 22,873 (98.3) 
  Hispanic 156 (0.7)  
  Unknown 242 (1.0)  
BMI, Kg/m2 29 (25.2-33.8) 
CHA2DS2-VASc score 3 (2-4) 
Diabetes mellitus 3,621 (15.6)  
Hypertension 14,500 (62.3)  
Thyroid medication use 4,264 (18.3)  
Obstructive sleep apnea 2,562 (11.0)  
Rheumatologic diseases 2,971 (12.8)  
Chronic Obstructive Pulmonary Disease 1,811 (7.8)  
Prior stroke 1,093 (4.7)  
Congestive heart failure 4,281 (18.4)  
Left ventricular systolic dysfunction 2,805 (12.1)  
Coronary artery disease 8,332 (35.8)  
Valvular heart disease 2,200 (9.5)  
Prior pacemaker 1,748 (7.5)  
Prior ICD 1,411 (6.1)  
Renal dysfunction 8,559 (36.8)  
Peripheral arterial disease 1,272 (5.5) 
Pulmonary circulatory disorders 2,312 (9.9)  
Paralysis 418 (1.8)  
Other neurological disorders 1,024 (4.4)  
Liver disease 1,519 (6.5)  
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Solid tumor 2,052 (8.8)  
Coagulopathy 2,433 (10.5)  
Weight loss 351 (1.5)  
Fluid electrolyte disorders 6,024 (25.9)  
Blood loss anemia 494 (2.1)  
Deficiency anemia 1,392 (6.0)  
Alcohol abuse 169 (0.7)  
Drug abuse 453 (1.9)  
Psychoses 76 (0.3)  
Depression 2,585 (11.1)  

 1 
Age, BMI, and CHA2DS2-VASc score are presented as median (IQR). All other variables are 2 
categorical or dichotomous presented as n (%). Abbreviations: ICD: Implantable Cardioverter 3 
Defibrillator, EHR: Electronic Health Record.  4 
 5 
 6 
  7 
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Table 2: Clinically relevant incident outcomes of the included participants after first AF 1 

mention in EHR  2 

 3 
 4 

Outcome All participants (n=23,271) 
Follow up, years 5.4 (2.8-8.6) 
Dead, n (%) 3,259 (14.0)  
Time to death, years 4.5 (1.6-7.8) 
Stroke after AF diagnosis, n (%) 2,861 (12.3)  
Time to first stroke, years 1.6 (0.1-5.1) 
Bleeding related hospitalization, n (%) 784 (3.4)  
Bleeding source, n (%) 
  Intracranial 
  Gastrointestinal 
  Genitourinary 
  Other 

 
294 (1.3) 
276 (1.2) 
69 (0.3) 
145 (0.6) 

Time to initial bleeding related hospitalization, years 2.6 (0.6-5.4) 
Traumatic bleeding hospitalization, n (%) 333 (1.4)  
Traumatic bleeding source, n (%) 
  Gastrointestinal 
  Intracranial 
  Genitourinary 
  Other 

 
295 (1.3) 
20 (0.1) 
2 (0) 
16 (0.1) 

Time to initial traumatic bleeding hospitalization, years 2.3 (0.6-5.7) 
AF ablation, n (%) 1,884 (8.1)  
Time to initial AF ablation, years 2.4 (0.6-5.5) 
Cardioversion, n (%) 4630 (19.9)  
Time to initial cardioversion, years 0.3 (0.0-3.0) 
Antiarrhythmic drug therapy, n (%) 12,847 (55.2)  
Time to initial antiarrhythmic, years 0.04 (0.0-1.1) 
Pacemaker after AF diagnosis, n (%) 3,184 (13.7)  
Time to pacemaker implant, years 1.48 (0.2-4.2) 
ICD after AF diagnosis, n (%) 1,972 (8.5)  
Time to ICD implant, years 1.3 (0.2-4.4) 

 5 
Abbreviations: ICD: Implantable Cardioverter Defibrillator, EHR: Electronic Health Record.  6 
 7 
  8 
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Table 3: Inflammatory biomarkers levels by cluster 1 
 2 
 3 

   Cluster    
Biomarker Overall Low Mid       High  p-value 

Erythrocyte sedimentation rate 28 (12-53) 
n=2,206 

19 (8.3-42) 
n=855 

32 (14.4-56) 
n=1,052 

42 (21-69.5) 
n=299 <0.001 

C-reactive protein (mg/L) 21 (4.7-85.6) 
n=2,174 

11.5 (2.8-57.4) 
n=639 

26.2 (5.5-93.72) 
n=1,164 

34.2 (9.5-102) 
n=371 <0.001 

Platelet count 212 (168-261.5) 
 n=15,771 

213 (173-261) 
n=7,851 

212 (165-262.3) 
n=6,619 

206 (153-261) 
n=1,301 <0.001 

White blood cell count 7.9 (6.3-9.8) 
n=16,438 

7.6 (6.1-9.5) 
n=8,339 

8.2 (6.5-10.2) 
n=6,790 

8.2 (6.5-10.2) 
n=1,309 <0.001 

Neutrophil percentage 66.5 (58.3-74.5) 
n=11,533 

64.7 (56.8-72.7) 
n=5,146 

67.7 (59.5-74.5) 
n=5,210 

69.4 (61.5-76.7) 
n=1,177 <0.001 

Red cell distribution width 14.2 (13.3-15.4) 
n=16,335 

13.8 (13.1-14.7) 
n=8,268 

14.6 (13.6-15.9) 
n=6,759 

15.5 (14.3-17) 
n=1,308 <0.001 

 4 
Data are presented in median (IQR), and all comparisons made with one-way ANOVA test.  5 
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