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Abstract 23 

Chronic back pain (CBP) is a disabling condition with a lifetime prevalence of 40% and a 24 

substantial socioeconomic burden. Because of the high heterogeneity of CBP, subphenotyping 25 

may be necessary to improve prediction and support personalized treatment for those with CBP. 26 

The lack of distinct cellular and molecular markers for CBP complicates the task of 27 

subphenotyping. 28 

To investigate CBP subphenotypes, we decomposed the genetic background of CBP into a shared 29 

genetic background common to other chronic pain conditions (back, neck, hip, knee, stomach, and 30 

head pain) and unshared genetic background related only to CBP. We showed that the shared and 31 

unshared genetic backgrounds of CBP differ in their biological functions: the first one is likely to 32 

control processes mainly in nervous, immune and musculoskeletal systems underlying chronic 33 

pain development regardless its site, while the second may contribute more to local processes in 34 

spine leading to chronic pain precisely in the back. We identified 18 genes with shared impact 35 

across different chronic pain conditions and two genes that were specific for CBP. These findings 36 

may contribute to future development of targets and new biomarkers for chronic pain management. 37 

Next, among people with CBP, we demonstrated that polygenic risk scores accounting for the 38 

shared and unshared genetic backgrounds of CBP may underpin different subphenotypes of CBP 39 

cases. These subphenotypes are characterized by varying genetic predisposition to a wide array of 40 

medical conditions and interventions such as diabetes mellitus, myocardial infarction, diagnostic 41 

endoscopic procedures, and surgery involving muscles, bones, and joints. The proposed genetic 42 

decomposition framework holds promise for investigating the genetic underpinnings of other 43 

heterogeneous diseases. 44 
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Author Summary 45 

Chronic back pain (CBP) is a prevalent disabling health problem with heterogeneous clinical 46 

presentation and natural history. This may contribute to generic pain treatment approaches not 47 

sufficiently effective when prescribed for patients with certain characteristics. Development of 48 

more personalized treatment is needed, and may benefit from a deep understanding of CBP 49 

biology, such as genomics. It is known that chronic pain is under the control of both environmental 50 

and genetic background. Here we applied bioinformatic methods to study the genetic background 51 

of CBP decomposed into two parts: a shared one common to six distinct chronic pain types, and 52 

unshared, which is specific to CBP. This approach allowed us to identify more genes potentially 53 

involved in CBP development. Among them 18 belong to the shared genetic background 54 

contributing to development of chronic pain in general, and two are specific for CBP. We 55 

demonstrate that these two parts of the genetic background of CBP are associated with distinct 56 

biological pathways and underlie predisposition to different medical states and procedures, 57 

involving diabetes, myocardial infarction, and musculoskeletal surgery. Decomposition of CBP 58 

genetic background into shared and unshared may provide a better understanding of mechanisms 59 

of CBP and facilitate development of personalized pain treatment. 60 

  61 
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Introduction 62 

Back pain is a prevalent clinical syndrome which affects about 40% of the population [1]. It has 63 

tremendous social and economic consequences: according to the Global Burden of Disease Study 64 

2016, back pain has been a major cause of disability worldwide for 30 years [2]. Back pain is not 65 

only highly prevalent, but it is also difficult to treat [3]. One potential cause of this problem is the 66 

high heterogeneity of the condition. Patients with a specific back pain “subphenotype” – a set of 67 

common features, distinguishing them from other patients with back pain [4] – may respond to 68 

treatment in a different way than a patient of another back pain subphenotype, decreasing the 69 

effectiveness of treatment approaches when not tailored to subphenotype. Generic treatment 70 

approaches may contribute to back pain patient care costs, which reach 1/5 of total health care 71 

costs in a separate country [5]. Subphenotyping may help to more accurately select treatment for 72 

patients with back pain and thus decrease these costs. 73 

In 10% of cases acute back pain ceases to be just a symptom and becomes a chronic condition [6]. 74 

While the initial cause of acute pain may resolve, an alternative pathophysiological process takes 75 

over, leading to anatomical changes and affecting human behavior and mental state [7–9]. Chronic 76 

back pain (CBP) has been shown to be a complex trait with heritability estimated between 30 and 77 

68% [10–12]. Genome-wide association studies (GWAS) of chronic pain including but not limited 78 

to CBP have revealed about three dozen associated loci [12–17], but only a few of them have been 79 

replicated in independent samples. 80 

Studies have demonstrated the presence of a shared genetic background of chronic pain across 81 

different pain sites [16,18,19]. This shared genetic background is thought to condition the 82 

generation, transduction and processing of pain stimuli in general [16]. At the same time, it is 83 
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reasonable to expect the existence of unshared genetic background specific to chronic back pain 84 

(CBP) and related to local pathological processes in the back and spine (e. g. through SOX5 gene 85 

[15]), but this has been little studied. Genetic variants related to unshared genetic background of 86 

CBP may suggest promising drug targets and biomarkers for diagnosis and treatment of CBP 87 

precisely, while the shared genes could be of interest to understand general pain biology and hence 88 

contribute in future development of drugs to treat pain irrespective of its site. Therefore, the 89 

decomposition of genetic background into shared and unshared may be helpful for subphenotyping 90 

and personalizing treatment. 91 

Many prior attempts to identify subphenotypes of back pain have been made. Existing approaches 92 

to do this classify patients based on observable clinical characteristics such as pain-related, social, 93 

physiological and anatomic features [20] and some of these studies show the utility of this 94 

approach for revealing clusters of patients with specific pain trajectories and differentially reacting 95 

to treatment [21,22]. A novel and alternative approach is to subphenotype CBP using genotypic 96 

information, which is increasingly available in clinical care and commercial use [23]. Polygenic 97 

risk scores (PRS) use GWAS data to estimate the personal genetic liability to disease based on an 98 

individual’s genotype. In medicine, PRSs have been used to predict disease, however, this 99 

information can also be utilized for subphenotyping. While existing chronic back pain PRS models 100 

show modest prediction ability [24], division of CBP genetic background into shared and unshared, 101 

followed by PRS calculation for each of them, may result in higher statistical power and provide 102 

useful information for patients’ subphenotyping. To estimate the potential of genetic background 103 

decomposition for subphenotyping, a comprehensive examination of the features of shared and 104 

unshared genetic background is required. 105 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 15, 2024. ; https://doi.org/10.1101/2024.02.14.24302763doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.14.24302763
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

7 

 

Previously, we have studied the shared genetic background of chronic musculoskeletal pain at 106 

different sites (back, neck, hip, knee) by applying principal component analysis of these traits [16]. 107 

We interpreted the first genetically independent phenotype (GIP1, or simply the first principal 108 

component) as an approximation of shared genetic background across the considered pain types. 109 

In our recent study we developed the novel SHAHER framework, [25] allowing more accurate 110 

decomposition of genetic background of correlated traits in order to evaluate not only their shared, 111 

but unshared genetic factors as well. Here we aimed to employ SHAHER to investigate the 112 

complex genetic architecture of CBP by analyzing its shared genetic background across several 113 

chronic musculoskeletal and non-musculoskeletal pain conditions (back, neck, hip, knee, stomach 114 

and head pain) and its unshared genetic background, particular to chronic pain in the back. We 115 

conducted an extensive bioinformatic annotation of shared and unshared genetic background of 116 

CBP to reveal functional differences and identify genes associated with each aspect. To find the 117 

associated genes, we additionally performed a gene-based association analysis. Finally, we 118 

performed a set of PRS analyses among people with CBP to check whether the division between 119 

shared and unshared genetic background might be beneficial for CBP subphenotyping.  120 
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Results 121 

Overview of the study design  122 

This study was carried out using the results of genome-wide association studies (GWAS) for six 123 

chronic pain sites (pain in the back, neck, hip, knee, stomach, and headache). All data (Ntotal = 124 

456,000) were provided by UK Biobank under projects #18219 and #59345. The sample was split 125 

into discovery (265,000 individuals of European descent) and replication (a total of 191,000 126 

individuals in three subsamples of African, South Asian and European descent) samples. Details 127 

of the phenotypes definition are available in Supplementary Methods. Sample characteristics (size, 128 

sex and age structure, pain type prevalence and BMI distribution) are provided in Supplementary 129 

Table 1. 130 

The study design included four stages. In the first stage, we decomposed the genetic background 131 

of CBP into shared and unshared ones, and calculated the GWAS summary statistics for two new 132 

traits: SGIT (shared genetic impact trait) which is controlled predominantly by shared genetic 133 

background common for all traits analyzed, and UGIT (unshared genetic impact trait) which is 134 

controlled by genetic background specific for CBP. These calculations were performed for each 135 

subsample using the SHAHER framework (Figure 1, Materials and Methods). Then we performed 136 

two meta-analyses for SGIT and UGIT using inverse-variance-weighted method: one combining 137 

the summary statistics from the two European samples (European meta-analysis) and another one 138 

combining summary statistics from the three replication samples (Replication meta-analysis). 139 

Thus, four sets of GWAS summary statistics both for SGIT and UGIT were obtained in the first 140 

stage: the “Discovery sample”, the “European replication sample”, the “European meta-analysis” 141 

and the “Replication meta-analysis” (Figure 1). 142 
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 143 

Figure 1. The first step of the study. The black frames label the analyzed sample and the blue 144 

frames indicate the input data; the black text in bold shows intermediate results; the text written 145 

in blue bold highlights the output data, and the black text written in italic represents the type of 146 

analysis. 147 

 148 

In the second stage, we identified loci and genes associated with SGIT and UGIT. We did this 149 

using two approaches. The first approach (Figure 2) was identification of associated loci in the 150 

discovery sample, followed by selection of independent association signals within these loci 151 

utilizing conditional analysis. For those loci that were previously observed and replicated in our 152 

recent work utilizing the same data [15,16], we did not perform additional analyses. For other 153 
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association signals, we conducted replication using the Replication meta-analysis. For loci 154 

replicated in the Replication meta-analysis we carried out gene prioritization procedure using the 155 

European meta-analysis. Gene prioritization included prediction of SNP effects in replicated loci 156 

(VEP and FATHMM), analysis of colocalization with gene expression effects (SMR-HEIDI), and 157 

gene prioritization using DEPICT and FUMA. Details are available in Supplementary Methods. 158 

The second approach utilizing which we identified genetic factors associated with shared and 159 

unshared backgrounds of CBP (Figure 2) was a gene-based association analysis (SKAT-O [26], 160 

PCA [27], ACAT-V [28], and ACAT-O [28] methods) using the GWAS summary statistics 161 

obtained from the discovery sample, followed by a conditional analysis and replication utilizing 162 

the gene-based association analysis results from the European replication sample and European 163 

meta-analysis (Figure 2, Materials and Methods). 164 

 165 

Figure 2. The second step of the study. The black frames label the analyzed sample and the blue 166 

frames indicate the input data; the black text in bold shows intermediate results; the text written 167 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 15, 2024. ; https://doi.org/10.1101/2024.02.14.24302763doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.14.24302763
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 

 

in blue bold highlights the output data, and the black text written in italic represents the type of 168 

analysis. 169 

 170 

At the third stage (Figure 3), we investigated the genetic architecture of CBP using functional 171 

bioinformatic analyses. We conducted a gene set and cell type/tissue enrichment analyses of the 172 

identified genes and SNPs in the associated loci in order to characterize the shared and unshared 173 

genetic background of CBP. Using GWAS summary statistics obtained for SGIT and UGIT, we 174 

estimated the genetic correlations of these traits with a large number of complex human traits from 175 

the GWAS-MAP database [29,30]. Then we calculated polygenic risk scores (PRS) of SGIT and 176 

UGIT using individual genotype data and estimated their role in disease/medical intervention 177 

prediction. 178 

 179 

Figure 3. The third and the fourth steps of the study. The black frames label the analyzed sample 180 

and the blue frames indicate the input data; the black text in bold shows intermediate results; the 181 
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text written in blue bold highlights the output data, and the black text written in italic represents 182 

the type of analysis. 183 

 184 

Finally, we investigated the potential of SGIT and UGIT PRSs for CBP subphenotyping (Figure 185 

3, Materials and Methods) using participants with CBP from the entire European sample (not 186 

divided into discovery and replication). We built binary-coded PRSs for SGIT and UGIT by 187 

splitting the PRS distribution into two parts according to the lowest or highest decile (see Materials 188 

and Methods). Then we tested if the binary-coded PRSs can be used for CBP subphenotyping. 189 

Decomposition of genetic background of CBP 190 

We estimated the heritability, the genetic correlation and phenotypic correlation for six chronic 191 

pain traits from the discovery sample (see Supplementary Methods and Supplementary Tables 192 

ST2a, b). Using these estimates and applying the SHAHER framework, we calculated the 193 

coefficients of optimal linear combinations for SGIT and UGIT building (Supplementary Table 194 

ST2a) and obtained the summary statistics for SGIT and UGIT. Heritability estimates and 195 

correlation coefficients of the original pain traits, SGIT and UGIT are depicted in Figure 4. 196 

Notably, the SNP-based heritability of SGIT is almost two times higher than those of the original 197 

traits (0.07 versus 0.01 – 0.04). The phenotypic and genetic correlations between SGIT and the 198 

original traits are higher in comparison to those between the original traits. UGIT shows positive 199 

correlation only with CBP. 200 

 201 
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 202 

Figure 4. Heatmap visualization of the heritability, phenotypic correlations and genetic 203 

correlations of the original pain traits, SGIT and UGIT. Inscriptions name anatomic sites of 204 

chronic pain, UGIT refers to unshared genetic background of CBP. The upper triangle of the 205 

matrix represents pairwise phenotypic correlations. The lower triangular of the matrix contains 206 

pairwise genetic correlations. Statistically insignificant (p-value > 0.05/28) genetic correlation 207 

coefficients are crossed out. Diagonal elements of the matrix correspond to SNP-based 208 

heritability (h2) estimates of the particular traits. 209 

 210 

Gene identification 211 

Identification of loci associated with SGIT and UGIT 212 

The results of SGIT and UGIT GWASs obtained from the discovery sample are visualized at 213 

Manhattan and QQ plots (Supplementary.Figures 1 – 4). We identified five loci statistically 214 
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significantly (p-value < 8.3e-09) associated with SGIT (see Table 1). Conditional analysis showed 215 

that each of these loci contains only one independent signal. Four loci (tagged with the following 216 

lead SNPs: rs9436127, rs7652179, rs12705966 and rs73581580) were previously observed and 217 

replicated in our recent study [16] in the first genetically independent phenotype (GIP1). The locus 218 

with the corresponding lead SNP rs11079993 was the new one. Similarly, we identified one locus 219 

with rs1271351 as the leading SNP significantly associated with UGIT. Conditional analysis 220 

showed a single independent association signal in this region. Since this locus has been already 221 

reported in [15], we interpreted it as known. Detailed information on significant loci and their 222 

replication is available in Supplementary Table ST3. 223 

Table 1. Loci associated with SGIT and UGIT. 224 

Trait Lead SNP Chr:position 

RefA/ 

EffA 

Nearest 

gene 

Discovery sample Replication meta-analysis 

β se p-value EAF β se p-value 

SGIT 

rs9436127 1:150490565 G/A ECM1 -0.018 0.003 1.72e-10 0.40 -0.012 0.003 5.98e-04 

rs7652179 3:49808618 T/A AMIGO3 0.023 0.004 2.30e-10 0.18 0.011 0.004 1.00e-02 

rs12705966 7:114248851 G/A FOXP2 0.017 0.003 6.55e-09 0.67 0.011 0.004 2.16e-03 

rs73581580 9:140251458 G/A EXD3 0.026 0.004 1.29e-09 0.12 0.029 0.005 5.36e-09 

rs11079993 17:50301552 T/G snoZ178 -0.017 0.003 4.98e-09 0.62 -0.013 0.003 7.94e-05 

UGIT rs1271351 10:73798873 T/C CHST3 -0.018 0.003 1.13e-10 0.43 -0.014 0.003 3.40e-05 

The new replicated locus is shown in bold. Associations shown in grey were observed in previous 225 

studies [15,16]. Lead SNP – the SNP with the lowest p-value in the locus; Chr:position – genomic 226 
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coordinates in a format “chromosome number : base pairs” (according to the GRCh37 genomic 227 

build); RefA – reference (not effective) allele; EffA – effective allele; β – effect size of SNP 228 

counted for effective allele; se – standard error of β; p-value – p-value of association between SNP 229 

and a trait after correction for genomic control; EAF – effective allele frequency. 230 

 231 

Prioritization of genes in the new associated locus 232 

We conducted gene prioritization for the rs11079993 locus associated with SGIT utilizing several 233 

approaches: literature-based prioritization of the genes located in this locus; prediction of 234 

pathogenicity of SNP effects in the locus using VEP [31], FATHMM-XF [32] and FATHMM-235 

INDEL [33]; DEPICT [34] and FUMA [35] gene prioritization and estimation of pleiotropic 236 

effects on gene expression using SMR-HEIDI [36]. Gene prioritization suggested two genes in the 237 

rs11079993 locus (see Supplementary Results and Supplementary tables ST4-6 for more details): 238 

CA10 (prioritized by literature-based annotation and FUMA) and LINC01982 (prioritized by 239 

literature-based annotation). Although the latter is well studied it provided less evidence for 240 

prioritization than CA10, so we consider it less likely to be causal. The CA10 gene may have an 241 

effect on chronic pain through processes in the central nervous system, cancer or disease of bones. 242 

Despite the fact that snoZ178 is the nearest gene to rs11079993, it did not provide strong arguments 243 

for being causal. 244 

Gene-based association analysis 245 

We performed the gene-based association analysis using different SNP annotation sets within 246 

genes. For SGIT we detected 9, 18, and 43 genome-wide significant gene-based signals for 247 

nonsynonymous, protein coding and protein non-coding SNP sets, respectively (Supplementary 248 

Table ST7). After conditional analysis, 10 out of 43 for non-coding SNP set and one for each 249 
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coding and nonsynonymous SNP sets (both in SLC39A8) retained significance. We replicated five 250 

of 12 genes using the European replication sample and European meta-analysis (Table 2). For 251 

UGIT we detected two significant signals for the non-coding SNP set, and one of them (CHST3) 252 

passed conditional analysis and replication. 253 

Table 2. Results of gene-based association analysis of SGIT and UGIT 254 

Trait Gene Chr Position 

SNP 

set 

Gene-based p-value 

Discovery 

sample 

Conditional 

analysis 

European 

replication 

sample 

European 

meta-

analysis 

UGIT CHST3 10 71964395 ncod 7.81e-08 7.81e-08* 1.42e-06 7.93e-13 

SGIT 

SLC39A8 4 102251080 nsyn 5.68e-10 5.68e-10* 4.73e-09 4.38e-17 

SLC39A8 4 102251080 cod 1.17e-07 1.17e-07* 1.62e-06 2.54e-13 

IP6K1 3 49724294 ncod 1.32e-10 1.32e-10* 0.0083 2.66e-12 

GRM3 7 86643909 ncod 1.66e-07 1.66e-07* 0.0935 6.55e-08 

FOXP2 7 114086327 ncod 2.00e-07 2.00e-07* 7.90e-04 8.22e-11 

MAML3 4 139716753 ncod 3.17e-07 3.17e-07* 6.40e-05 1.30e-12 

PTBP1 19 797075 ncod 3.64e-07 3.64e-07* 0.8760 2.33e-07 

TCF20 22 42160013 ncod 1.93e-06 1.93e-06* 3.77e-04 8.44e-10 

SOX6 11 15966449 ncod 2.01e-06 2.01e-06* 0.0921 4.17e-07 

FZD10 12 130162459 ncod 2.03e-06 2.22e-06 0.2626 4.36e-06 

ERICH2 2 170766878 ncod 2.25e-06 2.25e-06* 0.1304 3.19e-05 

GABRB2 5 161288429 ncod 2.08e-06 2.40e-06 5.20e-05 3.69e-11 

* These genes harbored SNPs with the lowest p-values within 5 Mb from their borders, thus no conditional 255 

SNPs were selected, and the gene-based p-values remained unchanged. 256 

The significance threshold for replication sample was set at p-value < 4.2e-03 = 0.05/12, where 12 is the 257 

number of genes retained significance after the conditional analysis. 258 
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 259 

Summary of gene identification 260 

Using prioritization of genes in the associated loci and gene-based association analysis, we 261 

identified 18 genes associated with SGIT, with 13 of them being previously reported in our recent 262 

works [15,16] (SLC39A8, FOXP2, EСM1, AMIGO3, BSN, RBM6, FAM212A, RNF123, UBA7, 263 

MIR7114, NSMF, NOXA1, GRIN1), and 5 of them being new (CA10, MAML3, TCF20, GABRB2, 264 

LINC01982). One of the identified genes, namely FOXP2, was found using both gene 265 

prioritization and gene-based analysis. The SLC39A8 gene was identified using gene-based 266 

analysis and has been prioritized in our previous study using the genetically independent 267 

phenotype (GIP) approach [16]. 268 

For UGIT, we identified the CHST3 gene utilizing gene-based analysis, and prioritized two genes 269 

in the UGIT-associated locus: CHST3 and SPOCK2, failing to give preference to one of them [15]. 270 

Analysis of CBP genetic architecture 271 

Gene set and tissue/cell type enrichment 272 

We performed two enrichment analyses based on DEPICT for SNPs associated with SGIT and 273 

UGIT in European meta-analysis, and FUMA analysis for the genes identified for SGIT. In 274 

DEPICT analysis at p-value < 5e-06 we found SGIT to be enriched in genes involved in the 275 

BTBD2 PPI subnetwork and decreased cochlear coiling (Supplementary Table ST8a). We also 276 

detected enrichment for genes expressed in the central nervous and neurosecretory systems, retina 277 

and neural stem cells (Supplementary Table ST8b). Similar analyses of SGIT-associated variants 278 

at p-value < 2.5e-08 threshold provided no significant findings. For UGIT we were able to conduct 279 

DEPICT analysis only for SNPs with p-value < 5e-06, but no statistically significant results were 280 
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obtained. However, we observed a tendency to enrichment for genes expressed in the digestive, 281 

nervous, musculoskeletal, cardiovascular, hemic and immune systems. 282 

We did not obtain statistically significant results in tissue specificity and gene set enrichment 283 

analyses using FUMA, however, we have shown that SGIT-associated genes have different 284 

expression patterns. For instance, there is a group of genes (NSMF, PTBP1, RBM6, IP6K1, UBA7, 285 

ECM1, NOXA1, RNF123) expressed almost in every organ, and a group of genes expressed 286 

predominantly in the brain (GRIN1, GABRB2, GRM3, BSN, and CA10) (Supplementary Figure 5). 287 

These findings are in line with those obtained for SGIT loci utilizing DEPICT. FUMA extends 288 

DEPICT findings for SGIT, by accounting for genes identified in gene-based analysis as well and 289 

providing more detailed information on expression of particular genes. 290 

Genetic correlation between SGIT, UGIT and complex traits 291 

We estimated the genetic correlation between each of SGIT and UGIT, and 730 complex human 292 

traits from the GWAS-Map database. SGIT was statistically significantly genetically correlated 293 

with almost all of the 322 preselected complex traits, and UGIT provided significant correlations 294 

with only 14 of them (see Supplementary Table ST9). In total we grouped all traits in 11 clusters 295 

(see Supplementary Table ST9, Figure 5). There were some distinctions between SGIT and UGIT 296 

correlation patterns. First, UGIT was significantly correlated with sitting height which represents 297 

the length of the spine, and the second, third and fourth genetically independent phenotypes (GIP2-298 

4) from our recent study [16], while SGIT was not (Supplementary Table ST9). Second, SGIT had 299 

a positive direction of genetic correlation with self-reported chronic knee pain and headache, when 300 

UGIT was negatively correlated with them. Regardless of statistical significance, SGIT and UGIT 301 

demonstrated opposite patterns of genetic correlation (see Figure 5). While SGIT was mostly 302 

positively correlated with traits from such clusters as: respiratory illness and smoking, injuries, 303 
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socio-economic and family status, psychometric traits, osteoarthritis and other musculoskeletal 304 

disorders, UGIT tended to be inversely correlated with these clusters of traits. 305 

 306 

Figure 5. Genetic correlation of SGIT and UGIT with complex human traits. Only 322 traits 307 

providing statistically significant genetic correlations (rg) with either SGIT or UGIT and rg 308 

magnitude greater than 0.25 were considered. These traits were grouped into 11 manually 309 

annotated clusters. From each cluster we selected one trait (top-trait) providing the smallest p-310 

value of genetic correlation among all pairwise correlations with SGIT and UGIT within this 311 
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cluster and depicted this value on a heatmap. Genetic correlations not passing the significance 312 

threshold of p-value < 9.41e-07 are crossed out. 313 

 314 

Polygenic risk score for SGIT and UGIT. Their role in disease/medical intervention prediction 315 

We developed a model of PRS estimation using a training sample. For a testing sample, we 316 

calculated SGIT and UGIT PRSs using individual genotypes. Then we examined association 317 

between these PRSs and medical codes available for members of testing sample (see 318 

Supplementary Table ST10). We detected 92 ICD10 codes and 57 OPCS4 codes statistically 319 

significantly associated with at least one of the studied PRSs. SGIT PRS was associated with all 320 

of them. ICD10 codes associated with SGIT and/or UGIT PRSs related to a wide range of 321 

disorders, such as disorders of musculoskeletal, nervous, cardio-vascular, digestive and excretory 322 

systems, metabolic and skin disorders, diabetes, respiratory and neurological diseases 323 

(Supplementary Table ST10, Figure 6). The associated OPCS4 codes represented mostly surgical 324 

manipulations on joints and bones and diagnostic endoscopic examination of gastrointestinal and 325 

upper respiratory tract. Also, we observed SGIT PRS to be associated with all of the chronic pain 326 

phenotypes and these associations were characterized by the lowest p-values (Supplementary 327 

Table ST10). Unlike SGIT PRS, UGIT PRS provided only three significant associations, which 328 

had been detected for SGIT PRS as well: associations with chronic back and knee pain and with 329 

A52 OPCS4 code denoting therapeutic epidural injection, which is due to the association with 330 

chronic back pain (Supplementary Table ST10, Figure 6). 331 
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 332 

Figure 6. Associations of SGIT and UGIT PRSs with ICD10 and OPCS4 codes and chronic pain 333 

phenotypes. Only 92 ICD10 and 57 OPCS4 codes providing statistically significant associations 334 

with either CBP, SGIT or UGIT PRS were considered. Medical codes were grouped into 19 335 

clusters. From each cluster we selected one code providing the smallest p-value of association 336 
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with PRSs and depicted its effect sizes on a heatmap. Associations not passing the significance 337 

threshold of p-value < 8.25e-05 were crossed out. 338 

 339 

CBP subphenotyping among people with CBP 340 

We investigated the potential of SGIT and UGIT binary-coded PRSs for CBP subphenotyping 341 

using only the 65,011 participants with CBP. For each individual and each of two traits, SGIT and 342 

UGIT, we formed two types of binary-coded PRSs defined by the lowest and highest deciles of 343 

risk (see “Polygenic risk score calculation” in Supplementary Methods section). Then we 344 

performed an analysis of associations between each of the four binary-coded PRSs (with two 345 

reflecting the lowest decile of the PRS for SGIT and UGIT, respectively, and the other two 346 

reflecting the highest decile- for each of SGIT and UGIT) and the ICD10/OPCS4 medical codes 347 

and identified 69 ICD10 and 35 OPCS4 codes statistically significantly associated with at least 348 

one of binary-coded PRSs (Supplementary Table ST11). 349 

Being in the lowest decile of the SGIT PRS (low genetic predisposition to CBP through shared 350 

genetic background) provided a “unique” (not observed for other binary PRS traits) negative 351 

association with acute myocardial infarction (I21 ICD10 code, OR = 0.60, p-value = 1.09e-06). At 352 

the same time, the lowest decile of UGIT PRS (low genetic predisposition to CBP through the 353 

unshared genetic background) was uniquely positively associated with unspecified diabetes 354 

mellitus (E14 ICD10 code, OR = 1.64, p-value = 3.05e-05). 355 

The highest decile of the SGIT PRS (high genetic predisposition to CBP through the shared genetic 356 

background) showed 102 statistically significant positive associations with the rest medical codes 357 

and 57 of them were associated only with this binary PRS trait. Among these 57 associated codes 358 
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were those related to diagnostic endoscopic examination of joints and rheumatoid arthritis, surgical 359 

manipulation on muscles, joints and bones (such as repair of muscle, bone excision, replacement 360 

of joint etc.), conditions of the spine and nervous system, disorders of digestive, genitourinary and 361 

endocrine systems and neurological disorders. No specific association was found with the highest 362 

decile of the UGIT PRS, but differences in association pattern from other binary PRS traits were 363 

found. For example, the SGIT PRS was positively associated with gastrointestinal tract 364 

examination procedures (may be because these people are generally prone to pain, so they have 365 

unexplained abdominal pain as well or they may take NSAIDs), obesity, arthrosis of knee and hip, 366 

and knee surgery, while the UGIT PRS was negative associated with these traits. 367 

Generally, the lowest decile of SGIT PRS and the highest decile of UGIT PRS manifested 368 

protective effects on medical states being diagnosed and treated, whereas the lowest decile of 369 

UGIT PRS and the highest decile of SGIT PRS had the opposite effect (Supplementary Table 370 

ST11). 371 

  372 
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Discussion 373 

In this work, we first applied the decomposition of genetic background of CBP into shared and 374 

unshared ones and showed that they differ in their functions. The shared genetic background is 375 

common to different chronic pain conditions while the unshared genetic background is related only 376 

to CBP. We built two traits, SGIT and UGIT, corresponding to the shared and unshared genetic 377 

background, respectively, and analyzed their properties. 378 

We identified five loci associated with SGIT and one locus related to UGIT. Among them, only 379 

one was new – the locus on chromosome 17 associated with CBP through SGIT. We prioritized 380 

two genes (CA10 and LINC01982) near it which are potentially involved in brain development, 381 

synapse formation and carcinogenesis, and found associations with gastroesophageal reflux, bone 382 

disease, multisite chronic pain and various known risk factors of chronic back pain (educational 383 

attainment, smoking, depression). The other three loci found associated with SGIT had previously 384 

been reported for GIP1 [16], as expected given our assumption that GIP1 is an approximation of 385 

the shared genetic background of the four chronic pain phenotypes studied before. In past work, 386 

we have prioritized 12 genes (MIR7114, NOXA1, GRIN1, NSMF, FOXP2, BSN, AMIGO3, RBM6, 387 

FAM212A, RNF123, UBA7, ECM1) in these three loci associated with SGIT, with six of them 388 

(NOXA1, GRIN1, NSMF, FOXP2, BSN, AMIGO3) being related to the nervous system (brain 389 

development and recovery, synapse plasticity, signal transduction, neuropathic and inflammatory 390 

pain). Some other genes were related to musculoskeletal (MIR7114 and ECM1, functional in 391 

osteoarthritis and osteogenesis, respectively) and immune (UBA7) system processes. 392 

In addition to five loci significantly associated with SGIT, there were four more loci suggestively 393 

associated (p-value < 8.3e-08) with SGIT (Supplementary Table ST12). Among these four loci 394 
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there was a locus of SLC39A8 gene reported in our previous study of GIP [16] and there was one 395 

new replicated under p-value < 8.3e-08 threshold locus on chromosome 13 with the lead SNP 396 

rs2587363, located in the AL356295.1 gene (Supplementary Figure 6). We cannot consider this 397 

novel locus as statistically significant in the present study, however, it may nevertheless be a target 398 

for further investigation. This locus has been reported as associated with multisite chronic pain in 399 

females [37], major depressive disorder, osteoarthritis, post-traumatic stress disorder [38,39], and 400 

chronic fatigue syndrome [40]. Moreover, this locus contained polymorphism rs2587363 that was 401 

classified as pathogenic according to the FATHMM-XF (Supplementary Table ST13) and 402 

demonstrated a pleiotropic effect on the OLFM4 gene expression (Supplementary Table ST14) in 403 

peripheral blood. This gene encodes olfactomedin 4, which is an antiapoptotic factor promoting 404 

tumor growth. 405 

Additionally, we performed gene-based association analyses and identified five genes (SLC39A8, 406 

FOXP2, MAML3, TSF20, GABRB2) significantly associated with SGIT. As can be seen, FOXP2 407 

was observed in this study both in GWAS and in the gene-based analysis. The SLC39A8 gene has 408 

been reported and replicated for GIP1 [16]. The product of the SLC39A8 gene is a metal transporter 409 

with a role in manganese (Mn) homeostasis, and the missense rs13107325 in this gene is among 410 

the top pleiotropic SNPs identified in GWAS. Specifically, it has previously been associated with 411 

increased risk of osteoarthritis [41] and severe adolescent idiopathic scoliosis [42]. The gene is 412 

known to be mutated in congenital disorder of glycosylation, SLC39A8-CDG, with clinical 413 

features including osteopenia, broadened long bone epiphysis and joint hypermobility [43,44]. The 414 

dietary manganese deficiency is known to lead to bone and connective tissue disease in animals 415 

[45]. MAML3 has been shown to contribute to several pathways significantly associated with CBP 416 

[46]. This gene enables transcription coactivator activity; it is involved in the Notch signaling 417 
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pathway and positive regulation of transcription by RNA polymerase II. GABRB2 encodes a 418 

GABA (gamma-aminobutyric acid) type A receptor beta subunit. The gene has a pivotal role in 419 

the central nervous system and associates with various neuropsychiatric disorders [47]. TCF20 420 

encodes a transcription factor that recognizes the platelet-derived growth factor-responsive 421 

element in the matrix metalloproteinase 3 promoter. The encoded protein is thought to be a 422 

transcriptional coactivator, enhancing the activity of transcription factors such as JUN and SP1. 423 

Mutations in this gene are associated with autism spectrum disorders (according to NCBI-RefSeq 424 

https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=6942). Recently, it 425 

has been shown that TCF20 is essential for neurogenesis during embryonic brain development in 426 

mouse. TCF20 dysfunction leads to deficits in neurogenesis, which further results in the 427 

development of autism spectrum disorders [48]. 428 

Recently, more has been paid to the study of the role of rare genetic variants in the control of 429 

different traits. In the current study, we also tested the association of SGIT with exome sequencing 430 

data from UK Biobank (Supplementary Methods) and performed gene-based association analysis, 431 

which identified the SLC13A1 gene (Supplementary Tables ST15a, b). The effect of this gene was 432 

explained by its loss of function (LoF) and missense variants. The SLC13A1 gene has been 433 

previously detected as associated with back pain-related traits due to LoF variants [14,49]. This 434 

gene encodes a protein that functions as a high-affinity sodium-dependent sulfate transmembrane 435 

transporter [50]. A deficiency of the SLC13A1 protein is associated with a reduced blood sulfate 436 

level, which plays a key role in the underlying processes leading to painful intervertebral disc 437 

disorders [14]. The association of a gene with disease through LoF variants presents several 438 

advantages as a drug target because it provides a clear functional link, target specificity, potential 439 

for gene therapy, predictive value, and personalized medicine opportunities. Until now, this gene 440 
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has been considered as a potential target for treatment against back pain. In the light of our results, 441 

SLC13A1 can be considered as a potential target for treatment against chronic pain irrespective of 442 

location. 443 

For UGIT, the SPOCK2 and CHST3 genes were detected using both gene-based and gene 444 

prioritization analysis. The association of SPOCK2 with back pain has been described previously 445 

[15]. This gene is located close to carbohydrate sulfotransferase 3 (CHST3) which codes for an 446 

enzyme that catalyzes proteoglycan sulfating and has been identified as a susceptibility gene for 447 

lumbar disc degeneration [51]. The association of CHST3 with back pain-related phenotypes has 448 

also been described [14]. This gene can be considered as most probably causal for back pain in 449 

this region, since cumulative evidence L2G scores for CHST3 and SPOCK2 are 0.81 and 0.23, 450 

respectively, https://genetics.opentargets.org/study-locus/NEALE2_6159_4/10_72001257_A_G, 451 

[52]. 452 

Information on genes associated with SGIT is potentially useful in terms of discovering biomarkers 453 

and developing multi-target drugs against chronic pain at several anatomic sites at once, because 454 

these genes are most likely involved in the development of chronic pain in general. In contrast, 455 

genes related to the unshared genetic background of CBP may be more pertinent to the 456 

development of chronic pain at back precisely, probably by affecting chondrogenesis or 457 

degenerative processes in spine. So UGIT associated genes may be of interest for the development 458 

of drugs for treatment of chronic pain specifically in the back. 459 

Based on enrichment analysis and functional annotation of associated loci, the shared genetic 460 

background common to different chronic pain conditions contributes to these phenotypes in 461 

general through processes in the central nervous and neurosecretory systems. SGIT genetic 462 

correlations provided evidence of genetically predisposed psychosocial aspects of CBP. The SNP-463 
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based heritability for UGIT was much smaller than that of SGIT, resulting in much less statistical 464 

power for all analyses. However, we still detected some significant results. A few findings from 465 

functional annotation demonstrated that UGIT was inversely associated with knee pain and 466 

headache and positively associated with back pain and medical treatments for back pain such as 467 

epidural injection. UGIT also tended to be negatively correlated with respiratory illnesses, 468 

musculoskeletal disorders and injuries, demographic parameters and psychometric disorders, 469 

whereas SGIT is positively associated with all of these traits. These findings taken together support 470 

that the unshared genetic background of CBP may determine the development of pain in the back 471 

specifically, whereas the shared genetic background controls non-specific pain manifestations and 472 

processes accompanying different pain conditions. 473 

Genetic correlation analysis and PRS analysis are two ways to investigate the influence of genetic 474 

background of CBP. Although the lists of the traits included in these analyses overlap, there are 475 

many traits presented only in one of them. Thus, genetic correlation analysis adds information on 476 

association with self-reported and anthropometric traits (e.g., UGIT is significantly correlated with 477 

height), and PRS analysis provides more information on medical diagnoses and interventions (for 478 

instance, both SGIT and UGIT PRSs are positively associated with therapeutic epidural injection). 479 

Findings from the two methods complement each other. For example, genetic correlation analysis 480 

of SGIT reveals genetic predisposition to greater alcohol intake and smoking, and in PRS analysis, 481 

we observe its association with mental disorders due to alcohol intake and smoking. Similarly, 482 

SGIT analysis shows positive genetic correlation with toothache, and PRS analysis highlights 483 

association with tooth removal. For group of traits included in both analyses (such as lower 484 

respiratory and urinary system disorders, anxiety and depression, intestine and cardio-vascular 485 

diseases, sleep and eye disorders, arthritis, spine and knee problems, etc.) results suggest positive 486 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 15, 2024. ; https://doi.org/10.1101/2024.02.14.24302763doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.14.24302763
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

29 

 

association with SGIT in both methods, but they should not be interpreted in the same way. While 487 

genetic correlation analysis provides information on pleiotropic effects or linkage in genome [53], 488 

PRS analysis reveals associations between the genetic background of CBP and phenotypic traits 489 

that can be explained not only by linkage or pleiotropic effects of genes, but also by causal effects 490 

of CBP on other traits. Comparing results of genetic correlation analysis with those obtained from 491 

PRS analysis can tell us more about probable reasons of observed association between two 492 

phenotypes [54]. For instance, when we observe modest genetic correlation between traits along 493 

with high magnitude of regression coefficient from PRS analysis, this may indicate the role of 494 

causal or confounding effects, rather than effects of genetic pleiotropy or linkage. Trait pairs with 495 

such a pattern may be an interesting subject for further studies utilizing Mendelian randomization. 496 

For example, we observed this pattern for SGIT and several traits, including obesity (rg with BMI 497 

was 0.31, beta from PRS analysis for obesity was 0.25), diabetes (rg was approximately 0.31 for 498 

set of related traits, PRS beta = 0.21), and migraine (rg = 0.37, PRS beta = 0.22). Causal effects of 499 

increased BMI on back pain, and back pain on type II diabetes, have already been reported in our 500 

studies [55,56], while the association with migraine is yet to be examined. In contrast, if the 501 

magnitude of pairwise genetic correlation coefficient is quite high it is likely that the phenotypic 502 

association between two traits is explained by similarity of their genetic background and not by 503 

causality. For pairs of traits with these characteristics, information on the similarity of underlying 504 

genetic mechanisms can be valuable for development or repurposing of medications affecting both 505 

traits via the same pathway. From this prospective, further in-depth studies of the high genetic 506 

correlation between irritable bowel syndrome and SGIT (rg = 0.78) might be worthwhile. 507 

The results of genetic analysis of SGIT and UGIT allowed us to estimate their polygenic risk scores 508 

for participants with CBP and show that they are associated with different ICD10 and OPCS4 509 
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coded conditions. We introduced the binary-coded PRSs for SGIT and UGIT to characterize low 510 

and high genetic risk of CBP related to its shared and unshared genetic background, respectively. 511 

We showed that these binary-coded PRSs can be potentially helpful for subphenotyping of 512 

individuals with CBP, because participants with low or high genetic risk of CBP defined by the 513 

shared or unshared genetic background are characterized with different patterns of association with 514 

medical interventions and disorders. This can be crucial for forecasting pain trajectories and 515 

choosing an adequate treatment. Low genetic liability to CBP explained by shared genetic 516 

background turned out to be protective against diagnosis of acute myocardial infarction (OR = 517 

0.60, p-value = 1.09e-06), but low genetic risk of CBP mediated through its unshared genetic 518 

background was associated with higher predisposition to unspecified diabetes mellitus (OR = 1.64, 519 

p-value = 3.05e-05). High PRS of SGIT significantly increased the risk of diverse diseases of 520 

musculoskeletal, nervous, digestive, genitourinary and endocrine systems (ORs varying from 1.28 521 

to 2.08). Genetic liability to CBP through shared genetic background also showed positive 522 

association with gastrointestinal tract examination procedures, this may be because people are 523 

generally prone to pain, so they have unexplained abdominal pain as well or they may take non-524 

steroidal anti-inflammatory drugs, which have side effects on gastrointestinal system. All these 525 

results should be interpreted with caution, since negative/positive association between PRS and 526 

medical code does not necessarily mean protective/detrimental effect on disease development itself 527 

but on the disease being diagnosed. For instance, low OR of myocardial infarction among people 528 

with low SGIT PRS could potentially indicate that their low genetic liability to pain regardless of 529 

its site (including chest pain) can make myocardial infarction much harder to detect. Such a 530 

phenomenon was observed for diabetics, who often do not have chest pain, so their myocardial 531 

infarctions do not get diagnosed [57,58]. 532 
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Our study has some limitations and restrictions. First, the discovery analyses were performed in 533 

Northern Europeans, so the obtained linear combination coefficients for SGIT and UGIT cannot 534 

strictly be applied to individuals of African and Asian ancestry, included in replication sample. 535 

Secondly, both discovery and replication sample were based on UK Biobank participants, which 536 

means that other cohorts are needed to perform independent replication of the results. Thirdly, here 537 

we refer to UGIT as pertaining to unshared genetic background specific to CBP, however, the 538 

SHAHER approach does not necessarily accurately divide the genetic background of the traits, so 539 

UGIT may have genetic correlations with some of the other chronic pain traits but not with all of 540 

them. Finally, we had limited statistical power in UGIT functional analyses, which resulted in few 541 

significant findings. This indicates that larger sample size may be helpful in further studies. 542 

Overall, the current work demonstrates that genetic background of CBP can be split into shared 543 

between different pain conditions and specific for CBP background. The former is likely to 544 

maintain pain mechanisms and manifestations in general through the central nervous and immune 545 

systems, functioning of joints, general processes of bone formation and remodeling, while the 546 

latter is responsible for processes specific to back pain. Polygenic risk scores separately accounting 547 

for shared and unshared genetic background of CBP identify subphenotypes characterized by 548 

different genetic predisposition to a range of medical conditions making them possible tools for 549 

prognosis in the healthcare system. Twenty genes prioritized for CBP may provide further 550 

opportunities for advances in chronic pain management, such as the discovery of new biomarkers 551 

and drug targets for chronic pain regardless of its site and drug targets that are specific to CBP.   552 
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Materials and Methods 553 

Data description 554 

We used the UK Biobank GWAS data (Ntotal = 456,000) relating to four chronic musculoskeletal 555 

pain traits (pain in the back, neck, hip, knee) from our recent work (see [16] for the detailed 556 

description of the phenotype definition, sample size and sample characteristics). We obtained the 557 

remaining two chronic pain phenotypes (stomach pain and headache) from the same UK Biobank 558 

[59] sample and conducted GWAS according to the protocol we have described previously 559 

(Supplementary Methods, [16]). For each pain trait we split the whole sample of UK Biobank 560 

participants into a discovery (N = 265,000, European ancestry individuals) and a replication 561 

sample (three samples of African, N = 7,541, South Asian, N = 9,208, and European descent 562 

individuals, N = 174,831). Details of the samples (size, sex and age structure, pain type prevalence 563 

and BMI distribution) are available in Supplementary Table ST1. Data were uploaded to the 564 

GWAS-Map database [29,30] for quality control, unification and further functional analysis of 565 

GWAS summary statistics. The same genotype and phenotype data were used for making and 566 

testing PRS models. 567 

Decomposition of genetic background of chronic back pain 568 

To decompose the genetic background of CBP we implemented the SHAHER framework [25]. 569 

This approach is based on the concept that genetic background of each of the genetically related 570 

traits can be decomposed into two parts reflecting common for all traits (shared genetic 571 

background) and specific for particular trait background. To identify shared and unshared (or 572 

specific) background of CBP, SHAHER composes two new traits: SGIT, which condenses the 573 

shared genetic background, and UGIT, which is controlled by specific for CBP genetic 574 
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background. Both SGIT and UGIT are considered as linear combinations of the original traits with 575 

specific coefficients. The coefficients for SGIT are calculated by maximizing the proportion of 576 

CBP shared genetic background in SGIT genetic background. To calculate the coefficients for 577 

UGIT, we estimated the residual genetic background of CBP after adjustment for SGIT. Using 578 

these coefficients and the GWAS summary statistics for all original traits, the GWAS summary 579 

statistics for SGIT and UGIT of CBP were calculated. 580 

To estimate the SGIT coefficients we utilized the heritability estimates, phenotypic correlation 581 

matrices, and genetic correlation matrices (see details in Supplementary Methods) assessed 582 

beforehand for the original pain traits in the discovery sample. Further, we used the coefficients 583 

obtained using discovery sample in SHAHER analysis of all replication samples (Figure 1). 584 

Meta-analysis of GWAS summary statistics using METAL 585 

For both SGIT and UGIT we performed two GWAS meta-analyses: (i) a meta-analysis comprising 586 

all replication samples (Replication meta-analysis, Ntotal = 191,580); and (ii) a meta-analysis of 587 

two European samples (European meta-analysis, Ntotal = 439,831). The first meta-analysis served 588 

as a replication set for the GWAS associations observed in the discovery set, while the second one 589 

was utilized for further functional annotation. In a gene-based analysis we utilized European meta-590 

analysis for additional replication of the signals from the discovery sample. All the meta-analyses 591 

were conducted using an inverse-variance-weighted approach and fixed-effects model 592 

implemented in METAL software, version 2011-03-25 [60]. 593 
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Gene identification 594 

Loci identification and replication 595 

In order to identify loci statistically significantly associated with either SGIT or UGIT we carried 596 

out the conditional and joint analysis using GCTA-COJO software (version 1.90.0beta [61]) on 597 

the discovery sample. We chose the following settings: minor allele frequency (MAF) not less than 598 

2e-04; stepwise model selection procedure to select independently associated SNPs; significance 599 

threshold (applied to statistics after correction for genomic control using the LD Score regression 600 

intercept) p-value = 5e-08/6 = 8.3e-09, where the denominator corresponds to the number of 601 

analyzed traits (SGIT and UGIT from the current work, as well as four genetically independent 602 

phenotypes [GIP1-4] from our recent study [16] which were used for comparison); and ±5,000 kb 603 

window for linkage disequilibrium assessment. A linkage disequilibrium matrix was computed 604 

using PLINK version 1.9 (https://www.cog-genomics.org/plink/1.9/) using 100,000 randomly 605 

selected individuals from the discovery set. Loci associated with either SGIT or UGIT were 606 

defined as genomic regions of ±250 kb from the lead SNPs identified in COJO analysis. 607 

For both SGIT-associated and UGIT-associated loci we performed a two-step replication 608 

procedure. First, we checked whether associations were observed in previous pain studies. We 609 

compared SGIT-associated regions with those reported for the first genetically independent 610 

phenotype (GIP1) [16] and collated UGIT-associated signal with results from an earlier back pain 611 

GWAS [15]. Loci demonstrating the same direction of the effect in the current and previous studies 612 

were considered as known. Second, we focused on new signals (not reported previously) and 613 

examined them in the replication meta-analysis. We assumed new signals to be replicated if two 614 

criteria were met: 1) association in the replication meta-analysis was statistically significant after 615 

Bonferroni correction [62] for multiple testing (p-value < 0.05/𝑛, where 𝑛 is a number of new loci 616 
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associated with either SGIT or UGIT); and 2) direction of the effect was the same in the discovery 617 

sample and Replication meta-analysis. 618 

Gene prioritization in associated loci 619 

We prioritized genes in the replicated locus using a protocol we have described previously in our 620 

work on GIP [16]. For gene prioritization we applied a series of methods including (1) literature-621 

based annotation of all genes within the locus using various databases; (2) prediction of SNP 622 

effects in the locus utilizing Ensembl Variant Effect Predictor (VEP) [31], FATHMM-XF [32] and 623 

FATHMM-INDEL [33] tools; (3) gene prioritization embedded into Data-driven Expression 624 

Prioritized Integration for Complex Traits (DEPICT) software [34], and Functional Mapping and 625 

Annotation tool (FUMA) [35]; (4) analysis of pleiotropic effects of the replicated loci on gene 626 

expression in various tissue types (see Supplementary Table ST16) using an instrument combining 627 

Mendelian randomization (Summary data-based Mendelian Randomization, SMR) with 628 

heterogeneity testing (Heterogeneity in Dependent Instruments, HEIDI) [36]. Genes provided 629 

more evidence for prioritization were considered as more likely to be causal. Details are available 630 

in the Supplementary Methods. 631 

Gene-based association analysis 632 

We conducted a gene-based association analysis of SGIT and UGIT utilizing GWAS summary 633 

statistics (z-scores and effect sizes) from three datasets: the discovery sample (N = 265,000), the 634 

European replication sample (N = 174,831), and data from the European meta-analysis (Ntotal = 635 

439,831). We preliminarily calculated the matrices of correlations between genotypes of all SNPs 636 

within a gene using individual genotypes of non-relatives from the entire European sample of UK 637 

Biobank participants (N = 315,599) and the PLINK software v2.00a3.7LM (https://www.cog-638 

genomics.org/plink/2.0/) with options –maf 5e-05 --geno 0.02. For replication, we restricted to the 639 
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European sample because discovery and replication gene-based analyses had to be performed 640 

using the same matrix of genotype correlations, which is ancestry-specific. In the discovery sample 641 

we set the Bonferroni adjusted significance level [62] for the total number of genes (20,000) at 642 

2.5e-06. We defined two criteria for replication of a gene-based signal: 1) the p-value in European 643 

replication sample had to be less than 0.05/𝑘, where 𝑘 corresponds to the number of statistically 644 

significant signals in the discovery sample; and 2) the p-value in European meta-analysis had to 645 

be less then the p-value in the discovery sample. See Supplementary Methods for more details on 646 

genomic regions studied, methods of gene-based and conditional analyses. 647 

Analysis of CBP genetic architecture 648 

Gene set and tissue/cell type enrichment 649 

We conducted DEPICT tissue or cell type enrichment analyses for GWAS loci associated with 650 

SGIT or UGIT in European meta-analysis. We used DEPICT software, version 1.1 rel194 [34], 651 

with default settings. For each of the traits we analyzed two SNP lists: a set of variants associated 652 

with the trait under p-value < 2.5e-08 significance threshold, and a set of SNPs with p-value < 5e-653 

06. The significance thresholds corresponds to those recommended by program developers with 654 

correction for multiple testing for two traits applied. Variants were selected using GCTA-COJO 655 

instrument with settings described above in ‘Loci identification and replication’ section. 656 

For all genes identified for SGIT we ran the gene set enrichment and tissue specificity analyses 657 

utilizing FUMA function GENE2FUNC. As the input data we used: 1) all genes prioritized for 658 

SGIT in the GWAS loci (both from the new replicated locus and from the loci previously replicated 659 

for GIP1); 2) all genes found in gene-based analysis and replicated in European meta-analysis. We 660 

analyzed SGIT-associated genes only, because there were not enough genes identified for UGIT 661 

to perform the analysis. The GTEx v8 dataset for 30 general tissues was used for tissue specificity 662 
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analysis. A set of the input genes was tested against each of the sets of differentially expressed 663 

genes (DEG) using a hypergeometric test and Bonferroni multiple testing correction. Statistical 664 

significance was determined at an adjusted p-value  <  0.05. We estimated the overrepresentation 665 

of the identified genes in the gene sets of the GWAS catalog. Hypergeometric tests were performed 666 

to check if the genes of interest were overrepresented in any of the pre-defined gene sets. In this 667 

type of analysis, we used FDR (Benjamini – Hochberg method) for multiple testing correction as 668 

was recommended by FUMA. Statistical significance was determined at a q-value <  0.05. 669 

Genetic correlation between SGIT, UGIT and complex traits 670 

We assessed genetic correlations of SGIT and UGIT with 730 complex human traits from the 671 

GWAS-Map database using LD Score regression tool embedded in the platform. The detailed 672 

protocol of selection of 730 complex traits included in the analysis and the full list of them were 673 

provided in a recent study by Timmers et al. [63]. For further interpretation we restricted our 674 

analysis to 322 complex traits which had statistically significant genetic correlations with SGIT 675 

and/or UGIT with magnitude greater than 0.25 (p-value < 3.42e-5 = 0.05/(730*2), where 730 676 

represents the total number of complex traits and 2 refers to the number of traits). To simplify the 677 

perception and visualization of the results of genetic correlation analysis we performed a hierarchal 678 

clustering of 322 complex traits. This was done utilizing the ward.D2 method from the standard 679 

hclust() R function on a squared matrix of genetic correlations transformed to the Euclidian 680 

distances (as.dist() R function) as described previously by Tsepilov et al. [16]. We set the arbitrary 681 

threshold of h = 1.8 to cut the dendrogram of hierarchical clustering by height and obtained 11 682 

clusters, each of which was then annotated manually. The full list of 322 traits grouped by clusters 683 

is provided in Supplementary Table ST9. 684 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 15, 2024. ; https://doi.org/10.1101/2024.02.14.24302763doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.14.24302763
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

38 

 

Heatmap visualization of the genetic correlations was made using the heatmap.2() function from 685 

the gplots R package, version 3.1.1. From each cluster, we depicted one trait having the lowest p-686 

value of genetic correlation among all pairwise correlations with SGIT and UGIT within the 687 

cluster. The threshold for statistical significance was p-value > 9.41e-07 = 0.05/(51,681 + 730*2), 688 

where 51,681 is the number of unique genetic correlation coefficients in the squared matrix for 689 

322 complex traits, and 730*2 is the total number of genetic correlations between SGIT, UGIT 690 

and 730 complex traits. 691 

Polygenic risk scores of SGIT and UGIT. Their role in disease/medical intervention prediction 692 

In addition to other functional analyses, we examined the prognostic power of SGIT and UGIT 693 

polygenic risk scores (PRS) and assessed their role in disease/medical intervention prediction. We 694 

calculated the PRSs for SGIT and UGIT utilizing data from the entire European sample (discovery 695 

and European replication samples, Ntotal = 439,762) using a three-step algorithm. We used the 696 

SBayesR method [64] and the protocol from our recent work on CBP PRS [24], with some 697 

modifications. We divided the entire European sample into a training set (discovery sample, N = 698 

265,000), a validation set (subsample from the European replication sample, N = 30,000), and a 699 

test set (the other 144,831 Northern Europeans from the European replication sample). The first 700 

set was used to develop PRS models, the second one was used to validate these models in 701 

individual-level data and select the optimal models for SGIT and UGIT, and the last dataset was 702 

used to assess quality metrics of the optimal models. At the final step, PRS values were calculated 703 

for all individuals from entire European sample using optimal models. More details on PRS 704 

calculation available in Supplementary Methods. 705 

When the PRS for SGIT and UGIT were estimated for the entire European sample of 439,831, we 706 

normalized the PRS (the variance was taken to 1) and used them in a number of generalized linear 707 
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models (GLMs) considering PRS as a predictor for a particular trait. List of the traits and 708 

corresponding phenotypic data were taken from medical histories and questionnaires obtained 709 

from UK Biobank participants of European descent from the test dataset mentioned in the 710 

paragraph above, using non-relatives only (N = 120,200). Non-relatives were defined by UK 711 

Biobank data-field 22021 (for more details see 712 

https://biobank.ndph.ox.ac.uk/showcase/coding.cgi?id=682). 713 

Medical codes were combined to the second level, meaning that participants with a specific 714 

medical code of the second level and/or codes of a lower level (the third and/or the fourth) nested 715 

under the second level code were all considered to be cases of the second level medical code (for 716 

more information on ICD10 and OPCS4 coding in the UK Biobank see 717 

https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=41202 and 718 

https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=41200). Only ICD10 codes from chapters I-XVII 719 

were analyzed, OPCS4 codes from chapters X, Y, Z were excluded, and then the remaining codes 720 

were filtered by prevalence (> 0.5% and < 99.5%). The final list of the traits (see Supplementary 721 

Table ST10) comprised the six self-reported chronic pain phenotypes (questionnaire-based) 722 

considered in the study, 165 ICD10 and 132 OPCS4 medical codes served as proxies for the 723 

corresponding diseases/medical interventions. To perform GLM-analyses we used a logistic 724 

regression from a standard glm() function in R and included sex, age, batch number and the first 725 

ten genetic principal components (PC1-10) provided by UK Biobank as covariates in addition to 726 

the PRS predictor. The general formula is the following: medical code ~ age + sex + batch + PC1 727 

+ … + PC10 + PRS. Finally, we filtered out the GLM results not passing the significance threshold 728 

of p-value < 8.25e-05 = 0.05/(2*(165 + 132 + 6)), where 165 and 132 are the numbers of ICD10 729 

and OPCS4 codes, respectively, 6 is a number of pain traits and 2 corresponds to the number of 730 
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PRSs. For further heatmap visualization of the significant GLM-results we performed a 731 

hierarchical clustering of medical codes based on their phenotypic correlation matrix as described 732 

above in the genetic correlation analysis. We set a h = 1.25 threshold for cutting the hierarchical 733 

clustering dendrogram by height and defined 19 clusters (see Supplementary Table ST10 for more 734 

details). Similarly, for the genetic correlation analysis we selected one medical code from each 735 

cluster, which provided the lowest p-value of association with SGIT and UGIT polygenic risk 736 

scores. Alongside medical codes, representing particular clusters, we added six pain traits to the 737 

heatmap plot. The visualization was made as described in the genetic correlation analysis section. 738 

CBP subphenotyping among people with CBP 739 

To investigate the potential of SGIT and UGIT PRSs for back pain subphenotyping, we analyzed 740 

only CBP cases from the entire European sample, focusing on non-relatives only (N = 65,011). 741 

The decision to switch to the entire European sample instead of working with the test sample only 742 

was motivated by the limited statistical power of the test sample. We normalized SGIT and UGIT 743 

PRS values and recoded each of the vectors of normalized PRSs as binary traits in two different 744 

ways. First, we coded the normalized PRS values as 1 if a participant with back pain was attributed 745 

to the lowest decile of the normalized PRS vector for SGIT or UGIT, respectively. Normalized 746 

PRS values falling out of this range were coded as 0. By such a coding (“yes/no in the lowest 747 

decile of the normalized PRS values for SGIT”; “yes/no in the lowest decile of the normalized 748 

PRS values for UGIT”) we highlighted individuals with the lowest genetic predisposition to CBP 749 

through SGIT and UGIT. Then, we coded as 1 the normalized PRS estimates referring to the 750 

highest decile of the SGIT or UGIT PRS distribution, respectively, and coded them as 0 otherwise. 751 

In this binary coding (“yes/no in the highest decile of the normalized PRS values for SGIT”; 752 

“yes/no in the highest decile of the normalized PRS values for UGIT”) we marked individuals with 753 
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the highest genetic predisposition to CBP through SGIT and UGIT. For each of these binary traits 754 

we performed GLM analyses using the model described above. As a dependent variable, we 755 

considered ICD10 and OPCS4 codes described above. In this sample of 65,011 non-related 756 

participants with CBP we selected 199 ICD10 and 165 OPCS4 codes with prevalence > 0.5% and 757 

< 99.5%. The significance threshold for this analysis was set at p = 3.43e-05 = 0.05/(4*(199 + 758 

165)), where 4 is the number of binary PRS traits, 199 is the number of ICD10 codes, and 165 is 759 

the number of OPCS4 codes. 760 

 761 

  762 
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Data and code availability 763 

Full project code is available at https://github.com/ElizavetaElgaeva/BP-SH_project_code. 764 

GWAS and EWAS summary statistics for all pain traits along with SGIT and UGIT PRS model 765 

weights can be found here (the link will be added later). 766 
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