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Abstract 
Dyslexia is a common condition that impacts reading ability. Identifying affected brain networks has 
been hampered by limited sample sizes of imaging case-control studies. We focused instead on brain 
structural correlates of genetic disposition to dyslexia in large-scale population data. In over 30,000 
adults (UK Biobank), higher polygenic disposition to dyslexia was associated with lower head and brain 
size, and especially reduced volume and/or altered fiber density in networks involved in motor control, 
language and vision. However, individual genetic variants disposing to dyslexia often had quite distinct 
patterns of association with brain structural features. Independent component analysis applied to 
brain-wide association maps for thousands of dyslexia-disposing genetic variants revealed multiple 
impact modes on the brain, that corresponded to anatomically distinct areas with their own genomic 
profiles of association. Polygenic scores for dyslexia-related cognitive and educational measures, as 
well as attention-deficit/hyperactivity disorder, showed similarities to dyslexia polygenic disposition 
in terms of brain-wide associations, with microstructure of the internal capsule consistently 
implicated. In contrast, lower volume of the primary motor cortex was only associated with higher 
dyslexia polygenic disposition among all traits. These findings robustly reveal heterogeneous 
neurobiological aspects of dyslexia genetic disposition, and whether they are shared or unique with 
respect to other genetically correlated traits. 
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Introduction 
 
Roughly 3-7% of school-age children have dyslexia, a neurodevelopmental condition that affects 
reading, writing and spelling1. Reading acquisition during childhood is accompanied by the adaptation 
of several brain networks, and multiple hypotheses have been formulated to explain the etiology of 
dyslexia through altered developmental trajectories in these networks and the functions they 
support2. The phonological deficit hypothesis suggests that dyslexia involves diminished ability in 
associating phonemes—the units of spoken language—with written linguistic symbols or graphemes, 
sometimes stemming from a lack of awareness of the phonological structure of language3. In contrast, 
the orthographic deficit hypothesis suggests that some dyslexic readers may not identify words as 
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cohesive patterns, but instead decode them as sequences of letters at a slow pace due to impairments 
of the visual stream4. Yet other mechanistic models highlight auditory5 and magnocellular6 pathways. 
Impairments of rapid automatized naming7, verbal short-term memory8 and attention control have 
also been implicated9, 10. Rather than there being a single, monolithic explanation for dyslexia, it is 
likely that the underlying mechanisms are heterogeneous and multifactorial11, 12. 

Functional neuroimaging of people with dyslexia has suggested reduced activation or functional 
connectivity during reading-related tasks of various left-hemisphere regions that are important for 
language and/or normal reading, including the posterior temporo-parietal cortex, the inferior frontal 
gyrus, and the anterior occipito-temporal cortex13-15 16, 17. However, these efforts often employed 
divergent methods and task paradigms in sample sizes of only tens of individuals, and findings have 
often been inconsistent18, 19. In terms of brain structural MRI too, results from multi-cohort or meta-
analysis studies in total sample sizes up to hundreds of individuals have not aligned well, yielding 
negative findings or much smaller effects than originally reported in smaller individual studies20-23. 
Moreover, the largest diffusion MRI-based investigation of white-matter microstructure, in 104 
affected children and adolescents compared to 582 controls, did not detect significant group-wise 
differences24.  

This overall sequence has been encountered in neuroimaging studies of multiple other traits beyond 
dyslexia; initial waves of underpowered, hypothesis-driven studies produced inconsistent results, 
followed by larger more systematic screening studies that failed to replicate the initial findings, while 
sometimes producing unanticipated new leads25. Taken together, it is clear that hypothesis-free brain-
wide mapping in much larger sample sizes is needed, to better understand the brain regions and 
networks involved in dyslexia26. 

The heritability of dyslexia is estimated to be roughly 40-70% based on twin studies27, 28, with common 
DNA variants accounting for around 15% of its disposition according to genome-wide investigations29, 

30. Dyslexia also shows substantial genetic correlations (in the range of 0.6 to 0.8) with measures of 
reading and spelling performance, and phonemic awareness, more broadly across the population31. 
Here, we reasoned that estimating polygenic disposition to dyslexia in the UK Biobank, a large general 
population dataset where genome-wide genotype and neuroimaging data are available32-34, would 
reveal neurobiological markers relevant to the development and/or manifestation of dyslexia. To 
calculate polygenic disposition in the UK Biobank individuals, we made use of genome-wide 
association summary statistics from a recent study of 51,800 individuals who reported having received 
a dyslexia diagnosis, and over one million controls, carried out by 23andMe, Inc.30. 

We carried out our brain mapping analyses with respect to voxel-wise volumetric measures, as well 
as fixel-wise apparent fiber density, the latter for the analysis of white matter microstructure. 
Different predisposing genetic loci may impact distinct brain regions and networks. We therefore 
aimed to disentangle heterogeneity in the brain-wide associations of different dyslexia disposing 
variants, by decomposing the overall polygenic disposition into a number of distinct impact modes in 
terms of neurobiological correlates. For this, we developed a novel application of independent 
component analysis35, 36.  

Dyslexia is also associated with several other traits related to cognition, education and behaviour, and 
shows significant genetic correlations with attention-deficit hyperactivity disorder (ADHD), 
educational attainment, and intelligence30. This means that some of the genetic factors that 
predispose to dyslexia are shared with these other traits. The question then arises: which structural 
brain features are associated with polygenic disposition to dyslexia alone, versus more generally with 
polygenic dispositions to a range of cognitive, educational and behavioural traits that are associated 
with dyslexia? The combination of brain features uniquely associated with dyslexia polygenic 
disposition is likely to distinguish liability to this particular trait among others. We therefore went on 
to quantify the polygenic dispositions of UK Biobank individuals to ADHD, educational attainment, 
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school grades, fluid intelligence, and the reading-related psychometric traits of single-word reading, 
non-word reading, spelling, and phonemic awareness31. We mapped the brain structural correlates of 
all of these polygenic dispositions in the UK Biobank, and compared and contrasted with the brain 
maps for dyslexia polygenic disposition. 

 

Results 
Brain correlates of dyslexia polygenic scores 

After genetic and brain imaging quality control, we generated dyslexia PGS for between 31,695 and 
35,231 adult individuals from the UK Biobank dataset, depending on the availability of data for 
diffusion and T1-weighted MRI modalities, respectively (see Methods). We mapped brain wide 
associations of dyslexia PGS with voxel-wise regional volume derived from tensor-based 
morphometry37, 38, as well as microstructural measure of apparent fiber density derived from fixel-
based analysis39 (Methods). For our main analysis, we report results for PGS generated with 
lassosum240 that were optimized for capturing inter-individual brain variation (Methods; 
Supplementary Fig. 1), but other automated polygenic methods including SBayesR41 and PRS-CS42 
delivered highly comparable results (Supplementary Fig. 2). 

Individuals with higher dyslexia PGS exhibited lower total brain volume, which was more apparent in 
gray matter than white matter (t=-6.6 and t=-5.5, respectively; Supplementary Table 1). Among other 
global measures of brain anatomy, dyslexia PGS was most strongly associated with lower total cortical 
surface area, especially of the left hemisphere (t=-6.4). Unexpectedly, dyslexia PGS was slightly more 
predictive of overall head size (t=-6.9), which is a measure derived from skull anatomy43, than any 
brain measure (Supplementary Table 1). Head size or total brain volume are commonly used as 
unwanted covariates in structural neuroimaging analysis. However, we reasoned that adjusting for 
head size could introduce collider bias in voxel-based volumetric analysis. Collider bias can occur when 
adjusting for a supposed confound variable, head size in this case, that is actually influenced by both 
variables between which an association is tested – here dyslexia PGS as the predictor and brain 
regional volume as outcome. Therefore, we performed our primary voxel-wise analysis without this 
adjustment (i.e. using raw Jacobian determinant values comprising both the nonlinear and linear 
registration components), but also repeated the analysis secondarily with head size adjustment. 

Without head size adjustment, individuals with higher dyslexia PGS showed lower regional volumes 
across multiple brain regions after brain-wide multiple comparison correction (Methods). This 
included a large frontal cluster along the medial wall, extending from Brodmann area 4 to perigenual 
medial frontal cortex (Fig. 1: top). Additionally, lower volume was observed in midbrain, thalamus, 
and bilateral amygdalae, in individuals with higher dyslexia PGS (Fig. 1: top). Many of these 
associations were evident in both hemispheres and more or less bilaterally symmetric, except two 
clusters of lateralized lower volume in the left anterior insula and in the left posterior temporoparietal 
junction, again associated with higher dyslexia PGS (Fig. 1: top). 

There were no regions where higher dyslexia PGS was associated with higher regional volumes in 
voxel-wise analysis after multiple comparison correction, although there were sub-threshold (non-
significant) positive associations between dyslexia PGS and the volumes of bilateral primary visual 
cortices and middle temporal gyri (Supplementary Fig. 3). 
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Figure 1. Negative dyslexia PGS associations with regional brain volume before (top) and after head 
size correction (bottom). Clusters indicate voxels whose volumes are significantly lower in individuals 
with higher polygenic disposition to dyslexia, at p-values of smaller than 0.05 as obtained from non-
parametric testing, with brain-wide correction for multiple comparisons using 5000 permutations. In 
these significant clusters, voxels are coloured based on t-values derived from similar parametric tests, 
in order to visualize effect sizes and peak regions. All figures are shown in radiological convention, 
where the left side in transverse and coronal views corresponds to the right cerebral hemisphere and 
vice versa. R: right. L: left. TPJ: temporo-parietal junction. 

Following adjustment for head size as a covariate, negative associations were again observed between 
dyslexia PGS and similar brain regions as the non-adjusted analysis, although the significant clusters 
were markedly smaller compared to the previous analysis (Fig. 1: bottom). Notably, the sub-threshold 
(i.e. nonsignificant) positive voxel-wise associations with the primary visual cortex and anterior middle 
temporal gyrus became significant after head size correction, indicating that individuals with higher 
dyslexia PGS had higher volumes relative to their head size in these regions (Supplementary Fig. 3). 
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In fixel-wise analysis of white-matter microstructure, dyslexia PGS was positively associated with 
apparent fiber density in forceps major tracts, which connect homologous regions of the bilateral 
occipital cortices (Fig. 2: top). In contrast, dyslexia PGS was negatively associated with apparent fiber 
density in three separate clusters of fixels bilaterally: within the superior longitudinal fasciculi, 
cerebellar dentate nuclei, and anterior limb of the internal capsule (Fig. 2: top). Fiber tractography 
revealed that the internal capsule and dentate fixels highlight tracts that pass through the brainstem 
and superior cerebellar peduncles, with neocortical connections that mainly span the frontal and 
parietal cortices (Figure 2: bottom). (Note that adjustment for head size is not relevant for fixel-based 
analysis of white-matter microstructure.) 

Figure 2. Top: association of dyslexia PGS with fixel-wise apparent fiber density.  Bottom: Probabilistic 
tractography streamlines coloured based on fiber directions. Figures are shown in radiological 
convention, where the left side in transverse and coronal views corresponds to the right cerebral 
hemisphere and vice versa. 

Heterogeneous brain-wide associations of dyslexia disposing genetic loci 

42 individual genomic loci were significantly associated with dyslexia after genome-wide multiple 
testing correction in the 23andMe Inc. GWAS30. For 35 of these loci the lead SNP in the UK Biobank 
data passed our quality filtering (Methods). We mapped the brain-wide associations of each of these 
35 SNPs separately, with reference to increased dosage of the disposing alleles, and with no 
adjustment for head size for the voxel-based analysis, to avoid collider bias. 

The brain-wide association maps for these 35 genetic variants showed some limited convergence, 
most notably in a left hemisphere medial prefrontal region peaking in Brodmann area 3244 that was 
associated with 6 of the variants, but there was also much divergence across the 35 maps 
(Supplementary Figure 4, Supplementary dataset). For example, for voxel-wise volumetric analysis, 
the locus intronic to PPP2R3A (index SNP rs13082684, which was the most significant dyslexia-
disposing variant in the 23andME GWAS) was associated with lower volume in the right posterior 
insula and Heschl’s gyrus, and deep subcortical structures spanning the internal capsule, anterior 
thalamus, and anterior thalamic radiations (Supplementary Figure 4). The intronic BCL11B variant 
(rs35131341) was associated with lower volume in medial fronto-parietal areas, bilateral Heschl’s gyri 
and planum temporale (Supplementary Figure 4). In contrast, association in the opposite direction 
(i.e. increased volume with the predisposing allele) was observed in posterior cerebellum for the 
BCL11B variant (Supplementary Figure 4). The SATB2 locus (rs6435017) exhibited lateralized 
association with lower volume of the posterior insula and left Heschl gyrus, and higher volume in the 
right anterior middle temporal gyrus (Supplementary Figure 4). The AUTS2 variant (rs3735260) was 
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associated with higher volume in the optic radiation close to the primary visual cortex, with a more 
pronounced effect in the right hemisphere, while the SH2B3 locus (rs7310615) was also associated 
with higher volume in the right optic radiation, as well as increased volume in the left Heschl’s gyrus 
(Supplementary Figure 4). Brain-wide volumetric association maps for all 35 genome-wide significant 
dyslexia-disposing variants are in supplementary dataset. 

In terms of white-matter microstructure, again the 35 genetic variants had mostly distinct brain-wide 
association maps (Supplementary Fig. 5). For example, a variant upstream of NEUROD2 (rs12453682) 
was associated with lower apparent fiber density in tracts passing through the internal capsule and 
caudally extending to the brainstem and superior cerebellar peduncles (Supplementary Fig. 5). Other 
negative associations were observed in the superior longitudinal fasiculi for the SH2B3 (rs7310615) 
and SEMA3F (rs2624839) loci (Supplementary Fig. 5). In contrast, positive associations were observed 
in the occipital lobes for the SEMA3F (rs2624839) and ARFGEF2 (rs11393101) loci, such that higher 
apparent fiber density in the forceps major tracts were associated with the dyslexia-disposing alleles 
(Supplementary Fig. 5). Fixel-wise associations for all 35 genome-wide significant dyslexia-associated 
variants are in supplementary dataset.  

Impact modes reveal latent structure in imaging genetic associations 

As described in the previous section, 35 genetic loci that were individually associated with dyslexia at 
a genome-wide significant level had largely distinct, but sometimes overlapping, associations with 
regional brain volumes or white matter microstructure. We opted to broaden this insight to thousands 
of genetic variants that contribute to the polygenic disposition to dyslexia, through a novel application 
of probabilistic independent component analysis36. We aimed to understand whether, despite 
heterogeneity of brain-wide associations for different genetic variants, there exists a latent 
multivariate structure. This new approach goes beyond the standard PGS approach that aggregates 
all disposing variants into a single scalar score per subject. 

We first mapped the brain-wide associations in the UK Biobank data for each of 13,766 genetic 
variants that were associated with dyslexia in the 23andMe GWAS30 with point-wise association P 
values of less than 0.01 and clumped for linkage disequilibrium (Methods). Together, these variants 
contribute much of the genome-wide polygenic disposition to dyslexia. We then concatenated the 
resulting 13,766 brain-wide association maps and decomposed them into ten independent 
components, separately for voxel- and fixel-wise data (see Methods). Each component reflects a 
spatially independent map of brain regions associated with a distinctive set of genetic variants that 
exhibit similar brain-wide effects. We call these components impact modes, a term we partly 
borrowed from Smith et al. 201245. 

For both voxel- and fixel-wise data, impact modes localized to anatomically coherent features and 
were more spatially homogenous than the univariate brain maps associated with dyslexia PGS 
(Supplementary Fig. 6). For example, in the voxel-based volumetric data, impact mode #5 mapped 
distinctly to the occipital lobes and posterior thalami (Supplementary Fig. 6). Among genetic variants 
that contributed especially to this impact mode, a dyslexia-disposing variant at the DAAM1 locus was 
associated with increased volume of the primary visual cortex (rs36065072, mode weight z-score=6.2). 
A further example to illustrate: impact mode #8 exclusively captured bilateral associations with 
temporal lobes (Supplementary Fig. 6), and an intronic variant in MAPT was among those that 
exhibited a strong weight in this impact mode (rs12150530, mode weight z-score=-4.7). The weights 
of all 13,766 variants for the ten volumetric impact modes are provided in Supplementary Table 2. 
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Figure 3. Distinct impact modes identified by independent component analysis of fixel-wise 
associations, for 13,766 variants that contribute to genome-wide polygenic disposition to dyslexia 
(top). Histogram of variant-wise weights for impact mode #10, and univariate maps of the two top loci 
contributing to this impact mode, NEUROD2 and SLC39A8, as examples of how an impact mode can 
be queried in terms of specific genetic contributions (bottom). 
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Impact modes for fixel-based white-matter microstructure corresponded to groups of identifiable 
tracts. For example, diffusion impact mode #5 captured microstructural variations in the forceps 
major, optic radiation, and superior longitudinal fasciculus, whereas impact mode #10 isolated the 
internal capsule and brainstem tracts that caudally enter superior cerebellar peduncles (Fig. 3). While 
both of these sets of tracts were associated with the overall dyslexia PGS (Fig. 2), their association 
with two independent modes indicates that they stem from distinct genomic underpinnings. The 
genetic variant with the strongest weight for the internal capsule impact mode (#10) was upstream of 
SLC39A8 (rs35518360, mode weight z-score=-7.6) (Fig. 3). This variant was only weakly associated with 
dyslexia (GWAS p=0.001), but has also been significantly associated with schizophrenia46 and 
educational attainment47. The variant is in almost full linkage disequilibrium (r2=0.9) with a missense 
variant (rs13107325) in the same SLC39A8 gene, suggesting that an amino-acid change in the encoded 
protein affects microstructural properties of the internal capsule tracts. The dyslexia-disposing 
NEUROD2 variant (rs12453682) exhibited the second-strongest weight for this same impact mode 
(#10) (mode weight z-score=5.3) (Fig. 3). The complete weights of the 13,766 genetic variants for all 
ten diffusion impact modes are provided in supplementary Table 3.  

Overlap in brain-wide associations of dyslexia polygenic scores and genetically-
correlated traits 

Consistent with previous reports30, 31, using GWAS summary statistics from large-scale genetic studies 
of other cognitive, educational and behavioural traits (see Methods), we reproduced significant SNP-
based genetic correlations between dyslexia and GCSE education (General Certificate of Secondary 
Education in the UK) (rg=-0.50), verbal-numerical reasoning (rg=-0.49), the first principal component of 
school grades (rg=-0.39), ADHD (rg=0.40), word reading ability (rg=-0.69), non-word reading ability (rg=-
0.71), spelling (rg=-0.75) and phonemic awareness (rg=-0.62) (all with P-values <10-23) (Supplementary 
Fig. 7). 

We then generated PGS for each of these traits in the UK Biobank imaging genetic dataset using 
lassosum240 (the same method as for our primary analysis of dyslexia PGS above). PGS for several of 
these traits were associated with the volumes of basal ganglia, thalamus, and adjacent white matter 
tracts, especially in the internal capsule (Fig. 4). These associations extended to the frontal lobes for 
the fluid intelligence PGS, education PGS and school grade PGS, and more caudally to the brainstem 
for ADHD PGS. The directions of effects were consistent across traits, with polygenic disposition to 
poorer performance, lower education, and ADHD associated with lower regional volumes in these 
areas (Fig. 4), similarly to dyslexia PGS (Fig. 1). 

A lateralized association between higher dyslexia PGS and lower left anterior insula volume (Fig. 1) 
was also observed for PGSs for lower fluid intelligence, word reading, non-word reading, and GCSE 
education (Fig. 4). Lower temporoparietal junction volume, which was observed in individuals with 
higher dyslexia PGS (Fig. 1), was also observed in individuals with lower non-word reading PGS (Fig. 
4). In contrast, as a feature that was only found for dyslexia PGS, the association with Brodmann area 
4 (primary motor cortex) (Fig. 1) was not observed as a focus for PGS of other traits (Fig. 4). PGS for 
word reading and non-word reading were positively associated with the bilateral volumes of Heschl’s 
gyri that contribute to primary auditory cortex, as well as posterior cerebellum (Fig. 4). 

No associations were observed between PGS for lower performance in any trait and higher regional 
brain volume, with the exception of spelling, for which individuals with polygenic disposition to lower 
performance showed higher volume in the putamen (Supplementary Fig. 8). 
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Figure 4. Brain-wide associations of polygenic scores (PGS) for traits that are genetically correlated 
with dyslexia. The panel on the left shows the associations of PGS with regional brain volumes. The 
panel on the right shows the associations of PGS with global imaging measures, before and after 
adjustment for head-size as a covariate. PGS for phonemic awareness was not significantly associated 
with the volume of any voxel, and therefore not shown in the figure. The PGS for spelling ability only 
showed a significant association in the putamen and is also not shown in this figure (its map is shown 
in supplementary figure 5). GM: gray-matter; WM: white-matter; CT: cortical thickness; CSA: cortical 
surface area. PGS: polygenic score. IDP: imaging-derived phenotype. 
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In white-matter fixel-based analysis, associations were observed between apparent fiber density in 
the internal capsule tracts and PGS for all traits (Fig. 5). Specifically, lower apparent fiber density was 
consistently associated here with polygenic disposition to lower performance/achievement and 
higher risk for ADHD. PGS for fluid intelligence and GCSE education exhibited the most extensive 
associations here, passing through the anterior limbs of the internal capsule (Fig. 5). In particular, the 
genu and anterior limb of the internal capsule emerged as a hotspot, where PGS for dyslexia and all 
other genetically correlated traits overlapped in their associations (Fig. 5). In addition, lower PGS for 
GCSE education and higher PGS for ADHD were associated with lower apparent fiber density in 
cerebellar dentate nuclei, similarly as for higher dyslexia PGS.  

Figure 5. Polygenic scores (PGS) of additional traits that are genetically correlated with dyslexia show 
associations with white-matter microstructure, measured by apparent fiber density. Lower apparent 
fiber density in the internal capsule was consistently associated with polygenic disposition to lower 
performance/achievement and higher risk for ADHD. The genu of the internal capsule was a hotspot 
of shared association with PGS for all traits. PGS: polygenic score. 
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Discussion 

Our study of genetic disposition to dyslexia in over 30,000 adults implicated diverse brain structures, 
notably involved in motor, language-related and visual functions. Our sample size was more than two 
orders of magnitude larger than any imaging case-control study of dyslexia published to date, which 
is likely to have aided in robustness of our findings. Nonetheless, a direct comparison cannot be made 
to case-control studies. Rather, our study shows the utility of a complementary approach to studying 
the neurobiology of dyslexia, through identifying neural correlates of genetic disposition while 
leveraging large-scale population data to overcome statistical uncertainty. 

A novel application of independent component analysis identified various impact modes comprising 
sets of dyslexia-disposing genetic loci associated with distinct brain features. This heterogeneity is 
consistent with dyslexia as a high-level behavioural outcome, with no simple mapping to any single 
brain structure, network, cognitive function or genetic factor. Dyslexia emerges from a complex 
interplay between genes, environmental exposures, and neural adaptations during reading 
acquisition2, 11, 12, 28, and is associated with educational and socioeconomic outcomes48, 49. Some of the 
structural brain correlates of polygenic disposition in the adult population may therefore be linked 
with the development of dyslexia as potential causal factors, while others might be consequences of 
lifestyle differences, for example time spent reading professionally or personally. 

Several of the implicated brain structures were also associated with genetic dispositions to other traits 
including educational attainment, fluid intelligence, ADHD, and reading- and language-related 
performance measures across the population. However, the volume of a large continuous region along 
the medial wall, spanning parietal and frontal cortices and peaking within the primary motor cortex50, 
showed an association only with genetic disposition to dyslexia among all of these traits. A 
combination of reduced primary motor cortex volume together with alterations of other regions 
implicated by this study may therefore dispose individuals to dyslexia in particular. Perhaps consistent 
with this, children with dyslexia have shown overactivation of the primary motor cortex during reading 
or reading-related tasks51. Furthermore, at the phenotypic level, dyslexia is associated with motor 
difficulties52, 53, although many children with dyslexia show no motor impairments, and lower 
performance of sequential motor tasks has also been reported for ADHD52, 53. 

Lower volume of the medial wall region spanning the primary motor cortex was notably associated 
with the dyslexia-disposing allele of the BCL11B locus. This allele was also associated with higher 
volume of the posterior cerebellum. Consistent with this, BCL11B encodes a zinc finger protein 
transcription factor and is expressed in cerebral cortical layer V projection neurons that send motor 
connections to the brainstem and cerebellum54-57. BCL11B may therefore modulate the topology of 
cortico-cerebellar pathways. Rare missense variants of BCL11B are associated with speech 
impairment, developmental delay and intellectual disability58.  

Of further relevance in terms of motor circuits, a consistent finding across all of the PGSs that we 
studied, including dyslexia PGS, involved microstructure of the internal capsule. A clue to the role of 
this deep white matter tract in dyslexia is provided by diffusion impact mode #10, which isolated the 
internal capsule and the cerebellar dentate nuclei together as one single component, linked to a 
shared set of dyslexia-disposing genetic variants. Motor projections such as the dentate-thalamic 
tracts pass through the internal capsule, while dentate nucleus lesions are the cause of cerebellar 
cognitive affective syndrome (CCAS) that involves linguistic, executive and visual-spatial 
impairments59. Especially the internal capsule’s anterior limb was the main focus of convergence 
across the various PGS that we studied. This region reciprocally connects the thalamus and frontal 
cortex and is engaged in multiple cognitive domains that contribute to psychiatric traits60. 
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Specific genetic loci that contributed strongly to the internal capsule and dentate impact mode #10 
included the SLC39A8 and NEUROD2 loci. SLC39A8 encodes a metal ion transporter that modulates 
neurotransmitter receptor glycosylation61, and this locus has also shown genome-wide significant 
associations with schizophrenia46, intelligence62 and educational attainment63. NEUROD2 codes for a 
neuronal migration and differentiation factor and its expression co-localizes with BCL11B+ layer V 
pyramidal neurons64. In mice, NEUROD2 knockout selectively increases excitability of layer V 
neurons64, while in humans haploinsufficiency of NEUROD2 is associated with intellectual disability, 
autism and speech delay64. Taken together with our findings across PGS for dyslexia and various other 
genetically correlated traits, the internal capsule and cerebellar dentate nucleus may be involved in 
these traits through altered cortico-cerebellar circuits that require layer V projection neurons, with 
consequences for diverse aspects of cognition, including those required for normal reading.  

In line with the implication of left-lateralized language-related brain regions by some previous studies 
of dyslexia (see the Introduction), we found that higher dyslexia PGS was associated with lower 
regional volume in the left temporoparietal junction and left anterior insula. The left temporoparietal 
junction is involved in the processing of syntactic and semantic domains of language, and coding and 
retrieving speech sounds65-67. The PGS for nonword reading and school grades were also associated 
with temporoparietal junction volume, further supporting the relevance of this brain region for 
phonological decoding ability and educational outcomes. Regarding the anterior insula, this region is 
closely connected to the adjacent inferior frontal gyrus68, 69, another core region of the language 
network. Insular activation recently emerged as a focus of convergence in a meta-analysis of 
functional MRI studies using rapid naming, rapid word reading and rapid sentence reading tasks70. The 
left anterior insula was also the peak of brain-wide association with the fluid intelligence PGS in our 
study. This region may therefore contribute to dyslexia in terms of both rapid reading fluency and 
more generally through higher cognitive processes. 

We found that several of the individual genetic loci that dispose most significantly to dyslexia were 
associated with the volumes of primary auditory cortices (Heschl’s gyri), including PPP2R3A, BCL11B, 
SATB2, and SH2B3. This supports an involvement of primary auditory cortex in the neural basis of 
dyslexia, as has been discussed previously71.  However, the effects that we observed were different 
across the genetic loci in terms of directions of effect (volumetric increases or decreases) associated 
with the dyslexia disposing alleles, even within the same hemisphere. This pattern might arise because 
altered Heschl’s gyrus volumes may be only secondary to the molecular and cellular roles of these 
genes in auditory cortex function that are relevant for dyslexia. 

Regarding visual circuits, increased polygenic disposition to dyslexia was associated with increased 
apparent fiber density in the forceps major white matter tract. Lesions of the forceps major, which 
connect bilateral occipital cortices, lead to topographical disorientation in humans72. In addition, the 
AUTS2 dyslexia-disposing variant was associated with higher volume in the optic radiation. Our 
findings may relate causally to visuo-orthographic deficits in dyslexia73, or might signify a secondary 
adaptation of the visual network to lower reading activity in adults with higher genetic disposition (for 
example due to reading avoidance). We also saw a non-significant trend towards increased volume of 
primary visual cortex in those with higher polygenic disposition to dyslexia, which became significant 
after adjusting for head size in a secondary analysis. As noted in the Results, adjusting for head or 
brain size risks introducing collider bias whenever polygenic disposition and regional volume both 
influence total brain volume, which seems a likely scenario. We therefore regard the head size-
adjusted results with caution and advocate more awareness of collider bias in brain imaging genetic 
studies, especiallywhen including covariates that are themselves heritable. 

Our study has several limitations. Although the UK Biobank is a population sample, this cohort is 
healthier on average than the general UK population due to volunteering bias74. Dyslexia PGS was 
derived using data from a large GWAS study of participants who self-reported having received a 
diagnosis of dyslexia30, but with no information on the type, timing or severity of this condition (e.g. 
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no distinction was made between acquired and developmental dyslexia, and no information was 
recorded on who had made the diagnosis). Nevertheless, strongly negative genetic correlations of this 
dyslexia phenotype with quantitative measures of word and non-word reading, spelling and phoneme 
awareness argue for its validity30, 31. The present cross-sectional study was carried out using adult data, 
which means that cause-effect aspects are not possible to disentangle with certainty. Future large-
scale imaging genetic studies would benefit from longitudinal data from children, to inform on 
genomic impact modes for structural brain changes during reading acquisition.  

In summary, we identified multiple brain networks linked to genetic disposition to dyslexia in a large 
adult sample from the general population. This approach complements classical case-control designs, 
for which it has not been possible to collect sample sizes within the same order of magnitude as that 
used here. Our study revealed that genetic disposition to dyslexia can be broken down into distinct 
sets of factors that associate with various identifiable brain networks, consistent with dyslexia as a 
complex and heterogeneous trait. Our study also showed which brain structural features are 
associated in common across multiple traits that are genetically correlated with dyslexia, as opposed 
to being associated with dyslexia genetic disposition alone among these traits. 

Methods 
Genetics 
UK Biobank data were accessed following approval of the application number 16066, P.I. Clyde 
Francks. UK Biobank is an in-depth investigation of more than 500,000 volunteers in the UK who are 
assessed for health, lifestyle, genomic, and many other variables32. Multimodal brain MRI data had 
also been released for approximately 10% of the individuals when the present study was initiated in 
202234, 75. The UK Biobank received ethical approval from the National Research Ethics Service 
Committee North West-Haydock (reference 11/NW/0382), and all of their procedures were 
performed in accordance with the World Medical Association guidelines. Written informed consent 
was provided by all of the enrolled participants. 

Genotyping has been performed using either BiLEVE Axiom or Axiom arrays from Affymetrix, which 
target highly overlapping sets of ~800,000 genomic variants with more than 95% similarity76. The UK 
Biobank has also released common genome-wide variants imputed to Haplotype Reference 
Consortium and UK10K haplotypes76. In this study we focused on participants who also underwent 
brain MRI at one of the four imaging sites and for which at least one usable T1-weighted and/or 
diffusion MRI (dMRI) scan had been produced (see the next section). The genetic analyses were 
focused to the largest ancestry group within this cohort, recorded as ‘white British’ using a 
combination of self-report and genomic principal component analysis (this group constitutes ~85% of 
the overall dataset: data field #22006). Pairs of genetically related subjects with kinship coefficients 
above 0.044 were identified in the target sample (70). Individuals related to the largest number of 
others were recursively removed until no two individuals were related at or above this kinship 
threshold, leaving 35,231 individuals (18,363 females). The resulting sample encompassed individuals 
aged from 45 to 82 years, with a mean age of 64.2 years and a standard deviation of 7.7 years. We 
then included bi-allelic genetic variants with minor allele frequency >= 0.01, imputation quality score 
of higher than 0.7, and Hardy-Weinberg equilibrium p-value of greater than 10-7, yielding 8,366,177 
autosomal single nucleotide variants (SNVs) and 1,092,696 short insertion-deletions (indels). 

Structural MRI: tensor-based morphometry 
We accessed minimally processed and brain-extracted T1-weighted brain MRI volumes of 42,798 
individuals34, 75 for tensor-based morphometry using symmetric image normalization (SyN) 
registration37, 38. For the present study we generated a study-specific average brain template in a 
randomly chosen subset of 1000 individuals. The template was generated through 11 consecutive 
Advanced Normalization Tools (ANTs v2.3.5) registrations that iteratively refined the template shape 
using rigid, affine, and diffeomorphic SyN transformations at incremental resolutions up to native 
resolution (i.e. 1mm3). Thereafter, all individuals’ original T1-weighted brain volumes were histogram 
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matched, winsorized at 1-99 percentiles, and non-linearly registered to our study-specific template 
using SyN. Registration parameters included a variance for total field of three, and variance for update 
field of zero, a downsampling scheme of 6×, 4×, 2×, and 1× (i.e. full resolution) and smoothing sigmas 
of 4, 2, 1 and zero voxels. A cross-correlation metric with a radius of four voxels was used. 

The affine registration matrix was composed with the SyN deformation field and the final warps were 
subsequently converted to Jacobian determinant maps, which encode the amount of regional brain 
tissue ‘shrinkage’ or ‘expansion’ in the brain of each individual as compared to our study-specific, 
average template. ANTs affine registrations failed in 2,098 individuals; instead of removing them, we 
opted to use a comparable linear registration method, FSL Flirt77 to initialize SyN, while controlling for 
a potential batch effect in subsequent analyses as a binary covariate.  

Diffusion MRI: data preprocessing and fixel-based analysis 
We retrieved minimally-preprocessed dMRI volumes of 37,930 subjects from UK Biobank34, 75. These 
data have been collected at 2mm3 isotropic resolution across 100 different diffusion-encoding 
directions evenly distributed on two spherical shells at b-values of 1000 and 2000 s/mm2, as well as 
eight blip-reversed b≅0 volumes. Diffusion images have been corrected for off-resonance warps, 
gradient non-linearity, Eddy currents, and head motion by the UK Biobank team34, 75. For the present 
study we reran these corrections on raw data for a first batch of 8,247 individuals whose corrected b-
vector tables were not available, while accounting for a potential batch effect in the subsequent 
regression model fits through use of a binary covariate. After data preprocessing, we constructed a 
study-specific fiber orientation density (FOD) template using MRTrix3 v3.0.378 from a random subset 
of 890 individuals who passed registration quality control by visual inspection out of 1000. This 
procedure started by N4 bias field correction and intensity normalisation of the preprocessed diffusion 
volumes, and estimation of the average tract response function79. Thereafter, spherical deconvolution 
was performed using the estimated response function to generate subject-wide FOD volumes. These 
volumes were subsequently non-linearly registered to a common space and an average FOD template 
was generated iteratively. The FOD template was then ‘fixelated’ to identify the principal directions 
of white-matter tracts in each voxel. The same procedures were repeated in all 37,930 individuals to 
generate FOD volumes, which were then registered to the study-specific FOD template78. FOD 
registrations passed quality control in 37,884 individuals following visual inspection of each 
individual’s template-transformed zeroth-order harmonic map, representing average isotropic 
diffusion in each voxel. FOD volumes were segmented to obtain fixel-wise readouts, which were then 
transformed to the template’s fixel-wise space78. We considered apparent fiber density (AFD) 
readouts as a measure of white-matter microstructure for subsequent analyses39. In combination with 
genetic data, the sample available was 31,695 adult individuals (16,198 female). 

Optimizing the polygenic scoring for imaging genetic analysis 
We first concatenated the voxel-wise Jacobian and fixel-wise AFD maps across all individuals and then 
applied MELODIC independent component analysis80 to extract imaging derived phenotypes (IDPs). 
MELODIC was performed separately per each imaging modality and at various dimensions to extract 
IDPs at incremental levels of spatial detail, following a geometric series corresponding with 
dimensions 11, 18, 29, 47, 76, 124, 200 and 324. Due to the large size of this data matrix (6.2×1010 
voxels in structural MRI, one terabyte), we used 8,000 internal eigenmaps for independent source 
decomposition81. In addition, principal component analysis was performed on the same data and the 
first 324 principal components were extracted as additional IDPs. Altogether, a total of 1,153 IDPs 
were extracted from voxel-wise Jacobian maps and an equal number of IDPs from the fixel-wise AFD 
data. These IDPs were derived for the purpose of optimizing our polygenic scoring, but they were not 
used for our voxel- or fixel-based imaging genetic analyses, nor our impact mode analysis, which form 
the bulk of the findings in this study. 

We used summary statistics from the largest genome-wide association study (GWAS) of dyslexia that 
has been performed to date, carried out by 23andMe, Inc.30. This GWAS study was based on 51,800 
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individuals of European ancestry who answered ‘Yes’ to the question ‘Have you been diagnosed with 
dyslexia?’, and 1,087,070 control individuals who answered ‘No’. The SNP-wise effect sizes from this 
GWAS were then applied to the genotype data of UK Biobank individuals, to estimate the polygenic 
disposition of each UK Biobank individual to dyslexia based on the combined effects of their autosome-
wide genetic variants. 

Our primary approach for polygenic scoring was based on the Lassosum2 model40. We observed strong 
correlation between Lassosum2 PGS and two automated PGS methods, SBayesR41 and PRS-CSauto

42. 
Lassosum2 explained slightly more proportion of variance in brain IDPs across PGS of all studied traits 
(Supplementary Fig. 1) and was therefore used to present the main results. This method fits a sparse 
elastic-net regression and optimizes two shrinkage penalties, including L1-norm (λ) and L2-norm (δ). 
A grid search across 30 λ and 10 δ values was utilized for optimization with respect to maximizing the 
top association with any IDP. The associations of dyslexia PGS were quantified with all 1,153 IDPs in 
each imaging modality using linear regression. A set of confound covariates were controlled for, 
including subject age at imaging visit (data field #21003, instance 2), age2, sex (data field #31), age×sex, 
age2×sex, the first ten principal components of genomic ancestry (data field #22009), genotyping array 
(data field #22000, either BiLEVE or Axiom), three dummy covariates encoding four UK Biobank 
neuroimaging sites (data field #54, instance 2), and the number of days passed since MRI scan incepted 
at the site  (as a measure of slow drifts in MRI hardware performance; data field #53, instance 2).  For 
structural MRI data, the type of affine registration (i.e. ANTs or Flirt) was further controlled as an extra 
covariate. Structural MRI analysis was performed with and without correction for head size scaling 
factor (data field #25000). For diffusion MRI data, the batch effect associated with diffusion 
preprocessing (i.e. either performed by our team or by the UK Biobank) was added to the covariates. 
We found that high δ values in the range of 102-104 slightly increased the accuracy of Lassosum2 over 
automated models PRS-CSauto and SBayesR, and λ in the range of 10-5-10-2 resulted in the highest 
accuracy of trait prediction (Supplementary Figure 1). These shrinkage parameters were therefore 
used for subsequent analyses. 

Voxel- and fixel-wise brain associations with dyslexia polygenic scores  
We tested the brain-wide associations of dyslexia PGS with the voxel-wise and fixel-wise data in the 
UK Biobank. Both parametric (fsl_glm 6.0.382) and non-parametric (randomise v2.983) linear regression 
models were fitted to the data, the former to yield t-value maps for visualization and impact mode 
analysis, and the latter to generate brain-wide multiple comparisons-corrected statistical maps. To 
reduce computation costs, voxel-wise permutations were performed at half (2mm3 isotropic) 
resolution with a wall-time of 9 days for 5,000 permutations per statistical contrast. The Randomise 
C++ code was modified to prevent short integer overflows due to the study sample size. No cluster 
enhancement was applied. The same sets of covariates as the previous section were used as for 
optimization. In all cases, we observed that a parametric t-score of > 4.6 was equivalent to a non-
parametric brain-wide corrected p-value of smaller than 0.05. 

As a check on the validity of our findings obtained with Lassosum2, we applied other methods for 
deriving PGS: SBayesR, PRS-CS, and PRS-CSauto. PRS-CS applies continuous shrinkage on variant-wise 
weights using Bayesian priors and is optimized using a single global shrinkage hyperparameter (ϕ). We 
explored four different ϕ values for optimizing PRS-CS, which were 10-6, 10-4, 0.01, and 1 
(Supplementary Fig. 1). PRS-CSauto  and SBayesR are automated polygenic scoring methods and did not 
require hyperparameter optimization on an independent dataset. We found that dyslexia lassosum2 
PGS was strongly correlated with dyslexia PGS derived from PRS-CSauto (r=0.87 and 0.93 following 
optimization on structural or diffusion-derived measures, respectively) and SBayesR (r=0.74 and 0.84, 
same order). Compared to lassosum2, these additional PGS exhibited highly similar brain-wide 
associations (Supplementary Fig. 2). 
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To describe the white matter tracts that run through regions where fixels showed significant 
associations of AFD with dyslexia PGS, we ran probabilistic fiber tractography using the second-order 
Integration over Fiber Orientation Distributions (iFOD2) algorithm in the template space84. 

Dyslexia locus-based neuroimaging association 
42 individual genomic loci were significantly associated with dyslexia after genome-wide multiple 
testing correction in the 23andMe Inc. GWAS for dyslexia30. 35 of these variants passed our genetic 
quality control process in the UK Biobank data (see the Methods section ‘Genetics’, above). At each 
of these 35 loci, dosage of the dyslexia disposing allele was calculated and used in separate linear 
regression models to find brain-wide associations with regional volume and white-matter 
microstructure (i.e. voxel-wise Jacobian values and fixel-wise AFD values, respectively), using the same 
approach and covariates as when testing voxel-wise and fixel-wise PGS associations. These covariates 
included age, age2, sex, age×sex, age2×sex, ten principal components of genomic ancestry, genotyping 
array, UK Biobank imaging site, the number of days passed since MRI scan incepted at the site, the 
type of affine registration (for structural MRI), and preprocessing being either performed by our team 
or by the UK Biobank team (for diffusion MRI). 

Impact modes 
PGS approximate polygenic influences through a single scalar value. These models represent a 
weighted average of all disposing allele counts and are agnostic to variability in the brain-wide 
associations of variants. Such aggregation of risk variants may obscure heterogeneous or opposing 
effects across the genome. We aimed to model the heterogeneity and the hidden covariance patterns 
in the brain-wide genomic associations. To achieve this, we initially created a brain-wide univariate 
association map (i.e. voxel-wise or fixel-wise t-score maps generated by a parametric regression) for 
each of the top independent 13,766 dyslexia GWAS loci, after clumping at a GWAS p-value threshold 
of less than 0.01, linkage disequilibrium r2 threshold of less than 0.1 and genomic window size of 500 
kb (and using the same set of covariates as in all sections above). These voxel- or fixel-wise t-score 
maps were then concatenated across all 13,766 variants and decomposed by MELODIC into ten 
independent components, separately per each imaging modality. The default MELODIC data 
transformations, including variance normalization and mean signal removal, were not applied as these 
momentums reflect meaningful signals in t-score maps85. The extracted independent components, 
henceforth referred to as genomic impact modes, capture the hidden sources that shape the brain-
wide influence of dyslexia-disposing variants and approximate their heterogeneous spatial profiles 
through a limited number of features.  

Additional traits related to dyslexia 
We first used LD score regression86, 87 to confirm that we could detect previously reported genetic 
correlations between dyslexia and each of eight other behavioural, cognitive or education-related 
traits, based on summary statistics from the 23andMe dyslexia GWAS30 and other large-scale GWAS 
studies: Attention deficit/hyperactivity disorder (ADHD88), verbal numerical reasoning (a.k.a. fluid 
intelligence) (Pan-UKB team. https://pan.ukbb.broadinstitute.org. 2020.), the first principal 
component of school grades in mathematics and language89, General Certificate of Secondary 
Education (GCSE) education (Pan-UKB team. https://pan.ukbb.broadinstitute.org. 2020.), word 
reading, non-word reading, spelling, and phonemic awareness31. All of these traits showed significant 
genetic correlations rg > 0.4 with dyslexia in our analysis (all P < 10-23, supplementary Fig. 7.) 

In order to compare and contrast with dyslexia PGS, we then used Lassosum2 to generate PGS in the 
UK Biobank data for each of these eight additional traits, and mapped their brain-wide associations 
with the voxel-wise and fixel-wise data, using the same approach as for the dyslexia PGS. 
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Supplementary material 

Supplementary Figure 1. Optimization process for dyslexia polygenic score models using phenotypes 
derived from tensor-based morphometry (left) and fixel-based analysis (right). The Lassosum2 
polygenic scores were optimized by adjusting the L1 and L2 regularization penalties. Additionally, we 
compare the results of two automated polygenic scoring methods, SBayesR and PRS-CS auto, 
represented as dashed blue and red lines, respectively. Furthermore, we explore the manual 
optimization of PRS-CS scores (dashed grey lines), employing four different shrinkage parameters. IDP: 
imaging-derived phenotype. AFD: apparent fiber density.  TBM: tensor-based morphometry. PGS: 
polygenic score. 
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Supplementary Figure 2. Dyslexia polygenic scores generated by three different polygenic methods 
(top) and their voxel-wise associations with regional brain volume (bottom) yield similar statistical 
brain maps. Triangles represent the coordinates of statistical peaks in an average statistical map of all 
three polygenic models. 
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Supplementary Figure 3. Top: Positive dyslexia PGS associations with voxel-wise volume measures 
before head-size correction. No voxel passed brain-wide multiple comparisons correction following 
5,000 permutations before head-size adjustment. Bottom: After head-size adjustment, voxels in 
bilateral primary visual cortices and middle temporal gyri passed multiple comparisons significance 
threshold. The t-values indicate parametric regression statistics. 
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Supplementary Figure 4. Voxel-wise associations with regional brain volume for six variants that were 
associated with dyslexia at a genome-wide significant level and exhibited volumetric associations 
surpassing 5 cm3. Brain maps of all 35 genome-wide significant variants are also provided in 
supplementary dataset. 
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Supplementary Figure 5. Brain-wise volumetric (top) and fixel-wise apparent fiber density (bottom) 
association maps in the UK Biobank data, for 35 genetic variants that were significantly associated 
with dyslexia at a genome-wide significant level in the 23andMe GWAS. Values indicate the number 
of variants at each voxel that show significant positive or negative association with respect to the 
dyslexia-disposing allele, as obtained from a non-parametric test following 5000 permutations. Note 
that the overlap in terms of affected brain regions is generally low among these dyslexia-associated 
variants, as the few regions of overlap involve no more than 6 of the 35 variants. Separate maps for 
all 35 variants are provided in supplementary dataset. 
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Supplementary Figure 6. Ten genomic impact modes identified by independent component analysis 
of brain morphometry z-maps corresponding to the top 13,766 independent dyslexia-disposing 
variants. Through this analysis, the overall polygenic disposition to dyslexia can be decomposed into 
distinct spatial components in terms of contributing genetic variants and their specific brain-wide 
associations. Z-scores indicate the contribution and ‘weight’ of each voxel in the corresponding 
independent component. 
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Supplementary Figure 7. Genetic correlations of dyslexia with other traits (see Methods for the data 
sources). 
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Supplementary Figure 8. Brain-wide association of spelling performance polygenic scores. Higher PGS 
for better spelling performance is associated with lower putamen volume. t-values indicate 
parametric regression tests. Voxels passing brain-wide multiple comparisons correction following 
5,000 permutations are shown in red. 
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