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ABSTRACT

Background: The CoBaTrICE program (Competency Based Training Program in Intensive Care 
Medicine) has been instrumental in standardizing intensive care training across Europe. Among 
the various procedures taught, pericardiocentesis is notably challenging due to its high-risk 
nature. This study aims to compare the efficacy and stress levels induced by two simulation 
models for pericardiocentesis training: a traditional 3D-printed mannequin and a virtual reality 
(VR) model. Methods: A pilot, before and after study was conducted with last-year medical 
students. Participants were trained using both a 3D-printed mannequin and a VR model. 
Learning outcomes were assessed using a questionnaire modeled after the Objective Structured 
Clinical Examination (OSCE). Stress levels were measured through Heart Rate Variability (HRV) 
analysis, supplemented by the Biosignal plux system for real-time biometric data collection. 
Results: Thirty-six students participated, with no significant differences in learning outcomes 
between the two models, except in parameters requiring fine motor skills. Stress levels, as 
measured by HRV, showed no statistically significant differences between the two simulations 
models. Conclusion: The study suggests that VR model is as effective as 3D printed for 
pericardiocentesis training.  
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Take Home Message: The study demonstrates that virtual reality (VR) and traditional 3D-printed 
mannequins are equally effective for training medical students in pericardiocentesis, with no 
significant difference in learning outcomes or induced stress levels. This suggests that VR could 
be a viable, resource-efficient alternative in intensive care medicine training, particularly for 
high-risk procedures.

Tweet: Study finds VR as effective as 3D mannequins for pericardiocentesis training in med 
students, offering equal learning and stress levels. #MedEd #VRinMedicine

Keywords: CoBaTrICE Program, Intensive Care training, Pericardiocentesis, Simulation models, 
3D-printed mannequin, Virtual reality (VR) training, Medical education, Heart rate variability 
(HRV), Stress analysis in medical training.
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INTRODUCTION

Since its inception in 2003, the Competence Based Training in Intensive Care (CoBaTrICE) 
program has served as a cornerstone in standardizing intensive care medicine training across 
Europe [1]. This program not only unifies learning procedures in intensive care units but also 
offers an extensible framework for academic training programs aimed at students in the final 
stages of their medical education [2]. Among the critical procedures taught in intensive care 
medicine, pericardiocentesis stands out as particularly challenging due to its inherent 
invasiveness and risks as well as the low frequency thar it is performed at bedside [3,4]. Given 
these fact conventional learning methods often prove insufficient for effectively preparing 
physicians [5,6].

This is where clinical simulation has proven its worth. Over the years, simulation has evolved 
from basic models to the current High-Fidelity Clinical Simulation utilizing computerized systems 
[5-8]. These advancements, although significant, come with their own set of challenges. The 
most prominent is the high cost associated with the required technology and infrastructure, 
such as specialized simulation rooms. Additionally, effective simulation training requires highly 
specialized instructors and presents a steep learning curve. [9,10]

In this evolving landscape, virtual reality (VR) emerges as a potentially revolutionary solution 
[11] [12,13]. VR offers several key advantages over traditional simulation methods, including 
deeper immersion in clinical scenarios, near-perfect reproducibility, standardization of training 
scenarios, the incorporation of an emotional component, and scalability. Scalability refers to the 
fact that, unlike traditional simulation methods, which require significant hardware investment, 
VR can adapt to new procedures and scenarios with simple software iterations. This flexibility 
not only broadens educational possibilities but could also democratize access to high-quality 
medical training, especially in resource-limited countries [14,15].

This study hypothesizes that learning the pericardiocentesis procedure based on VR model is 
similar than based on the traditional mannequin.  Thus, we compare learning outcomes and 
stress levels between these two simulation models for pericardiocentesis training (traditional 
mannequin model and a VR model). This study is not only an academic exercise because if both 
methods are equivalent; we will provide one of the earliest proofs of concept for using VR in 
complex procedures. Likewise, it would be a really important tool for teaching medical centers 
and universities; especially those located in low- and middle-income countries. 

MATERIAL AND METHODS

This pilot, prospective, before and after study compared two different pericardiocentesis 
training models: one based on a self-made mannequin using 3D design and 3D printing 
technology (mannequin model), and the other based on a virtual reality environment 
programmed in Unity (VR model). 

The mannequin model was designed using 3D modeling software (Tinkercad and Adobe Fusion 
360). The process involved the creation of a digital representation of the model, considering the 
anatomical structures relevant to the pericardiocentesis procedure. Once the design was 
completed, the model was constructed using 3D printing technology. We employed optimized 
rendering software (MeshMixer), a specific laminator (Ultimaker Cura), and an Ender 3 printer 
to create the physical mannequin, the pericardial model, and its support (supplementary figures 
1-5). On the other way, the VR model was designed and developed using the Unity game engine. 
This virtual model was designed to be homologous to the physical model, ensuring that both 
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training environments were comparable. The virtual reality environment was made compatible 
with the HTC Vive, and Oculus Rift platforms, allowing for a broad range of hardware options for 
trainees (supplementary figure 6)

Finally, both models were adjusted and validated by a panel of five senior intensivists (none of 
them related to this study) from the Cardiac Intensive Care Unit of HM Montepríncipe University 
Hospital in Madrid-Spain.

The study was carried out with the approval of the Research Ethics Committee at HM 
Montepríncipe University Hospital. Verbal consent was obtained from each participant and the 
recruitment period for the study took place between November 7, 2021 and February 15, 2022.

Inclusion criteria: All last-year medical students from CEU University were invited to participate 
in the study. All who accepted to participate received a link to a video demonstrating the 
pericardiocentesis procedure performed by an instructor using a standard simulation 
mannequin. This video served as a baseline for the trainees' understanding of the procedure 
(supplementary material).

Exclusion criteria: incomplete questionnaires. 

With the aim to assess learning parameters, an external evaluator assessed the students' 
performance during both procedures using pre-established questionnaires, modeled after the 
Objective and Structured Clinical Evaluation (ECOE) tool, commonly used in the assessment of 
procedural skills in the educational program of the last year of the medical degree. Parameters 
that were scrutinized included aspects of diagnosis and clinical reasoning (rapid response, 
saturation analysis, cardiac rhythm analysis), and procedural skills (pulse oximeter placement, 
sphygmomanometer staining, material handling, glove placement, asepsis, surgical field 
placement, puncture site location, correct needle angulation, proper guidewire placement, 
proper drain placement). Each of item were punctuated from 0 (minimun) to 5 (maximum) and 
finally, two global assessment items (total score and grade).

With the aim to assess stress responses, prior to the initiation of the simulation, students were 
equipped with continuous heart rate recording electrodes via the biosignal plux system. 
Additional electrodes were strategically placed: two on the forehead for electrodermal activity, 
two at the masseter level for electromyography, and three on the torso for heart rate 
monitoring. Data acquisition and subsequent processing were executed using opensignals digital 
signal processing software (supplementary figure 7).  Stress parameters were assessed 
according to five variables, heart rate variability parameters, both in the time domain (rMSSD, 
PNN50) and frequency domain (LH, HF, and their LF/HF ratio), as well as nonlinear parameters 
(SD1/SD2 ratio). HRV  [16]serves as a highly sensitive marker for dysregulation in the Autonomic 
Nervous System (ANS) and is defined as the temporal variation in the intervals between 
consecutive heartbeats over a predefined time period. Electrocardiographic recording of HRV 
enables the analysis of various temporal and frequency parameters. The most used parameters 
include: 1) 1. Frequency-domain parameters:  Low Frequency (LF): Typically associated with 
sympathetic activation but also has a parasympathetic component; High Frequency (HF): A 
selective indicator of parasympathetic nervous system (PNS) activity, related to stress relief; 
LF/HF Ratio: Serves as an indicator of sympathetic activity, associated with increased stress 
levels. 2)  Time-domain parameters:  rMSSD: The root mean square of successive differences 
between normal heartbeats, closely related to the PNS; and PNN50: The percentage of 
differences associated with the number of intervals between heartbeats that vary by more than 
50 milliseconds, closely correlates with the PNS; and 3) Non-linear parameters (derived from the 
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Poincaré plot, which is a visual representation of temporal intervals between consecutive 
heartbeats) [17]: SD1/SD2 Ratio: Correlates with the LF/HF ratio.

Phases of recording

The data collection was segmented into four distinct phases (Figure 1):

1) Initial Resting Phase: Students were seated in a stimulus-free environment.

2) Virtual Reality Simulation: Students donned Oculus Rift virtual reality goggles, simulating a 
clinical scenario involving a patient with tachycardia, dyspnea, and hypotension due to cardiac 
tamponade. The task required rapid diagnosis and emergent pericardiocentesis, adhering to 
clinical protocols (supplementary figure 8).

3) Second Resting Phase: A period of rest without external stimuli.

4) Mannequin Procedure: Students replicated the pericardiocentesis procedure on a 3D-printed 
mannequin, adhering to the same clinical steps as in the virtual reality simulation.

Figure 1.

Statistical Methods

Continuous variables were expressed as mean +- SD, and categorical variables as proportions. 
The two phases (“mannequin” and “VR”) for the study were compared using T-paired test. A 
two-sided P < 0.05 was considered statistically significant.

RESULTS

Thirty-six students were recruited, mean age 23.6 (± 2.0) years, 75% females.

Learning outcomes can be appreciated in Table 1.

There were no differences in the diagnostic assessment, clinical reasoning and overall 
procedural skills between the classic mannequin model and the virtual scenario.

However, differences between procedural parameters assessing fine motor skills were 
identified.

Initial resting phase Pericardiocentesis 
(VR)

Second resting 
phase

Pericardiocentesis 
(Mannequin)
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Table 1.

Learning Assessment (Structured Clinical Simulation Evaluation)
Variables Mannequin cohort VR cohort p value
 MEAN STD DEV MEAN STD DEV  
Rapid response 3.92 0.69 3.94 0.67 0.831

Pulsioximeter placement 4.89 0.32 4.56 0.61 0.002

Saturation interpretation 4.14 1.31 4.00 1.15 0.581
Blood pressure 
measurement

4.33 0.79 4.47 0.51 0.281

Electrode placement – 
ECG interpretation

4.44 0.81 4.22 0.68 0.186

Proper material handling 3.89 0.78 3.42 0.91 0.009

Glove fitting 4.03 1.30 3.97 1.18 0.820

Adequate asepsia 4.17 0.65 3.83 0.81 0.016

Cloth laying 4.36 0.76 4.19 1.09 0.310

Properly location 3.94 0.98 3.92 0.55 0.872

Needel angulation 3.72 1.00 3.94 0.71 0.210

Guide placement 3.69 1.01 4.06 0.71 0.074

Drainage placement 3.97 0.94 4.39 0.73 0.020

Total Score 53.50 5.89 52.92 5.54 0.493

Final Grade 8.23 0.91 8.14 0.85 0.493

Regarding the analysis of induced stress, no differences were identified (Table 2).

Table 2.

Stress biometric parameters
Variables Mannequin cohort VR cohort p value
 MEAN STD DEV MEAN STD DEV  
rMSSD 155.42 375.80 91.81 85.38 .247

VLF 2482.58 2037.85 3278.11 3996.27 .249

LF 3345.83 3769.93 5097.28 5720.81 .059

HF 2930.17 3385.36 3568.11 4966.09 .372

LF/HF 2.73 2.67 3.46 5.72 .435

SD1/SD2 0.52 0.20 0.47 0.20 .074

PNN2O 54.89 19.37 47.22 18.89 .359

PNN50 21.19 21.79 18.03 18.89 .075
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DISCUSSION

As far as we know, this is the first study that demonstrate the fact that learning a complex and 
risky procedure (pericardiocentesis) based on a model of VR is similar than based on a 
mannequin model. Our result opens a great opportunity for democratizing the learning of 
complex procedures; specially in LMCI where facilities sometimes are scarcy or areas far from 
academic centers.

The advent of 3D modeling in medical education, particularly using free software, marks a 
significant stride in the evolution of clinical training and patient education. The integration of 
these technologies addresses a critical need for interactive, cost-effective, and accessible 
educational tools in the medical field. The utilization of interactive 3D modeling tools in 
cardiovascular surgery education as explored by Gerrah and Haller (2021) exemplifies the 
transformative potential of these technologies [18]. Furthermore, the effectiveness of open-
source software in creating detailed 3D organ models as demonstrated by Cross et al (2018) 
provides a viable and cost-effective alternative to proprietary software [19].

The creation of a 3D-printed mannequin for pericardiocentesis training involved advanced 3D 
modeling and practical design considerations resulting in a realistic and educationally valuable 
model. Transitioning from digital to physical the model was rendered and printed with precision 
focusing on anatomical accuracy and replicating tactile feedback essential for training. 

The application of VR in intensive care training as explored by Horwitz (2022) addresses the 
challenges posed by the continuous evolution of high-tech medicine and the need for specialized 
training for healthcare professionals  [20]. VR's ability to simulate complex medical scenarios 
provides a safe and controlled environment for trainees to hone their skills without the risks 
associated with real-life patient interactions. In this paper. the mannequin was adapted into a 
virtual reality (VR) environment ensuring procedural and anatomical consistency with the 
physical model. The creation of immersive VR medical simulations for trauma training 
demonstrates the versatility of VR technology. These simulations provide a realistic environment 
for training medical personnel in managing high-stress and high-risk scenarios such as battlefield 
injuries [21]. The ability of VR to replicate real-world trauma management scenarios 
underscores its potential as a comprehensive training tool. In our case. despite the VR model's 
limitations in simulating tactile nuances both the 3D-printed and VR models effectively imparted 
essential skills for pericardiocentesis with no significant differences in learning outcomes for 
diagnostic assessment and clinical reasoning. Moreover, the immersive nature of VR training 
enhances the acquisition and transfer of skills among healthcare professionals. Mantovani et al. 
(2003) emphasize that VR training raises interest and motivation in trainees leading to better 
skill retention and application [22]. This aspect is crucial in intensive care training where quick 
decision-making and precision are vital. The usability of VR in emergency simulation training as 
studied by Lerner et al. (2020) demonstrates VR's potential in emergency medicine a key 
component of intensive care [21].

The development of immersive VR stations for OSCE as explored by Rodríguez-Matesanz et al. 
represents a significant advancement in clinical skills assessment [23]. Adapting OSCE to a virtual 
platform. as described by Watson et al further underscores the versatility of VR in medical 
education [24]. Our pilot study corroborates that the learning efficacy is comparable between 
the two models except for parameters requiring fine motor skills. This limitation is consistent 
with the current state of VR technology which offers restricted fine motor skill replication 
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through haptic devices although ongoing research aims to ameliorate this with design and 
optimization of haptic devices.

The utilization of Heart Rate Variability (HRV) analysis in virtual reality (VR) simulations, 
particularly in the context of medical education, presents a novel approach to evaluating stress 
levels and physiological responses. Aganov et al further explore the effect of VR on stress 
management demonstrating that modified VR interventions can significantly influence short-
term HRV and perceived anxiety levels in individuals exposed to moderate stress [25]. This 
finding is particularly relevant in medical education where managing stress and anxiety is crucial 
for effective learning and performance. Our study employed heart rate variability as a metric 
and found no statistically significant differences between the two models across multiple 
domains (temporal frequency or nonlinear). This is particularly pertinent given the high-stakes 
time-sensitive nature of procedures like pericardiocentesis suggesting the VR model's efficacy 
in replicating a high-stress training environment.

The primary outcome of this investigation is the demonstration that the acquisition of 
pericardiocentesis skills is comparably effective when utilizing either a mannequin model or a 
virtual reality (VR) system. This study serves as a foundational proof of concept validating the 
use of VR as an innovative and cost-effective means for learning complex medical procedures. 
Far from being a mere theoretical exercise. our findings provide robust evidence supporting the 
global adoption of this technology particularly in low- to middle-income countries.

In essence our results contribute to the democratization of advanced clinical simulation 
especially in economically challenged environments. Moreover, the versatility of these 3D 
models extends beyond pericardiocentesis to encompass a variety of invasive procedures 
including thoracentesis paracentesis and central venous catheterization. This adaptability 
enhances the potential for widespread application and utility in diverse medical training 
scenarios. 

The low development cost of VR coupled with its scalability allows for a more inclusive 
educational experience extending from medical students and nurses to seasoned professionals 
like residents and consultants at the hospital level. The study also highlights the adaptability of 
these models. With simple software programming adjustments. a wide array of invasive 
procedures such as thoracentesis. paracentesis and central line cannulation can be simulated 
thereby broadening the scope of training scenarios available. Furthermore, the VR model's 
multi-platform compatibility enhances its versatility making it applicable in diverse learning 
environments.

This limitation has some limitations. Firstly, it´s non-randomized study thus it is not possible to 
rule out the aliasing effect. Secondly, it was performed in a unique center from a high-income 
country thus is extrapolation to other settings could be reduced. Thirdly, as only model was 
evaluated, we cannot know what would happen with other techniques. Conversely, this study 
has several strengths. Undoubtedly, the first lies in its innovative approach to medical education. 
bridging the gap between traditional clinical simulation and emerging virtual reality (VR) 
technologies. This fusion not only democratizes access to high-fidelity advanced clinical 
simulation but also significantly reduces the associated costs. Secondly, both models have been 
clinically validated by physicians with well demonstrated expertise in the field. This fact 
maximizes the probability of extrapolate our result to the real life. Thirdly, the sample size was 
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enough for validating the procedure. Fourth, the two approaches used to assess learning and 
stress features were objective and reproducible.

CONCLUSION

The study demonstrates that a virtual reality model for pericardiocentesis is as effective 
maniquinn model in terms of learning achievement without relevant impact in student´s stress. 

The study thus serves as a foundational piece of evidence advocating for the broader integration 
of such technologies in medical training curricula. It offers a compelling case for the cost-
effectiveness. adaptability. and educational efficacy of these models. setting the stage for more 
comprehensive studies in the future.
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SUPPLEMENTARY MATERIAL

Links to pericardiocentesis procedure video:

https://youtu.be/ox-2LP_3q_k?si=S93Dr3aB27IizWrr

https://youtu.be/OGhQYUfpX2I?si=nvTU0-yv9qGT36YI

Torso creation: from design to 3D printing

Figure 1.
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Figure 2.
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Pericardial design and 3D printed mold. 

Figure 3.
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Process of creating the simulated pericardium

Figure 4

Figure 5
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VR Final version

Figure 6.

Figure 7.
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Figure 8.
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