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Abstract 

The past two decades have seen the advent and mass application of genome-wide association 

studies (GWAS). The observation that complex phenotypes are polygenic has contributed to the 

development of the polygenic score (PGS) for understanding individual-level genetic predisposition. 

There have been substantial advances in PGS methodology in recent years. However, few methods 

leverage the pleiotropic nature of complex phenotypes for polygenic prediction. Here, we present 

MiXeR-Pred, a novel approach for polygenic prediction that builds on an established MiXeR 

framework to source genetic overlap with a secondary phenotype to inform PGS prediction of a 

primary phenotype. We apply MiXeR-Pred using both bipolar disorder and schizophrenia as complex 

primary phenotypes along with the following secondary phenotypes: education attainment, major 

depressive disorder, and measures of cortical brain morphology. We compare MiXeR-Pred 

predictions to the PGS derived from each primary phenotype’s GWAS in addition to the multi-trait 

analysis of GWAS (MTAG) approach, which can use correlated secondary phenotypes to boost 

discovery and prediction for a primary phenotype. We show that MiXeR-Pred improves prediction 

performance when compared to both the primary GWAS and MTAG PGS, regardless of the 

secondary phenotype. Not only can MiXeR-Pred be used to further our understanding of pleiotropy 

among complex phenotypes, but it also provides a novel conceptualization of how one can source 

pleiotropy to improve PGS performance which can ultimately contribute to advancements in 

personalized medicine. The MiXeR-Pred tool is available at https://github.com/precimed/mixer-

pred. 

 

 

Key words: MiXeR-Pred, MiXeR, Polygenic Score, PGS, polygenic risk score, PRS  
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Introduction 
 

The past 20 years have seen the advent and mass application of genome wide association studies 

(GWAS) performed for a wide range of phenotypes. These studies have revealed that complex 

phenotypes are polygenic with many associated genetic variants having small effect sizes.1 The 

polygenic nature of a complex phenotype can be leveraged to compute a polygenic score (PGS). 

Representing an individual’s genetic predisposition for a given phenotype, a PGS is typically 

computed as a weighted sum of an individual’s allele count across genetic variants, with weights 

derived from a corresponding GWAS.1,2 While the PGS approach has widespread utility there is still a 

need for improvement with respect to complex human diseases.3,4  

 

For many complex phenotypes, there remains large differences in the phenotypic variance explained 

by their PGS and the estimated heritability based on associated single nucleotide polymorphisms 

(i.e., SNP-based heritability). Methodological advancements in computing PGSs have resulted in 

improved prediction.5,6 Many of the recent PGS methods attempt to move from effects estimated in 

GWAS for SNPs tagging particular genomic loci to accurate modeling of “direct causal effects” of a 

given SNP on a phenotype refined from the effects of other SNPs propagated through linkage 

disequilibrium (LD).7–9 However, the development of differing strategies that leverage the 

accumulating knowledge of complex phenotype genetics can contribute to prediction performance 

for these various traits and disorders. 

 

The accumulated GWAS findings have revealed that there is widespread pleiotropy across many 

complex phenotypes.10 This pleiotropy can be observed through genetic correlations or other 

approaches that measure genetic overlap beyond genetic correlations by estimating the number of 

overlapping loci or genetic variants.11–13 Pleiotropy has been leveraged to improve genetic discovery 

due to the increase in statistical power gained by combining signal from genetically related 

phenotypes.14,15 This concept has also been extended to PGS methods, where genetic overlap 
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between phenotypes has been leveraged to improve the prediction of a primary GWAS 

phenotype.14,16 One approach uses multiple polygenic scores for the prediction of a single 

phenotype.17–19 However, this approach doesn’t produce a single, improved polygenic score for the 

primary phenotype of interest. Comparatively, the multi-trait analysis of GWAS (MTAG) approach 

can use genetically correlated secondary phenotypes to boost discovery and prediction for a primary 

phenotype.14 Moreover, MTAG utilizes standardized effect estimates (i.e., Z-scores) which is also 

exploited in the standard meta-analytic GWAS approach.20 The use of Z-scores may denoise genetic 

signal from GWAS and potentially improve prediction. Still, approaches that leverage genetic overlap 

for prediction are lacking. Moreover, identifying the effect of pleiotropy on polygenic prediction can 

advance our understanding of the genetically overlapping phenotypes themselves. 

 

We have developed a Gaussian causal mixture model (MiXeR) framework which is the basis for a 

growing suite of tools. For a pair of phenotypes, MiXeR estimates genetic overlap by modeling SNPs 

with a non-zero effect on the phenotype (i.e., non-null variants) and those with no effect (i.e., null 

variants) and approximates the distribution of shared and phenotype-specific non-null variants.12 

Notably, this bivariate approach can produce a non-correlative estimate of genetic overlap. Here, we 

extend the MiXeR framework to include MiXeR-Pred, a tool for polygenic prediction. MiXeR-Pred 

predicts a primary phenotype sourcing genetic overlap with a secondary phenotype. To illustrate the 

utility of MiXeR-Pred, we use bipolar disorder (BIP) and schizophrenia (SCZ) as our primary 

phenotypes. BIP and SCZ are complex phenotypes with known genetic overlap and PGSs that explain 

only a portion of SNP-based heritability.21–23 Moreover, we source pleiotropy from several secondary 

phenotypes including education attainment (EDU), major depressive disorder (MDD), and cortical 

brain morphology that exhibit correlative and non-correlative genetic overlap with BIP and SCZ.21,24–

30 We demonstrate that MiXeR-Pred improves prediction of both BIP and SCZ when compared to 

PGS derived from the primary GWAS only and PGS derived from the MTAG approach.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.24303039doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.19.24303039
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

Methods 
 

MiXeR-Pred is an extension of previous MiXeR implementations based on Gaussian causal mixture 

models.12,31 In the univariate setting, MiXeR models non-null and null SNPs using spike-and-slab prior 

distributions, and accounting for LD. MiXeR then estimates the proportion of non-null SNPs (i.e., 

polygenicity) and the variance of non-null effects (i.e., discoverability). The bivariate MiXeR 

extension estimates the distribution of shared and phenotype-specific non-null SNPs between a pair 

of phenotypes. The most recent gene set analysis version of MiXeR (GSA-MiXeR) expands the 

univariate MiXeR model to incorporate functional annotations, thus more accurately modeling 

genetic architecture of complex phenotypes.31 MiXeR-Pred extends previous bivariate MiXeR models 

to include the functional annotations modelled in GSA-MiXeR,  which has been shown to improve 

prediction and GWAS replication rates.32–34 In addition, MiXeR-Pred expands on the standard pruning 

and thresholding model by modifying both selection of the SNPs to be included in the PGS 

calculation and their respective weights. These parameters are derived from the posterior estimates 

of SNP effect sizes conditioned on GWAS Z-scores of both the primary and secondary phenotypes. 

Overall, MiXeR-Pred utilizes information on SNP functional annotations, heterozygosity, LD, and 

pleiotropy to improve prediction of a primary phenotype using a secondary phenotype. 

 

MiXeR-Pred Parameter Estimation 

MiXeR models each SNP, i, with an additive genetic effect, βI, as a point normal mixture model 

𝛽𝑖~ (1 − 𝜋1)𝑁(𝜇, 𝜎2) + 𝜋1𝑁(0, 𝜎𝑖
2),  where 𝜋1 is the prior probability of a SNP having a non-zero 

effect (polygenicity) while 𝜎𝑖
2 gives the effect size variance (discoverability) and is allowed to vary 

across SNPs, and 𝒩(𝜇, 𝜎2) denotes a Gaussian distribution with mean 𝜇 and variance 𝜎2. In line 

with our new GSA-MiXeR31 models, the number of effective parameters being optimized is reduced 

by parametrizing 𝜎𝑖
2 based on functional categories, enrichment in coding genes, allele frequency, 

and LD score as follows: 
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𝜎𝑖
2 = (𝜎𝐴,0

2 + ∑[𝑖 ∈ 𝐴𝑝]𝜎𝐴,𝑝
2

𝑁𝐴

𝑝=1

) (𝜎𝐺,0
2 + [𝑖 ∈ 𝐺]𝜎𝐺

2)𝐻𝑖
𝑆𝐿𝑖

ℓ , 

where the 𝐻𝑖
𝑆 term allows for incorporation of allele frequency on genetic architecture, the term 

𝐻𝑖 = 2𝑓𝑖(1 − 𝑓𝑖) denotes heterozygosity of the 𝑖-th SNP where 𝑓𝑖 is the minor allele frequency of the 

𝑖-th SNP, and 𝑆 controls effect size distribution across the spectrum of allele frequencies. LD-

dependent genetic architectures are modelled with the 𝐿𝑖
ℓ term, where 𝐿𝑖  denotes the LD score of 

the 𝑖-th SNP and ℓ parameter controls the effect size distribution with respect to LD score. The index 

𝑝 runs across functional categories {𝐴1, 𝐴2, … , 𝐴𝑁𝐴
}. If a SNP belongs to the 𝑝-th functional category, 

as indicated by [𝑖 ∈ 𝐴𝑝] term, 𝜎𝐴,𝑝
2  gives the contribution of the functional category to the variance 

of the 𝑖-th g SNP. Parameters 𝜎𝐴,0
2  and 𝜎𝐺,0

2  allow for non-zero variance 𝜎𝑖
2 for SNPs that do not 

belong to any functional category or genes, and genomic region 𝐺 represents a union of all protein-

coding genes, allowing the modelling of the overall enrichment in effect sizes in coding genes.  

 

MiXeR inference of parameters is based on maximizing the log-likelihood function 

log 𝐿(𝑧1, … , 𝑧𝑀|𝜃) → max
𝜃

 observing a set of GWAS summary statistics given model parameters, 

while accounting for the LD structure among SNPs and their allele frequencies. Details on likelihood 

computation and optimization have been described elsewhere.31 Here, MiXeR-Pred uses allele 

frequencies and LD structure estimated from the Haplotype Reference Consortia (HRC) reference 

panel with 11,980,511 SNPs and 23,152 samples after applying the basic QC procedure described by 

Frei et al. (2023).31  

 

The bivariate MiXeR analysis models additive genetic effects as a mixture of four components: (1) 

SNPs that are null in both phenotypes (π0), (2) SNPs uniquely affecting the first phenotype π1, (3) 

SNPs uniquely affecting the second phenotype (π2), and (4) SNPs with an effect on both phenotypes 

(π12).12 In the shared component, bivariate MiXeR models the variance-covariance matrix as 𝚺𝟏𝟐 =
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[
σ𝑖1

2 ρ12σ𝑖1σ𝑖2

ρ12σ𝑖1σ𝑖2 σ𝑖2
2 ] where ρ12 denotes the genetic correlation (rg) within the shared 

component, and σ𝑖1
2  and σ𝑖2

2  are the discoverability parameter estimated in the univariate analysis of 

the two phenotypes.  

In the MiXeR model, GWAS Z-scores of j-th SNP in two phenotypes are modelled as follows:  

(zj1, zj2) = (δj1, δj2) + (ϵ1, ϵ2) 

Where (δj1, δj2) is the true genetic component, and (ϵ1, ϵ2) ∼ 𝑁 (0, [
σ01

2 ρ0σ01σ02

ρ0σ1σ2 σ02
2 ]) is the 

residual variation. Applying Bayesian rules to this model one can derive the posterior distribution of 

the true genetic component given observed GWAS Z-scores and estimated parameters 𝜃 of the 

model: 𝑝𝑗(δ1, δ2|zj1, zj2, 𝜃) =
𝑝(zj1, zj2|δ1, δ2, 𝜃)𝑝𝑗(δ1,δ2,𝜃)

𝑝(zj1,zj2|𝜃)
 

MiXeR-pred utilizes the first 𝐸𝛿𝑗1 and the second 𝐸𝛿𝑗1
2  moments of the posterior distribution: 

𝐸𝛿𝑗1 ≡  𝐸[ 𝛿𝑗1|zj1, zj2, 𝜃] = ∫ 𝛿1 𝑝𝑗(δ1, δ2|zj1, zj2, 𝜃)𝑑δ1𝑑δ2 

𝐸𝛿𝑗1
2 ≡ 𝐸 [δj1

2 |zj1, zj2, 𝜃] = ∫ 𝛿1
2𝑝𝑗(δ1, δ2|zj1, zj2, 𝜃)𝑑δ1𝑑δ2  

The first moments are used as weights for MiXeR-Pred and the second moments are used to inform 

the selection of SNPs into the model. 

 

We also, generate a univariate MiXeR-Pred models for comparison with the main bivariate models.  

Univariate MiXeR-pred similarly utilizes the first 𝐸𝛿𝑗1 and the second 𝐸𝛿𝑗1
2  moments of the posterior 

distribution based on the primary phenotype only: 

𝐸𝛿𝑗1 ≡  𝐸[ 𝛿𝑗1|zj1, 𝜃] = ∫ 𝛿1 𝑝𝑗(δ1|zj1, 𝜃)𝑑δ1 

𝐸𝛿𝑗1
2 ≡ 𝐸 [δj1

2 |zj1, 𝜃] = ∫ 𝛿1
2𝑝𝑗(δ1|zj1, 𝜃)𝑑δ1  
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MiXeR-Pred Polygenic Score Calculations 

MiXeR-Pred implements the pruning and thresholding approach to PGS using 𝐸𝛿1 as SNP weights 

and the exponentiated negative value of 𝐸𝛿1
2 [i.e., exp (−𝐸𝛿1

2 )] as thresholds for SNP selection. 

This transformation of 𝐸𝛿1
2  ensures the values range between 0 and 1, with stronger associations 

having a lower value and serves a similar purpose as p-values in the standard pruning and 

thresholding approach. 

 

After the weights and thresholds are generated, there are several minor processing steps. First, 

strand-ambiguous SNPs were removed. The remaining SNPs were filtered to be among those 

present in the target sample. Next, we use PLINK v1.935 for clumping, generating a list of 

independent genetic SNPs (details in the Supplementary Methods). These independent SNPs are 

then used to construct a PGS with MiXeR-Pred weights using PRSice2.36  

 

Samples 

We conduct our PGS analysis using the Norwegian Thematically Organized Psychosis (TOP) sample. 

Briefly, a total of 440 indiviudals with bipolar disorder [BIP; mean age (sd)=34.72 (12.84), 60.68% 

female], 696 individuals with schizophrenia [SCZ; mean age (sd)=32.90 (13.37), 42.53% female], and 

1044 controls [mean age (sd)=32.51 (9.96), 47.51% female] of European ancestry were included in 

this study. More details on the TOP sample and basic quality control of genetic data can be found in 

the Supplementary Methods. 

 

GWAS Summary Statistics 

We acquired GWAS summary statistics for both BIP and SCZ as well as related phenotypes with both 

correlated and uncorrelated genetic effects: education attainment (EDU), major depressive disorder 

(MDD), brain cortical thickness (TH) and surface area (SA). We used GWAS summary statistics from 
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the Psychiatric Genomics Consortium, excluding the TOP sample participants, for the BIP GWAS22 

with 413,466 participants (41,917 cases) and the SCZ GWAS23 with 130,644 participants (53,386 

cases). For EDU, GWAS summary statistics were acquired from the Social Science Genetic Association 

Consortium comprising 765,283 participants after excluding the 23andMe sample.37 For MDD we 

used the recent GWAS by Als et al (2023)38, with 1,349,887 participants (371,184 cases). For both 

cortical TH and SA we used GWAS performed on 32,877 UK biobank participants with no prior 

mental disorder diagnosis.27 All GWAS data were restricted to participants of European ancestry.  

 

Evaluating Prediction Performance  

To compare PGS performance we used two main approaches. First, we used PRSice2 to calculate 

PGS R2 (Supplementary Methods). Our main results present the partial R2 on the liability scale for the 

PGS effect after adjusting for the genetic batch and first 20 genetic principal components. The 

liability scale R2 was calculated using the approach by Lee et al. (2012)39 with a population 

prevalence of 2% and 1% for BIP and SCZ, respectively. As a second approach, we split the sample 

into a 70% training set and 30% out of sample test set. In the 70% training set, we performed 5-fold 

cross-validation of generalized linear models. These models assessed PGS effect which were pre-

residualized for genetic batch and the first 20 genetic principal components. Next, the best 

performing generalized linear model in the cross-validation procedure was tested on the held-out 

30% of the sample (i.e., out of sample test set). The reported prediction performance is the area 

under the receiver operator curve (AUC) estimated in the 30% out of sample test set. Note, for each 

primary phenotype, the same sample is used for the training set and out of sample test set 

throughout all analyses. This procedure was implemented using the caret package in R v4.0.0. In 

addition, we performed sensitivity analyses adjusting PGS effect for age, sex, genetic batch, and the 

first 20 genetic principal components using both approaches.  

 

Comparison of Polygenic Risk Score Weights 
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Both estimation of SNP weights and SNP selection contribute to PGS performance. MiXeR-Pred 

weights, and by extension thresholds, are derived from posterior estimates utilizing GWAS Z-scores. 

Since most PGS methods use beta (or log odds ratio) estimates, we investigate the effect of using Z-

scores and inverse variance weighted (IVW; 
𝛽

𝑆𝐸2) values (i.e., standardized effect estimates) 

compared to beta estimates as weights for prediction of BIP and SCZ. We used PLINK v1.9 for 

clumping (Supplementary Methods) and PRSice2 for PGS calculations and PGS R2 estimation. In each 

of the three scenarios (i.e., beta, Z, IVW), the p-value from the phenotype-specific GWAS was used 

for pruning and thresholding. For comparison across the three weights, 33 PGS were generated 

using p-value thresholds that included the top 1,000 to 300,000 independent SNPs. 

 

To investigate the relationship between MiXeR-Pred weights and the above primary GWAS weights, 

we used Pearson correlations between MiXeR-Pred weights and the primary GWAS beta, Z, and IVW 

values. In addition, Pearson correlations were calculated between MiXeR-Pred thresholding values 

and the primary GWAS Z, IVW values as well as MiXeR-Pred weights.  

 

Method Comparisons 

We illustrate the performance of MiXeR-Pred by predicting BIP and SCZ (primary phenotypes) using 

several genetically correlated and uncorrelated secondary phenotypes (EDU, MDD, SA, and TH). Each 

primary phenotype also served as a secondary phenotype for each other. As our main method 

comparison, we use MTAG.14 For a given phenotype, MTAG can use additional phenotypes to boost 

discovery and prediction. We also used the PGS for the primary phenotype as an additional 

comparison. The MTAG outputs and the GWAS summary statistics for each primary phenotype were 

minimally processed using the same steps as MiXeR-Pred. Ambiguous SNPs were removed and the 

remaining SNPs were filtered to be among those present in the target sample. PLINK v1.935 was used 

for clumping with the same parameters as MiXeR-Pred (Supplementary Methods). The independent 

SNPs identified by clumping were then used to compute polygenic scores using PRSice2.36 Here we 
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used Z-scores as weights for MTAG and the GWAS for comparability with MiXeR-Pred weights which 

are derived from GWAS Z-cores. For both MTAG and the GWAS we tested the predictive 

performance for 33 PGSs based on p-value thresholds, ranging from including the top 1,000 to 

300,000 independent SNPs. The predictive performance of these MTAG and GWAS PGS were 

comparted to the 33 PGSs derived with MiXeR-Pred weights and thresholds. 

 

Evaluating Contributions to MiXeR-Pred Prediction  

Given that MiXeR-Pred modelling of genetic architecture may contribute to improved prediction, we 

generated univariate PGS for BIP and SCZ at the same 33 top SNP thresholds. To evaluate the 

potential contribution of MiXeR-Pred at a univariate level, we compared their prediction 

performance to that of the bivariate MiXeR-Pred PGS. To assess the potential role of uncorrelated 

phenotypes with the same overlap in genetic variants estimated by MiXeR-Pred, we took correlated 

secondary phenotypes and randomly changed effect directions across SNPs. The resulting “shuffled” 

and uncorrelated secondary phenotypes were then used to generate PGS using MiXeR-Pred. The 

performance of these PGS were then compared to that of univariate MiXeR-Pred for a given primary 

phenotype. We also assessed the separate contributions of MiXeR-Pred weights and thresholds for 

SNP selection at the univariate and bivariate levels (Supplementary Methods). 

 

To determine which aspects of MiXeR modelling contributes to prediction, we compared several 

bivariate MiXeR parameters (Supplementary Methods) with MiXeR-Pred prediction performance. 

These parameters from bivariate MiXeR v1.3 include estimates for (i) the degree of non-correlative 

genetic overlap in estimated shared variants between a primary and secondary phenotype (dice 

coefficient), (ii) correlated overlap (genome-wide rg and rg within the shared component), and (iii) 

the fraction of SNP-heritability explained by genome-wide significant variants for the secondary 

phenotype given the current GWAS sample size (power). We tested for correlation between these 

parameters and MiXeR-Pred performance metrics (R2 and AUC).    
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Results 
 

Comparison of Polygenic Score Weights for Prediction  

The effect of using beta, Z, and IVW as PGS weights was evaluated in a sample of n=440 BIP, n=696 

SCZ, and n=1044 controls (Figure 1). For BIP, IVW achieved the highest prediction performance (max: 

liability R2=0.05, AUC=0.65) followed closely by using Z as weights (max: liability R2=0.05, AUC=0.64). 

For SCZ, Z weights achieved the highest prediction performance (max: liability R2=0.07, AUC=0.68) 

followed closely by both beta (max: liability R2=0.07, AUC=0.68) and IVW (max: liability R2=0.07, 

AUC=0.68) as weights.  

 

 
Figure 1. Comparison of Weights for Polygenic Scores. Prediction performance, measured as variance explained 
(R2) on the liability scale (top row of figures) and the area under the receiver operator curve (AUC; bottom row 
of figures), for polygenic scores (PGS) derived for bipolar disorder (BIP; left) and schizophrenia (SCZ; right) are 
presented. Population prevalence of 2% and 1% were used to estimate liability R2 for BIP and SCZ, respectively. 
PGS were calculated using thresholds for top variants from 1000 to 300,000, shown on the x-axis using a log10 
scale. The three labelled values in each plot represent the maximum prediction performance for each of the 
three weights expressed as percentages. 

 

For both BIP and SCZ, MiXeR-Pred weights were compared to the primary phenotypes GWAS beta, Z, 

and IVW. Figure 2 shows that MiXeR-Pred weights (𝐸𝛿1) are strongly correlated with the primary 

phenotypes Z (BIP: r=0.74, p<0.001; SCZ: r=0.83, p<0.001) and IVW (BIP: r=0.84, p<0.001; SCZ: 

r=0.91, p<0.001) values but substantially less correlated with betas (BIP: r=0.13, p<0.001; SCZ: 
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r=0.14, p<0.001). Meanwhile, MiXeR-Pred thresholding values (exp(−𝐸𝛿1
2 )) coincide well with the 

primary phenotypes Z and IVW values but, as expected, were strongly associated with MiXeR-Pred 

weights (Figure 2 B & D). 

 

 
Figure 2. Comparison of MiXeR-Pred Estimates with Primary Phenotype Weights. Density plots for the 

number of single nucleotide polymorphisms where panel (A) depicts comparisons for bipolar disorder (BIP) as 

the primary phenotype and schizophrenia (SCZ) as the secondary phenotype. Panel (B) depicts comparisons for 
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SCZ as the primary phenotype and BIP as the secondary phenotype. MiXeR-Pred weights (𝐸𝛿1) are compared 

with the primary phenotype’s beta (B1), Z-score (Z1), and inverse variance weighted (IVW1) values using density 

plots top row of panels A and B. In the bottow rows, MiXeR-Pred thresholds (exp(−𝐸𝛿1
2 )) are -log10 

transformed and compared with the primary phenotype’s Z1 and IVW1 values as well as MiXeR-Pred weights.   

 

 

Improved Prediction Performance with MiXeR-Pred  

We compared MiXeR-Pred prediction performance for the two primary phenotypes (BIP and SCZ) 

across multiple secondary phenotypes that exhibit varying degrees of polygenicity and genetic 

correlation (Figure 3A; supplementary table 1). Across all secondary phenotypes, MiXeR-Pred 

exhibited improved prediction (Figure 3B and C; Supplementary Figure 1).  

 

The largest boost in MiXeR-Pred PGS prediction for BIP was observed when using SCZ as a secondary 

phenotype (max liability R2=0.07, max AUC=0.67). While using BIP as a secondary phenotype for SCZ 

resulted in improved prediction, MDD as a secondary phenotype provided the greatest boost in 

prediction for both MiXeR-Pred (max liability R2=0.10, max AUC=0.72) and MTAG (max liability 

R2=0.08, max AUC=0.70) over the SCZ GWAS (max liability R2=0.07, max AUC=0.68) PGS. The 

secondary phenotype that provided the least boost in prediction was EDU for BIP (MiXeR-Pred: max 

liability R2=0.05, max AUC=0.66; MTAG: max liability R2=0.04, max AUC=0.64; BIP GWAS: max liability 

R2=0.05, max AUC=0.64) and SA for SCZ (MiXeR-Pred: max liability R2=0.09, max AUC=0.70; MTAG: 

max liability R2=0.07, max AUC=0.69; SCZ GWAS: max liability R2=0.07, max AUC=0.68). Of note, 

models adjusting for demographic covariates (i.e., age and sex) in addition to genetic batch and 

genetic PCs produced similar results (Supplementary Figure 2). 
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Figure 3. Comparison of Prediction Performance Across Methods and Secondary Phenotypes. (A) Venn 
diagrams illustrating MiXeR estimates of: (i) the polygenicity of each phenotype (size of the circles) and for 
each pair of primary and secondary phenotype (ii) the degree of non-correlative genetic overlap (grey shaded 
overlapping region) and (iii) the genetic correlation (rg; value and bar below the Venn diagrams). Panels (B) and 
(C) compare the MiXeR-Pred polygenic score (PGS) prediction performance [variance explained (R2) on the 
liability scale and area under the receiver operator curve (AUC)] to the multi-trait analysis of genome wide 
association studies (MTAG) and the primary phenotype’s genome wide association study (GWAS) PGS (using Z-
scores as weights). In (B) BIP and SCZ were used as primary and secondary phenotypes for each other. On the 
x-axis the number of genetic variants selected for each PGS are shown using a log10 scale. In (C) education 
attainment (EDU), major depressive disorder (MDD), cortical surface area (SA), and cortical thickness (TH) were 
used as secondary phenotypes for BIP and SCZ. Note that the secondary phenotypes are used for both MiXeR-
Pred and MTAG approaches. The GWAS PGS performance is constant regardless of secondary phenotype since 
it is the PGS derived from the primary phenotypes GWAS only. 
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Contributions to Improved Prediction Performance 

To evaluate the potential contribution of improved modelling of the primary phenotype’s genetic 

architecture by MiXeR-Pred, we generated univariate MiXeR-Pred PGS for BIP and SCZ and 

compared prediction performance with that of bivariate MiXeR-Pred PGS. The univariate MiXeR-

Pred PGS achieved a max R2=0.05 and R2=0.09 on the liability scale for BIP and SCZ respectively (max: 

AUCBIP=0.66, AUCSCZ=0.70; Supplementary Figure 3). When using MDD and SCZ as secondary 

phenotypes, bivariate MiXeR-Pred prediction of BIP was higher than univariate (Figure 4). When 

using MDD, and to lesser extent EDU, as secondary phenotypes, bivariate MiXeR-Pred prediction of 

SCZ was higher than univariate (Figure 4). To further assess if MiXeR-Pred can leverage genetically 

uncorrelated secondary phenotypes for prediction, we made genetically correlated secondary 

phenotypes uncorrelated by randomly changing effect directions (Supplementary Table 2). This 

augmentation resulted in modest increases in the prediction of BIP when using genetically 

uncorrelated SCZ and MDD as secondary phenotypes with more subtle effects on SCZ as a primary 

phenotype (Supplementary Figure 4). 

 

We also assessed the separate contributions of MiXeR-Pred weights and thresholds for SNP selection 

at the univariate and bivariate levels (Supplementary Figures 3, 5, and 6). SNP selection appeared to 

contribute most to MiXeR-Pred performance as it most often achieved the highest prediction and 

with fewer SNPs. Notably, the increase in prediction performance associated with SNP selection, 

compared to selection and weights, was largest for genetically uncorrelated secondary phenotypes 

(e.g., SA and TH).  
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Figure 4. Univariate and Bivariate MiXeR-Pred Prediction Performance. Bar graphs illustrating a 
comparison of the MiXeR-Pred maximum prediction performance at the univariate level (solid black 
line) and bivariate level (bars) for the primary phenotypes BIP and SCZ.  
 

To evaluate the effect of various MiXeR estimates on mixer-pred performance, we tested their 

correlation for each primary phenotype across secondary phenotypes (Figure 5). A significant 

correlation may indicate that a given mixer estimate may contribute to improved prediction 

performance. Both the genetic correlation within the shared component (rg shared; an estimate of 

the concordance of effect direction of shared variants) and genome-wide (rg; an estimate of the 

concordance of effect direction across all genetic variants) were correlated with the prediction of BIP 

(rg shared: r𝑅2=0.90, p=0.03; rAUC=0.90, p=0.03; rg genome-wide: r𝑅2=0.91, p=0.03; rAUC=0.90, p=0.04) 

but not SCZ (rg shared: r𝑅2=0.14, p=0.82; rAUC=0.17, p=0.78; rg genome-wide: r𝑅2=0.13, p=0.83; 

rAUC=0.16, p=0.80). The Dice coefficient, an estimate of the degree of non-correlative overlap 

between primary and secondary phenotypes, was not correlated with the prediction of BIP or SCZ 

(Supplementary Table 3). Similarly, the fraction of SNP-heritability explained by genome-wide 

significant variants given the current GWAS sample size, an estimate of the power of the GWAS for 

the secondary phenotype, was not correlated with the prediction of BIP or SCZ (Supplementary 

Table 3).  

 

BIP SCZ

EDU MDD SA SCZ TH BIP EDU MDD SA TH

0.000

0.025

0.050

0.075

0.100
M

a
x
 L

ia
b

ili
ty

 R
2

EDU MDD SA SCZ TH BIP EDU MDD SA TH

0.625

0.650

0.675

0.700

0.725

Secondary Phenotype

M
a

x
 A

U
C

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.24303039doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.19.24303039
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

 
Figure 5. Comparison of MiXeR-Pred Performance and MiXeR Estimates. Performance of MiXeR-Pred 
measured by variance explained in the primary phenotype (R2) and area under the receiver operator curve 
(AUC) are compared to MiXeR estimates of (A) non-correlative genetic overlap (dice coefficient), (B and C) 
correlative genetic overlap in the shared component (rg shared) and genome-wide (rg), and (D) the current 
genome-wide association study power of the secondary phenotype. Secondary phenotypes are labelled in 
boxes within each plot. BIP: bipolar disorder, SCZ: schizophrenia, EDU: education attainment, MDD: major 
depressive disorder, SA: cortical surface area, TH: cortical thickness.  
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Discussion 

Here we show that MiXeR-Pred can source genetic overlap to improve prediction performance. We 

establish that the use of standardized effect estimates as weights for PGS computation, such as Z 

and IVW, improves the prediction of both BIP and SCZ. Moreover, as MiXeR-Pred parameters are 

derived from GWAS Z-scores we display the strong association between MiXeR-Pred parameters and 

standardized effect estimates. For both BIP and SCZ, MiXeR-Pred exhibited greater predictive 

performance than using the respective univariate GWAS and MTAG, a comparable alternative 

approach. These findings establish MiXeR-Pred as a novel PGS method that can advance our 

understanding of pleiotropy between complex traits and disorders while providing foundations for 

future development of prediction tools that may one day obtain clinical relevance. 

 

There are a large and ever-growing number of PGS methods, few of which use pleiotropy across 

phenotypes for prediction. The use of multiple polygenic scores has been shown to improve 

prediction of a primary phenotype of interest but this approach does not produce an improved PGS 

for the primary phenotype specifically.17–19 MTAG is a commonly used method that leverages genetic 

overlap to boost discovery and prediction.14 Here, we demonstrate that MiXeR-Pred had greater 

predictive performance for BIP and SCZ, two complex psychiatric disorders, using an array of 

different secondary phenotypes. Consistent with previous reports, both MTAG and MiXeR-Pred, 

prediction performance was greatest when sourcing genetically correlated secondary 

phenotypes.14,40 A degree of the improved prediction performance observed by MiXeR-Pred is 

derived from improved modelling of the primary phenotype’s genetic architecture. We also show 

that for MiXeR-Pred, the prediction from genetically correlated phenotypes remains to some degree 

when those phenotypes are made to be uncorrelated by randomly shuffling effect directions for the 

genetic variants. Therefore, MiXeR-Pred can utilize uncorrelated secondary phenotypes for 

prediction. However, additional prediction performance above univariate factors is likely due to 

leveraging the phenomenon of mixed effect directions, whereby genetic overlap is characterized by 
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a mixture of concordant and non-concordant effect directions, which may aid in variant selection 

above and beyond genetic correlation. 

 

MiXeR-Pred performance may be associated with several factors at the univariate and bivariate 

level. MiXeR-Pred incorporates functional annotations, heterozygosity, and uses a non-infinitesimal 

approach where genetic variants are considered to have null or non-null effects. These factors 

combine to improve the modelling of the genetic architecture for a given phenotype and are known 

to contribute to increased prediction and GWAS replication rates.8,9,14,31–34,40 Additionally, MiXeR-

Pred uses parameters derived from GWAS Z-scores. We show that using standardized effect 

estimates as weights (i.e., Z and IVW) can improve prediction above beta coefficients (or log odds 

ratios). Standardized effect estimates help select more robust effects with smaller estimated error, 

an approach commonly used for GWAS meta-analysis.20 However, as GWAS become more powered 

and beta coefficients are estimated with reduced error, prediction performance using betas will 

likely converge with that of standardized effects. We observe indications of this phenomenon as the 

less powered BIP GWAS has a much larger discrepancy in prediction performance when using beta 

weights compared to Z and IVW. Conversly, the more powered SCZ GWAS has similar prediction 

regardless of the weights used. Given a pair of phenotypes, MiXeR-Pred may additionally exploit the 

degree of polygenic overlap and the power of the secondary phenotype to improve prediction 

performance. Here we find evidence that correlative genetic overlap contributes to the MiXeR-Pred 

performance. For example, when predicting BIP, an increase in genetic correlation with the 

secondary phenotype (i.e., both genome-wide and in the shared component) was associated with an 

increase in prediction performance. However, this was not the case for SCZ. It is likely that a 

combination of factors beyond genetic correlation contribute to MiXeR-Pred performance. One such 

factor is SNP selection with results suggesting this may contribute more to MiXeR-Pred prediction 

performance than the estimated SNP weights, particularly for genetically uncorrelated secondary 

phenotypes. This is in line with a previous study which revealed that thresholding variants using false 
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discovery rate values derived from conditioning a GWAS for SCZ on a GWAS for brain morphology 

improved prediction.16 Therefore, a combination of univariate and bivariate factors contribute to the 

prediction performance of MiXeR-Pred and that combination may differ based on the selection of 

primary and secondary phenotypes. 

 

MiXeR-Pred has several potential applications. While MiXeR-Pred performance for our test 

phenotypes remains well below the threshold for clinical utility, future PGS-based approaches can 

leverage our approach to incorporate both correlated and non-correlated phenotypes to increase 

predictive performance. MiXeR-Pred expands upon the standard bivariate MiXeR analysis which to 

date characterizes the shared genetic architecture between two phenotypes beyond genetic 

correlation.12 The addition of MiXeR-Pred therefore enables a more comprehensive interrogation of 

the genetic overlap between two phenotypes by testing its effect on out-of-sample prediction.  

 

MiXeR-Pred is a conceptually new approach to leveraging pleiotropy for prediction. Therefore, we 

implement our novel method using the standard pruning and thresholding approach. Other PGS 

approaches achieve boosts in prediction performance by estimating the direct causal effect of SNPs 

accounting for LD and avoiding the use of a pruning and thresholding approach.7–9 While these 

approaches perform well for many phenotypes, for some highly polygenic traits they exhibit limited 

improvement.6,9 Future work will expand on the current MiXeR-Pred implementation to further 

move beyond the standard pruning and thresholding approach. Restricting our analyses to European 

ancestry only is a limitation. This is because the current implementation of MiXeR relies on a 

European reference genome. Additionally, the bivariate nature of MiXeR-Pred allows the use of only 

one secondary phenotype. Future work will expand the MiXeR framework to address these 

limitations by including multiple ancestries and a tri-variate extension which can ultimately be 

implemented in MiXeR-Pred.  
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In conclusion, we present MiXeR-Pred as a novel PGS prediction tool that can source pleiotropy from 

a secondary phenotype. MiXeR-Pred can use both genetically correlated and to a lesser extent non-

correlated secondary phenotypes to improve prediction. The use of our tool can help expand our 

understanding of the genetic overlap among complex phenotypes. Future work expanding on this 

framework may ultimately improve our ability to utilize pleiotropy across phenotypes for clinically 

relevant prediction. 
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Data and Code Availability 

GWAS summary statistics used in this study are publicly available with the exception of summary 

statistics excluding the TOP sample which were provided by the psychiatric genomics consortium. 

The TOP sample data are not publicly available due to national data privacy regulations. The MiXeR-

Pred tool presented in this article is available at https://github.com/precimed/mixer-pred. The 

remaining software are also publicly available: PRSice-2, https://choishingwan.github.io/PRSice/; 

MTAG, https://github.com/JonJala/mtag; PLINK, https://www.cog-genomics.org/plink/; 

cleansumstats pipeline used for harmonizing GWAS summary statistics: 

https://github.com/precimed/python_convert  (v0.9.1). 
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