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Abstract 

Externalizing behaviors encompass manifestations of risk-taking, self-regulation, aggression, 

sensation-/reward-seeking, and impulsivity. Externalizing research often includes substance use 

(SU), substance use disorder (SUD), and other (non-SU/SUD) “behavioral disinhibition” (BD) 

traits. Genome-wide and twin research have pointed to overlapping genetic architecture within 

and across SUB, SUD, and BD. We created single-factor measurement models—each describing 

SUB, SUD, or BD traits--based on mutually exclusive sets of European ancestry genome-wide 

association study (GWAS) statistics exploring externalizing variables. We then applied trivariate 

Cholesky decomposition to these factors in order to identify BD-specific genomic variation and 

assess the partitioning of BD’s genetic covariance with each of the other facets. Even when the 

residuals for indicators relating to the same substance were correlated across the SUB and SUD 

factors, the two factors yielded a large zero-order correlation (rg=.803). BD correlated strongly 

with the SUD (rg=.774) and SUB factors (rg=.778). In our initial decompositions, 33% of total 

BD variance remained after removing variance associated with SUD and SUB. The majority of 

covariance between BD and SU and between BD and SUD was shared across all factors. When 

only nicotine/tobacco, cannabis, and alcohol were included for the SUB/SUD factors, their zero-

order correlation increased to rg=.861; in corresponding decompositions, BD-specific variance 

decreased to 27%. In summary, BD, SU, and SUD were highly genetically correlated at the 

latent factor level, and a significant minority of genomic BD variation was not shared with SU 

and/or SUD. Further research can better elucidate the properties of BD-specific variation by 

exploring its genetic/molecular correlates. 

 

Keywords: Substance use, externalizing, behavioral genetics, GenomicSEM  
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Introduction 

1.1 Background 

Behavioral researchers have traditionally placed phenotypes that relate to risk-taking, 

lack of self-regulation, aggression, and/or impulsivity on the “externalizing” psychopathology 

spectrum . Related behaviors that exemplify sensation- or reward-seeking without meeting 

diagnostic psychopathology criteria have likewise been grouped under the externalizing 

framework (Karlsson Linnér et al., 2021). Studies that probe externalizing often consider 

substance use disorders (SUDs), which are characterized by obsessive/compulsive substance use-

seeking and -intake patterns, negative emotional responses to cessation of the substance (Koob 

and Volkow, 2016), and other related symptoms (Kendler and Myers, 2014; Krueger et al., 

2005). However, substance consumption behaviors not associated with these life-complicating 

factors (i.e., substance initiation and intake quantity/frequency; hereafter, SUB), have also been 

considered in externalizing research (Karlsson Linnér et al., 2021). Externalizing behavior 

additionally encompasses a combination of several pathological and non-pathological traits—i.e., 

risk tolerance, number of sexual partners, age at first sex (Karlsson Linnér et al., 2021), 

antisocial personality disorder, and conduct disorder (Kendler and Myers, 2014; Krueger et al., 

2005)--that do not directly measure substance use or substance use disorders, which we will refer 

to as “behavioral disinhibition” (BD) (Poore et al., 2023). 

Genome-wide association studies (GWAS) and twin studies have shown traits and latent 

constructs related to SUB, SUD, and BD to be genetically correlated, suggesting that these 

constructs have overlapping genetic architectures (Karlsson Linnér et al., 2021; Kendler and 

Myers, 2014; Poore et al., 2023). There is evidence for “general” genetic liability underlying 

SUD and for additional genetic liability specific to certain individual SUDs (Hatoum et al., 
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2022). Though SUDs examined in large GWAS are unsurprisingly genetically correlated with 

use measures for the corresponding substance, the degree of genetic overlap varies across 

substances. For example, while the point estimate of the genetic correlation between the 

Fagerström Test for Nicotine Dependence (FTND) and number of cigarettes smoked per day is 

around unity (rg = .97, s.e.= .12) (Hatoum et al., 2022), the correlation between cannabis use and 

cannabis use disorder is lower, at rg = .50 (s.e. = .05) (Johnson et al., 2020). In addition to twin 

and family studies that have explored the genetics of externalizing based on phenotypic 

resemblance among relatives, a recent multivariate analysis estimated a general genomic 

externalizing factor using summary association data from seven high-powered GWAS (Karlsson 

Linnér et al., 2021), a design that evaluates the relationship between measured genotypes and a 

phenotype of interest. Of these seven GWAS, one examined alcohol use disorder, two examined 

non-pathological substance use traits (cannabis initiation and smoking initiation), and four 

examined traits that could be classified as forms of BD (age at first sex, number of sexual 

partners, attention-deficit/hyperactivity disorder, and risk tolerance). This study identified 579 

independent genomic loci associated with general externalizing. A more recent publication 

reported a broader externalizing factor that included additional SUD constructs (Poore et al., 

2023). Factor-level analysis of general genomic SUD liability (Hatoum et al., 2023) has yielded 

a substantially narrower set of associated genome-wide significant loci than did the seven-

indicator externalizing factor (though the externalizing factor was likely better-powered). Further 

research is required to determine the extent to which genomic variation associated with facets of 

externalizing overlaps and the extent to which it operates through independent pathways. 

 

1.2 Broad Analysis Plan 
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In the present study, we used genome-wide association data and Genomic Structural 

Equation Modeling software (Grotzinger et al., 2019) to estimate genetic correlations between 

externalizing traits, extract latent factors underlying three externalizing facets (SUD, SUB, and 

BD), and decompose their shared and unshared genetic variance via hierarchical trivariate 

Cholesky models. The findings from this analysis will shed light on whether phenotypic 

subcategories of externalizing behavior constitute separable genomic entities. 

 

Material and Methods 

2.1 Description of Genomic Structural Equation Modeling 

In accordance with our preregistered plan (https://osf.io/fjy5h), we used the software 

Genomic Structural Equation Modeling (Genomic SEM) (Grotzinger et al., 2019) to model the 

genomic factor-level structure of general and domain-specific externalizing. Genomic SEM 

leverages LD Score regression (LDSC) (Bulik-Sullivan et al., 2015b), lavaan (Rosseel et al., 

2023), and GWAS summary statistics to fit confirmatory models based on genetic (rather than 

phenotypic) correlations. 

In the first stage of Genomic SEM, LDSC creates an empirical genetic covariance matrix 

(SLDSC) and an associated sampling covariance matrix (VS_LDSC). The unstandardized S matrix 

contains single nucleotide polymorphism (SNP) heritabilities—the proportion of phenotypic 

variance that can be statistically explained by SNPs--of each phenotype on the diagonals and 

genetic covariances between each phenotype on the off-diagonals. Meanwhile, the V matrix is a 

sampling covariance matrix used to account for study sample overlap among the source GWAS 

summary statistics. In the second stage, Genomic SEM fits a user-specified structural equation 
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model, estimating factor loading and correlation parameters that minimize discrepancy between 

the model-implied genetic covariance matrix and the empirical covariance matrix. 

 

2.2 Measures 

We began by defining three lower-order general factors (the measurement models): 

Behavioral Disinhibition (BD), (non-pathological) substance use (SUB), and Substance Use 

Disorder (SUD)—each representing a dimension of externalizing and each comprising mutually 

exclusive groups of reflective indicators—with the intention of investigating how SUB and SUD 

may relate to BD differently. Per our pre-registration, we only included GWAS for traits with 

sample sizes of at least 10,000 and SNP heritability (h2SNP) Z-statistics > 4 (Bulik-Sullivan et 

al., 2015a). For traits that were meta-analyzed but whose meta-analyzed association statistics 

were not available, we ran inverse-variance weighted meta-analysis ourselves in METAL (Willer 

et al., 2010). All samples were comprised of individuals of European ancestry, as non-European 

ancestry groups are under-powered for some of the indicators of interest and may have different 

patterns of linkage disequilibrium and allele frequencies (Peterson et al., 2019). Table 1 displays 

a summary of the four GWAS used for the BD factor, the four GWAS used for the SUD factor, 

and the seven pre-registered GWAS initially explored for the SUB factor, as well as their 

associated publications.  

 

2.2.1 BD Factor 

The lower-order BD factor utilized the four (non-substance-associated) BD indicators 

established in Poore et al. (2023): 
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• Attention-deficit/hyperactivity disorder (ADHD) (Effective N = 141,035;  

�����

�.�.������	
 = 21.12), as defined by the International Classification of Diseases 

(ICD)-10 (with some samples taken from an inpatient or outpatient psychiatric 

setting), or prescription for an ADHD medication, depending on the cohort; 

ADHD for the Psychiatric Genomics Consortium was diagnosed using multiple 

different measures (case/control) (Demontis et al., 2023).  

• Number of lifetime sexual partners (NSEX) (Karlsson Linnér et al., 2019) 

(N=370,711; 
�����

�.�.������	
 = 28.77) 

• Age at first sexual intercourse (FSEX) (reverse-coded) (Mills et al., 2021) (N 

=397,388;  
�����

�.�.������	
 = 31.96) 

• General risk tolerance (RISK) (Effective N = 268,876; 
�����

�.�.������	
 = 22.17), 

which was based on several items that varied depending on the cohort and that 

were similar to the question: “Would you describe yourself as someone who takes 

risks?” (Karlsson Linnér et al., 2019) 

 

2.2.2 SUD Factor 

The lower-order SUD factor described the indicators in Hatoum et al. (2022) and Hatoum 

et al. (2023): 

• Problem alcohol use (PAU) (Effective N = 300,790;  
�����

�.�.������	
 = 18.47), 

defined by alcohol dependence in the fourth edition of the Diagnostic and 

Statistical Manual of Mental Disorders (DSM-IV) or alcohol use disorder, as 
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determined by the Alcohol Use Disorders Identification Test problem items 

(AUDIT-P), a continuous metric, or by the ICD-9 or -10, depending on the cohort 

(Zhou et al., 2020b). 

• Opioid use disorder (OUD) (Effective N = 32,703;  
�����

�.�.������	
 = 6.14) defined 

by at least one inpatient or two outpatient ICD-9 or ICD-10 codes, or by opioid 

dependence, as defined by the DSM-IV, depending on the cohort (case vs. 

exposed control) (Zhou et al., 2020a). 

• Cannabis use disorder (CUD) (Effective N = 47,953;  
�����

�.�.������	
 = 10.71), 

defined by cannabis abuse or dependence according to the DSM-III or DSM-IV, 

cannabis abuse or dependence according to the ICD-10, or cannabis use disorder 

according to the DSM-5, depending on the cohort (case vs. exposed or unexposed 

control) (Johnson et al., 2020). 

• Problem tobacco use (PTU) (N = 15,988;  
�����

�.�.������	
 = 4.22), based on the 

Fagerström Test for Nicotine Dependence (FTND) in ever-smokers (Hancock et 

al., 2018). Unlike in the Hatoum et al. study, we only used the FTND—which is 

used to determine degree of nicotine dependence (mild, moderate, or severe)--as a 

measure of PTU and did not integrate cigarettes per day into the indicator. We 

also had a smaller sample size for the FTND GWAS because of data restrictions. 

 

2.2.3 SUB Factor 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 27, 2024. ; https://doi.org/10.1101/2024.02.20.24303036doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.20.24303036
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9

We initially explored a total of seven pre-registered non-pathological substance use 

measures, three of which were not ultimately included. Thus, the lower-order SUB factor was 

based around four indicators: 

• Lifetime cannabis initiation (CI) (Effective N=144,699; 
�����

�.�.������	
 = 15.96), 

which was based on several items that varied depending on the cohort. For 

example: “Have you ever in your life used the following: Marijuana?”; “Have you 

taken CANNABIS (marijuana, grass, hash, ganja, blow, draw, skunk, weed, 

spliff, dope), even if it was a long time ago?” (Pasman et al., 2018) 

• Smoking initiation (SI) (Effective N=1,363,137; 
�����

�.�.������	
 = 29.93), as defined 

by having ever or never been a regular smoker, or having ever smoked 100 or 

more cigarettes in one’s lifetime, depending on the cohort (Liu et al., 2019; 

Saunders et al., 2022). 

• Drinks per Week (DPW) (N≈1,070,917; 
�����

�.�.������	
=21.32) (Liu et al., 2019; 

Saunders et al., 2022). 

• Drug Experimentation (DRUG) (N=22,572; 
�����

�.�.������	
=4.69), the number of 

different classes of drugs an individual has used out of eleven (Sanchez-Roige et 

al., 2019a). 

 

2.3 Preparation of summary statistics for Genomic SEM 

We formatted downloaded summary data from relevant GWAS using Genomic SEM’s 

munge() function. We filtered summary statistics for SNPs available in the reference dataset, 

HapMap3, and further restricted to SNPs with a minimum minor allele frequency (MAF) of .01 
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and a minimum imputation quality (INFO) score of .90 (except for opioid use disorder, for which 

we used a minimum INFO threshold of .70) (Hatoum et al., 2023, 2022; Poore et al., 2023). 

Additionally, for each dichotomous trait, we used cohort-specific prevalence rates to calculate 

the sum of effective sample sizes (N); effective N corresponds to the N for a GWAS with equal 

power to that of the cohort’s raw sample size in a 1:1 case:control cohort design and is calculated 

as 4vk(1- vk)nk, where v is equivalent to cohort-specific prevalence and n is equivalent to the 

cohort’s raw sample size (Grotzinger et al., 2023). Thus, effective N corrects for ascertainment in 

studies that disproportionately sample for cases. Using the ldsc() function, we then calculated 

pairwise genetic covariances for all traits using the 1000 Genomes Phase 3 European ancestry 

linkage disequilibrium (LD) scores as a reference (Bulik-Sullivan et al., 2015a; Bulik-Sullivan et 

al., 2015b; The 1000 Genomes Project Consortium, 2015). Figure 1 shows the unstandardized 

genetic covariances (in the lower triangle) and genetic correlations (in the upper triangle) among 

the twelve traits we included in our main models, along with SNP-based heritabilities on the 

diagonal. An expanded genetic covariance/correlation matrix that additionally includes the pre-

registered SUB indicators that were excluded from the final models is shown in Supplementary 

Figure 1. 

 

2.4 Factor Analysis  

Next, we used Genomic SEM to specify models with the three externalizing factors 

(SUD, SUB, and BD) as lower-order factors in the ensuing structural models. In order to extract 

influences of within-substance intercorrelations, we correlated the residuals of PTU and SI, CUD 

and CI, and PAU and DPW across the SUD and SUB factors. We constructed a correlated 

factors model including all three factors. Then, we integrated the lower-order factors into a 
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hierarchical trivariate Cholesky decomposition framework. The orthogonal higher-order latent 

factors in the Cholesky decomposition completely broke down the genetic variance and 

covariance among the three lower-order latent factors into shared and independent sources of 

variance (Demange et al., 2021; Neale, 1992). The leftmost higher-order factor captured all 

genetic variance of the leftmost lower-order factor as well as its shared variance with the other 

lower-order factors. The middle higher-order factor captured all of the leftover genetic variance 

for the middle lower-order factor and its shared variance with the rightmost lower-order factor. 

Finally, the rightmost higher-order factor captured the genetic variance unique (in the model) to 

the rightmost lower-order factor. Model 1 had the following order of lower-order factors, from 

left-to-right: SUD, SUB, BD; and Model 2 had the order: SUB, SUD, BD. Thus, both models 

had BD in the final lower-order factor position. We utilized the usermodel() function in Genomic 

SEM to run both models using diagonally weighted least squares (DWLS) estimation. We scaled 

the higher-order factors using unit variance identification. 

 

2.5 Model Notation 

In the model descriptions, the letters in the factors’ subscripts denote the model number, 

where a corresponds to Model 1 and b corresponds to Model 2 in the two models that followed 

the pre-registered plan (additionally, c corresponds to Modified Model 1 and d to Modified 

Model 2 in the post-hoc models; see below). Meanwhile, the numerals in the factors’ subscripts 

denote the level of the factor, where 1 denotes higher-order and 0 denotes lower-order. 

 

2.6 Description of Fit Metrics 
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Though not the primary metric of interest for the decompositions, we assessed model fit 

for the measurement models, the main correlated factor models, and the main Cholesky 

decompositions using three indices: the comparative fit index (CFI), the Akaike Information 

Criterion (AIC), and the Standardized Root Mean Square Residual (SRMR). In Genomic SEM, 

the CFI measures the improvement in fit of the specified model compared to a model that 

estimates heritability of phenotypes but assumes no genetic covariances between them. The AIC 

is a relative fit index that balances fit with parsimony, incorporating �
 and the number of free 

parameters in the model. The SRMR, an index of approximate model fit, is the standardized root 

mean square difference between the model-implied and observed correlation matrices. CFI 

values, which can range from 0-1, are considered acceptable at .90 or greater and good if at least 

.95. Models with an SRMR under .10 suggest acceptable fit, while an SRMR under .05 indicates 

good fit. Similarly, lower AIC’s indicate better fit (Grotzinger et al., 2019). 

 

Results 

3.1 Lower-Order BD, SUD, and SUB Factors 

As expected, the measurement models for the BD and SUD latent constructs had good model 

fit (CFI = .949, SRMR = .065, AIC = 181.793; CFI = 1.000, SRMR = .013, AIC = 16.277, 

respectively; Supplementary Tables S1-S2). We tested a series of models for our SUB factor 

(described further in the Supplementary Note; the associated parameters for these models are 

displayed in Supplementary Tables S3-S7). Our final four-indicator SUB measurement model 

(see Supplementary Table S7 and Section 2.2.3) satisfied our pre-registered criteria and achieved 

good model fit (CFI = .994, SRMR = .063, AIC = 26.145). Supplementary Figures 2A-2C show 

the measurement models for the BD, SUD, and SUB factors separately with their standardized 
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loadings. The SUD and SUB factors each yielded one standardized loading (for OUD and 

DRUG, respectively) that was slightly greater than 1.00. However, these loadings dropped below 

1.00 when the three latent factors were allowed to correlate with one another (Figure 2) and 

when they were integrated into the Cholesky models (Figures 3A-3B). 

 

3.2 Correlated Factors 

Before performing Cholesky decomposition, we fit a correlated factors model, which 

showed substantial zero-order genetic correlations between the SUD factor, the BD factor, and 

the SUB factor (Figure 2). The correlated factors model showed decent fit (CFI =.921, SRMR = 

.106, AIC =1638.065). All indicators were associated with significant moderate or high loadings, 

ranging from a standardized loading of .367 (s.e.=.022) for DPW to a standardized loading of 

.961 (s.e.=.039) for CUD. The SUB factor correlated with SUD at rg = .803 (s.e. = .027) and with 

BD at rg = .778 (s.e.= .016), and the latter two correlated at rg = .774 (s.e.= .027). Of the residual 

correlations, only the correlation between DPW’s and PAU’s error terms was significant (at rg = 

.666, p = 1.066e-34). Thus, cross-factor associations for the same substance were not a primary 

driver of the inter-factor correlations. Rather, the variance captured in the latent SUD and SUB 

factors likely reflected common genomic variation across substance classes.  

 

3.3 Cholesky Decomposition 

Models 1 and 2, the main Cholesky decompositions, are depicted in Figures 3A and 3B, 

respectively, along with loadings standardized with respect to the full model, including 

endogenous latent factors. Model 1 sought to capture the proportion of BD variance explained by 

a higher-order construction of SUD, as well as genetic covariance specific to lower-order SUB 
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and lower-order BD independent of lower-order SUD. In Model 1, the first-position higher-order 

factor (SUDG1a) captured all of the variance in the (left-most) lower-order SUD factor (SUDG0a) 

and also captured covariance between SUDG0a and the other lower-order factors in the model 

(SUBG0a and BDG0a) as well as covariance between the latter two that was shared with SUDG0a 

variance. SUBResG1a accounted for the remaining SUBG0a factor variation and, by virtue of its 

partialing out covariance shared with SUD, also captured the independent influence of (non-

pathological) substance-related indicators on BDG0a in the model. Finally, BDResG1a captured the 

BD-specific variation remaining after both pathological and non-pathological substance use were 

accounted for. In Model 2, the higher-order substance use factor (SUBG1b) was the left-most 

factor such that SUBG1b captured all of the variation in the corresponding lower-order factor 

(SUBG0b), while residual higher-order substance use disorder (SUDResG1b) was in the middle 

position. 

  

3.3.1 Fit Statistics and Model Comparison 

Models 1 and 2 (CFI =.921, SRMR=.106, AIC =1638.063 for Model 1, 1638.067 for 

Model 2) were associated with a significant improvement in fit 

(∆�
�3� �  782.469 for Model 1, 782.465 for Model 2, � �  .001) when compared to a single 

twelve-indicator common factor solution (CFI =.881, SRMR = .121, AIC =2414.532), the latter 

of which produced standardized loadings ranging from .333 (s.e.=.021) for DPW to .868 

(s.e.=.063) for DRUG (see Supplementary Table S8). However, it is important to note that the 

chi-squared statistic is highly sensitive to small differences in Genomic SEM due to the well-

powered nature of the GWAS used as input (Grotzinger et al., 2019). The full parameter output 
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for the correlated factors model is in Supplementary Table S9, while the full parameter output for 

Models 1 and 2 are in Supplementary Tables S10 and S11, respectively. 

 

3.3.2 Partitioning of Variance 

In Model 1, 64% of SUBG0a and 60% of BDG0a was shared with the higher-order SUDG1a 

factor. Genetic variance associated with substance use but not substance use disorder 

(SUBResG1a) explained only 7% of the total genetic variance in BDG0a. Approximately 33% of 

BDG0a was not explained by either SUDG1a or SUBResG1a and was therefore BD-specific. 

Additionally, 20% of the genetic covariance between SUBG0a and BDG0a was independent of 

SUDG1a. In Model 2, SUBG1b explained 64% of SUDG0b and 61% of BDG0b, while SUDResG1b 

accounted for 6% of BDG0b variance. As in Model 1, 33% of BDG0b was BD-specific. Finally, 

19% of the genetic covariance between SUDG0b and BDG0b in Model 2 was independent of 

SUBG1b. 

 

3.4 Post-hoc Models 

Because the polysubstance use indicator (DRUG) in our SUB factor did not have a 

corresponding polysubstance indicator in the SUD factor and because the OUD indicator for 

SUD did not have a corresponding recreational opioid use indicator for SUB, we also tested a 

post-hoc iteration of our correlated factors and two initial Cholesky models that dropped the 

DRUG and OUD indicators. In a correlated factors model, there was a somewhat higher 

correlation between the modified SUD and SUB factors (rg = .861, s.e. = .033). The point 

estimate of the correlation between BD and the modified SUD factor, rg = .849 (s.e. = .035), was 

higher than that of the correlation between BD and the modified SUB factor (rg = .773, s.e. = 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 27, 2024. ; https://doi.org/10.1101/2024.02.20.24303036doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.20.24303036
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

.017) (see Supplementary Figure 3 and Supplementary Table S12). As a result, Model 1 and 

Model 2 with the Modified SUB and SUD factors, when compared to the original models, 

yielded somewhat less BD-specific variance (27% of total BD). Additionally, Modified Model 1 

produced a non-significant cross-loading (p = .383) of BDG0c on MOD_SUBResG1c. Thus, in this 

model, effectively all of the covariance between MOD_SUBG0c and BDG0c was shared with 

MOD_SUDG0c (see Supplementary Figures 4A-4B and see Supplementary Tables S13-S14 for 

depictions and full parameter outputs of Modified Models 1 and 2). 

When we dropped the residual correlations, the zero-order correlation between SUB and 

SUD increased somewhat (from .803 up to .852) (Supplementary Figure 5, Supplementary Table 

S15) when compared to the original correlated factors model. Correlations with BD remained 

essentially unchanged (from .778 to .780 for SUB; from .774 to .770 for SUD). Meanwhile, 

dropping the residual correlations in the modified model increased the point estimate of the 

correlation between MOD_SUB and MOD_SUD (from .861 up to .932), while BD’s zero-order 

correlations with MOD_SUB and MOD_SUD did not change notably (from .773 to .780 and 

from .849 to .844, respectively) (Supplementary Figure 6, Supplementary Table S16). 

Supplementary Figures 7A-7B and Supplementary Tables S17-S18 correspond to results for 

Cholesky Decompositions utilizing the original factors from Models 1 and 2 with the residual 

correlations dropped. Supplementary Figures 8A-8B and Supplementary Tables S19-S20 

correspond to results for Cholesky Decompositions utilizing the modified factors with the 

residual correlations dropped. 

 

Discussion 

4.1 Summary 
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We used Genomic SEM to partition the genome-wide components of externalizing 

behaviors into a four-indicator behavioral disinhibition (BD) factor, a four-indicator substance 

use disorder (SUD) factor, and a four-indicator (non-pathological) substance use (SUB) factor. 

The three factors showed high zero-order intercorrelations, even when the residuals for 

indicators relating to the same substance were correlated across the SUB and SUD factors. Using 

hierarchical trivariate Cholesky decomposition, we then analyzed the residual genomic variance 

components that remained for externalizing above and beyond 1) SUD, 2) SUB, and 3) both 

SUD and SUB. The majority of the genetic variation in BD intersected with the joint variation 

shared across the other two domains, which reinforces findings from past research examining 

genomic links between externalizing constructs (Karlsson Linnér et al., 2021; Poore et al., 2023). 

The covariance between BD and each substance factor independent of the other was 

considerably smaller than covariance shared among all three factors. The modified SUB and 

SUD factors, which included only the three most commonly-used recreational substance 

categories—nicotine/tobacco, alcohol, and cannabis—had a larger genetic correlation point 

estimate than did the original substance factors that included polysubstance use and opioid use 

disorder. Finally, across all models, between approximately a quarter and approximately a third 

of BD-associated genetic variance was independent of both SUB and SUD. 

 

4.2 Relevance to Past Research and Future Directions 

Depending on the factor definition for SUB and SUD, the point estimates of their zero-

order genetic correlation ranged from .803-.932. In light of the large genomic overlap between 

the two, combining genomic information associated with pathological and non-pathological 

substance use phenotypes has the potential to boost power for substance-related research 
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questions. For example, it is possible that combining such pathological and non-pathologic 

genetic information is a more powerful approach to predicting substance use disorder liability. 

Additionally, interrogating the non-overlapping genetic characteristics of these two factors—as 

well as that of their constituent traits--could provide illuminating insights into their shared and 

independent associations with psychopathological, psychological, disinhibitory, personality, and 

medical outcomes. For example, genomic SUB variance not implicated in SUD may be less 

likely to include genomic loci that are associated with negative side-effects upon cessation of 

substances. Somewhat less intuitively: even though substance use is a prerequisite for substance 

use disorder, the approach used in the present study and in similar designs allows for the 

dissociation of genetic prediction of pathological substance use outcomes from that of non-

pathological substance use outcomes. Evidence has suggested that substance use disorders tend 

to be more positively genetically associated with certain psychopathological traits when 

compared to externalizing (Poore et al., 2023) and substance consumption (Gelernter and 

Polimanti, 2021; Mallard et al., 2022; Sanchez-Roige et al., 2019b). Though it is currently 

unclear to what extent the sampling procedures for SUD GWAS—which draw many cases from 

psychiatric populations--may be contributing to this finding (Poore et al., 2023), loci implicated 

in SUD but not SUB could point to a critical subset of pleiotropic effects implicated in 

psychopathologies. Further exploration of this independent signal may provide valuable context 

for attempts to identify treatments and evaluate sources of psychiatric or medical comorbidity. 

Additionally, it will be important to examine non-biological phenotypes such as socioeconomic 

status and clinician bias in further elucidating which substance users are most likely to be 

diagnosed with a substance use disorder.  
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Research has shown that SUD and externalizing are highly genetically correlated at the 

common latent factor level and that putatively causal SNPs of their constituent summary 

statistics are largely overlapping (Poore et al., 2023). The models we tested additionally revealed 

that there may be important specific covariance between BD and SU/SUD not shared between all 

three factors. Though this independent covariance only accounted for one fifth of the total 

genetic covariance between the residual higher-order factors at most, it was nonetheless non-

negligible in both of the main models. Though this covariance only explained a small proportion 

of total BD variance in our models, the relationship between this residual genetic overlap and 

prediction of outcomes outside of an externalizing framework is worthy of further study. 

Finally, evidence in the literature (Brick et al., 2023; Poore et al., 2023) suggests there is 

a genome-wide/polygenic signal associated with externalizing and BD independent of substance 

use and substance use disorder, further indicating that there could be significant genomic 

correlates specific to the current study’s construction of BD. While we evaluated BD using a 

combination of psychiatric and non-psychiatric traits--age at first sex (FSEX, reverse-coded), 

general risk tolerance (RISK), number of lifetime sexual partners (NSEX), and attention-

deficit/hyperactivity disorder (ADHD)--all four traits relate to reward-seeking (i.e., sexual 

behaviors) and/or impulsivity (i.e., certain hyperactive characteristics in ADHD). While these 

mechanisms are relevant to substance use and substance use disorder as well, additional domains 

such as attentional processes (i.e., in ADHD) and subjective opinions of one’s own disinhibitory 

tendencies (i.e., for self-reported risk tolerance) are more specifically characteristic of BD. Given 

the substantial proportion of BD-specific residual variance we calculated, additional 

investigation into this construct’s genomic architecture could uncover an alternative molecular 
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context for understanding risk-taking, reward-seeking, and sensation-seeking over and above its 

direct common pathways with substance use and/or substance use disorder. 

 

4.3 Limitations 

It is important to note that there are limitations to consider in the interpretation of our 

findings. Firstly, the samples on which we based our analyses were not representative of the 

general human population. All of our samples came from individuals of European ancestry, and 

many of the participants included were taken from the UK Biobank, which is an older-skewing 

British sample, while Opioid Use Disorder and Problem Alcohol Use utilized the Million 

Veterans Program sample, which is comprised entirely of U.S. veterans, is only 9% female, and 

skews towards older participants (U.S. Department of Veterans Affairs 2024). Some cohorts also 

utilized a combination of childhood and adult data (i.e., in the ADHD GWAS) (Demontis et al., 

2023).  

While our study provided important context for understanding the genetic architecture of 

externalizing at the genome-wide common SNP level, a more complete picture of substance use, 

substance use disorders, and reward-seeking behaviors, as well as the relationships between these 

constructs, will require evaluation of environment effects and non-genomic biological 

phenomena--which GWAS do not directly measure--as well as potential effects of gene-

environment interactions. Factors such as racial/ethnic disparities in access to analgesic drugs 

(Samuel et al., 2019) and consequences of trauma on externalizing and substance use behaviors 

would add vital context to a broader understanding of the phenomena considered in the current 

study. In addition, we did not include specific single nucleotide polymorphism (SNP) effects in 
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our model, and so we did not directly identify specific genes or biological pathways associated 

with the constructs we measured. 

Because our models’ latent factors were based on a small number of indicators, the 

GWAS we included in our models were unlikely to exhaustively capture the genetic components 

associated with the focal constructs. Because very large sample sizes are required for powerful 

genome-wide analysis of complex traits, smaller sample sizes—in addition to less precise 

heritability estimates--for traits such as opioid use disorder (OUD), polysubstance use (DRUG), 

and problem tobacco use (PTU) may have biased results due to being underpowered. Larger 

sample sizes and GWAS of more variable substance use outcomes (i.e., recreational opioid use, 

polysubstance addiction) will be instructive to portraying a clearer picture of the genetic 

architecture(s) of substance phenotypes. 

 

4.4 Conclusion 

Substance use disorder (SUD), substance use (SUB), and behavioral disinhibition (BD) 

represent three related constructs that have been subjects of common interest in psychological 

and genetic research. Using hierarchical Cholesky decomposition in Genomic SEM, this study 

attempted to isolate the extent to which genetic variability underlying BD exists beyond shared 

variance with the prior two constructs and examined the nature of the genetic covariation 

between all three constructs.  

BD was highly correlated with SUD and SUB, the latter two of which showed some 

evidence of being more correlated with one another still. More than half of the variation in BD 

could be explained by a broad higher-order factor absorbing variation across all three constructs, 

while, depending on the model, between none and a small fraction of the variation in BD 
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operated via an independent pathway with SUD or SUB outside of this broad effect. Moreover, a 

significant minority of residual BD variability remained after partialing out covariance with both 

SUD and SUB, indicating that there is sizable genomic BD variation that does not overlap with 

substance use or substance use disorder. Future research could demonstrate the utility of boosting 

power through combining data across pathological and non-pathological substance use indicators 

though could also shed interesting light on the differences in genetic and molecular correlates of 

SUD vs. SUB, including outside of direct implications for behavioral disinhibition/externalizing. 

Extending these lines of inquiry is likely to yield important insights into genetic mechanisms 

linked to reward response, drug metabolization, risk-taking, and psychopathology. 
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Trait N Neff h2SNP/ 
s.e.(h2SNP) 

Publication(s) Summary Statistics Source 

ADHD 225,534 141,035.20 21.12 https://www.nature.com/arti
cles/s41588-022-01285-81 

https://figshare.com/articles/data
set/adhd2022/22564390 

NSEX 370,711 N/A 28.77 https://www.nature.com/arti
cles/s41588-018-0309-32 

https://thessgac.com/papers/2/5 

FSEX 397,338 N/A 31.96 https://www.nature.com/arti
cles/s41562-021-01135-33 

http://ftp.ebi.ac.uk/pub/database
s/gwas/summary_statistics/GCS

T90000001-
GCST90001000/GCST9000004

7/ 

RISK 466,571 268,876 22.17 https://www.nature.com/arti
cles/s41588-018-0309-32 

https://thessgac.com/papers/2/1 

PTU 15,988 N/A 4.22 https://www.ncbi.nlm.nih.go
v/pmc/articles/PMC5882602

/4 

https://ftp-ncbi-nlm-nih-
gov.colorado.idm.oclc.org/dbga
p/studies/phs001532/analyses/ 

PAU 435,563 300,789.60 18.47 https://www.nature.com/arti
cles/s41593-020-0643-55 

https://figshare.com/articles/data
set/sud2019-alcuse/14672193 

https://figshare.com/articles/data
set/sud2018-alc/14672187 

CUD 357,806 47,952.51 10.71 https://www.ncbi.nlm.nih.go
v/pmc/articles/PMC7674631

/6 

https://figshare.com/articles/data
set/sud2020-cud/14842692 

OUD 82,707 32,703.49 6.14 https://www.ncbi.nlm.nih.go
v/pmc/articles/PMC7270886

/7 

https://figshare.com/articles/data
set/sud2020-op/14672211 

CI 184,765 144,698.95 15.96 https://www.ncbi.nlm.nih.go
v/pmc/articles/PMC6386176

/8 

Available Upon Request 

SI ~1,300,000 1,363,137.10 29.93 https://www.nature.com/arti
cles/s41586-022-05477-49 

(GSCAN) 
https://www.nature.com/arti
cles/s41588-018-0307-510 

(23andMe) 

https://conservancy.umn.edu/ha
ndle/11299/241912 
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DPW ~1,070,917 N/A 21.32 https://www.nature.com/arti
cles/s41586-022-05477-49 

(GSCAN) 
https://www.nature.com/arti
cles/s41588-018-0307-510 

(23andMe) 

https://conservancy.umn.edu/ha
ndle/11299/241912 

DRUG 22,572 N/A 4.69 https://pubmed.ncbi.nlm.nih.
gov/30718321/11 

N/A 

CPD ~360,808 N/A 20.16 https://www.nature.com/arti
cles/s41586-022-05477-49 

(GSCAN) 
https://www.nature.com/arti
cles/s41588-018-0307-510 

(23andMe) 

https://conservancy.umn.edu/ha
ndle/11299/241912 

DRINK 
STAT 

398,853 376,693.97 21.22 https://www.nature.com/arti
cles/s41588-018-0307-510 

N/A 

FREQ 462,016 N/A 19.98 https://onlinelibrary.wiley.co
m/doi/abs/10.1002/ajmg.b.3

287412 

N/A 

 
 

 

 

 

 

 

 

 

 

 

 

  

Table 1. Summary data, associated publications, and data sources for the four Behavioral Disinhibition 
traits, four Substance Use Disorder traits, and seven pre-registered Substance Use traits initially 
considered for the Substance Use Factor. N = raw sample size used. Note that, in some cases, sample sizes in 
publicly available data are lower than total sample size reported in the corresponding publication(s) or in the table 
because of data access restrictions on some cohorts. Neff = effective sample size (for dichotomous traits), as 
provided in the summary statistics or calculated with respect to prevalence and sample size across cohorts. h2

SNP 

= the proportion of trait variation in the sample(s) accounted for by variation in single nucleotide polymorphisms 
(SNPs). See sections 2.2.1-2.2.3 for further descriptions of phenotypes. ADHD = Attention-deficit Hyperactivity 
Disorder, NSEX = Number of Lifetime Sexual Partners, FSEX = Age at First Sexual Intercourse (reverse-coded), 
RISK = General Risk Tolerance, PTU = Problem Tobacco Use, PAU = Problem Alcohol Use, CUD = Cannabis 
Use Disorder, OUD = Opioid Use Disorder, CI = Cannabis Initiation, SI = Smoking Initiation, DPW = Drinks 
per Week, DRUG = Drug Experimentation (the number of different classes of drugs an individual has used out of 
eleven), CPD = Cigarettes per Day, DRINK STAT = Drinking Status (drinker vs. non-drinker), FREQ = 
Drinking Frequency. 
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