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Abstract 1 

Background: Numerous studies show that electroconvulsive therapy (ECT) induces hippocam-2 

pal neuroplasticity, but findings are inconsistent regarding its clinical relevance. This study 3 

aims to investigate ECT-induced plasticity of anterior and posterior hippocampi using mathe-4 

matical complexity measures in neuroimaging, namely Higuchi's fractal dimension (HFD) for 5 

fMRI time series and the fractal dimension of cortical morphology (FD-CM). Furthermore, we 6 

explore the potential of these complexity measures to predict ECT treatment response. 7 

Methods: Twenty patients with a current depressive episode (16 with major depressive disorder 8 

and 4 with bipolar disorder) underwent MRI-scans before and after an ECT-series. Twenty 9 

healthy controls matched for age and sex were also scanned twice for comparison purposes. 10 

Resting-state fMRI data were processed, and HFD was computed for anterior and posterior 11 

hippocampi. Group-by-time effects for HFD in anterior and posterior hippocampi were calcu-12 

lated and correlations between HFD changes and improvement in depression severity were ex-13 

amined. For baseline FD-CM analyses, we preprocessed structural MRI with CAT12's surface-14 

based methods. We explored the predictive value of baseline HFD and FD-CM for treatment 15 

outcome.  16 

Results: Patients exhibited a significant increase in bilateral hippocampal HFD from baseline 17 

to follow-up scans. Right anterior hippocampal HFD increase was associated with reductions 18 

in depression severity. After applying a whole-brain regression analysis, we found that baseline 19 

FD-CM in the left temporal pole predicted reduction of overall depression severity after ECT. 20 

Baseline hippocampal HFD did not predict treatment outcome.  21 

Conclusion: This pioneering study suggests that HFD and FD-CM are promising imaging 22 

markers to investigate ECT-induced neuroplasticity associated with treatment response.   23 
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Introduction 24 

Depression is a highly prevalent mental disorder and globally the leading cause of disability 25 

(WHO, 2021). One-third of patients with depression remain resistant to treatment regimens 26 

with pharmacotherapy (Rush et al., 2006). More than 50% of these patients respond to treatment 27 

with electroconvulsive therapy (ECT) (Group, 2003; van Diermen et al., 2018). ECT-induced 28 

volume increase in limbic structures, including bilateral hippocampi and amygdalae, are well-29 

documented findings observed in multiple studies (Bracht et al., 2023; Gryglewski et al., 2021; 30 

Nordanskog et al., 2010; Takamiya et al., 2018). Whilst some studies found associations be-31 

tween overall volume increase and clinical improvements (Joshi et al., 2016; Nordanskog et al., 32 

2010), findings of a meta-analysis and a large mega-analysis, suggest that overall volume in-33 

crease in the hippocampi is unrelated to treatment response (Gryglewski et al., 2021; Oltedal et 34 

al., 2018). Consequently, it was proposed that overall enlargements of the entire hippocampus 35 

might rather be a non-specific effect of ECT than the primary driver of treatment response.  36 

However, other findings suggest that clinical response may be related to structural and func-37 

tional alterations in specific segments or subcompartments of the hippocampi (Bracht et al., 38 

2023; Leaver et al., 2019; Leaver et al., 2021; Nuninga et al., 2020). Accordingly, it was hy-39 

pothesized that changes in functional networks of these subcompartments distinguish ECT-re-40 

sponders from non-responders (Leaver et al., 2021). Furthermore, ECT-induced structural 41 

changes have not only been identified in the hippocampi but also in hippocampal connection 42 

pathways of extended networks related to anterior or posterior hippocampi (Kubicki et al., 43 

2019), which were associated with a disruption of the hippocampus-default mode network 44 

(Denier et al., 2023; Gbyl et al., 2024). Thus, for further advancement, novel methods are re-45 

quired that complement and exceed the interpretation of measures that simply assess overall 46 

grey matter volume or structural and functional connectivity. 47 
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 48 

The incorporation of mathematical complexity analyses offer a transformative perspective on 49 

existing data, serving as a valuable complementary measure to conventional neuroimaging met-50 

rics. Fractal dimension (FD), originally introduced by the renowned mathematician Benoit 51 

Mandelbrot in 1967, represents a pivotal concept. It furnishes a quantitative measure of intri-52 

cacy and self-similarity, opening new avenues for understanding complex neurological phe-53 

nomena  (Mandelbrot, 1967). Fractals are captivating geometric constructs known for their in-54 

tricate detail and repeated patterns across various scales, maintaining a similar structure regard-55 

less of magnification levels (Kenneth, 1990; Mandelbrot and Mandelbrot, 1982). In contrast to 56 

traditional Euclidean geometry, which deals with shapes of integer dimensions (e.g., lines [1D], 57 

planes [2D], solids [3D]), Fractal Dimension (FD) expands this concept to embrace non-integer 58 

dimensions (e.g., dimension of 1. 3̅). This unique property makes FD also a valuable tool for 59 

quantifying the complexity and irregularity present in neuroscience measurements (Burns and 60 

Rajan, 2015; King et al., 2009). It allows to decipher and model intricate data, finding wide-61 

spread utility in the analysis of cortical morphology within a clinical context (Meregalli et al., 62 

2022), and also in studies involving patients with depression (Schmitgen et al., 2020; Schmitt 63 

et al., 2022). Traditionally, the assessment of FD in cortical morphology (FD-CM) relies on the 64 

box-counting method (Madan and Kensinger, 2016). However, more expedient approximation 65 

techniques exist, such as the reconstruction of spherical harmonics (Yotter et al., 2011b). Re-66 

gional FD-CM represents a comprehensive gauge of gyrification, amalgamating data from fold-67 

ing frequency, sulcal depth, convolution of gyral shape, and cortical thickness into a singular 68 

metric. This composite measure has the potential to offer insights into dendrite complexity and 69 

synaptic density (Im et al., 2006), enriching our understanding of cortical intricacies. 70 

 71 
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Paralleling efforts in quantifying spatial fractals, Higuchi's Fractal Dimension (HFD) emerges 72 

as a powerful technique for quantifying the intricacy and self-similarity within one-dimensional 73 

data, such as time series (Higuchi, 1988; Liehr and Massopust, 2020). In contrast to other non-74 

linear methods it is considered as highly accurate in estimating FD (Kesić and Spasić, 2016). 75 

HFD analysis has proven invaluable in unraveling the complexities and altered connectivity 76 

patterns within the brains of individuals affected by various neurological disorders including 77 

migraine and neurodegenerative diseases (Djuričić et al., 2023; Garehdaghi and Sarbaz, 2023; 78 

Porcaro et al., 2020; Porcaro et al., 2022; Varley et al., 2020). Surprisingly, while HFD has 79 

gained traction in exploring depressive disorders, primarily using ECG (George et al., 2023) 80 

and EEG data (Kaushik et al., 2023; Kawe et al., 2019; Lord and Allen, 2023), it has remained 81 

largely unexplored in the realm of neuropsychiatric disorders and functional MRI data. Trans-82 

ferring HFD to functional neuroimaging presents an intriguing opportunity to harness HFD's 83 

potential for gaining fresh insights into the landscape of these complex conditions. 84 

 85 

This is the first study that exploits HFD and FD-CM to explore ECT-induced neuroplasticity 86 

through the lens of complexity measurements. We applied these measures in a sample of 20 87 

patients with depression who were scanned before and after an ECT-index series and in 20 88 

healthy controls who were also scanned twice. It was the primary objective of this study to 89 

investigate whether ECT induces changes of functional MRI signal complexity in the anterior 90 

and posterior hippocampi as assessed with HFD. Secondary outcome measures were associa-91 

tions between changes in HFD and improvements in depression severity and the predictive 92 

value of baseline measures of FD-CM and HFD for treatment outcome. In essence, our study 93 

sought to introduce FD metrics including FD-CM and HFD into the analysis of depression and 94 

ECT treatment, shedding new light on the phenomena of ECT induced neuroplasticity. 95 

 96 
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Methods 97 

Participants 98 

This same sample was used in previous analyses (Bracht et al., 2023; Denier et al., 2023). Base-99 

line measurements of patients with major depressive disorder (MDD) and healthy controls (HC) 100 

were also included in larger samples investigating cross-sectional group differences (Bracht et 101 

al., 2022a; Bracht et al., 2022c; Denier et al., 2024; Mertse et al., 2022). We recruited 20 patients 102 

with a current depressive episode who were scheduled for an ECT-series at the University Hos-103 

pital of Psychiatry and Psychotherapy Bern. Inclusion criteria were a diagnosis of major de-104 

pressive disorder (MDD) or bipolar disorder (BD) according to the Diagnostic and Statistical 105 

Manual of Mental Disorders (DSM-5) by the American Psychiatric Association (APA, 2013) 106 

and age between 18-65 years. Patients with neurological disorders, substance use disorders, 107 

psychotic disorders, personality disorders, known claustrophobia, or other contraindications to 108 

undergo an MRI scan were excluded. We conducted diagnostic screening using the Mini Inter-109 

national Neuropsychiatric Interview (MINI) (Sheehan et al., 1998) and the Structured Clinical 110 

Interview for DSM-IV Axis II (SCID-II) (Wittchen et al., 1997). The Edinburgh Handedness 111 

Inventory (Oldfield, 1971) was used to assess handedness. Depression severity was assessed 112 

using the 21-item Hamilton Rating Scale for Depression (HAMD) (Hamilton, 1967). The de-113 

pression rating scales were administered both before and after the ECT-index series on the day 114 

of the MRI scan. We also included 20 healthy controls (HC) who were matched with the pa-115 

tients regarding age and sex. HC underwent the same assessments. All subjects provided written 116 

informed consent, and the study was approved by the local cantonal ethics committee (KEK-117 

number: 2017-00731). For more details of the sample, see table 1. 118 

 119 

 120 
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ECT treatment 121 

The ECT-treatments, using a Thymatron IV system, were conducted in the anesthetic recovery 122 

room of the University Hospital in Bern, Switzerland. Most patients (n=17) received right uni-123 

lateral stimulation as their primary treatment approach. However, among these 17 patients, five 124 

switched to bitemporal stimulation, and one patient switched to bifrontal stimulation during the 125 

ECT-index series. Additionally, two patients underwent an ECT-index series with bitemporal 126 

stimulation, while one patient received bifrontal stimulation. The decisions regarding the initial 127 

placement of electrodes and any subsequent switches during the ECT-index series were based 128 

on each patient’s clinical presentation and progress. The titration-based method was employed 129 

to determine the initial seizure threshold and stimulus intensity. General anesthesia was admin-130 

istered using etomidate, and succinylcholine was utilized for muscle relaxation. The quality of 131 

the seizures was monitored using electroencephalogram (EEG) and electromyography (EMG) 132 

recordings. The ECT patients received an average of 12.7 ± 4.0 ECT sessions between the MRI 133 

scans. 134 

 135 

MRI acquisition 136 

Each participant underwent two MRI scans using a 3 Tesla MRI scanner (Magnetom Prisma, 137 

Siemens, Erlangen, Germany) with a 64-channel head and neck coil at the Swiss Institute for 138 

Translational and Entrepreneurial Medicine (SITEM) associated with the University Hospital 139 

of Bern. The ECT group was scanned before and after an ECT-index series, while the HC group 140 

was also scanned at two timepoints, with a similar duration between scans. For the acquisition 141 

of T1-weighted data, a bias-field corrected MP2RAGE sequence was employed. The following 142 

parameters were used for the MP2RAGE acquisition: field of view (FOV) = 256×256 mm2, 143 

matrix = 256×256, slices = 256, voxel resolution = 1×1×1 mm³, repetition time (TR)/echo time 144 

(TE) = 5000/2.98 ms, inversion time (TI) = 700 ms, and echo time 2 (T2) = 2500 ms. Resting-145 
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state functional MRI (rs-fMRI) was acquired using echo planar imaging (EPI) continuously for 146 

8 minutes, with participants in an 'eyes closed' condition. The following parameters were used 147 

for the acquisition: 480 volumes with 48 slices per volume, FOV = 230×230 mm2, matrix = 148 

94×94, voxel resolution = 2.4×2.4×2.4 mm³ isotropic, TR = 1000 ms, and TE = 30 ms. 149 

 150 

Pre-processing of resting-state fMRI 151 

Rs-fMRI pre-processing was conducted using the CONN 21a toolbox (Whitfield-Gabrieli and 152 

Nieto-Castanon, 2012) and involved several procedures. First, the EPI volumes were realigned 153 

and co-registered to the MP2RAGE images. Segmentation and normalization to the MNI space 154 

were then performed, followed by smoothing with an FWHM kernel of 8 × 8 × 8 mm.   In 155 

contrast to traditional analysis of low frequency fluctuations (0.01 – 0.1 Hz) no band-pass filter 156 

was applied to analyze the whole spectrum. 157 

 158 

Calculation of Higuchi’s fractal dimension (HFD) in resting-state fMRI 159 

Higuchi introduced an algorithm to determine the FD of a time series by quantifying the intri-160 

cacy of waveforms (Higuchi, 1988). We used Matlab R2023a (Mathworks, Natick, Massachu-161 

setts) and the higuchi_fractal_dimension.m script of the Complexity toolbox 162 

(https://github.com/kayjann/complexity/tree/master) and performed calculations on UBELIX 163 

(http://www.id.unibe.ch/hpc), the HPC cluster at the University of Bern.   164 

The signal in each voxel 𝑥 of rs-fMRI with 𝑁 = 480 time points is defined as a time sequence 165 

𝑥(1), 𝑥(2), … , 𝑥(𝑁). From this time sequence, we calculated self-similar time sequences 166 

𝑋𝑚
𝑘 : 𝑥(𝑚), 𝑥(𝑚 + 𝑘), 𝑥(𝑚 + 2𝑘), … , 𝑥(𝑚 + int [

𝑁−𝑚

𝑘
] 𝑘) for 𝑘 ∈ {1, … , 𝑘𝑚𝑎𝑥} and 𝑚 ∈167 

{1, … , 𝑘}. Parameter 𝑘 is the time interval and 𝑘𝑚𝑎𝑥 is a free parameter which we defined as 168 

𝑘𝑚𝑎𝑥 = 5. The formula 𝑧 = int [
𝑁−𝑚

𝑘
] is defined as the upper border of total in time intervals 169 
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of a sequence with length 𝑘 with int as the integer part of the fraction. For each time sequence 170 

𝑋𝑚
𝑘  we computed the length 𝐿𝑚(𝑘) =

𝑁−1

𝑧𝑘2
(∑ |𝑥(𝑚 + 𝑖𝑘) − 𝑥(𝑚 + (𝑖 − 1)𝑘)|𝑧

𝑖=1 ). The mean 171 

curve length for each time interval 𝑘 = 1, … , 𝑘𝑚𝑎𝑥 was calculated as 𝐿(𝑘) =
∑ 𝐿𝑚(𝑘)𝑘

𝑚=1

𝑘
. HFD 172 

is defined as the best fitting function the double logarithmic dataset {ln(𝐿(𝑘)) , ln (1/𝑘)}. See 173 

figure 1. 174 

For computation of anterior and posterior hippocampi, we used the uncal apex as a standard for 175 

landmark-based segmentation of the bilateral hippocampi obtained by the Automatic Anatom-176 

ical Labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002) by defining a separation plane in 177 

standard MNI space of y = -21 (Bracht et al., 2023; Poppenk et al., 2013). We extracted mean 178 

values of the anterior and posterior bilateral hippocampi for HFD using Matlab. 179 

 180 

Calculation of fractal dimension using structural imaging 181 

We performed structural MRI data pre-processing of MP2RAGE images using the Computa-182 

tional Anatomy Toolbox (CAT12, http://www.neuro.unijena.de/cat/). We used standard fully 183 

automated pipelines for processing surface-based morphometry and reconstruction of the sur-184 

face (Dahnke et al., 2013; Gaser et al., 2022). For measurement of FD-CM, CAT12 imple-185 

mented an approach using spherical harmonic reconstructions (Yotter et al., 2011a; Yotter et 186 

al., 2011b). The surface shape of the brain was reconstructed multiple times by increasing band-187 

width of frequency of spherical harmonic reconstructions. Local FD-CM was calculated by 188 

finding the slope of a double logarithmic plot regressing area versus dimension with pairs 189 

{ln(surface area) , ln (scale of measurement)}. Prior to the second-level analyses, local FD-190 

CM information was re-parameterized into a standard coordinate system across all subjects and 191 

smoothed with a recommended large Gaussian full width at half maximum kernel of 20 mm. 192 

See figure 2. 193 
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Statistical analyses 194 

Primary outcome measure 195 

We used the Statistical Package for Social Sciences SPSS 29.0 (SPSS, Inc., Chicago, Illinois) 196 

to analyze HFD. We measured reliability of hippocampal HFD measurements within HC using 197 

Cronbach’s α and intraclass correlation coefficient (ICC) (Vaz et al., 2013). To investigate if 198 

time effects between the 2 MRI-scans differ between ECT-patients and HC, two separate re-199 

peated measures ANCOVAs with the independent variable group (ECT, HC), the within subject 200 

factors timepoint (baseline, follow-up) and hemisphere (left, right), the covariates age and sex 201 

and the dependent variables HFD (anterior and posterior hippocampus) were calculated. Sig-202 

nificant group × time effects were followed up using post hoc paired t-tests comparing HFD. 203 

 204 

Secondary outcome measures 205 

To investigate if there are associations between HFD changes over time and clinical improve-206 

ment (relative changes between baseline (bl) and follow-up (fu): HAMD%∆ =207 

HAMD𝑏𝑙−HAMD𝑓𝑢

HAMD𝑏𝑙
× 100%.) within patients, we calculated exploratory Spearman correlations.  208 

To investigate the predictive value of baseline hippocampal HFD, we performed 4 separate 209 

regression analyses (anterior, posterior, left and right hippocampi), adjusting for age, sex and 210 

global HFD. P-values were Bonferroni corrected (
𝑝

4
). 211 

To determine the predictive value of baseline FD-CM for HAMD reduction during the ECT-212 

series a whole-brain multiple regression analysis was performed using baseline measures of 213 

FD-CM, adjusting age, sex and total intracranial volume, as covariates of no interest. Multiple 214 

regression was performed using the cortical parcellations of the Destrieux (aparc.a2009s) atlas 215 

(Destrieux et al., 2010). Inference statistics were done with a peak-level threshold of p < 0.05 216 

and a Holm-Bonferroni correction of p < 0.05. 217 
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 218 

Additional exploratory analyses 219 

In addition, we performed exploratory analyses regarding group differences at baseline, asso-220 

ciations between the complexity measures HFD, FD-CM, and conventional structural and func-221 

tional neuroimaging measures, and the predictive value of FD-CM on hippocampal HFD-222 

changes (see supplementary material).  223 

 224 

Results 225 

Primary outcome measure 226 

All hippocampal HFD values within HC showed no change over time with a good Test–Retest 227 

reliability as measured by Cronbachs’α and ICC (see table 2). Longitudinal analyses revealed  228 

significant group × time interactions for anterior hippocampal HFD (F1,36 = 5.071, p < 0.037, 229 

η2 =0.123) and posterior hippocampal HFD (F1,36 = 6.001, p < 0.019, η2 =0.143). Follow up 230 

paired t-tests revealed significant increase of HFD values over time in the left anterior and 231 

bilateral posterior hippocampus within ECT patients (see table 3 and figure 3). 232 

 233 

Secondary outcome measures 234 

Within patients, clinical improvement in HAMD correlated positively with HFD increase in the 235 

left anterior hippocampus (r = 0.49, p = 0.03), but not in other hippocampal structures (see 236 

figure 4). Within ECT patients higher baseline FD-CM in the left temporal pole predicted clin-237 

ical improvement in the ECT group as assessed with reduction in total HAMD scores. See table 238 

4 and figure 5. Baseline hippocampal HFD values did not predict clinical improvement in 239 

HAMD after Bonferroni correction (see table 5). 240 

 241 
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Discussion 242 

Our study aimed to investigate neuroplasticity in patients with a current depressive episode 243 

undergoing ECT treatment by applying two complexity measurements of functional and struc-244 

tural MRI.  This is the first study that investigates changes in HFD in a neuropsychiatric popu-245 

lation using rs-fMRI. Through calculation of HFD, a functional metric of complexity, we 246 

demonstrated an ECT-induced increase in time-series complexity in bilateral hippocampi in 247 

patients. The increase in the right anterior hippocampus was positively associated with clinical 248 

improvement. In addition, by analyzing baseline FD-CM of structural data, we found that higher 249 

complexity of the left temporal pole was predictive for treatment response. 250 

 251 

Our main finding was an ECT-induced increase in time-series complexity in bilateral anterior 252 

and left posterior hippocampi as assessed with HFD. Increase in the HFD in the right anterior 253 

hippocampus was associated with reductions in overall depression severity. Our results suggest 254 

a differential role of the anterior and the posterior hippocampi for treatment outcome and com-255 

plement previous research separating these hippocampal compartments (Bracht et al., 2023; 256 

Leaver et al., 2019; Leaver et al., 2021). Our finding of an association between an increase of 257 

HFD in the right anterior hippocampus and clinical improvements fits the finding of (Leaver et 258 

al., 2021) who reported an ECT-induced volume increase in the right anterior hippocampus that 259 

was specific for ECT-treatment responders. However, Leaver et al. also reported that an in-260 

crease in cerebral blood flow (CBF) in ECT-responders was located in the right middle and left 261 

posterior hippocampus (Leaver et al., 2021). Our previous analysis of this sample revealed an 262 

association between volume increase of the right posterior hippocampus and clinical improve-263 

ment (Bracht et al., 2023). Thus, associations between volumetric and functional changes of 264 

hippocampal subcompartments and clinical response remain to be elucidated. 265 
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 266 

In addition to our finding of changes of HFD, we identified predictors of treatment outcome 267 

using FD-CM, a structural measure of complexity. Applying a multiple regression analysis of 268 

the whole brain, we found that higher FD-CM in the left temporal pole predicted clinical im-269 

provement following an ECT-index series. The identification of a structural measure located in 270 

the temporal pole makes sense because it is near the anterior hippocampus a region with con-271 

nection pathways that have been linked to ECT-treatment response (Kubicki et al., 2019) and 272 

to structural grey matter remodeling in treatment responders (Leaver et al., 2021). In addition, 273 

volume reductions in the temporal pole have been reported in patients with MDD and BD 274 

(Neves et al., 2015; Webb et al., 2014). FD-CM is a measure of complexity that incorporates 275 

structural features such as gyrification, folding frequency, sulcal depth, convolution and gyral 276 

shape. Sulcal patterns are mainly determined before birth and stable across the lifespan (Cachia 277 

et al., 2016; Tissier et al., 2018), and are linked to cognition (Cachia et al., 2021). Thus, there 278 

may be strong impact on individual developmental processes related to genetics (Huang et al., 279 

2023). If replicated in larger samples, FD-CM may contribute to distinguish ECT-treatment 280 

responders to non-responders in the future. 281 

 282 

Our results provide further support for concepts that link hippocampal neuroplasticity to ECT 283 

treatment response. However, neuroimaging does not provide definite answers on the underly-284 

ing neurobiological processes. Animal studies have demonstrated that seizures induced by elec-285 

troconvulsive shocks are associated with enhanced hippocampal proliferation of neural stem-286 

like cells, synapse formation, gliogenesis and angiogenesis (Chen et al., 2009; Hellsten et al., 287 

2005; Newton et al., 2006; Olesen et al., 2017; Scott et al., 2000; Segi-Nishida et al., 2008; 288 

Wennström et al., 2004). The exact mechanism through which ECT enhances neurogenesis is 289 

not fully understood, but it likely involves the stimulation of various neurotrophic factors (e.g. 290 
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brain-derived neurotrophic factor (BDNF), endothelial growth factor (VEGF) and basic fibro-291 

blast growth factor) which are believed to modulate hippocampal circuitries (Bolwig, 2011; 292 

Newton et al., 2003; Ueno et al., 2019). In humans, in contrast to the well-studied and replicated 293 

volumetric changes in the hippocampus, findings regarding neurotrophic factors are still lim-294 

ited. One recent ECT-study has shown, that hippocampal volume increase is particularly asso-295 

ciated with VEGF (Van Den Bossche et al., 2019). Furthermore, ECT-induced hippocampal 296 

volume increase may be related to the dose of ECT-sessions and to electrode placement. How-297 

ever, recent research suggests that these factors may not only be related to antidepressive re-298 

sponse but also to cognitive side effects (Argyelan et al., 2021; Bracht et al., 2023; Joshi et al., 299 

2016; Leaver et al., 2022; Subramanian et al., 2022). 300 

 301 

Overall, the search for further hippocampal and temporal lobe metrics continues to be of inter-302 

est, as classical morphology and connectivity analyses to date have not yielded a conclusive 303 

picture (Gryglewski et al., 2021; Oltedal et al., 2018). In our data, we used HFD, a measure of 304 

functional complexity that so far has not been applied to ECT-research. It is worth mentioning 305 

that identified changes did not correlate with volumetric increases after the ECT-index series 306 

(see supplementary material S2, and figure S2). This suggests that HFD-assessed functional 307 

complexity is independent from MRI-assessed volumetric measures. Furthermore, it supports 308 

assumptions that the neurobiology of treatment response is too complex to be simply attributed 309 

to volumetric measures. Further research is needed to understand what the HFD measure rep-310 

resents in rs-fMRI. The functional aspects of the hippocampus in ECT treatment are far from 311 

being fully understood. It has been proposed, that neuroplastic changes in the hippocampus and 312 

its interactions with other brain regions, such as the thalamocortical and cerebellar networks, 313 

may play a role in the antidepressant response to ECT (Leaver et al., 2021). In a previous study, 314 
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we proposed that remodeling of structural and functional connectivity between the hippocam-315 

pus and the self-referential default mode network may be associated with a reduction in rumi-316 

nation, a core feature of depression (Denier et al., 2023). Overall, it is likely that hippocampal 317 

communication behaviour is becoming more complex, which may be due to neurogenesis, syn-318 

aptogenesis and dendritogenesis (Sartorius et al., 2022). This in turn may be associated with 319 

clinical improvements in depression pathophysiology, which is likely related to hippocampal 320 

pathology (Bracht et al., 2022b; Schmaal et al., 2016). 321 

 322 

While to the best of our knowledge HFD has not been applied in rs-fMRI in mood disorders, 323 

researchers applied the Hurst Exponent (HE), another mathematical metric of complexity. By 324 

comparing HFD and HE, HFD focuses on the local self-similarity and roughness of a time 325 

series, and HE is more concerned with the long-range statistical dependence and self-similarity 326 

of data. They are used for different purposes and provide different insights into the structure 327 

and behaviour of time series data (Krakovská and Krakovská, 2016). By assessing temporal 328 

dynamic of brain activity HE of the ventromedial prefrontal cortex was positively associated 329 

with rumination and mediated the association between rumination and depression (Gao et al., 330 

2023). Using machine learning classification approaches the HE metric also helped to distin-331 

guish between major depression and healthy controls (Wei et al., 2013) and between remitted 332 

and current major depression (Jing et al., 2017). This highlights the potential of complexity 333 

measures for understanding the neurobiology of depression and remission plasticity.  334 

 335 

Our study has certain limitations. Firstly, the sample size is modest and findings warrant repli-336 

cation in larger data sets (e.g. combining data with help of consortia (Oltedal et al., 2017)). 337 

Secondly, the population of depressed patients exhibits heterogeneity in terms of diagnoses, 338 

encompassing both MDD and BD, as well as variations in clinical characteristics such as the 339 
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severity and duration of episode. However, this reflects clinical practice and therefore increases 340 

external validity. Thirdly, investigated measures of HFD and FD-CM are complex and do not 341 

allow for a straightforward neurobiological interpretation. Additional comprehensive research 342 

is imperative to deepen our comprehension of the interplay between HFD and FD-CM and 343 

conventional metrics such as cortical thickness or functional connectivity.  344 

 345 

In conclusion, this study marks the pioneering exploration of HFD and FD-CM in the context 346 

of mood disorders and ECT. Our findings revealed a bilateral HFD increase in anterior and 347 

posterior hippocampi. Notably, the increase in HFD in the right anterior hippocampus was as-348 

sociated with clinical improvements. In addition, FD-CM measurements in the left temporal 349 

pole may be predictive for treatment response. Collectively, the utilization of complexity meas-350 

urements such as HFD and FD-CM represent a novel and intriguing avenue for investigating 351 

neuropsychiatric disorders, particularly in patients undergoing ECT-treatment. Future studies 352 

with larger datasets are needed to further assess their predictive capabilities and associations 353 

with clinical improvements more comprehensively.  354 
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Table legends 601 

Table 1: Clinical characteristics of groups. See Denier et al., 2023 (Denier et al., 2023). 602 

 ECT  

(n=20) 

HC 

(n=20) 

Analyzes 

Age (years) 44.9 ± 12 43.6 ± 14 p = 0.75 

Sex (female, male)  8, 12 8, 12 p = 1.00 

Handedness 

(right, left, ambidextrous)  

15, 2, 3 17, 2, 1 p = 0.57 

HAMD-21 (Baseline) 21.4 ± 5.3 0.65 ± 1.0 p < 0.001 ** 

Duration of episode (months) 19.8 ± 17 n/a n/a 

Number of episodes 5.2 ± 4 n/a n/a 

Time between scans (days) 52.6 ± 24 61.2 ± 17 p = 0.20 

HAMD-21 (Follow up) 10.9 ± 8.1 0.25 ± 0.8 p < 0.001 ** 

n (remitter1) 9 n/a n/a 

n (responder or remitter2) 11 n/a n/a 

n (non-responder) 9 n/a n/a 

 603 

Demographic and clinical variables were compared between ECT and healthy controls using 604 

an independent t-tests and χ2 tests.  Abbreviations: ECT: electroconvulsive therapy; HC: healthy 605 

controls; 1 remitter: HAMD-21 < 8 points; 2 responder or remitter: HAMD-21 reduction > 606 

50%; n/a: not applicable.  607 
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Table 2: Test-Retest reliability for hippocampal HFD in healthy controls 608 

HFD T1 mean (SD) T2 mean (SD) Cronbach’s α ICC | ∆ Mean | | ∆ SD | 

Ant. hippo-

campus left 
1.928 (0.043) 1.935 (0.05) 0.844 0.732 0.0069 0.0344 

Ant. hippo-

campus right 
1.923 (0.046) 1.927 (0.054) 0.837 0.72 0.0041 0.0375 

Post. hippo-

campus left 
1.933 (0.037) 1.937 (0.05) 0.868 0.767 0.0045 0.03 

Post. hippo-

campus right 
1.927 (0.038) 1.933 (0.045) 0.825 0.702 0.0052 0.0321 

 609 

HFD: Higuchi’s fractal dimension; ICC: intraclass correlation coefficient; SD: standard devia-610 

tion; T1: first MRI scan; T2: second MRI scan; ∆: difference.  611 
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Table 3: Post hoc paired t-tests for anterior and posterior hippocampal HFD in baseline vs. 612 

follow-up. 613 

Hemisphere ECT HC 

HFD of anterior hippocampus 

left T19 = -2.240, p = 0.037 T19 = -0.895, p = 0.554 

right T19 = -1.617, p = 0.122 T19 = -0.495, p = 0.627 

HFD of posterior hippocampus 

left T19 = -2.166, p = 0.043 T19 = -0.667, p = 0.513 

right T19 = -2.303, p = 0.033 T19 = -0.724, p = 0.478 

  614 
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Table 4: Significant association of clinical improvement (%∆ HAMD) and baseline FD-CM. 615 

Direction Region 

(aparc_a2009s) 

Hemisphere T-value Holm-Bonfer-

roni p-value 

positive temporal pole Left 3.324 0.020 

negative none    

 616 

aparc.a2009s: Destrieux atlas.  617 
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Table 5: Association of clinical improvement (%∆ HAMD) and baseline HFD. 618 

Baseline HFD T-value p-value Bonferroni correction 
𝒑

𝟒
 

Anterior hippocampus left -1.805 0.091 0.364 

Anterior hippocampus right -2.305 0.036* 0.144 

Posterior hippocampus left -2.351 0.033* 0.132 

Posterior hippocampus right -1.339 0.201 0.804 

 619 

*p < 0.05  620 
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Figure 1: HFD distribution and visualization in a sample subject. 621 

 622 

A: Color-coded HFD map of grey matter. B: Binary masks of anterior (red) and posterior (blue) 623 

parts of the hippocampi. C: HFD Histogram of total grey matter and anterior/posterior part of 624 

the hippocampi. L: left; MNI: Montreal Neurological Institute space.  625 
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Figure 2: Overall mean of FD-CM. 626 

 627 

 628 

LH: left hemisphere; RH: right hemisphere.  629 
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Figure 3: Hippocampal group differences in HFD. 630 

  631 
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Figure 4: Positive association of clinical improvement and increase in HFD in the right anterior 632 

hippocampus. 633 

  634 
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Figure 5: Positive association of the baseline FD-CM of the temporal pole and clinical im-635 

provement. 636 

 637 
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