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Abstract 
Cancer poses a significant public health challenge, and accurate tools are crucial for effective 

intervention, especially in high-risk areas. The North West of England, historically identified as a 

region with high cancer incidence, has become a focus for public health initiatives. This study aims to 

analyse cancer risk factors, demographic trends and spatial patterns in this region by employing a 

novel spatial joint modelling framework designed to account for large frequencies of left-censored 

data. 

Cancer diagnoses were collected at the postcode sector level. The dataset was left-censored due to 

confidentiality issues, and categorised as interval censored. Demographic and behavioural factors, 

alongside socio-economic variables, both at individual and geographic unit levels, were obtained 

from the linkage of primary and secondary health data and various open source datasets. An 

ecological investigation was conducted using joint spatial modelling on nine cancer types (breast, 

colorectal, gynaecology, haematology, head and neck, lung, skin, upper GI, urology), for which 

explanatory factors were selected by employing an accelerated failure model with lognormal 

distribution. Post-processing included principal components analysis and hierarchical clustering to 

delineate geographic areas with similar spatial patterns of different cancer types. 

The study included 15,506 cancer diagnoses from 2017 to 2022, with the highest incidence in skin, 

breast and urology cancers. Preliminary censoring adjustments reduced censored records from 86% 

to 60%. Factors such as age, ethnicity, frailty and comorbidities were associated with cancer risk. The 

analysis identified 22 relevant variables, with comorbidities and ethnicity being prominent. The 

spatial distribution of the risk and cumulative risk of the cancer types revealed regional variations, 

with five clusters identified. Rural areas were the least affected by cancer and Barrow-in-Furness 

was the area with the highest cancer risk. 
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This study emphasizes the need for targeted interventions addressing health inequalities in different 

geographical regions. The findings suggest the need for tailored public health interventions, 

considering specific risk factors and socio-economic disparities. Policymakers can utilize the spatial 

patterns identified to allocate resources effectively and implement targeted cancer prevention 

programmes. 
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Introduction 
Geographic mapping is an essential public health tool that can identify spatial patterns of disease 

and differences in disease diagnosis, burden and mortality across one or more regions (Downing et 

al., 2008). This includes geographical distribution incidence, prevalence, survival and relative risks. 

Maps can be used for prevention and control programmes, and prioritisation of intervention, and 

services management, for example, by targeting high risk communities, but also to investigate the 

aetiology of a disease (DeChello et al., 2006). 

The advantages of disease mapping can be enhanced by employing syndemic frameworks where 

multiple diseases that share common risk factors are modelled and mapped jointly (Downing et al., 

2008). A geographic syndemic framework is composed of two or more geographically co-occurring 

diseases that interact with each other and the environment (in the ecological sense) (Shrestha et al., 

2020). This framework requires shared risk factors or common components such as those defining 

the spatial variation of the diseases, but allows for other risk factors or components to exist at the 

individual disease level. 

Cancers are an ideal candidate disease complex to be analysed by syndemic frameworks due to the 

shared risk factors of different cancer types (socio-demographic, anthropometric and lifestyle 

factors), and their common empirical geographical patterns (Jahan et al., 2020, Gomez-Rubio et al., 

2019). Methodologically, syndemic frameworks can be analysed by employing joint models whose 

joint component can include the risk factors affecting the average risk (named fixed effects) of the 

cancers and/or variables influencing the variability of the cancers (named random effects, as for 

example, spatial, temporal and spatial–temporal autocorrelations) caused by the dependency and 

association between measurements in space and/or time (Król et al., 2016). It has been shown in 

other studies that joint modelling results in better performance than individual models with an 

independent set of random effects (Wah et al., 2020, Kouame et al., 2023). Shared random effects 

can identify geographic areas with unmeasured or unknown risk factors that are common for 

different cancers among multiple population groups for gender, ethnicity and age distributions (Wah 

et al., 2020).  

Providing accurate and advanced public health tools and information to tackle cancer morbidity and 

mortality are particularly needed in the areas at most risk for cancer occurrence. The North West of 

England is one of these areas. Historically, in the scientific literature, the North West has been 

identified as one of the regions most affected by cancer in England. In fact, it had the highest oral 

cancer incidence rates in the period 1990-1999 (for both males and females driven by the over 45 

years old) (Conway et al., 2006); the highest uveal melanoma admission rates between 1999-2010 

(Keenan et al., 2012) with Lancashire also experiencing the highest cutaneous melanoma; the second 

highest glioblastoma (a fast growing type of brain tumour) incidence and the lowest survival in 2007-

2011 (Brodbelt et al., 2015); higher incidence (2008-2010) and mortality (2009-2011) rates, 

compared to England, of head and neck cancer in the Merseyside and Cheshire region (Taib et al., 

2018); and finally the lowest incidence of basal cell carcinoma (the most common skin cancer) 

between 2004 and 2010 (Musah et al., 2013). Compared with London, the North West of England 

had a higher incidence rate for liver cancer subtypes hepatocellular carcinoma and intrahepatic 

cholangiocarcinoma between 2008 and 2018 (Liao et al., 2023); while compared to the whole UK, 

the North of England had the highest rates of lung cancer in non-smokers for men and women 

during the period 1998 to 2007 (Rait and Horsfall, 2020).  

Morecambe Bay and South Cumbria, the focus of the present study, have been recognized as 

priority areas for public health initiatives, due to poor health outcomes for some portions of their 
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populations. According to a recent report on coastal towns (Asthana and Gibson, 2021), 20% of 

people smoke in Morecambe (16.6% nationally), a town of almost 33,000 inhabitants. Further, 

residents have high rates of hospital admission for alcohol-related harm, and are more likely to have 

hypertension or depression than the national average, with a quarter having a limiting, long-term 

illness or disability, significantly more than the national average. In addition, Morecambe has worse 

values for all emergency hospital admission indicators, and higher standardised mortality ratios for 

all ages and under 75s.  According to the same study, people in Morecambe are more likely to have 

lung cancer, peripheral artery disease, COPD, dementia, stroke, coronary heart disease, kidney 

disease, epilepsy and diabetes than the national averages. Deprivation rates are significantly worse 

than the England average.  

Morecambe Bay and South Cumbria area also notable for the presence of nuclear power stations at 

Heysham in Lancashire and Sellafield in Cumbria. The latter raised concerns in 1957 after an 

uncontrolled release of iodine-131 into the atmosphere; the health consequences of this event, such 

as an possible increase in cancers, have been debated with most studies not finding evidence for 

increased cancer risk (McNally et al., 2016, Bunch et al., 2014b). Similar results were found for other 

point exposures (where the exposure is fixed at a location), including powerlines (Bunch et al., 

2014a, Elliott et al., 2013, Bithell et al., 2013, Stark et al., 2007, Sehmer et al., 2014). 

Socioeconomic differences in incidence and survival due to environment, lifestyle, biological effects, 

access to health care and health seeking behaviour, exist for different cancers even between 

neighbouring geographical areas (Phillips et al., 2019) and in particular for breast, cervix, lung and 

malignant melanoma (Shack et al., 2008). However, this has not been established for childhood 

leukaemia prevalence in 1993–1994 in England, Wales, and Scotland (Smith et al., 2006), or 

colorectal cancer survival between 1991 and 1997 in Bolton (North West of England) (Lyratzopoulos 

et al., 2004), although other studies have shown an association with survival and uptake of screening 

(Mansouri et al., 2013, McCaffery et al., 2002). An inverse socio-economic gradient was found for 

non-melanoma skin cancer rates in different studies covering Ireland (1994-2003) (Carsin et al., 

2011), England (2006-2008) (Wheeler et al., 2013), and the whole of the UK (2004-2010) (Musah et 

al., 2013), and for breast cancer incidence in Wales (1985-2012)(Abdulrahman, 2014). 

Given the complexity of relationships between demographic, behavioural and socio-economic 

conditions, and cancer morbidity measures, evaluation of geographical risk must consider the local 

scale factors influencing cancer dynamics. Variation within the study region, apart from revealing 

important local differences in risk can, in turn, provide aetiological clues. In the present study, we 

developed a Bayesian hierarchical joint spatial analysis for left-censored counts of newly diagnosed 

cancer types (censored to remove patients’ identifiability), provided for each postcode sector, to 

investigate the variation in each cancer risk, joint cancer risk and cancers’ correlations, across the 

Morecambe Bay region in the North West of England. 

 

Data 

Study area 
The study area is Morecambe Bay in the North West of England. The Morecambe Bay study area was 

defined using the limits of the Morecambe Bay ex Clinical Commissioning Group (Figure 1, red 

border) to simplify data acquisition and homogenisation. CCGs formed the lowest level of the health 

geography hierarchy in England which was introduced by the Health and Social Care Act 2012. Since 

patients were recruited from a larger region (Figure 1, black border), the study area was extended to 

include these patients. 
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In 2000, Morecambe Bay ex CCG had a population of 334,287. The Index of Multiple Deprivation of 

2019 ranked Morecambe Bay CCG 99th out of 191, but 53rd for its proportion of Lower Super Output 

Areas (LSOAs) in the 10% most deprived LSOAs in England1. A lower super output area typically has 

between 400 and 1,200 households and a resident population of between 1,000 and 3,000 

residents2. 

The age distribution of Morecambe Bay ex CCG is reported in Supplementary File 1. 

 

 

Figure 1. Morecambe Bay ex CCG (red border) and study area (black border). Basemap from 

openstreetmap under the Open Database licence (https://www.openstreetmap.org/copyright), 

Microsoft, Facebook Inc and its affiliates, and Esri Community Maps contributors. Map layer by Esri. 

 

Study design and data collection 
An ecological study design was used for this research. The primary outcome is the 6-months new 

cancer diagnosis count by cancer type from January 2017 to December 2022 (for a total of 12 

temporal measurements). The data were extracted in August 2023. The geographic unit of analysis is 

the postcode sector which includes the first part of the postcode (postcode district), the single 

space, and the first character of the second part of the postcode (inward code)3, for a total of 75 

postcode sectors. The same data were also provided at Local Authority district level, for a total of 13 

districts. The data were provided by University Hospitals of Morecambe Bay for the Morecambe Bay 

ex CCG extended study area (Figure 1). 

Cancers were classified into different types by their anatomic location (site)(Rachet et al., 2008). 

Nine cancer types were considered in this study: lung, skin, breast, colorectal, haematology, upper 

gastrointestinal (upper GI), urology, head and neck and gynaecology. Sarcoma, brain and central 

 
1 https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019 
2 ttps://www.ons.gov.uk/methodology/geography/ukgeographies/censusgeographies/census2021geographies 
3 https://www.ons.gov.uk/methodology/geography/ukgeographies/postalgeography 
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nervous system cancers were excluded because they were fully censored. The ICD10 Codes used to 

identify each cancer by its tumour site are reported in Supplementary File 2. 

Lung cancer contributes to the largest number of cancer deaths in the world (Rait and Horsfall, 2020) 

while skin cancer is the most common in the general population (Saleh et al., 2017), although 

prostate cancer is the most common in men, and breast cancer in female (Nogueira et al., 2019). 

After lung cancer, colorectal cancer is the second highest cause of cancer deaths in the United 

Kingdom (Lal et al., 2020). Haematological cancers are the third largest cancer killers in the UK4 and 

increasingly important worldwide, with 1.3 million new cases in 2020 and 700,000 deaths (Chen et 

al., 2022). Within the upper GI cancers, oesophageal cancer in the UK has one of the highest age-

standardised rates within the oesophageal cancers world wide (Arnold et al., 2020). Head and neck 

cancer, a diverse group of more than 30 different subsites, is the 6th most common cancer 

worldwide and one of the most debilitating, although it constitutes only 3% of all cancers in the UK 

(Taib et al., 2018). Finally, every year in the UK, more than 21 000 women (5% of all cancers) are 

diagnosed with a gynaecological cancer and around 8000 die5 (Knapp et al., 2021). 

 

Censored cancers 
Public health data, such as new cancer diagnoses, are often left-censored due to confidentiality 

issues. The postcode sector and Local Authority district count data used here, of cancer new 

diagnosis by type, were censored, with values less than or equal to 5 replaced by the words ‘less 

than or equal to 5’. However, because zero was not included in the censoring, it was more 

appropriate to describe the censoring as interval censoring, with the censored values being larger 

than 0 and smaller than 6 (Wong and Yu, 1999). This means that the dataset contains nonignorable 

or ‘missing not random’ values (Leacy et al., 2017). In other words, the missing data isn’t just 

randomly scattered throughout the dataset, but instead, there’s a pattern. To handle this, it was 

necessary to make statistical assumptions on the distribution of the missing data in order to 

estimate the missing values. 

 

Exposure and predictor variables 
The following demographic and behavioural factors aggregated by postcode sector and provided as 

counts of patients by cancer type were obtained from the University Hospital of Morecambe Bay. 

These factors acquired by linking primary and secondary data are: 

• age group;  

• gender; 

• ethnicity (African, any other Asian background, any other black background, any other ethnic 

group, any other mixed background, any other white background, Asian and Chinese, British, 

British Asian, Caribbean, Chinese, Chinese and white, English, Filipino, Indian, Irish, Italian, 

Northern-Irish, not known, other mixed white, other white or white unspecified, other white 

European, Pakistani, Polish, Scottish, Welsh, white and Asian, white and black African, white 

and black Caribbean); 

• frailty score (fit, mild, moderate and severe); 

• smoking information (never smoked, ex smoker, current smoker, unknown); 

 
4 https://bloodcancer.org.uk/news/blood-cancer-facts/# 
5 https://www.macmillan.org.uk/about-us/what-we-do/research/cancer-statistics-fact-sheet# 
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• co-morbidities (chronic kidney disease and stage, chronic obstructive pulmonary disease, 

congestive heart failure, coronary heart disease, depression, anxiety, hypertension, diabetes 

type and COVID19). 

In addition, and for each local authority other factors were extracted from the following datasets: 

police crime reports (from data.police.uk), household data (Office of National Statistics, Census of 

2011), the index of multiple deprivation (Ministry for Housing, Communities, and Local 

Government), and place-based longitudinal data which includes health, social and behavioural 

variables (pldr.org). The full list of the 787 variables included in the analyses is available in 

Supplementary File 3.  

The Index of Multiple Deprivation (IMD) is the official measure of relative deprivation for LSOAs in 

England. Every LSOA in England is ranked from 1 (most deprived or poor) to 5 (quintile) or 10 (decile) 

(least deprived or most affluent), but there is no definitive cut-off below which an area is considered 

‘deprived’ (Rogers et al., 2019). 

While linked primary and secondary data were available at postcode sector level, the remainder of 

the data were available at a coarser resolution (LA or LSOA), as common in geographic health 

analyses (McNally et al., 2003, Manda et al., 2009, Wheeler et al., 2013). Population estimates were 

required for calculating cancer risk and rates. These were obtained at LSOA level from the 2011 

Census for England and Wales. 

 

Statistical analyses 
The current analysis incorporated an ecological investigation to assess cancer risk at individual and 

population level exposures (Chidumwa et al., 2021). The first analysis reduced the number of 

censored cancers by combining local authority with postcode sector data. The next analysis 

identified important factors associated to cancers counts, followed by joint spatial modelling. Finally, 

we calculated summary statistics and produced geographic cancer risk maps for individual cancer 

type, cumulative risk for all cancers, and correlated cancer risks. 

 

Censoring reduction 
Before any statistical analyses started, the number of censored data was reduced by combining the 

Local Authority (LA) with the postcode sector (PS) data. The following rules were used (for each 

cancer type and time period): 

a) if within an LA (containing multiple PS) only one PS was censored, then the number of 

patients in the censored PS was obtained by the difference of the number of diagnosis in the 

LA minus the sum of patients in the non-censored PS belonging to that LA; 

b) if the number of diagnosis in the LA (or the residual number of diagnosis after deducting 

diagnosis from non-censored PS) was equal to the number of censored PS, then each 

censored PS was associated with one diagnosis; 

c) if the number of diagnosis in the LA (or the residual number of diagnosis after deducting 

diagnosis from non-censored PS) is equal to five times the number of censored PS, then each 

censored PS was associated with five diagnoses. 

In all the other cases, the number of censored patients in each PS and time period, was converted to 

1 to 2, 1 to 3, 1 to 4 and 1 to 5 censoring level depending on the total number or residual number of 
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diagnoses at the LA unit level. For example, if an LA had nine censored diagnosis and three censored 

PS, each censored PS will have a censoring level of 1 to 5 (since it is still possible for one PS to have 5 

diagnoses). However, if the LA had 5 diagnoses, then the three censored PS will be censored 1 to 3 

since none of them can have all five or four diagnoses. 

 

Descriptive statistics 
Due to the high proportion of censoring in the cancer data, it was not possible to provide statistics to 

describe the demographic (age, sex, ethnicity), socio-economic and clinical characteristics 

(comorbidities and frailty) of the real study population. Post-analyses statistics were provided as 

crude cancer rates by cancer type, and age-adjusted rates averaged by postcode sector and 6 

months period (age-specific incidence rate). We considered two age groups, 0-50 and 50+ because 

the level of censoring did not allow to create multiple age thresholds. A single age threshold was 

used in other cancer research (Downing et al., 2010, Shack et al., 2008). The standard errors of the 

incidence and age-adjusted incidence rates were calculated using the Poisson approximation 

method (Boyle and Parkin, 1991). 

 

Variable selection 
Using a Bayesian joint model for variables selection would have required exceptionally lengthy 

computations. For this reason, we employed a deterministic method that can account for censored 

and clustered data within the entire cancer dataset.  

A stepwise selection method was applied to an accelerated failure model with lognormal 

distribution. The accelerated failure model allows the inclusion of censored data as the outcome 

(Kalbfleisch and Prentice, 2011), while cancer type and postcode sector were used as clusters for 

robust variance computation (to account for correlation within each cancer type). For the cancer 

counts C, the accelerated failure model is: 

log 𝐶𝑖,𝑗 =  𝛽0 + 𝛃1𝐗𝑖,𝑗 + 𝑢𝑖 + 𝛿𝜀𝑖,𝑗  

 

where β0 is the intercept, β1 is a vector of regression coefficients, u is the random effect, δ is scale 

parameter and, ε is the error distribution assumed to have a normal distribution. The subscript i 

refers to post-code sector at a given time period, and j to the cancer type. 

The accelerated failure model was estimated using the maximum likelihood estimation method. The 

model's performance was assessed using the Bayesian Information Criterion (BIC) and the best 

model was chosen as the one with the lowest BIC. The described model is mostly used in parametric 

mixed survival problems with left truncated data or Tobit regression, where the time to occurrence 

of an event was substituted here with the number of patients with a cancer type. The use of the 

proposed method for non-survival data has been described elsewhere (Kong and Nan, 2016).  

 

Inference and prediction 
The joint modelling of two or more cancers allows the identification of shared and divergent trends 

among the cancers in terms of geographic patterns and risk factors. Rather than treating a cancer as 

a proxy for unmeasured risk factors affecting another cancer, the proposed model treats the 
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different cancer types symmetrically and assumes that the area-specific relative risks of each depend 

on a shared latent component plus additional latent components specific to one or other cancer 

types (Best and Hansell, 2009). The joint model employed in this study is the shared component 

model (Cai et al., 2020) for Poisson distributed data.  

The log of the number of cases observed in each postcode sector was the dependent variable, and 

the individual and ecological variables obtained from the variable selection step were the 

independent variables. The joint model is spatially explicit (by modelling the spatial autocorrelation 

common to all the cancer types) and Bayesian, and for these reasons adapted to stabilise risk 

estimates based on small numbers at postcode sector level (Jarup et al., 2002). This means that the 

resulting relative risk estimate for each postcode sector is a form of smoothed average of the 

observed risk and the mean relative risk in the neighbouring postcode sectors conditioned to a set of 

prior assumptions.  

The common shared component is the spatial dependence, which results from common factors 

interacting with the cancers, but not represented by independent variables. If spatial dependence is 

disregarded, inferences are likely to be biased (Nogueira et al., 2019). 

Since the cancer counts are censored, the joint model’s maximum likelihood estimation method 

integrates the censored data into the likelihood function. Therefore, the observed cancers’ counts 

are simultaneously modelled with the censored data. Within this approach the method first models 

the complete response values, including both the observed and the unobserved values, and then 

models the censored values conditioned on the complete response values (Qu et al., 2023). To 

facilitate the computation of the spatial dependence structure the data were modelled using a log 

Gaussian process (Qu et al., 2023). The main advantage of the likelihood-based approach is that it 

utilizes all the information available (Leung et al., 1997). 

Formally, let Yj,s represent the observed (including censored) number of cases of cancer type j at 

postcode sector s. The joint modelling follows the multivariate spatial Bayesian log-Gaussian model 

for left-censored data proposed by Sahoo and colleagues (Sahoo and Hazra, 2021) adapted to 

Poisson (Po) processes (Gomez-Rubio et al., 2019) and to account for censoring levels varying among 

locations. Y follows a Poisson distribution with mean Ej,sθj,s: 

𝑌𝑗,𝑠|𝜃𝑗,𝑠~𝑃𝑜(𝐸𝑗,𝑠𝜃𝑗,𝑠) 

 

where E is the expected number of cases and θ is the relative risk modelled using a Poisson log-linear 

model within a multivariate spatial Bayesian framework: 

log(𝜃𝑗,𝑠) ~𝛽𝑗𝑿𝑠 + z𝑗,𝑠 + 𝜀𝑗,𝑠  with j=1,2, …, J  

 

where X is the (full rank) design matrix containing the covariate values (obtained from the 
variable selection step described above and common to all cancers), β are unknown 
regression coefficients, z is a multivariate spatial zero mean Gaussian process, at every 
location s and for each joint process j with non-singular covariance matrix ∑: 

𝚺 = 𝜎2𝚿 𝑎𝑛𝑑 𝚿 = (𝜈2𝚰 + 𝚱(𝜙)),   𝜈2 =
𝜏2

𝜎2  
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where Κ is the exponential spatial correlation matrix, ν is the ratio between the spatial 
variance τ2 and the total variance σ2, and Ι is the identity matrix. Finally, ε is the multivariate 
nugget effect (pure error term), zero-mean normally distributed with covariance (1- ν2)∑. 

The data of size n consist of m exact observations and n-m (censored) interval observations 
at locations s*. Therefore, 𝑌𝑗

𝑐 is left-censored with censoring level uj,s*, with uj,s* being one of 

the following integer intervals: ⟦1,2⟧, ⟦1,3⟧, ⟦1,4⟧ and ⟦1,5⟧,  depending on the cancer type 
and location. 

The likelihood for censored spatial data of cancer j, in its generic form, is: 

ℒ𝑗(𝜃) = ∫ 𝑁𝑜𝑟𝑚𝑎𝑙𝐽(𝑦𝑗; 𝛽𝑗𝐗, 𝚺)𝑑𝑢𝑗
𝑢𝑗

 

 

The set of parameters and hyperparameters are: 

Θ = {𝛃, 𝚺, 𝜙, 𝜐, 𝜀, 𝐘𝑐 , 𝐘0} 

 

where Yc is the set of censored cancer observations and Y0 the set of cancers to be predicted. 
Inference on these parameters is based on Markov chain Monte Carlo (MCMC) sampling. The 
regression coefficients β are assumed to have normal priors with zero mean and ten standard 
deviations; the covariance Σ follows an Inverse-Wishart distribution with scale 0.01 and degrees of 
freedom 0.01I; the spatial range parameter 𝜙 is uniformely distributed between 0 and 50 km 
(approximately half of the maximum distance between two postcode-sectors); the ratio of spatial to 
total variance 𝜐 is uniformely distributed between its natural limits of 0 and 1; finally the pure error 
term 𝜀 is normally distributed with mean zero and variance 𝜐𝚺𝑠⨂𝚺, with Σs been the spatial 
covariance.  Censored values are inputted at every iteration from a Truncated-Normal distribution 
for each cancer type. In practice, by using conventional equations the truncated-normal distribution 
probability at each censored value is used to estimate the inputted binomial value (Horgan, 2019). 

Θ relative posteriors and full MCMC algorithm are described elsewhere (Sahoo and Hazra, 2021).  

We ran the MCMC for 100,000 iterations and discarded the first 20,000 iterations. The remaining 
rest of 80,000 iterations were thinned by keeping one every fifty. Convergence was assessed by a 
visual examination of trace plots. Results were based on posterior sample sizes sufficient to give 
Monte Carlo standard errors less than 5% of the posterior standard deviation for the parameters of 
interest (Best and Hansell, 2009) 

Predictions were made at the LSOA level. The following outcomes were mapped: 

1) cancer risk prevalence by type for the general population, over 50 years old and 50 years old 
or under; 

2) cancer cumulative risk prevalence by number of cancers for the general population; 

3) geographical correlation (co-regionalisation) between pairs of cancer types; 

4) cancers’ geographic clusters. 

All the outcomes are given in terms of model posterior means (Gomez-Rubio et al., 2019). 
Uncertainty is represented by the posterior standard deviation of the outcome or parameter of 
interest, with smaller values indicating more certainty in the inference of the parameter or the 
prediction of the outcome. Uncertainty enables a better understanding of the information produced 
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and more informed decision making based on this information. For example, large uncertainties may 
be dependent on the vaguely defined or non-informative assumptions made for the model, the 
absence of model components, and/or the lack of predictive capacity from the employed risk 
factors. As stressed by Roberts and colleagues (Roberts et al., 2016), ignoring and/or not 
understanding uncertainty information can result in misinterpretation of model outputs, 
substandard decision making, or disregard of important information due to its large uncertainty. To 
facilitate comparisons, all maps are shown on the same scale (Carsin et al., 2011). Finally, we carried 
out a mediational analysis (Tingley et al., 2014) to examine the effects of including each of the 
potential mediating variables in the individual-level cancer type generalised linear models on the 
odds ratios associated to each selected variable. 

 

Model performance and validation 
Model performance was assessed for each individual cancer type through the mean error and mean 
squared error difference between the observed and the predicted outcomes. To account for the 
complex parameterisation of the joint model and to evaluate the global and individual (each 
individual model for cancer type of the joint model) predictive accuracy we used two information 
criteria: Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC).  
Both measures are designed for Bayesian analyses. However, the WAIC averages over the posterior 
distribution rather than conditioning on a point estimate as in the DIC (Gelman et al., 2013) . WAIC 
often produces values with small differences between models with similar structure. Therefore, we 
decided to report both WAIC and DIC estimates to provide evidence of consensus between the two 
statistics. 

Finally, robustness of the model was assessed using cross-validation by leaving out 10% of the data 
for each cancer type. Validation assessment was carried out by measuring the Root Mean Square 
Error and the Mean Squared Deviation Ratio (Liao et al., 2022). 

 

Clustering 
Principal components analysis (PCA) was used to identify co-regionalisation between cancers and 
geographic cancer clusters. PCA was employed on the posterior predictions of the latent variable for 
each cancer type. Based on the first two principal components (explaining the greatest variability) a 
centroid hierarchical cluster analysis (Vichi et al., 2022) was employed to cluster the LSOAs based on 
similarity of the cancer patterns.  

 

Software 
All the analyses were performed in the R-cran software (R Core Team, 2023) using various packages 
and the authors’ written codes for model inference, predictions, and mapping. 

 

Results 

Descriptive statistics and censoring reduction 
During 2017–2022 the University Hospitals of Morecambe Bay recorded 15,506 individuals 
diagnosed with one of the nine cancer types in the Morecambe Bay ex CCG extended area. These 
cancer types were 4,599 skin, 2,450 urology, 2,076 breast, 1,606 colorectal, 1,535 lung, 1,039 upper 
GI, 992 haematology, 670 gynaecology, and 539 head and neck cancers. Our model predictions were 
accurate with 15,243 estimated cancers (an error of 1.7%). However, the accuracy was reduced for 
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upper GI (9.2% underestimation) and, to a lesser extent, relatively high for lung cancer (2.3% 
overestimation) (Table 1). 

 

Table 1. Predicted and real total number of diagnosed cancers, and relative rates, in the study area 

between 2017 and 2022. 95%CRL is the lower limit of the 95% credible interval for the model-

predicated cancer counts; 95%CRU is the upper limit of the 95% credible interval for the model-

predicated cancer counts. * data from the Office of National Statistics for the year 2017. ** data from 

Cancer Research UK for the period 2016-2018.  
Cancer counts 

 
Rates x 100,000 per year 

Cancer type Model 
predicted 

Real  Error 
(%) 

95%CRL 95%CRU 
 

Model Real  North 
West* 

England** 

Breast 2011 2076 3.13 1389 2181 
 

100.26 103.5 95 83 

Colorectal 1680 1606 -4.61 822 2200 
 

83.76 80.07 72 69 

Gynaecology 708 670 -5.67 490 994 
 

35.3 33.4 36 32 

Haematology 947 992 4.54 590 1131 
 

47.21 49.46 48 47 

Head and Neck 519 539 3.71 391 931 
 

25.88 26.87 28 18 

Lung 1570 1535 -2.28 1135 2009 
 

78.28 76.53 92 76 

Skin 4276 4599 7.02 3276 4922 
 

213.19 229.29 254 257 

Upper GI 943 1039 9.23 628 1145 
 

47.02 51.8 61 50 

Urology 2589 2450 -5.67 1999 2714 
 

129.08 122.15 108 98 

 

Table 2. Descriptive statistics for model-based cancer counts by cancer type per postcode sector and 6 

months period. Incidence refers to 1000 people. SD = standard deviation, SEI = standard error 

incidence, SEI50 standard error for incidence in 50 years old and under, SEIO50 = standard error for 

incidence in over 50 years old. Standard errors were estimated using a Poisson approximation method 

(see methods). 
Cancer type Mean  SD Incidence  Incidence 

for 50 and 
under 

Incidence 
for over 50 

SEI SEI50 SEIO50 

Breast 2.79 1.57 1.65 0.57 2.84 1.51 0.93 4.49 

Colorectal 2.33 0.8 1.38 0.24 2.65 1.21 0.52 6.13 

Gynaecology 0.98 0.47 0.58 0.16 0.82 0.46 0.35 1.34 

Haematology 1.31 0.51 0.78 0.15 1.33 0.55 0.41 1.84 

Head and Neck 0.95 0.45 0.56 0.14 0.69 0.42 0.35 1.28 

Lung 2.18 1.02 1.29 0.11 2.37 1.03 0.41 3.82 

Skin 9.55 6.06 5.68 0.81 12.41 5.34 1.28 17.77 

Upper GI 1.31 0.46 0.78 0.07 1.43 0.49 0.21 1.94 

Urology 3.59 2.07 2.13 0.32 4.53 1.87 0.71 6.17 

 

A direct comparison with cancer incidence at national and regional level was not possible because 
open-source data was available for different length of periods than the one considered in our study 
(Table 1): only available for one year from the Office of National Statistics, and slightly older data 
from Cancer Research UK (2016-2018). Compared to these official rates we found that the rates for 
breast, colorectal, haematology and urology cancers were larger in Morecambe Bay ex CCG 
extended area than in the North West and England. For urology, this difference was 24 new 
diagnoses every 100,000 more per year than in England and 14 more than in the North West. Skin 
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cancers were lower compared to the North West and England, with 25 new diagnoses per year less 
than in the North West, and 28 less than in England. 

 

Table 3. Summary of the number of associations between selected variables and cancer types. It is 

important to emphasise that the term ‘Protective factor’ does not have a biological or medical 

meaning, but it is an epidemiological term to represent negative association between the factor and 

the likelihood to be diagnosed with cancer. *The name of this variable is the same as the one reported 

in the 2011 Census for England and Wales. 
Factor Number of 

cancer types 

Risk 

factor 

Protective 

factor 

Chronic Kidney disease 6 5 1 

COVID19 6 4 2 

Smoker 5 3 2 

Age above 80 4 2 2 

Depression 4 2 2 

Diabetes 4 3 1 

White and Black Caribbean 4 4 0 

Ex Smoker 3 2 1 

Northern Irish (area) 3 1 2 

Any other Black background 3 3 0 

Other White background (area) 3 1 2 

Time 3 3 0 

Age 60 to 80 2 2 0 

British 2 2 0 

Congestive Heart Failure 2 1 1 

Coronary Heart Disease 2 2 0 

Frailty (number of fit) 2 0 2 

Inemployed, self employed (including fulltime students) one parent 

working (area)* 

2 0 2 

Scottish (area) 2 2 0 

Hypertension 1 1 0 

Pakistani 1 1 0 

Male Pakistani (area) 1 1 0 

Female age 25-49 mixed white and Asian (area)  1 1 0 

 

The capacity of the model to return accurate results was also attributable to the adopted 
preliminary censoring reduction step. In fact, this preliminary adjustment reduced the number of 
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censored records (one record containing the number of diagnoses for a cancer type in a postcode 
sector during a 6 months period) to up 86% (for cancer type ‘others’ not considered in this study). 
Head and neck cancer censored records reduced by 84% (from 366 censored records to only 57), but 
breast and colorectal of less than 25% (Supplementary File 4). 

As expected, all cancer types had a larger value of incidence in the over 50 years old group 
compared to the 50 years old and under group, with around a 20-fold difference for lung and upper 
GI; around 15-fold for skin and urology; and 11-fold for colorectal cancers. The largest incidence was 
in skin cancer, followed by urology, breast, colorectal and lung (all above 1 new case per 1000 
people per post-code sector every 6-months) (Table 2). Geographically, four postcode sectors 
experienced all 12 cancer types between 2017 and 2022; 72% of postcode sectors had at least 10 
cancer types during the same period (Supplementary File 5). 

 

Variable selection 
Variable selection reduced the initial 787 variables to 22. These variables, obtained from the best 

fitting model where all the cancer types are modelled simultaneously, can be grouped into three 

domains: demographic (age, frailty, ethnicity and comorbidities), behavioural (smoking status) and 

socio-economic (employment). Despite the absence of sex, all these domains are commonly 

associated with incident diagnosis of cancer (Liao, Coupland et al. 2023). Six out of 22 selected 

variables are area-based variables (or ecological variables) while the rest (16) are defined at the 

individual level (variables associated to cancer patients instead of the area where they live). 

Summary statistics for these 22 variables are provided in Supplementary File 6. In addition to these 

22 variables, time was also included to account for the presence of temporal trends (taking the 

overall number of variables to 23). When Time is a risk factor, it meant that from 2017 to 2022 there 

was an increase in cancer risk for those cancers that had time as important factor (breast, colorectal 

and urology). 

 

Inference and prediction: incidence and prevalence risk rates. 
Seventeen out of 23 factors were risk factors for one or more cancer types, with comorbidities such 

as ‘chronic kidney disease’ and ‘COVID19’ being statistically significant factors for six out of nine 

cancer types – associated to higher risk of diagnoses for five and four cancer types, respectively 

(Table 3). ‘Age above 80’, ‘depression’ and ‘congestive heart failure’ were risk factors and protective 

factors for the same number of cancer types; while being ‘fit’ or ‘inemployed, self employed with 

one parent working’ or ‘northern Irish’ were mostly protective factors.  

The odds ratios and relative credible intervals of the statistically significant variables for each cancer 

type are provided in Supplementary file 7. Increasing cancer incidence over time was found for the 

breast, colorectal and urology cancer types, with breast cancer types increasing faster than the other 

two cancer types. Being a current smoker or ex-smoker is usually associated to an increased risk of 

cancer diagnosis. However, ‘smoking’ was found protective for upper GI and gynaecology cancer 

types. Apart from breast cancer, all the other cancer types were associated to one or more variables 

belonging to the ethnicity categorisation. Fifteen times they appeared as a risk factor and only four 

times as protective. Large risks were found for ‘female age 25-49 mixed white and Asian’ for lung 

cancer type and for ‘any other black background’ for skin cancer type. ‘White and black Caribbean’ 

and ‘any other black background’ were the most common risk factors appearing statistically 

significant for four and three cancer types, respectively (Table 3). 
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Ethnicity and comorbidities may act as proxies for other socio-economic conditions. By employing a 

Poisson generalised linear model for any selected important factor (listed in Table 3) as the outcome 

and each one of the remaining 787 variables considered in this study as a predictor, we found that 

the selected variables were mostly associated to higher values of ecological variables such as Small 

Area Mental Health Index (meaning worst mental health conditions), unemployment, criminality 

(shoplifting, criminal damage) and lone parenting (Supplementary File 8). The Small Area Mental 

Health Index takes into consideration depression rates, incapacity benefit and employment support 

allowance for mental illness, prescription of antidepressant, and mental health related hospital 

attendances. In the mediation analysis, the risk factors of only two cancer types mediated other 

factors. For breast cancer the effect of diabetes was weakly influenced by ‘age over 60’ (coefficient 

of the average causal mediation effects for the variable 0.23, p-value = 0.04) and also by the 

‘Scottish ethnicity’ (coefficient -0.15, p-value = 0.04); for urology cancer, the ‘COVID19’ variable was 

weakly influenced by ‘never smoker’ (coefficient -0.09, p-value = 0.02) and ‘Scottish ethnicity’ 

(coefficient 0.32, p-value = 0.02). 

In Supplementary File 9, the maps for standardised risk prevalence of a cancer type in the 

Morecambe Bay ex CCG extended study area and more specifically for three regions (Morecambe 

and Lancaster, Barrow in Furness, and Kendal) are presented alongside their uncertainties. In these 

maps, areas indicated with low uncertainty risk are those for which the prediction is more accurate. 

LSOAs without colour are those where cancers were not recorded during 2017-2022. For all the 

cancer types, the North Cumbria and Forest of Bowland areas were generally at low risk, apart from 

Bentham, although associated with large uncertainty. Locally, Morecambe and Barrow-in-Furness 

suffer the highest risk prevalence for cancers, especially in areas such as Vickerstown (Barrow) and 

Torrisholme (Morecambe), which had all cancer types in the top ten of the areas ranked risks. 

When adjusted by age (Supplementary File 10), one LSOA (located in Westgate/White Lund in 

Morecambe) was in the top ten LSOAs for the risk of six of the cancer types in under 50 years old. 

For the over 50 years old, two LSOA areas were consistently in the top ten LSOAs for the risk of nine 

cancer types: Bowerham south and Freehold West in Lancaster. 
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Figure 2. Cumulative risk for number of cancer types for the Morecambe Bay ex CCG extended area 

(main) zoomed to (A) Barrow-in-Furness and (B) Morecambe and Lancaster. White polygons show no 

cases of cancer types during 2017-2022. Map created in R (sf and sp packages). 

 

Figure 2 presents the cumulative risk for the number of cancer types, with the maximum found in 
urban areas. Areas such as the Forest of Bowland, Yorkshire borders and Windermere West exibit 
the presence of most cancer types, but with low cumulative risk (less or equal to 10%, or in lay terms 
one in ten people was likely to get one of the nine cancer types during the 2017-2022 period). With 
the same number of cancer types, some areas in Morecambe, Lancaster and Barrow-in-Furness had 
up to six times more cumulative risk than Windemere West, Burton in Lonsdale or Quernmore. 

 

Inference and prediction: co-regionalisation. 
The correlation structure between cancer types was quantified implicitly. Moreover the 
correspondence between the correlation and co-regionalisation of any pair of cancer types’ spatial 
patterns and residuals were identified. 

Lung and skin cancer types were negatively correlated (spatial patterns not coincident) between 
themselves and between each of them and the rest of the cancer types (Figure 3). Apart from the 
negative associations with the lung and skin cancer types, breast cancer had no significant 
associations with any other cancer types. A positive association was found between the colorectal, 
haematology, upper GI and urology cancer types; and between colorectal, haematology, upper GI 
and head and neck cancer types. 

Spatially, most of the associations were homogeneous over the region, but not all of them. For 
example, between the colorectal, haematology, head and neck, gynaecology, upper GI and urology 
cancer types: some areas exhibited no association (e.g., Windemere), while being contiguous with 
areas with positive association (e.g., Windemere West). The positive associations between these 
cancer types were also found in both rural and urban areas (see co-regionalisation maps in 
Supplementary File 11). Correlations between upper GI and urology, upper GI and head and neck, 
upper GI and gynaecology, were found to be generally positive and homogeneous over the region. 

The common spatial range for all cancer types was estimated by the joint model to be 15.2 km (95% 
CI, 14.6–15.8). This shows a relatively moderate range of influence of the shared spatial component. 
For example, it allows for statistical dependence (or influence) between cancer types in Lancaster 
and Morecambe with Arnside and Silverdale, but not between Lancaster and Morecambe and 
Barrow-in-Furness. 
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Lung         

Skin         

Upper GI         

Figure 3. Median correlation between posterior samples of cancer types in the Morecambe Bay ex CCG 

extended area. Orange = no correlation; green = negative correlation (areas with high incidence in one 

cancer type have low incidence in the other cancer type); and red = positive correlation (both cancer 

types have high incidence in the same area). The correlation threshold is arbitrary: negative correlation 

is lower than -0.3; positive correlation is above 0.3 and no correlation (or weak correlation) is between 

-0.3 and 0.3.  

 

Clusters 
As described in the methods section, the first two principal components from the PCA of the 
posteriors for the nine cancer types were employed in conjunction with a centroid hierarchical 
clustering to cluster the LSOAs in the Morecambe Bay ex CCG extended area. The first two principal 
components explained 91% of the variance (64% PC1 and 27% PC2). The centroid hierarchical 
clustering identified five clusters (Figure 4): 

• Cluster 1 (rural). Large rural LSOAs with large, but generally younger population. Low level of 
comorbidities and smoking. General cancer risk low. 

• Cluster 2 (Windemere East to Coniston). Similar to Cluster 1, but with an older population 
and larger proportion of British ethnic group individuals compared to other clusters. High 
number of cancers with low-to-moderate risk. 

• Cluster 3 (Morecambe and Lancaster). This urban cluster is characterised by a high level of 
unemployment, and a high proportion of chronic diseases and mental health conditions. 
High number of cancers with moderate-to-high risk. 

• Cluster 4 (Dalton-in-Furness). This isolated cluster presents a high level of comorbidities in a 
generally younger population than the study area as a whole. High number of cancers with 
moderate risk. 

• Cluster 5 (Barrow-in-Furness). The worst cluster in terms of cancer risk prevalence. The local 
population is affected by high level of comorbidities, lower population density and a high 
level of smoking. High number of cancers with moderate-to-high risk. 
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Figure 4. Cancer type clustering by LSOA for the Morecambe Bay ex CCG extended area (main) zoomed 

to (A) Barrow-in-Furness and (B) Morecambe and Lancaster. White polygons were not clustered due to 

the absence of cases of cancer types during 2017-2022. Map created in R (sf and sp packages). 

 

Validation 
 

Table 4. Joint model validation statistics for all data and cross-validated data (indicated with *) 

Cancer type Mean 
error 

Mean 
squared 
error 

WAIC DIC Root Mean 
squared 
error* 

Mean Squared 
Deviation 
Ratio* 

Breast -1 1 -116.19 224.96 1 0.22 

Colorectal -0.8 0.93 -98.17 79.36 0.96 0.55 

Gynaecology -0.8 1.03 -93.71 69.92 1.01 2.02 

Haematology -0.86 0.86 -97.34 68.17 0.93 1.34 

Head and Neck -0.58 0.89 -91.14 68.21 0.94 0.79 

Lung -0.66 0.8 -98.45 128.61 0.89 0.31 

Skin -1.4 2.33 -103.44 156.94 1.52 0.32 

Upper GI -0.46 2.46 -88.62 69.77 1.57 4.92 

Urology -1.05 1.48 -99.56 77.64 1.21 3.3 

 

Model validation results indicate a precise joint model with an error of maximum of 2.5 cases on 
average per time period (Upper GI, mean squared error) (Table 4). Similar results were obtained 
when leaving out 10% of the data (root mean squared error and mean squared deviation ratio). The 
best fitting models based on the DIC and WAIC statistics were for the cancer types highly correlated 
to each other: gynaecology, haematology, head and neck and upper GI as shown elsewhere (Held et 
al., 2005). The DIC and WAIC results were consistent, although for the latter upper GI was the best 
fitting model (instead of haematology for DIC). 
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Discussion 
This is the first population-based study to investigate spatial patterns in multiple cancers in the 

Morecambe Bay area. It is possible to state with certainty that the nine cancer types considered in 

this research are co-regionalised in three quarters of the Morecambe Bay ex CCG extended area for 

the LSOAs where cancers were found between 2017 and 2022. 19% of LSOAs had only one cancer 

type during the study period. In addition, the rates for the breast, colorectal and urology cancer 

types rates were above England and North West rates for the 2017 and 2016-2018 periods 

respectively. The major difference was in urology cancer type with 14 new cases per 100,000 people 

per year more than in the North West and 24 new cases more than in England. In contrast, the rates 

for the lung, skin and upper GI cancer types were generally below the North West and England rates. 

Between these, skin cancer had 25 new cases per 100,000 people per year less than the rest of the 

North West. 

Estimated counts in censored areas can be considered accurate due to the good agreement between 
the real data and model predictions (error at individual cancer type up to 10%). The incidence rates 
were driven by the over 50 years old population since the incidence rates for the general population 
and those for the over 50s had the same ranking of cancer types. In the uder 50 year old population, 
skin cancer type remains the most common cancer followed by breast cancer type instead of 
urology, the second cancer for incidence in the over 50s. Also, in the under 50 group the least 
common cancer type was upper GI instead of head and neck cancer whose incidence was the lowest 
in the over 50 group. 

Apart from co-occurring, cancers tend to associate geographically with positive associations (co-
occurring with high risk prevalence) or negative associations (where one cancer has high risk 
prevalence, the other has low risk prevalence) (Chidumwa et al., 2021). The joint modelling 
implemented using a Bayesian hierarchical model enabled the analyses and calculation of the 
geographical correlations between any two cancer types since estimates were obtained from a 
common variance/covariance matrix updated during the MCMC computation, while adjusting for 
individual and ecological factors associated with cancer risk (comorbidities, ethnicity, frailty, age, 
socio-economic and population density). The proposed model allowed for shared local space 
dependence, in addition to cancer specific components. Similar frameworks have been proposed 
elsewhere for cancers and other diseases (Manda et al., 2009), although none of them are censored 
cancer-specific. This allowed to investigate spatial inequalities in cancer, especially between urban 
and rural areas. 

A positive spatial correlation can support the theory of shared environmental aetiology (Manda et 
al., 2009), although differences in risk factors selected for each individual cancer type suggest that 
this is not the only relevant component (DeChello et al., 2006).  Upper GI and gynaecology, upper GI 
and head and neck and upper GI and urology correlations were the most widespread positive 
associations. This is likely attributable to the fact that these cancers share risk factors such as alcohol 
consumption, ethnicity, obesity and smoking, but also infectious diseases6.  This reinforces the 
‘integrating intervention’ paradigm, where interventions are designed to reduce and eliminate 
multiple cancers instead of tackling individual cancers especially when risk factors are identified 
(Subramanian et al., 2022, Villalobos and Chambers, 2023). The latter was a designed-in goal of this 
research, which aimed not only to select the risk factors for each cancer type, but also to find areas 
with correlated residuals (or in other words residual patterns of co-occurrence)(Pollock et al., 2014) 
which are indicative of the presence of factors or biological processes associated to both cancers, 
but not considered in the model (Jahan et al., 2020). 

 
6 https://www.cancerresearchuk.org/about-cancer/type  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 27, 2024. ; https://doi.org/10.1101/2024.02.24.24303312doi: medRxiv preprint 

https://www.cancerresearchuk.org/about-cancer/type
https://doi.org/10.1101/2024.02.24.24303312
http://creativecommons.org/licenses/by/4.0/


The use of a large number of candidate factors (787), and the selection of 22 of them, indicates that 
individual-level characteristics and area-level socio-economic characteristics were far from providing 
a comprehensive explanation for the observed spatial heterogeneities in cancer types (Ribeiro et al., 
2015).  

Chronic Kidney Disease and COVID19 were the most important factors (speculatively, COVID19 may 
have increased the cancer diagnosis rate once people were hospitalised), both being associated to 
six of the nine cancer types, followed by ‘current smoker’ associated five of the nine cancer types 
included in the joint modelling. Overall, comorbidities (seven risk factors) and ethnicities (eight risk 
factors) were the most important factors associated to cancer type counts. 

In the literature, age is a common risk factor for cancers (Liao et al., 2023). For cancer types where 
age was not found to be a statistically significant factor, frailty or comorbidities may have proxied 
the age effect. Apart from breast cancer type, at least one ethnic group was always associated to the 
rest of the cancer types. In terms of ethnicity, the present findings are in agreement with other 
research for the head and neck (Moles et al., 2008), and urology cancer types (DeChello et al., 2006), 
although for other cancer types the present findings are novel. Smoking has been confirmed one of 
the major risk factors (Edwards et al., 2006), and consistent with other research, for lung cancer 
(Tomintz et al., 2016) and head and neck cancer (Taib et al., 2018). Interestingly, smoking was found 
to be protective for the upper GI and gynaecology cancer types, both explained by frailty (that 
appeared only in these two cancers) which may have masked the effect of smoking (Taib et al., 
2018). The presence of comorbidities as risk factor for most of the cancer types (but not for the skin 
cancer), has been described for different cancers elsewhere as potential diagnostic driver or because 
of the interlink between comorbidities, socio-economic status and behaviour (Grose et al., 2014). 
For example, diabetes may represent the effects of obesity (a variable not available in this study), 
which itself is linked to several comorbidities and cancers (Ellaway et al., 2016). 

Only one socio-economic variable was selected among the many considered in this study 
(inemployed, self employed with one parent working), but it was shown that most of the selected 
variables were correlated with other socio-economic and health factors (Chaturvedi, 2001). 
Deprivation was found to be not significant, in contrast with the large amount of literature linking 
deprivation or socio-economic status with cancer diagnosis and survival rates (Liao et al., 2023, 
Bithell et al., 2013, Chambers et al., 2020, Shack et al., 2008, Edwards et al., 2006, Rogers et al., 
2019, Rafiq et al., 2019, Phillips et al., 2019, Taib et al., 2018). 

Spatial heterogeneity has been observed in other studies where similar risk factors were considered. 
For example, age, socioeconomic deprivation, ethnicity, and geographical region were all 
significantly associated with an incident diagnosis of liver cancer (from primary care data) at the 
population level (Liao et al., 2023, Burton et al., 2022); for certain leukaemias and lymphomas in the 
North West (McNally et al., 2003); head and neck cancer in UK (Taib et al., 2018); and for joint 
modelling of lung, bowel and melanoma cancer (Jahan et al., 2020). 

Spatial heterogeneity was confirmed by the presence of geographic clusters for cancers risk. 
Although the clustering analysis was affected by a level of uncertainty due to the use of only two 
principal components, a clear pattern emerged: Barrow-in-Furness (identified cluster 5) cancer risk 
was three times more than the surrounding rural areas (cluster 1) and higher than Morecambe and 
Lancaster urban centres (cluster 3).  

Policymakers may potentially use our spatial results for the purposes of resource allocation and 
education in holistic public health interventions and programs targeted to reduce the burden from 
geographically correlated and co-regionalised cancer types (Chidumwa et al., 2021) by taking action 
on common risk factors, deploying research for hidden common risk factors or prioritising cancers 
that are on the rise (as we found for the breast, colorectal and urology). However, some cancer 
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types are not associated to others or negatively associated (breast, skin, lung) meaning that cancer-
type specific interventions are still likely to have greater impact for certain cancer types.  

Most of the factors associated to cancer risk by type were grouped by ethnicity and comorbidities, 
which may help health commissioners and policymakers to consider health equality in different 
geographical regions and reduce health inequities in ethnic minority groups (Liao et al., 2023), but 
also to potentially include comorbidities in screening programmes (Vrinzen et al., 2023). This 
complies with the goals set by the NHS Long Term Plan7 which aims by 2028 to reach a target of 
55,000 people each year that will survive for five years or more following their cancer diagnosis. The 
plan set up the actions to improve and extend screening (including lung screening pilots) and reach 
ethnic minority backgrounds. However, focusing only on individual factors may not be beneficial if 
the healthcare system is not improved as well (Exarchakou et al., 2018) and, in this sense, our maps 
showing the cumulative risk versus the number of cancer types may inform on the necessity for 
expertise and facilities in response to the complexity of local cancer type dynamics. 

Identifying regional and subregional inequalities is essential for the distribution of resources 

(Tomintz et al., 2016). Some cancers were localised. Therefore, while the rates may be generally low, 

some communities may experience larger than expected risks. This requires further investigation 

into the causes, and possible interventions. In the long-term, reducing the socioeconomic variation 

in incidence should have a substantial impact on the burden of cancer (Shack et al., 2008) and fulfil 

the goal of universal health coverage by targeting the most vulnerable members of society first 

(Burki, 2018). Mobile services such as ‘stop smoking services’, ‘drink aware’ and ‘low dose CT scan’ 

(the latter used in US) could be successful in reaching hard-to-reach populations and improving their 

health (Vohra et al., 2016). These interventions will benefit non-cancer diseases too (such as 

diabetes and heart disease) due to the common risk factors shared between cancers and 

comorbidities. 

Finally, it is also essential to enhance health literacy and reduce patients’ misconceptions about 

cancer screening in the high-risk areas (Lal et al., 2020, Wardle et al., 2004). 

 

Limitations 
The following limitations affected the present study: 

• Each cancer type is effectively a collection of different cancers (Supplementary File 2) which 

may present different detection and under-detection rates (e.g., non-melanoma skin cancer 

versus melanoma skin cancer). For example, prostate cancer has the greatest incidence of 

urological cancers but urothelial cancer may present the largest mortality threat. 

• Border effects: some patients within the extended portion of the Morecambe Bay ex CCG 

may have chosen to go to a different CCG if they lived closer to it. This could have created a 

potential bias in the most peripheral areas of the study region. 

• Identification of important factors was carried out for all cancers together. While this 

promotes shared risk factors, it may reduce the significance of risk factors for less common 

cancers. 

• Some factors may be affected by reverse causation (e.g., depression and cancer) although 

this analysis focused on new diagnosis instead of cancer prevalence, which should have 

reduced this risk. 

 
7 https://www.longtermplan.nhs.uk/areas-of-
work/cancer/#:~:text=Our%20NHS%20Long%20Term%20Plan,more%20following%20their%20cancer%20diagnos

is 
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• Some maps show high levels of uncertainty (standard errors), often based on very small 

numbers and, therefore, interpretation should be done cautiously. As described by 

(Goovaerts, 2010), mapping and interpreting cancer incidence rates faces three major 

hurdles: (1) the presence of unreliable rates that occur for sparsely populated areas and/or 

rare cancers, (2) the visual bias caused by the aggregation of health data within 

administrative units of widely different sizes and shapes (Roberts et al., 2003), and (3) the 

mismatch of spatial supports for cancer rates and explanatory variables that prevent their 

direct use in correlation analysis (Carsin et al., 2011). 

• The study did not consider rare cancers due to the total censoring for these cancers, or 

cancer stage at diagnosis, which was necessary to remove biases and support correct 

inference(Stromberg et al., 2020). 

• Postcode sector of patient residence is related to the last known address and, therefore, 

local factors may or may not be involved in the development of the cancer since cancers 

have a complex aetiology and long latency (Wah et al., 2020, Downing et al., 2008). 

Therefore, the findings should be treated as hypotheses-generating (DeChello et al., 2006).  

 

Conclusions 
Striking geographical, socioeconomic, behavioural and demographic variations were observed in 

Morecambe Bay ex CCG extended area in relation to nine cancer types during the 2017-2022 period. 

The joint model provided a richer perspective on spatial variation in disease risk than a standard 

disease mapping analysis by providing the different geographic levels of association between 

cancers, and between cancers and explanatory factors. The results illustrated how joint mapping can 

help to better understand the cancer burden for different cancers for an area of interest, and can 

help inform etiologic debate about specific causes of disease, generate new hypotheses, or aid 

policy formulation and evaluation or resource allocation (Best and Hansell, 2009), and future 

research.  As such, this study calls for demographic and geographic-specific understanding to better 

control disease within at-risk communities. 
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