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A Mendelian randomization study identifies proteins 

involved in neurodegenerative diseases 

Lazaros Belbasis1, Sam Morris1, Cornelia van Duijn1, Derrick Bennett1,2, Robin Walters1,2 

 

Abstract  

Proteins are involved in multiple biological functions. High-throughput technologies have 

allowed the measurement of thousands of proteins in population biobanks. In this study, we 

aimed to identify proteins related to Alzheimer’s disease (AD), Parkinson’s disease (PD), 

Multiple Sclerosis (MS) and Amyotrophic Lateral Sclerosis (ALS) using large-scale genetic 

and proteomic data.  

We performed a two-sample cis Mendelian randomization (MR) study by selecting 

instrumental variables for the abundance of over 2,700 proteins measured by either Olink or 

SomaScan platforms in plasma from UK Biobank and the deCODE Health Study. We also 

used the latest publicly-available GWAS for the diseases of interest. The potentially causal 

effect of proteins on neurodegenerative diseases was estimated based on the Wald ratio.  

We tested 10,244 protein–disease associations, identifying 122 associations which were 

statistically significant (5% false discovery rate). Out of 57 associations (58%) tested using 

an instrumental variable from both Olink and SomaScan platforms, 33 (58%) were 

statistically significant in both platforms. Evidence of co-localisation between plasma protein 

abundance and disease risk (posterior probability >0.80) was identified for 46 protein-disease 

pairs. Twenty-three out of 46 protein–disease associations correspond to genetic loci not 

previously reported by genome-wide association studies.  

The newly-associated proteins for AD are involved in complement (C1S, C1R), microglia 

(SIRPA, PRSS8) and lysosomal functions (CLN5). A protein newly-associated with PD 

(CTF1) is involved in the interleukin-6 pathway, two proteins for ALS (TPP1, TNFSF13) are 

involved in lysosomal and astrocyte function, respectively, and proteins associated with MS 

are involved in blood–brain barrier function (TYMP, VEGFB), the oligodendrocyte function 

(PARP1), the structure of the node of Ranvier and function of dorsal root ganglion (NCS1, 

FLRT3, CDH15), and the response to viral infections including Epstein-Barr virus (PVR, 
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WARS1). Our study demonstrates how harnessing large-scale genomic and proteomic data 

can yield novel insights into the role of plasma proteome in the pathogenesis of 

neurodegenerative diseases.  
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Introduction  

Neurological diseases are the leading cause of disability and the second leading cause of 

death worldwide.1 Neurodegenerative diseases constitute a distinct group of neurological 

diseases, which are characterised by progressive neuronal loss and formation of distinct 

pathological changes in the brain.2 During the last three decades, there has been a substantial 

increase in the number of people living with neurodegenerative diseases such as Alzheimer’s 
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Disease (AD), Parkinson’s Disease (PD), Amyotrophic Lateral Sclerosis (ALS), and Multiple 

Sclerosis (MS).3–6 Genome-wide association studies (GWAS) have identified molecular 

pathways leading to neurodegenerative diseases and have increased our knowledge on causal 

pathways involved in these diseases.7–10  

Proteins play a key role in a range of biological processes, so that their dysregulation can lead 

to the development of diseases and even minor modulation of their levels or function can 

modify disease risk. They represent a major source of biomarkers for the diagnosis or 

prediction of disease, and may also be crucial to improving our understanding of the 

pathogenesis of diseases.11 About 75% of FDA-approved medications were targeted at human 

proteins.12,13 Therefore, by combining large-scale genomic and proteomic profiling, there is a 

potential to identify disease-causing pathways, uncover new drug targets, highlight novel 

therapeutic indications, and identify clinically relevant biomarkers.14,15  

Recent technological advances have allowed the measurement of thousands of proteins in 

large population-based studies. To date, two different high-throughput techniques to measure 

the abundance of multiple proteins have been used in large population samples: an antibody-

based proximity-extension assay (Olink platform) and an aptamer affinity-based assay 

(SomaScan platform).15 GWAS of plasma protein abundance have identified protein 

quantitative trait loci (pQTLs), which can be used to examine the potentially causal effect of 

proteins on human diseases and traits using the Mendelian randomization (MR) framework.11 

MR is an instrumental variable (IV) approach, which can be used to accelerate the discovery 

of biomarkers and the drug development pipeline.16 MR studies have examined the potential 

role of proteins in the development of neurological diseases, by mainly following a 

transcriptome-wide MR approach, which uses expression quantitative trait loci (eQTLs) as 

IVs; 17–22 however, the value of such analyses is limited by the fact that eQTLs frequently do 

not accurately reflect protein abundance.23  

In the present study, we harnessed summary-level genetic data from two large proteo-

genomic studies and from the largest GWAS for major neurodegenerative diseases, to 

identify proteins whose abundance in plasma is associated with these diseases (Figure 1). We 

followed a two-sample cis MR approach, and we minimised the risk of confounding by 

linkage disequilibrium (LD) by performing a co-localisation analysis. We complemented our 

analysis by exploring the potential effects of these proteins on multiple brain imaging 

phenotypes.  
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Materials and methods 

Data sources 

GWAS of human plasma proteome 

We used summary-level data from the two largest proteogenomics studies conducted in 

populations of European ancestry using either Olink or SomaScan platforms, which were 

identified through a publicly available catalogue of proteogenomics studies (last update on 

29th January 2024).15 The association between circulating protein levels and genetic variants 

was assessed in: 

• 35,571 participants in the UK Biobank using the Olink Explore 1536 platform, 

measuring 2,941 protein analytes, capturing 2,923 unique proteins,24 and 

• 35,559 participants in the Icelandic Cancer Project and deCODE Health Study using 

the SomaScan version 4 platform, measuring 4,907 aptamers, capturing 4,719 

proteins.25 

We do not assume equivalence of the two platforms, but we included pQTLs identified 

through both platforms to increase the completeness of our analysis.  

GWAS of neurological diseases 

We searched GWAS Catalog for published GWAS on neurological diseases (Supplementary 

Table 1).26 We selected the largest publicly available GWAS in population of European 

ancestry for Alzheimer’s Disease (111,326 cases, 75 genome-wide significant variants),8 

Parkinson’s Disease (33,674 cases, 90 genome-wide significant variants),7 Multiple Sclerosis 

(47,429 cases, 200 genome-wide significant variants),10 and Amyotrophic Lateral Sclerosis 

(27,205 cases, 15 genome-wide significant variants).9  

Selection of instrumental variables for protein abundance  

pQTLs are genetic variants with an effect on protein expression, and they could be either cis 

or trans based on their proximity to the gene encoding the protein of interest.27 trans pQTLs 

map to genes that do not directly code for the targeted proteins or that correspond to 

intergenic regions, and it is difficult to distinguish between detected effects due to vertical 
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and horizontal pleiotropy.11,28 For this reason, we restricted our Mendelian randomisation 

(MR) analysis to cis pQTLs. Only autosomal genetic variants were included in the analyses, 

because summary statistics for chromosome X are not available in some of the GWAS for 

neurological diseases.  

We retrieved statistically significant cis pQTLs from each of the proteogenomics studies, 

applying the same level of statistical significance as used in those studies (P < 3.40 × 10-11 

for the study using the Olink platform, and P < 1.80 × 10-9 for the study using the SomaScan 

platform). For Olink platform, the cis region was defined as a distance of 1 Mb upstream or 

downstream from the gene encoding the protein of interest.24 For SomaScan platform, the cis 

region was defined as a distance of 1 Mb upstream or downstream from the transcription start 

site of the gene encoding the protein of interest.25   

We used the following criteria to filter the list of statistically significant cis pQTLs in each 

study:  

1. Due to the complex linkage disequilibrium (LD) structure of SNPs within the human 

major histocompatibility complex (MHC) region, SNPs and proteins encoded by 

genes within the MHC region (chr6: from 26 Mb to 34 Mb) were excluded.  

2. To reduce the risk for weak instrument bias, we calculated the F-statistic for each 

SNP, and we excluded genetic instruments with an F-statistic <10.29 Details on the 

estimation of F-statistic are presented in the Supplementary Material.  

3. We obtained the genetic variants that were also tested in the GWAS for neurological 

diseases. 

4. For each protein we selected only the cis pQTL with the lowest P-value, which we 

refer as the “lead variant”.  

As our main analysis, we aimed to select non-overlapping instruments from each proteo-

genomics study. We mapped all the proteins to UniProt IDs. When multiple assays in the 

same platform targeted the same protein (as defined by UniProt ID), we included only the 

instrument with the lowest P-value. For proteins with a cis pQTL available in both platforms, 

we considered only the cis pQTL from the UK Biobank Olink study.  

Data harmonization  

All GWAS summary statistics were lifted over to genomic build 38.30 We followed the 

recommended harmonisation framework for two-sample MR analyses.31,32 Ambiguous 
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palindromic single nucleotide polymorphisms with an allele frequency between 0.42 and 0.58 

were excluded to avoid potential allele mismatch across different GWAS.31 Data 

harmonization was implemented using the TwoSampleMR package through in-built 

functions.33,34  

Statistical analysis 

Association of protein abundance with neurological diseases  

The Wald ratio, which is defined as the ratio of the gene-outcome effect divided by the gene-

exposure effect, was calculated for all the protein-disease associations.35 To identify the 

statistically significant associations, a multiplicity correction was applied using the 

Benjamini-Hochberg method.36 Evidence of a statistically significant protein-disease 

association was based on 5% false discovery rate (FDR). MR analyses were performed using 

the TwoSampleMR package.33,34 We prioritised proteins with a statistically significant 

association with a neurological disease for further analyses to: a) assess reverse causality; and 

b) perform Bayesian co-localisation.  

Assessment of reverse causation  

Reverse causation could be a potential explanation for positive findings in an MR analysis. 

We explored the potential for reverse causality using a bi-directional MR approach. We 

performed LD clumping to obtain approximately independent genetic variants to model the 

genetic liability to AD, PD, ALS, and MS. Clumping was performed using the reference 

panel from 1000Genomes for population of European ancestry setting a statistical 

significance threshold of P < 5 × 10-8, a genetic window of 1Mb and an LD r2 < 0.1%. We 

used the ld_clump function from the ieugwas package and PLINK version 1.90.37 We derived 

four genetic instruments consisting of genome-wide significant genetic variants as reported in 

the relevant publications.7–10 We examined whether the genetically predicted liability to each 

one of the neurological diseases of interest was related to the proteins associated with each 

one of the diseases. We estimated the Wald ratio for each one of the genetic instruments and 

we combined them using a fixed-effect inverse-variance weighted model.38 Evidence of 

statistically significant findings were based on 5% FDR.  

Bayesian co-localisation  
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Evidence of co-localisation supports the validity of the IVs and strengthen the MR findings.39 

To assess potential confounding by LD, we examined whether the prioritised proteins share 

the genetic variant with the outcomes of interest by conducting a co-localisation analysis 

assuming a single causal variant in each genetic locus. We used the coloc package for the co-

localisation analysis. Variants within ±1 Mb window around the pQTLs with the smallest P-

value were included. We used a posterior probability higher than 80% as strong evidence of 

co-localisation, and a posterior probability higher than 60% as moderate evidence of co-

localisation. However, we acknowledge that lack of co-localisation does not invalidate the 

MR findings, as co-localisation methods have a high false negative rate.12,40 The GWAS by 

Bellenguez et al8 for AD do not provide the majority of the genetic variants in the APOE 

gene locus. For this reason, we repeated the co-localization analysis using the GWAS by 

Kunkle et al41 for the genetic loci located nearby APOE (i.e., APOE, APOC1, and NECTIN2).  

Association of mRNA abundance with neurological diseases 

GWAS of gene expression reported cis eQTLs which are genetic variants affecting the 

messenger RNA (mRNA) abundance.42 The eQTLGen consortium examined eQTLs from 

blood-derived expression of 19,250 autosomal genes and reported at least one cis eQTL for 

16,987 genes using a sample of 31,684 individuals.43 The MetaBrain consortium provides cis 

eQTLs in 5 tissues (cortex [2,683 individuals], cerebellum [492 individuals], basal ganglia 

[208 individuals], hippocampus [168 individuals], and spinal cord [108 individuals]).44 For 

each one of the statistically significant proteins in the previous step, the relevant lead cis 

eQTL was selected as a genetic IV. We used the same statistical significance threshold as the 

GWAS on plasma and brain eQTLs to identify appropriate genetic instruments. We estimated 

the Wald ratio as the ratio of the genetic effect on disease risk divided by the genetic effect on 

mRNA abundance. A multiplicity correction was applied using the Benjamini-Hochberg 

method separately in plasma and brain tissues,36 and statistically significant associations were 

assessed at 5% FDR.  

Association of protein abundance with brain imaging phenotypes 

The potentially causal effect of the prioritised proteins on brain imaging traits was examined 

using summary-level GWAS data for nine brain volumes, mean cortical thickness and 

surface, and white matter hyper-intensities.45–47 The available brain volumes were intracranial 

volume,48 hippocampal volume,49 and other subcortical structures volume50 (nucleus 

accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen, and thalamus). 
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A multiplicity correction was applied using the Benjamini-Hochberg method,36 and 

statistically significant findings were assessed at 5% FDR. Additionally, for the statistically 

significant associations, we performed Bayesian co-localisation analysis assuming a single 

causal variant and using the same specifications as described before. 

Data availability 

The cis pQTLs that were used as IVs are publicly available in the relevant publications.25,51 

Summary statistics for the GWAS on AD and ALS are available through GWAS Catalog 

(https://www.ebi.ac.uk/gwas/). Summary statistics for the GWAS on PD and MS are 

available through OpenGWAS project (https://gwas.mrcieu.ac.uk/). Summary statistics for 

the GWAS on brain volume traits are available upon request from the ENIGMA consortium 

(https://enigma.ini.usc.edu/). Summary statistics for the GWAS on white matter hyper-

intensities are publicly available through CHARGE consortium. Summary statistics for the 

cis region of gene expression in plasma and brain regions are publicly available through the 

eQTLGen (https://www.eqtlgen.org/) and the MetaBrain (https://www.metabrain.nl/) 

consortia, respectively.  

 

Results  

Instrumental variables for plasma protein abundance  

An overview of the study design is presented in Figure 2. Descriptive characteristics of the 

data sources used in this study are shown in Supplementary Table 1. To identify genetic 

instruments of protein abundance, we used the two largest GWAS of plasma protein 

abundance in European populations.25,51 The first was conducted in the UK Biobank using the 

Olink Explore 1536 platform and examined 2,941 unique proteins. The second one was 

conducted in the deCODE Health Study using the SomaScan version 4 platform and 

examined 4,907 unique proteins. A cis pQTL was available for 2,733 unique proteins in total 

from either UK Biobank or deCODE Health Study. Where different instruments were 

available for both platforms, we used the instrument from the UK Biobank Olink study. All 

the IVs had an F-statistic > 10, minimising the influence of weak instrument bias on the MR 

estimates.52  
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Association of plasma protein abundance with neurological 

diseases  

To systematically evaluate the evidence for a causal effect of 2,733 proteins on four 

neurological diseases (AD, PD, ALS, and MS), we undertook a proteome-wide two-sample 

MR. Overall 10,244 protein-disease associations were tested (67% using cis pQTLs derived 

using Olink platform measurements and 33% using cis pQTLs from the SomaScan platform; 

Table 1 and Supplementary Table S2). We observed 988 (9.6%) nominally significant 

protein-disease associations at P < 0.05, constituting a substantial excess compared to the 

number expected under the null. Of these, 122 protein-disease associations (1.2%) remained 

statistically significant at 5% FDR, corresponding to P < 5.8 × 10-4 (Table 2, Figure 3). Even 

after exclusion of these associations, the remaining associations displayed substantial 

inflation compared to the null (Table 1). 

One hundred and seven proteins (91%) were associated with only one neurological disease. 

In our study, 54 proteins associated with AD, and nine of them (17%) showed an association 

with AD and an additional neurological disease (CTF1, NSF, PRSS53 and PRSS8 with PD; 

SIGLEC9 with ALS; CR1, IDUA, and PVR with MS; and LRRC37A2 with both PD and 

ALS). LMAN2 showed an association with MS and ALS. Associations between proteins and 

phenotypes in the MR framework may reflect causality but potential alternative explanations 

are reverse causality, confounding by LD or horizontal pleiotropy.11 We evaluate each of 

these explanations below.  

Reverse causation  

To explore the potential for reverse causation, we performed a bi-directional MR analysis, 

which examines whether the genetic liability to the outcome is associated with the exposure 

of interest. For this reason, we performed clumping to identify independent genome-wide 

significant variants (P <5.00 × 10-8) from the GWAS for AD, PD, ALS and MS, for use as 

IVs modelling the genetic liability to these diseases. Using a fixed-effect inverse-variance 

weighted model, we found that genetically predicted risk for AD was associated with plasma 

protein abundance of APOE and CEACAM19 and genetically predicted risk for MS was 

associated with plasma protein abundance of CD5, KLRB1, SCGN and MANBA (5% FDR; 

Supplementary Table S3).  
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Cross-platform comparison of cis pQTL associations  

We hypothesise that a consistent causal effect in both Olink and SomaScan platforms 

strengthens confidence in the instruments and in the robustness of the protein–disease 

associations, by showing that the inferred effect on disease risk is independent of the platform 

used for protein abundance measurement and pQTL identification. Ninety-eight out of 122 

associations (76%) were based on IVs from the Olink platform, of which 57 (58%) could be 

tested using a pQTL from both Olink and SomaScan platforms; 33 of these (58%) were 

statistically significant in both platforms (5% FDR; Supplementary Fig. 1). While overall 

there was broad agreement between pQTLs from the two platforms, 4 of the 33 statistically 

significant associations (12%) across both platforms were not directionally consistent (BCAM 

and PILRA for AD, and CD58 and KLRB1 for MS). We also observed that 9 protein–disease 

associations reached statistical significance only when the lead cis pQTL from the SomaScan 

platform was used but not when the lead cis pQTL from the Olink platform was used (CTSH 

and LILRB1 for AD, IDUA for PD, CD200, INHBC, THSD1 and AHSG for MS, and IDUA 

and INHBC for ALS).  

Sensitivity analysis for Alzheimer’s disease  

The GWAS by Bellenguez et al8 used proxy cases for AD, where possible cases identified 

through self-reported family history of dementia were included; these contributed 42% of AD 

cases, with the balance being physician-diagnosed cases of AD.8 As a sensitivity analysis, we 

used the GWAS by Kunkle et al41 to validate that the proteins associated with AD are specific 

for AD, as it is the latest GWAS for AD that does not include proxy cases.41 Out of 54 

protein–disease associations, 34 (63%) were associated with AD in the MR analysis using the 

GWAS by Kunkle et al at 5% FDR (Supplementary Fig. S2). All but one (EPHX2) of the 

validated associations were directionally consistent across the two GWAS for AD. The non-

validation of some of the proteins could be explained by either the smaller sample size of the 

Kunkle et al study (i.e., loss of statistical power), or by the misclassification of other causes 

of dementia as AD in the Bellenguez et al study.  

Co-localisation between plasma protein abundance and 

neurological diseases  
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To examine whether confounding by LD can explain the observed associations, we 

performed co-localisation of the association signals for protein and disease, assuming a single 

causal variant at each gene locus (Supplementary Table S4).39 Among the 122 protein-

disease pairs, 46 (38%) had strong evidence of co-localisation (posterior probability >0.80), 

and 27 additional protein-disease pairs (22%) showed moderate evidence of co-localisation 

(0.60 < posterior probability <0.80). CR1 co-localised with both AD and MS. We prioritised 

these 45 proteins, corresponding to 46 protein-disease associations, for further analyses 

(Table 2). Twenty-three out of these 46 protein-disease pairs (50%) represent previously-

unreported genetic associations, since they did not reach genome-wide significance in the 

disease GWAS, nor have they been otherwise previously reported in the GWAS Catalog 

(Table 2).26 While the cis pQTL for PRSS8 is a previously identified genome-wide 

significant association for AD, it is located within a different nearby gene (BCKDK). 

Association of plasma mRNA abundance with neurodegenerative 

diseases  

We performed an additional two-sample MR analysis to investigate the association of the 

abundance in plasma of mRNA encoding the proteins with risk of neurodegenerative diseases 

using the lead cis eQTL reported by the eQTLGen consortium.43 Out of 122 protein-disease 

associations, a plasma cis eQTL for use as an IV was available for 101 (83%) 

(Supplementary Table S5). Of these, 54 (53%) were significantly associated with disease 

risk at 5% FDR. When we compared the associations using plasma pQTLs and plasma 

eQTLs (Supplementary Fig. S3), we found inconsistencies in the direction of effect in 9 out 

of 54 cases (17%). The proteins with an inconsistent effect were CD55, TREML2, 

CEACAM19 and UBASH3B for AD, TPP1 for ALS, and FCRL1, IL2RA, PTPRC and CD58 

for MS. Eleven out of 54 associations (20%) also showed evidence of co-localisation across 

the locus between mRNA abundance and disease risk (Supplementary Table S6). Eight 

proteins showed co-localisation with a neurological disease using both plasma protein 

abundance and plasma mRNA abundance (SIRPA and CD33 with AD, and ASF1A, VEGFB, 

TYMP, PVALB, LMAN2 and CD5 with MS). The remaining three proteins (ACE with AD, 

and PLEK and FCRL3 with MS) showed evidence of co-localisation with plasma mRNA 

abundance but not with plasma protein abundance. There is strong evidence for distinct 

causal variants between ACE protein abundance and AD (posterior probability for H3 = 
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1.00), and moderate evidence for shared causal variants of PLEK and FCRL3 protein 

abundance with MS (posterior probability for H4 = 0.74 and 0.76, respectively).  

Association of brain mRNA abundance with neurodegenerative 

diseases  

As an additional step to aid interpretation of our findings, we used data on genetic 

associations with mRNA abundance in four brain regions (i.e., cortex, basal ganglia, 

hippocampus, and cerebellum) and the spinal cord, as provided by the MetaBrain 

consortium.53 For each protein, we selected the lead cis eQTL per tissue as an IV, testing a 

total of 225 mRNA abundance–disease associations (105 in cortex, 78 in cerebellum, 19 in 

basal ganglia, 14 in hippocampus and 9 in spinal cord), of which 127 (56%) were statistically 

significant at 5% FDR (Supplementary Table S7). When we compared these associations 

with the associations using the lead plasma protein cis pQTL, we found that 96 (76%) were 

consistent in the direction of effect (Supplementary Fig. S4).  

Thirty-one out of these 127 associations (24%) showed strong evidence of co-localisation 

(Supplementary Table S8). Two proteins (CR1 with AD in basal ganglia, cortex and 

hippocampus, and GRN with AD in cerebellum, cortex and hippocampus) were found to 

have evidence for co-localisation with disease risk from mRNA abundance in three brain 

regions, while a further 5 proteins (ACE, CD33, SIRPA and PVR with AD in cerebellum and 

cortex, and LRRC37A2 with AD in cortex and hippocampus) have support for co-localisation 

with mRNA abundance in two brain regions. Of note is that eight proteins did not show 

evidence of co-localisation with plasma protein abundance, but they co-localised with mRNA 

abundance in one or more brain regions (UBASH3B, NSF, LRRC37A2, BIN1 and ACE with 

AD, and PTPRJ, PLEK, and FCRL3 with MS).  

Association of plasma protein abundance with brain imaging 

traits  

To assess whether the identified proteins might have an impact on brain structure, we 

examined the association of pQTLs for the 45 proteins with twelve brain-imaging traits (i.e. 

intracranial brain volume, mean cortical thickness and surface area, 8 subcortical brain 

volumes, and white matter hyper-intensities). Out of 526 tested associations, 50 (9.5%) were 

nominally significant at P <0.05, but only six (1.1%) were significant at 5% FDR (Table 3 
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and Supplementary Table S9). All of these latter associations were supported by co-

localisation (Supplementary Table S10). Plasma APOE abundance was associated with 

hippocampal volume, amygdala volume, nucleus accumbens volume, and white matter 

hyper-intensities. Plasma PILRA and PILRB abundance were associated with caudate 

nucleus volume.  

Assessment of cumulative evidence from protein and mRNA 

abundance  

Our study has combined evidence from MR and co-localisation to identify potentially causal 

relationships between proteins and neurodegenerative diseases using genetic associations 

with plasma protein abundance, plasma mRNA abundance, and brain and spinal cord mRNA 

abundance. On the basis of the overall evidence for association with neurological diseases, 

we identified three tiers of evidence (Figure 4). In Tier 1, we identified 15 proteins (33%) 

that showed evidence of association and co-localisation when we used a plasma pQTL and an 

eQTL in at least one brain region. These proteins are TMEM106B, SIRPA, PRSS8, GRN, 

CR1, CD33, CD2AP and BLNK for AD, HIP1R for PD, TPP1 and TNFSF13 for ALS, and 

STAT3, PVR, CR1 and ASF1A for MS. In Tier 2, we identified four proteins (8%) that 

showed evidence of association and co-localisation when we used a plasma pQTL and 

plasma eQTL (but not studied or detected in any brain region). In Tier 3, we identified 27 

proteins (59%) that showed association and co-localisation only when we considered a 

plasma pQTL but not a plasma or brain eQTL.  

 

Discussion  

This study has systematically assessed the associations of more than 2,700 proteins with four 

neurodegenerative diseases using summary statistics from large-scale proteogenomic data 

and the latest GWAS for disease risk. We identified 46 associations between plasma protein 

abundance and neurodegenerative diseases with support from MR and evidence of co-

localisation. Twenty-three of these associations are known disease loci reported in GWAS, 

including APOE, MME, CD2AP, CD33 and IL34 for AD, and CD40, CD58, EVI5, IL7R and 

STAT3 for MS, and 23 associations represent previously unreported genetic associations with 

neurodegenerative diseases. 
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Proteins related to AD  

β-amyloid accumulation is the main pathogenetic mechanism for AD. APOE is a protein 

directly involved in the regulation of the β-amyloid aggregation and clearance in the brain.54 

CD2AP actively participates in the metabolism of β-amyloid, and knockout of CD2AP results 

in endosomal accumulation of β-amyloid in animal models.55 MME is also another important 

enzyme of β-amyloid degradation.56  

Our findings highlight the role of microglia, which is a cell type equivalent to peripheral 

macrophages in the brain responsible for the clearance of β-amyloid peptides.57 Of note is 

that one-third of the proteins co-localised with AD relate to microglial function, and our 

analysis contributes three newly-reported AD loci (SIRPA, SIGLEC9, PRSS8). CD33 and 

IL34 are expressed in microglia and inhibit the microglial uptake of β-amyloid and, therefore, 

influence the accumulation of amyloid plaque.58,59 Anti-CD33 antibodies are used for the 

treatment of acute myeloid leukaemia and have been previously suggested for drug 

repurposing for AD.60 SIGLEC9 participates in the immune response to several bacterial 

pathogens by reducing bacterial dissemination into the brain and exerts neuro-protective 

effects by suppressing inflammatory responses to the brain.61 SIRPA regulates microglial 

phagocytosis, and the transmigration of monocytes across the blood-brain barrier and 

participates in the pathogenesis of neurodegeneration in preclinical models.62,63 PRSS8 

modules Toll-like receptor 4 which is a receptor in the membrane of microglia and 

contributes to microglial activation and phagocytosis of β-amyloid.64,65 The complement 

system regulates microglial function and neuro-inflammation,66 and we identified one known 

locus (CR1) and two newly-identified loci (C1R and C1S) for AD.  

Herpes simplex virus-1 (HSV-1) has been linked with neurodegeneration and cognitive 

defects in mouse animal models.67,68 HSV-1 binds to PILRA, a protein associated with AD, 

to infect cells. PILRA is a cell surface inhibitory receptor expressed on innate immune cells, 

including microglia.69,70 Also, PILRA was associated with caudate nucleus atrophy, which 

has been previously observed in other neurodegenerative diseases, including frontotemporal 

dementia, PD and Huntington disease.71–73 This finding could indicate that HSV-1 

participates in the pathogenesis of AD by affecting caudate nucleus. 

There is an increasing amount of evidence supporting the role in neurodegenerative diseases 

of lysosomes,74 which play an important role in phagocytic cells including microglia.75 Our 

analysis identified one known (GRN) and two novel AD-associated loci (TMEM106B, CLN5) 
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related to lysosomal functions. GRN protein protects against β-amyloid deposition and 

toxicity in AD mouse models, and its deficiency has been linked with neural circuit 

development and maintenance, stress response, and innate immunity.75,76 TMEM106B has 

been previously linked with frontotemporal dementia, and there is evidence of its interaction 

with GRN; both of them are considered critical markers of brain ageing.77 Moreover, genetic 

deficiency of either CLN5 or GRN is responsible for an inherited lysosomal disease.78,79 Loss 

of CLN5 leads to deficits in neurodevelopment in mice models.78  

Our analysis identified three additional newly-identified proteins (PLOD2, ZBTB18, BLNK) 

potentially participating in the pathogenesis of AD through other pathways. PLOD2 is 

overexpressed in fibroblasts, strengthening the current evidence for a potential role for 

fibroblasts in the pathogenesis of AD through remodelling of the extracellular matrix 

alongside amyloid plaques.80 ZBTB18 is an essential transcription factor for embryonic 

cerebral cortex development;81 it has been identified as a contributing factor to the 1q43q44 

microdeletion syndrome, which is characterised by variable intellectual disability and brain 

malformations.82 BLNK is involved in B cell receptor signalling; although the role of B cells 

in AD is not well understood, targeting B cells has been suggested to be beneficial for AD 

patients by delaying disease progression.83  

Proteins related to PD and ALS  

Although the GWAS for PD and ALS have relatively small sample sizes, our study was 

nevertheless able to identify one novel locus for PD (CTF1) and two novel loci for ALS 

(TPP1, TNFSF13). CTF1 is a neurotrophic factor in the interleukin-6 cytokine family. Pro-

inflammatory cytokines, including interleukin-6, have been previously associated with PD.84 

It has also been shown in a mouse model that CTF1 transfection and expression is 

neuroprotective and slows progression of spinal muscular atrophy.85 One of the aetiologies of 

ALS is mis-localization of TDP-43 to mitochondria causing neurotoxicity.86 TPP1 is a 

lysosomal enzyme and loss-of-function mutations in the gene are causally linked to a familial 

lysosomal disorder, in which TPP1 loss affects regulation of axonal mitochondrial 

transport.87 Also, loss of TPP1 activity results in progressive neurological phenotypes 

including ataxia and increased motor deficiency.88 TNFSF13 is expressed in astrocytes and 

regulates neuro-inflammatory responses.89 Reactive astrocytes have neurotoxic properties and 

are involved in the pathogenesis of ALS.90  
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Proteins related to MS 

Experimental autoimmune encephalomyelitis (EAE) is an animal model for MS, and 9 of the 

MS-associated proteins, 6 known (CD5, CD40, IL7R, STAT3, TNFRSF1A, TYMP) and 3 

newly-associated with MS (PARP1, PVALB, VEGFB), are involved in the pathogenesis of 

EAE. This observation strengthens the validity of our findings.91–99  

The innate immune system participates in pathogen removal and regulates the response of the 

adaptive immune system, 100 including the response to Epstein-Barr virus (EBV) infection 

which is a pathogen associated with MS.101 PVR, a known loci for MS, encodes the polio 

virus receptor, which is involved in the immune response to EBV. Increased expression of 

PVR downregulates the expression of miRNAs produced by EBV,102 which potentially 

explains the apparent protective effect of higher plasma levels of PVR in our analysis. 

WARS1, a protein newly-associated with MS, is an aminoacyl-tRNA synthetase with a role 

as an innate immune activator in the extracellular space, acting as a primary defense system 

against infections and especially antiviral immunity.103,104 Moreover, a newly-identified MS 

protein, PARP1, is involved in the NF-κB signaling pathway,105 which is activated as a 

response to infectious antigens including EBV.106 and is an important pathway for the 

activation of macrophages and other innate immune cells.107  The newly-identified 

association of CR1 with MS risk indicates a role of complement, which is an important innate 

immune defence against infection, as has been recently suggested.108 SLAMF1 participates in 

the Toll-like receptor 4 signalling which activates macrophages against bacterial 

pathogens.109 This observation potentially provides support to the hygiene hypothesis for the 

development of MS.110  

The adaptive immune system consists of B cells and T cells, which are activated by innate 

immune cells, IL7R has a role in T and B cell differentiation, and its plasma levels are 

associated with elevated risk of MS,111 but experimental IL7R inhibitors have not been 

successful in treating MS.112 CD5 and CD58 are also involved in B and T cell differentiation 

and whose activation has a role in autoimmunity.113,114 CD40 and its ligand form a complex 

that has a central role in the regulation of both humoral and cell-mediated immunity. 

Blockade of CD40L is effective in ameliorating experimental autoimmune conditions, and it 

has also been suggested as a potential therapeutic strategy for MS.115  

Demyelinating lesions in white and grey matter are the histopathological landmark of MS, 

which are infiltrated by cells of the innate and adaptive immune system,100 whereas 
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oligodendrocytes are responsible for the myelination process.116 PARP1, a newly-associated 

protein for MS, is a driver for oligodendroglial development and myelination,117 and PARP1 

inhibitors have been suggested as a potential therapy for MS,118 in line with our finding that 

elevated plasma PARP1 is associated with increased MS risk. STAT3, a known protein for 

MS, is important for myelin repair, and pharmacological blockade of STAT3 activation with 

JAK2 inhibitors inhibits survival and differentiation of oligodendrocyte precursor cells.119 

Another known protein for MS, TNFRSF1A, is involved in the TNF receptor-associated 

periodic syndrome, which is characterised by inflammatory demyelination. There is evidence 

that anti-TNFα therapies can result in new episodes of inflammation in MS patients.120   

The blood-brain barrier (BBB) protects the central nervous system parenchyma from harmful 

circulating molecules and pathogens,121 and altered BBB function is believed to be an 

important early stage in MS pathology. Several identified proteins have potential roles in the 

BBB, including TYMP, a key astrocyte-derived permeability factor promoting BBB 

breakdown,92 CD40, which influences the permeability of the BBB,122 and VEGFB, a newly-

identified MS-associated protein which is a member of the vascular growth factor family, 

again involved in the permeability of the BBB.123 

The node of Ranvier on white matter demyelinated axons is profoundly altered or disrupted 

in patients with MS,124,125 and two newly-identified proteins (NCS1, CDH15) are involved in 

its function. NCS1 is involved in the regulation of intracellular calcium signalling and is 

identified in the nodes of Ranvier. NCS1 also participates in the pathogenesis of 

chemotherapy-induced peripheral neuropathy.126 A member of the cadherin protein family, 

CDH15, participates in the function of the node of Ranvier and has previously been 

associated with chronic inflammatory demyelinating polyneuropathy, a demyelinating 

disease of the peripheral nervous system.127 Lesions in the dorsal root ganglion are identified 

in EAE,128,129 and FLRT3, a newly-identified protein related to MS, is overexpressed in the 

dorsal root ganglion and has been associated with neuropathic pain in animal models.130 

Four further newly-identified MS-associated loci (PVALB, TST, ASF1A) potentially indicate 

additional molecular pathways contributing to MS. PVALB is specifically expressed by 

GABAergic interneurons and has been suggested as a potential MS-specific marker of grey 

matter neuro-degeneration.131 TST is an enzyme involved in mitochondrial sulphur and 

selenium metabolism,132 and it has been shown that exposure to oxidative stress due to 

mitochondrial dysfunction contributes to the chronic demyelination.133 ASF1A is a histone 
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chaperone which has been implicated in neuro-inflammation and neuro-degeneration 

processes through activation of microglia.134,135  

Plasma and tissue-specific proteomic effects  

The identification of proteins with roles in many of the biological processes relevant to 

neurodegenerative diseases supports the idea that targeting such proteins might form the basis 

of future drug development. However, it seems likely that abundance of these proteins in 

blood plasma is not directly relevant to disease pathology, and that therapies will need to be 

targeted to the relevant tissue or cell-type. Even though a drug may modify levels of the 

identified proteins in plasma, we cannot assume that it would cross the blood-brain barrier for 

brain-targeting drugs.136 Nevertheless, although our results are primarily based on proteins 

measured in plasma, it is plausible that the same genetic factors have similar effects on 

protein levels in more relevant tissues, and that our results reflect similarities in processes 

such as macrophage activity, lysosomal activity, and β-amyloid metabolism in blood and 

brain. For example, in the pathogenesis of MS, the activation of innate and adaptive immune 

system occurs first in the periphery and is then transferred in the central nervous system.100 In 

particular, cis pQTLs, particularly those directly impacting protein coding sequences, will 

frequently have similar effects across diverse tissues.137   

Limitations 

There are several limitations to the present study. First, our analyses are underpowered for 

PD, because full summary statistics including 23andMe are not publicly available, greatly 

reducing the sample size in the available data. Second, GWAS for the neurological diseases 

primarily assess risk for disease and not disease progression. Therefore, the identified 

proteins can be considered as potential biomarkers for prediction or diagnosis of the diseases 

or drug targets for disease prevention but not necessarily for disease progression.138 Third, 

effect estimates based on MR assume a lifelong exposure to altered protein levels. For this 

reason, MR estimates frequently differ from observational associations and do not necessarily 

reflect the impact of a change in protein levels as a result of a therapeutic intervention.  

Conclusions 

To summarise, we presented a comprehensive analysis of associations of the plasma 

proteome with neurodegenerative diseases by considering proteins measured through either 
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Olink or SomaScan platforms. We identified multiple proteins with potential causal role in 

neurodegenerative diseases. The newly-identified proteins for AD are involved in the 

immune response to bacterial pathogens, complement system, transmigration of monocytes 

across the blood-brain barrier, Toll-like receptor 4 signalling, lysosomal function and 

fibroblasts. The newly-identified proteins for MS are involved in the innate immune system, 

complement, microglia, oligodendrocytes, permeability of the BBB, GABAergic interneurons 

and the function of node of Ranvier and dorsal root ganglion. Our analysis covered only a 

modest proportion of the human proteome, and was limited to proteins measured in blood 

plasma; therefore, further expansion of the multiplexed antibody-based and aptamer-based 

assays, and conducting large-scale assays in more directly-relevant tissues, will offer 

additional insights into the role of protein abundance on the development of 

neurodegenerative diseases. Moreover, better characterisation of the protein isoforms targeted 

by these complementary proteomics platforms will offer additional insights into the 

biological interpretation of the findings.   
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Figures 

 
Figure 1. Schematic representation of the study. cis protein quantitative trait loci (pQTLs) 

from two large proteogenomic studies were used as instrumental variables for protein 

abundance in plasma. The association of plasma proteins with neurodegenerative diseases 

was assessed by estimating the Wald ratio in a two-sample Mendelian randomisation 

framework. The analyses were complemented by Bayesian co-localisation.  
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Figure 2. Overview of the study design and main results. The study consists of four main 

steps. In the first step, we identified the lead cis pQTL for 2,746 non-overlapping proteins 

from GWAS using the Olink and SomaScan platform in European populations. In the second 

step, we used these pQTLs as instrumental variables to perform a two-sample Mendelian 

randomisation (MR) analysis for Alzheimer’s disease (AD), Parkinson’s Disease (PD), 

Multiple Sclerosis (MS) and Amyotrophic Lateral Sclerosis (ALS). In the third step, we 

repeated the MR analysis by using plasma and brain eQTLs as instrumental variables. In the 

fourth step, we examined whether proteins are associated with 12 brain-imaging traits. 
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Figure 3.  Association of proteins with neurological diseases using two-sample MR. The lead cis protein quantitative trait locus was used as 

an instrumental variable (IV) for 2,746 proteins. We tested 10,244 protein–disease associations, and 122 of these are statistically significant (5% 

FDR) and are annotated in this figure. The odds ratio corresponds to the Wald ratio, which is calculated by dividing the genetic effect of the IV 

on the disease by the genetic effect of the IV on the plasma protein abundance. For convenience, the statistically significant association between 

PTPRJ (OR = 48, P = 3.05 × 10-4) and Multiple Sclerosis is not shown.  
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Figure 4. Summary of the evidence using plasma pQTLs and plasma or brain eQTLs as 

instrumental variables. An eQTL in spinal cord was not available for any of the proteins 

shown in the figure. When the Mendelian randomisation analysis did not show a statistically 

significant effect, co-localisation was not performed. 
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Tables 

Table 1. Summary of the proteome-wide two-sample Mendelian randomization analysis on neurological diseases.  

Disease 
N associations 

tested 

N statistically significant associations Inflation 

factor
2
 

Co-

localisation
3
 P < 0.05 5% FDR

1
 

Alzheimer’s disease 2,733 314 (11%) 54 (2.0%) 1.39 19 

Parkinson’s disease 2,202 167 (8%) 9 (0.4%) 1.11 2 

Amyotrophic lateral sclerosis 2,663 213 (8%) 12 (0.5%) 1.28 2 

Multiple sclerosis 2,646 294 (11%) 47 (1.8%) 1.42 23 

Total 10,244 988 (10%) 122 (1.2%) 1.30 46 
1
False Discovery Rate based on Benjamini-Hochberg correction, which corresponds to a P < 5.80E-04. 

2
Inflation factor estimated 

after removing the associations at 5% FDR. 3Posterior probability for H4 greater than 80%. Abbreviations: FDR, false discovery 

rate. 
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Table 2. Proteins associated with risk of neurodegenerative diseases identified using two-sample Mendelian randomization (5% FDR) and supported by co-localisation (posterior probability >0.80).  

Assay ID1 Protein name Genetic position2 rsID EA/OA3 EAF OR (95% CI)4 P Novel5 

Alzheimer’s disease   

OID30727 APOE 19:44928401 rs8106813 G/A 0.494 0.61 (0.57 -  0.64) 3.37E-65 No 

OID30697 CR1 1:207577223 rs679515 T/C 0.174 1.26 (1.21 -  1.31) 5.65E-33 No 

OID20197 PILRB 7:100374211 rs1859788 G/A 0.681 1.07 (1.05 -  1.08) 1.16E-17 No 

OID21129 PILRA 7:100374211 rs1859788 G/A 0.681 1.08 (1.06 -  1.10) 1.16E-17 No 

OID20177 CD2AP 6:47627419 rs1385742 A/T 0.355 1.24 (1.17 -  1.32) 3.99E-13 No 

OID21159 GRN 17:44352876 rs5848 C/T 0.726 0.77 (0.72 -  0.83) 2.19E-12 No 

OID20763 PRSS8 16:31111250 rs889555 T/C 0.282 0.62 (0.53 -  0.72) 1.07E-09 Yes 

8687_26 TMEM106B 7:12229791 rs3173615 C/G 0.598 1.44 (1.25 -  1.66) 6.93E-07 No 

OID30541 BLNK 10:96246079 rs55769428 A/C 0.962 2.06 (1.54 -  2.74) 8.55E-07 No 

OID20809 IL34 16:70660097 rs4985556 C/A 0.878 0.95 (0.93 -  0.97) 5.65E-06 No 

OID30731 C1S 12:7063032 rs12146727 G/A 0.865 1.09 (1.05 -  1.12) 6.41E-06 Yes 

OID30753 C1R 12:7068900 rs10849546 G/A 0.865 1.13 (1.07 -  1.19) 8.55E-06 Yes 

OID20304 SIRPA 20:1915642 rs6136377 A/G 0.618 1.03 (1.02 -  1.04) 1.37E-05 Yes 

OID21472 CD33 19:51225385 rs2455069 G/A 0.427 1.03 (1.02 -  1.05) 1.83E-05 No 

OID21390 SIGLEC9 19:51125272 rs2075803 A/G 0.447 1.06 (1.03 -  1.10) 4.30E-05 Yes 

6923_1 PLOD2 3:146106560 rs148118826 G/A 0.997 0.59 (0.46 -  0.76) 6.18E-05 Yes 

8874_53 CLN5 13:77001261 rs700363 G/A 0.910 0.70 (0.59 -  0.84) 6.51E-05 Yes 

OID21205 ZBTB16 11:114082900 rs73000929 A/G 0.037 1.11 (1.05 -  1.18) 1.37E-04 Yes 

OID21307 MME 3:155067802 rs79837905 A/G 0.920 1.68 (1.26 -  2.24) 4.54E-04 No 

Parkinson’s disease   

OID31141 HIP1R 12:122842051 rs10847864 T/G 0.359 4.01 (2.66 -  6.05) 3.64E-11 No 

OID20061 CTF1 16:30966478 rs11150601 A/G 0.628 6.84 (3.23 - 14.46) 4.92E-07 Yes 

Amyotrophic lateral sclerosis   

OID20750 TPP1 11:6626391 rs11827437 C/T 0.370 0.72 (0.62 -  0.83) 1.61E-05 Yes 

OID20733 TNFSF13 17:7559652 rs3803800 A/G 0.211 0.84 (0.77 -  0.91) 3.59E-05 Yes 

Multiple sclerosis   

OID20716 CD58 1:116547871 rs10801908 C/T 0.880 2.30 (1.88 -  2.81) 3.54E-16 No 

OID21449 CD5 11:61026250 rs4939491 G/A 0.609 0.37 (0.29 -  0.47) 4.28E-15 No 

OID30519 EVI5 1:92607671 rs11808092 C/A 0.745 0.38 (0.30 -  0.49) 4.70E-14 No 

OID21155 TNFRSF1A 12:6330843 rs1800693 T/C 0.597 0.12 (0.07 -  0.21) 1.02E-13 No 

10346_5 STAT3 17:42378745 rs4796791 C/T 0.589 0.43 (0.35 -  0.54) 1.17E-13 No 

OID20724 CD40 20:46119308 rs4810485 G/T 0.752 0.74 (0.68 -  0.80) 1.41E-12 No 

OID21313 DKKL1 19:49365794 rs2303759 T/G 0.748 0.91 (0.88 -  0.94) 1.89E-10 No 

OID21136 IL7R 5:35874473 rs6897932 C/T 0.729 1.13 (1.09 -  1.18) 1.84E-09 No 

OID20234 TYMP 22:50525724 rs131805 C/T 0.783 0.61 (0.52 -  0.73) 2.61E-08 No 

9468_8 LMAN2 5:177353544 rs4131289 A/G 0.379 2.30 (1.61 -  3.30) 4.85E-06 Yes 

OID20496 SLAMF1 1:160668460 rs7535367 G/T 0.861 2.22 (1.57 -  3.13) 6.24E-06 No 
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Assay ID
1
 Protein name Genetic position

2
 rsID EA/OA

3
 EAF OR (95% CI)

4
 P Novel

5
 

OID20868 TST 22:36862461 rs4821544 T/C 0.697 2.08 (1.50 -  2.89) 1.31E-05 Yes 

OID21420 PVALB 22:36862461 rs4821544 T/C 0.697 1.10 (1.05 -  1.15) 1.31E-05 Yes 

OID21011 PVR 19:44643102 rs2301274 T/C 0.759 0.90 (0.86 -  0.95) 2.46E-05 Yes 

OID30423 SPRED2 2:65429835 rs7569084 C/T 0.414 0.39 (0.25 -  0.61) 3.76E-05 No 

OID20500 PARP1 1:226421638 rs1433574 A/C 0.839 1.70 (1.30 -  2.23) 1.04E-04 Yes 

OID21005 CDH15 16:89132700 rs11646135 A/G 0.142 1.22 (1.10 -  1.35) 1.19E-04 Yes 

18172_71 ASF1A 6:118811617 rs4946366 T/C 0.164 0.49 (0.34 -  0.71) 1.53E-04 Yes 

OID30697 CR1 1:207577223 rs679515 T/C 0.174 1.16 (1.07 -  1.26) 1.81E-04 Yes 

OID30554 VEGFB 11:64275525 rs660442 A/G 0.200 0.51 (0.36 -  0.73) 1.98E-04 Yes 

OID21084 WARS 14:100379120 rs12882934 C/A 0.745 1.31 (1.14 -  1.52) 2.36E-04 Yes 

13123_3 FLRT3 20:14693192 rs1932953 T/G 0.270 1.09 (1.04 -  1.14) 2.60E-04 Yes 

OID21458 NCS1 9:130233489 rs1054879 A/G 0.508 1.99 (1.36 -  2.92) 4.06E-04 Yes 
1
Assay identifier as provided by the Olink or SomaScan platform. 

2
Chromosome and genetic position in build 38 for the genetic instrumental variable. 

3
The alleles have been orientated to reflect an 

increase in plasma protein abundance. 4The odds ratio correspond to risk for neurological disease per 1-SD increase in plasma protein abundance estimated using the Wald ratio method. 5A genetic 

loci was considered novel if it was not reported by the corresponding genome-wide association study. Abbreviations: CI, confidence interval; EA, effect allele; FDR, false discover rate; OA, other allele; 

OR, Odds ratio 
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Table 3. Proteins associated with brain volumes using two-sample Mendelian randomization and supported by co-localisation. 

Assay ID1 Protein name Outcome Chr:Position2 rsID EA/OA3 EAF β (95% CI)4 P 

OID30727 APOE Nucleus accumbens volume 19:44908684 rs429358 T/C 0.844 0.060 (0.038 to 0.081) 4.24E-08 

OID30727 APOE Hippocampal volume 19:44908684 rs429358 T/C 0.844 0.063 (0.038 to 0.087) 4.06E-07 

OID20197 PILRB Caudate volume 7:100374211 rs1859788 G/A 0.681 -0.036 (-0.05 to -0.022) 5.98E-07 

OID21129 PILRA Caudate volume 7:100374211 rs1859788 G/A 0.681 -0.041 (-0.057 to -0.025) 5.98E-07 

OID30727 APOE White matter hyperintensities 19:44908684 rs429358 T/C 0.844 -0.066 (-0.092 to -0.04) 7.97E-07 

OID30727 APOE Amygdala volume 19:44908684 rs429358 T/C 0.844 0.049 (0.028 to 0.070) 4.10E-06 
1Assay identifier as provided by the Olink or SomaScan platform.2Chromosome and genetic position in build 38 for the genetic instrument. 3The genetic variants have been orientated to reflect an 

increase in plasma protein abundance. 
4
The odds ratio correspond to SD change in brain imaging trait per 1-SD increase in protein abundance. Abbreviations: CI, confidence interval; EA, effect allele; 

FDR, false discover rate; OA, other allele  
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