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Abstract  22 

Background 23 

Studies have identified individual blood biomarkers associated with chronic obstructive 24 

pulmonary disease (COPD) and related phenotypes. However, complex diseases such as 25 

COPD typically involve changes in multiple molecules with interconnections that may not be 26 

captured when considering single molecular features. 27 

Methods 28 

Leveraging proteomic data from 3,173 COPDGene Non-Hispanic White (NHW) and African 29 

American (AA) participants, we applied sparse multiple canonical correlation network analysis 30 

(SmCCNet) to 4,776 proteins assayed on the SomaScan v4.0 platform to derive sparse 31 

networks of proteins associated with current vs. former smoking status, airflow obstruction, and 32 

emphysema quantitated from high-resolution computed tomography scans. We then used 33 

NetSHy, a dimension reduction technique leveraging network topology, to produce summary 34 

scores of each proteomic network, referred to as NetSHy scores. We next performed genome-35 

wide association study (GWAS) to identify variants associated with the NetSHy scores, or 36 

network quantitative trait loci (nQTLs). Finally, we evaluated the replicability of the networks in 37 

an independent cohort, SPIROMICS. 38 

Results 39 

We identified networks of 13 to 104 proteins for each phenotype and exposure in NHW and AA, 40 

and the derived NetSHy scores significantly associated with the variable of interests. Networks 41 

included known (sRAGE, ALPP, MIP1) and novel molecules (CA10, CPB1, HIS3, PXDN) and 42 

interactions involved in COPD pathogenesis. We observed 7 nQTL loci associated with NetSHy 43 

scores, 4 of which remained after conditional analysis. Networks for smoking status and 44 

emphysema, but not airflow obstruction, demonstrated a high degree of replicability across race 45 

groups and cohorts. 46 

Conclusions 47 
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In this work, we apply state-of-the-art molecular network generation and summarization 48 

approaches to proteomic data from COPDGene participants to uncover protein networks 49 

associated with COPD phenotypes. We further identify genetic associations with networks. This 50 

work discovers protein networks containing known and novel proteins and protein interactions 51 

associated with clinically relevant COPD phenotypes across race groups and cohorts.   52 

 53 

Keywords: COPD; proteomic network; SmCCNet; genetic variants; network replication  54 
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Introduction  55 

In the US, chronic obstructive pulmonary disease (COPD) is a major public health 56 

concern as the fourth leading cause of death [1], affecting more than 16 million adults [2]. COPD 57 

is characterized by lung inflammation and the diagnosis of chronic airflow obstruction is made 58 

using spirometry [3]. Tobacco smoking is the primary exposure risk factor for the development 59 

of COPD in the US. Staudt et al. [4] showed that tobacco smoke diminished the capacity to 60 

regenerate airway epithelium in COPD. It is not unexpected, therefore, that 42.3% of current 61 

and former smokers with normal spirometry [5] have respiratory symptoms and evidence of 62 

emphysema or airway thickening on chest computed tomography (CT) scans.  63 

Forced expiratory volume in one second (FEV1) and percent emphysema (%LAA950) 64 

are clinically observable characteristics related to symptoms, exacerbations, and response to 65 

treatment [6]. Being a non-invasive, inexpensive, highly accessible, and easily reproducible 66 

method, spirometry is the current gold standard for diagnosing and monitoring COPD 67 

progression [7]. Emphysema is another phenotype of COPD, which describes obliteration of the 68 

acinar units of the lung [8]. Emphysema can be quantified by lung density measured from CT 69 

images in which dense lung tissue is replaced by less dense air [9].  70 

Recent advances in high throughput technologies allow investigators to collect data from 71 

multiple biological layers including the genome, transcriptome, and metabolome [10–12]. In 72 

particular, the proteome, where peptide and protein abundance are quantified, has posed a 73 

great advantage in studying complex diseases such as COPD since proteins play direct 74 

functional roles in biological systems and may provide more relevant information related to 75 

disease mechanisms than transcriptional profiling [13]. Previous studies have focused on 76 

individual proteins associated with COPD [14]. Lee et al. [15] identified eight up-regulated 77 

proteins in the COPD group in comparison with the nonsmoker group. Similarly, Ohlmeier et al. 78 

[16] observed increased levels of surfactant protein A (SP-A) in COPD participants but not in the 79 

normal or fibrotic lung by investigating changes in the proteome from human lung tissue.  80 
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While these studies identified individual protein biomarkers with prognostic potential, 81 

they were limited by small sample sizes in hard-to-obtain lung tissue and lack the additional 82 

predictive power gained by simultaneously considering a collection of related biomarkers and 83 

their interactions [17]. Consequently, network-based analyses have emerged as a powerful 84 

framework to characterize changes in multiple molecular entities and their interconnections that 85 

may not be captured by single molecular features [18]. Obeidat et al. [19] constructed networks 86 

of co-expressed genes from peripheral blood of COPD patients using weighted correlation 87 

network analysis (WGCNA) [20] and identified networks associated with forced expiratory 88 

volume in one second (FEV1) and enriched in interleukin (IL)-10 and IL-8 signaling pathways. In 89 

another study, Mammen et al. [21] performed network analysis on proteomic data collected from 90 

bronchoalveolar lavage of the epithelial lining fluid (BALF) samples and identified 233 91 

differentially expressed proteins in moderate COPD compared to controls. Topological analysis 92 

of these proteins suggested the importance of intercellular adhesion molecule 1 (ICAM1), 93 

galectin-3, fibronectin, and vimentin in mediating inflammation and fibrogenesis.  94 

Most large-scale omics studies for COPD have been conducted in primarily European 95 

ancestry populations while only a limited number of relatively smaller-sized studies have 96 

focused on other populations [15, 22–26]. Polygenic risk scores (PRS) provide complementary 97 

information for predicting COPD and related phenotypes [27], however, they present a large 98 

amount of uncertainty which limits the transferability across ancestry groups [28, 29]. Motivated 99 

by the lack of COPD omics studies in non-European ancestries, we conducted proteomic 100 

analyses on a large cohort that includes >1,500 self-described African American (AA) subjects 101 

to gain more insights into potential proteomic signatures associated with the disease. We 102 

leverage proteomic data and network-based approaches to identify protein networks associated 103 

with COPD phenotypes separately in AA and Non-Hispanic White (NHW) participants.  104 

In this work, we used sparse multiple canonical correlation network analysis (SmCCNet) [30] to 105 

construct proteomic networks associated with two COPD phenotypes (FEV1 and emphysema 106 
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quantified as percentage of low-attenuation areas defined by voxels with Hounsfield Units < 950 107 

(%LAA950)) and a relevant exposure (current smoking status) across two race groups (AA and 108 

NHW).  109 

The resulting networks were compared to identify common, phenotype- and race-group-110 

specific proteins and their corresponding interactions to gain insights into the underlying 111 

mechanisms of COPD. As proteins can have strong genetic associations [31–33] that may 112 

reflect upstream regulatory process, we also performed a genome-wide quantitative trait loci 113 

(QTL) analysis to identify loci associated with each network, in addition to QTL analyses of 114 

individual proteins in the networks. Through colocalization and conditional analyses, we further 115 

investigated whether the genetic associations observed were due to individual effects of the 116 

proteins in the network versus a cumulative effect of the network. Finally, we demonstrated that 117 

networks for smoking and %LAA950 built in one race group generally transfer to the other and 118 

that networks also validated in an external cohort, the SubPopulations and InteRmediate 119 

Outcome Measures in COPD Study (SPIROMICS).  120 

 121 

Materials and Methods  122 

COPD Cohorts 123 

COPDGene [34] (Clinical Trial Registration NCT02445183) is a large, multi-center 124 

observational study that enrolled 10,198 current and former smokers with at least a 10 pack-125 

year history of smoking, as well as additional never smoker controls (< 100 lifetime cigarettes) 126 

with and without COPD, 45-80 years old, with 2/3 non-Hispanic white and 1/3 African 127 

Americans. Genotyping data were from the enrollment visit. Proteomics was generated at the 128 

five-year follow-up (2013 and 2017, Visit 2) [34] [35] (Supplement Figure 1). All study 129 

participants provided informed written consent. 130 

SPIROMICS (Clinical Trial Registration NCT01969344) is a multi-center observational 131 

study that enrolled 2,973 current and former smokers with at least 20 pack-years of smoking 132 
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between November 2011 to January 2015. Subject were between 40-80 years of age at the 133 

time of enrollment and were categorized into never-smokers (<1 pack-year, Stratum 1) or 134 

history of smoking (>20 pack years) and divided by spirometry into strata; Stratum 2:   135 

FEV1/FVC  > 0.7 and FVC > LLN; Stratum 3 : FEV1/FVC <0.07 and FEV1>50% predicted; 136 

Stratum 4: FeV1/FVC <0.07 and FEV1`<50% predicted). The cohort is multiracial with 73% non-137 

Hispanic white, 18% African American, and 9% other races. Fasting blood was collected at visit 138 

1 in vacutainer EDTA plasma tube, immediately spun, aliquoted, frozen, and stored at –80°C 139 

[36].  For replication we used the smokers (strata 2-4) non-Hispanic NHW and African American 140 

race groups at Visit 1 who had SomaScan v 4.1 profiles (n= 1792). All study participants 141 

provided informed written consent (Supplement Table 2, Supplement Figure 2).  142 

 143 

COPDGene Cohort Demographics 144 

Proteomic analyses included 3,173 COPDGene participants. Demographics and relevant 145 

clinical characteristics of participants, stratified by self-identified race, are shown in Table 1. All 146 

participants are current or former smokers. We applied a matching approach in an attempt to 147 

better match the NHW and AA groups in terms of age, smoking status, sex, and GOLD stage 148 

(see Supplement Table 1 and Table 1 for details). Further details on matching are in 149 

Supplementary Methods. 150 

 151 

COPD Phenotypes and Exposures 152 

COPD was defined by spirometric evidence of airflow obstruction, which was computed 153 

as a ratio of post-bronchodilator forced expiratory volume at one second (FEV1) to forced vital 154 

capacity (FVC). The Global Obstructive Lung Disease (GOLD) system is used to grade COPD: 155 

in our smoking groups (current and former) GOLD 0 represents an individual without COPD 156 

(FEV1 > 80 %; FEV1/FVC ≥ 0.7), GOLD 1 (FEV1 ≥ 80 %; FEV1/FVC < 0.7), GOLD 2 (50% ≤ 157 

FEV1 < 80%; FEV1/FVC < 0.7), GOLD 3 (30% ≤FEV1 < 50%; FEV1/FVC < 0.7), and GOLD 4 158 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.26.24303069doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.26.24303069
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 8

 

(FEV1 < 30%; FEV1/FVC < 0.7), respectively represent the smoker control, mild, moderate, 159 

severe, and very severe stages of COPD. Individuals with an FEV1/FVC ≥ 0.70 and FEV1 % 160 

predicted ≤ 80% were defined as having Preserved Ratio Impaired Spirometry (PRISm) [37]. 161 

We use FEV1  as measured in liters as opposed to the race-based percent predicted which can 162 

create bias, but adjust for other covariates described below. Emphysema was captured as the 163 

log-transformed percentage of lung voxels with Hounsfield Units (HU)�<�−950 (%LAA950) on 164 

chest CT scan. This metric is also called percentage of low attenuation areas (%LAA). Current 165 

smoking status was defined as “former smokers” if they had not smoked any cigarettes within 166 

the last 30 days or “current smokers” if they had. Data to calculate the number of pack-years a 167 

person smoked were self-reported and calculated based on the packs of cigarettes smoked per-168 

day multiplied by the total number of years smoked.  169 

 170 

Matched Non-Hispanic White and African American Race Groups 171 

COPDGene non-Hispanic White (NHW) and African American (AA) groups had different sample 172 

sizes as well as key characteristics such as age, current smoking status, sex, and severity of 173 

COPD (GOLD Stage). Therefore, we applied a matching approach using SAS version 9.4 174 

SAS/STAT version 15.1, surveyselect procedure to better match groups on these variables, with 175 

a particular focus on current smoking and GOLD stage. Details are provided in Supplementary 176 

Methods.   177 

 178 

Proteomic Platforms and Final Data Sets 179 

Plasma protein levels were quantified with SomaScan and quality controlled by SomaLogic 180 

(Boulder, Co) [38].   Further details on SomaScan platforms are provided in Supplementary 181 

Methods. For COPDGene, the final matched race groups were 1,660 NHW and 1,513 AAs 182 

(Table 1, Supplementary Methods). For SPIROMICS, the final replication group was 1,792 183 

subjects (1,459 NHW and 333 AA) (Table 1).  184 
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 185 

Covariate Adjustment 186 

To account for potential confounding effects, we adjusted proteomic data for sex, age, and 187 

clinical center. Specifically, we fit an ordinary least squared regression model for each protein 188 

such that its abundance was used as the response variable and the three variables (sex, age, 189 

and clinical center) as covariates. The resulting residuals were used as input for downstream 190 

analysis.  191 

 192 

Network Analysis 193 

Network construction: We used SmCCNet [30] to generate protein subnetworks associated with 194 

each COPD phenotype (FEV1 and %LAA950) and smoking (Supplement Figure 3). SmCCNet 195 

was originally developed to consider multiple omics data sets, so we modified the SmCCNet 196 

algorithm to a single omics setting by removing scaling between pairs of omics data. This 197 

proposed method has two implementations: one for continuous outcomes (applied to %LAA950 198 

and FEV1) and one for binary outcomes (applied to smoking status). The continuous outcome 199 

scenario follows the SmCCA framework and implements sparse canonical correlation analysis. 200 

The binary exposure scenario implements sparse partial least square discriminant analysis 201 

(SPLS-DA) [39, 40], by performing a classification task under a supervised setting with a two-202 

stage procedure. For the first step, the projection matrix is extracted with regular partial least 203 

square assuming a continuous phenotype. For the second step, the projected data is used to fit 204 

a logistic regression model.  Details are provided in Supplementary Methods. 205 

 206 

Network trimming and summarization: The subnetworks obtained through hierarchical clustering 207 

may still contain some proteins which are not strongly associated with the phenotype of interest. 208 

Therefore, our next step was to further trim the subnetworks such that only the most informative 209 

proteins were retained using the PageRank algorithm [41]. We then summarized each 210 
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subnetwork using the NetSHy approach which applied principal component analysis (PCA) on 211 

the combination of both protein abundance and topological properties to obtain the first three 212 

low-dimensional summarization scores, referred to as NetSHy scores [42]. In all but one case 213 

noted in the Results, the top three scores accounted for over 40% of the cumulative variance 214 

explained. We calculated the correlation between each NetSHy score with the corresponding 215 

phenotype. Recall that each NetSHy score is a weighted average abundance of all proteins in 216 

the network with the relative weights determined by the corresponding loadings. By ranking 217 

absolute values of the loadings, we can identify top five proteins that contribute the most to each 218 

NetSHy score in each network. We denote these as top five loading proteins. We use the L2-219 

norm explained, defined as the sum of squares of the top 5 protein’s loadings from each 220 

NetSHy PC, to check the total contribution of these proteins to their corresponding NetSHy PC.  221 

We found that among all 18 NetSHy PCs (6 networks X 3 PCs), 15 of them have at least 90% of 222 

the L2-norm explained, and all of them have at least 65% L2-norm explained by the top 5 223 

proteins.  224 

Based on the topology of each network, we compute the total connection strength of 225 

each protein by adding up all the edges connecting that protein to every other protein in the 226 

network. We define hub proteins as those proteins that have the top five largest total connection 227 

strength values (in some cases there are ties, see Supplementary Table 3). We use a ranking 228 

approach, as opposed to absolute cutoffs for the number of connections, as the density of the 229 

networks may vary. 230 

 231 

Statistical test for comparing subnetworks: We quantify the similarities and differences between 232 

subnetworks associated with each phenotype and exposure across the two race groups using 233 

the p-norm difference test (PND) with the exponent � � 6, referred to as PND6, which was 234 

shown to be a top performing test by Arbet et al. [43]. For each phenotype and exposure, we 235 

compute a PND6 statistic which aggregates all the edge-wise differences across the two group-236 
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specific subnetwork adjacency matrices. Using a non-parametric permutation method, we derive 237 

the sampling distribution under the null hypothesis to generate the corresponding p-values. In 238 

our setup, p-values that are smaller than a significance level α correspond to rejecting the null 239 

hypothesis at the α level, indicating that the two comparing subnetworks are different. More 240 

details are provided in Supplementary Methods. 241 

 242 

Network projection: In addition to a direct subnetwork comparison using the PND6 test statistic, 243 

we also investigate the similarities and differences between race-specific subnetworks by 244 

projecting a subnetwork derived from one race group onto another and vice versa. Specifically, 245 

we impose the subnetwork connectivity from one group onto the proteomic data of the other 246 

group to compute NetSHy scores as in [42], referred to as projection scores. We calculate 247 

correlations between these scores with each respective phenotype or exposure to statistically 248 

compare with the original correlations. This procedure is also used to compare subnetworks 249 

between COPDGene and SPIROMICS cohorts. Details are provided in Supplementary 250 

Methods. 251 

 252 

Network Quantitative Trait Loci (nQTL) Analysis 253 

COPDGene WGS data was generated by the NHLBI Trans-Omics for Precision Medicine 254 

(TOPMed) program [44]. Details are provided in Supplementary Methods. For each 255 

subnetwork, we performed a genome-wide network quantitative trait locus (nQTL) analysis of 256 

the 3 inverse-normalized NetSHy scores (NetSHy1, NetSHy2, NetSHy3) assuming an additive 257 

model for genotype [42]. We regressed the NetSHy scores on each genetic variant separately 258 

adjusting for covariates depending on the phenotype used to generate the sub-network. For 259 

FEV1  and  %LAA950 – the nQTL model was adjusted for sex, age, BMI, smoking status, and 6 260 

genetic PCs to adjust for global ancestry . For smoking - the nQTL model was adjusted for sex, 261 

age, BMI, and 6 genetic PCs [45]. We conducted nQTL analysis on the University of Michigan 262 
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Encore [46] server’s “Efficient and parallelizable association container toolbox” (EPACTS) [47]. 263 

Briefly, EPACTS efficiently performs statistical tests between phenotypes/exposure and 264 

sequence data through a user-friendly interface.  265 

 266 

Conditional nQTL Analysis 267 

As a secondary analysis, we conducted genome-wide association tests for top proteins 268 

contributing to each NetSHy score, defined by their contribution to the NetSHy score. We 269 

regressed the inverse-normalized protein levels adjusting for covariates in the same manner as 270 

for the NetSHy network scores. If associations for phenotype and protein were observed in the 271 

same chromosomal locus, colocalization analysis was performed to assess whether the same 272 

genetic region contributed to both the genetic associations. If colocalization was observed, 273 

genome-wide analysis of phenotype was rerun with normalized protein value as an additional 274 

covariate, testing the hypothesis that the network quantitative trait loci (nQTLs) were driven by 275 

single protein quantitative trait loci (pQTLs). Further details are described in the Supplementary 276 

Methods.    277 

 278 

Pathway Overrepresentation Enrichment Meta-analysis 279 

Proteins from each network were input into Metascape [48] as discrete lists. Uniprot identifiers 280 

were mapped to Entrez gene IDs. These genes were then assessed for enrichment in a variety 281 

of databases (Functional Set: Gene Ontology (GO): Molecular Functions; Pathway: GO: 282 

Biological Processes, Hallmark, Reactome, KEGG Pathway, WikiPathways, Canonical 283 

Pathways, BioCarta Gene Sets, PANTHER Pathway; Structural Complex: GO: Cell 284 

Components, CORUM). All proteins assayed by the SomaScan v4.0 platform were included as 285 

a background list for enrichment. Protein-protein interaction (PPI) networks obtained from 286 

STRING [49], BioGrid [50], OmniPath [51], and InWeb_IM [52] were additionally seeded with 287 
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these genes and the MCODE algorithm [53] was used to identify subnetworks of connected 288 

proteins. 289 

 290 

Results  291 

Despite matching some differences between NHW and AA still exist in the matching 292 

variable, but these differences are not clinically large. The biggest differences seen are with 293 

COPD Gold stages with AA having a larger percentage with normal lung function and a lower 294 

median number of pack-years of smoking. In the SPIROMICS cohort, which was not matched 295 

there are large differences in age, sex, smoking status, and severity of COPD. Both cohort’s AA 296 

population had higher levels of emphysema (Table 1). While the two cohorts are COPD cohorts, 297 

their recruitment criteria were different, and therefore there are difference in their overall 298 

characteristics with SPIROMICS being on average older, with a higher percentage of NHW, 299 

males, current smokers with a higher number of pack-years, more severe COPD and 300 

emphysema (Supplement Table 2). 301 

 302 

Protein Networks Associated with COPD Phenotypes and Smoking Exposure 303 

Smoking  304 

The NHW smoking network consisted of 34 proteins while the AA smoking network 305 

consisted of 17 proteins (Figure 1). Of those network proteins, only 27 and 7 proteins for NHW 306 

and AA respectively were significant in the univariate analysis at FDR < 0.10 (Table 2, 307 

Supplement Table 3). Across the two race groups, there were seven overlapping proteins 308 

including UCRP, PAP1, LPLC1, IGFBP-1, alkaline phosphatase placental type (ALPP), leptin, 309 

and EDIL3. In the NHW network, correlation between each protein and smoking status ranged 310 

from -0.20 to 0.36. The range of correlation between the proteomic data and smoking status 311 

was smaller in the AA network (-0.17 to 0.23). Correlations between networks in NHW and AA 312 

groups with the smoking exposure were 0.33 and 0.23, respectively (Table 2). Both networks 313 
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displayed high connectivity such that each node was connected to every other node, leading to 314 

the corresponding network density equal to one. In both networks, ALPP had many heavily 315 

weighted connections. In particular, the connection strengths from ALPP to leptin, CRLD2, and 316 

GKN2 were 1, 0.79, and 0.76, respectively, in the NHW network. Similarly, in the AA network, 317 

ALPP was strongly connected to EDIL3 (1.0), leptin (0.9), and IGFBP-1 (0.67). As expected, by 318 

intersecting the lists of hub proteins and top loading proteins, we observed that hub proteins 319 

generally contributed more to the network summary scores than other proteins across the two 320 

race groups. For instance, in the NHW network, hub proteins such as ALPP, leptin, and PPBN 321 

were also among those with the largest loadings. Similarly, hub nodes in the AA network 322 

including ALPP, leptin, and trypsin-2 also contributed the most to the network summary score.  323 

We used a statistical approach to compare the adjacency matrices representing the two 324 

race-specific networks. Given that the two networks had different sizes (34 vs. 17 proteins), we 325 

found a union set of 44 proteins present in either or both networks, prior to calculating the p-326 

norm difference test with exponent equal to 6 (PND6) (See Methods). Table 3 shows the 327 

resulting test statistics and p-values when comparing smoking-associated networks to indicate 328 

that networks associated with smoking are similar across NHW and AA race groups (PND6 = 329 

0.340, p-value = 0.955). Supplement Figure 4a displays the corresponding heatmap for edge-330 

wise differences in networks associated with smoking exposure between NHW and AA groups. 331 

In alignment with the PND6 test, we observed more white or lighter red areas, highlighting the 332 

similarity of smoking-associated networks across the two race groups. Additionally, Table 4 333 

summarizes the similarities and differences between smoking-associated subnetworks by 334 

projecting a subnetwork across race groups and/or cohorts, which is a complementary approach 335 

that does not require adjacency matrices in each group. Within the COPDGene, we computed 336 

the cross-race correlations by projecting the NHW subnetwork onto AA data and vice versa, and 337 

we observed similar correlations across the two race groups. Specifically, when the AA 338 

subnetwork (C-AA) was projected to NHW proteomic (C-NHW) data, the first two projection 339 
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correlations were 0.354 and 0.125, respectively. The original correlations, 0.329 and 0.208, fell 340 

within the corresponding 95% bootstrap confidence intervals (CIs) of (0.303, 0.403) and (0.057, 341 

0.202), respectively. Similarly, when we projected the NHW subnetwork (C-NHW) onto AA (C-342 

AA) data, the corresponding 95% CIs also captured the observed correlations, demonstrating 343 

the similarity between subnetworks across the two race groups within the same cohort.   344 

We further projected the subnetworks derived from COPDGene (C) onto the data in 345 

SPIROMICS (S) to assess the replicability of the subnetworks across independent cohorts. By 346 

projecting the NHW subnetwork derived from COPDGene (C-NHW), onto the NHW data in 347 

SPIROMICS (S-NHW) we obtained the first two cross-cohort correlations of 0.373 and 0.186, 348 

respectively. Note that the 95% CI of the first projection component (0.334, 0.416) was 349 

significantly higher than the original correlation of 0.329. Similarly, when we projected the 350 

COPDGene AA subnetwork (C-AA) onto SPIROMICS NHW (S-NHW) data, the first projection 351 

correlation was 0.393 and its 95% CI was (0.347, 0.432). Once again, the confidence interval 352 

was higher than the original correlation of 0.329. Such consistent projection correlations indicate 353 

a high level of replicability of the subnetworks associated with smoking exposure across 354 

independent cohorts. In a similar manner, we projected the C-AA subnetwork onto the 355 

SPIROMICS AA (S-AA) data and also observed similar results (Table 4). In summary, these 356 

results provide further evidence of the replicability of the smoking subnetworks across cohorts, 357 

even when considering different race groups. 358 

 359 

FEV1 360 

There were 13 and 22 proteins present in the NHW and AA networks for FEV1, 361 

respectively, with sRAGE present in both networks (Figure 2). Of those network proteins, only 2 362 

and 1 protein(s) for NHW and AA respectively were significant in the univariate analysis at FDR 363 

< 0.10 (Table 2, Supplement Table 3). In the AA network, sRAGE was strongly connected to 364 

Carboxypeptidase B (1.0) and EDIL3 (0.53) while displaying relatively weaker relationships (< 365 
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0.33) with the remaining nodes. In the NHW network, sRAGE showed strong connections to 366 

Renin (0.93) and Lefty-A (0.7) while maintaining moderate relationships of at least 0.5 to other 367 

proteins. Correlations between individual proteins with FEV1 ranged from -0.11 to 0.1 in the 368 

NHW network and from -0.09 to 0.12 in the AA network. Correlations between NetSHy1 of 369 

networks derived from NHW and AA participants with FEV1 were 0.13 and 0.14, respectively 370 

(Table 2).  371 

We next investigated potential overlap between the NHW and AA networks. Using the 372 

PND6 method, we found a significant difference between the two networks (p-value < 0.001, 373 

Table 3, Supplement Figure 4b). The projection approach also showed poor performance, 374 

suggesting notable differences between the FEV1 networks across the two race groups. We 375 

further projected the subnetworks derived from COPDGene (C) onto the data in SPIROMICS 376 

(S) to assess the replicability of the subnetworks across independent cohorts. By projecting the 377 

C-NHW subnetwork onto the S-NHW data and vice versa, we found that the corresponding 95% 378 

CIs also captured the original correlations, suggesting some degree of replicability across 379 

cohorts for the same race group (Supplement Table 3a). However, the CIs were relatively 380 

wider than with smoking, which might be due to more variation in the subnetworks associated 381 

with this phenotype. These observations indicate some moderate degree of transferability of 382 

FEV1 associated networks across cohorts for the same race group. However, the results also 383 

highlight potential variations in the subnetworks associated with FEV1 across race groups, 384 

emphasizing the importance of considering group-specific characteristics when studying this 385 

phenotype.  386 

 387 

 %LAA950 388 

There were 21 and 104 proteins present in NHW and AA networks for %LAA950, 389 

respectively (Figure 3). Of those network proteins, only 4 and 6 proteins for NHW and AA 390 

respectively were significant in the univariate analysis at FDR < 0.10 ((Table 2, Supplement 391 
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Table 3). The AA network is notably larger and denser, and was the only network where the top 392 

3 summarization scores explained less than 40% of the variability (23% variability explained). 393 

Despite this difference there were many consistencies. The two networks had seven proteins in 394 

common: PXDN, DAN, FSH, sRAGE, Glucagon, SIRB1, RNase 1, and Leptin. In the NHW 395 

network, the range of correlations between each protein and %LAA950 was between -0.12 and 396 

0.09, which was similar to that in the AA race group. Correlations between networks derived 397 

from NHW and AA groups with %LAA950 were 0.14 and 0.12, respectively (Table 2).  Like 398 

smoking, the two networks associated with %LAA950 are similar across NHW and AA groups 399 

(Table 3, Supplement Figure 4c). This was also consistent with the projection analysis 400 

(Supplement Table 3b) where we found notable similarities between subnetworks associated 401 

with %LAA950 across the two race groups within the same cohorts. Furthermore, when 402 

comparing the subnetworks associated with %LAA950 across independent cohorts, we also 403 

observed consistency in the projections (Supplement Table 3b).  404 

 405 

Enrichment 406 

We performed enrichment of individual proteins within networks and meta-analysis 407 

across networks through MetaScape. Significantly enriched pathways are shown in Figure 4. 408 

Top shared pathways identified through meta-analysis include response to hormone (enriched 409 

in all gene lists), and regulation of cell activation and response to bacterium enriched in five 410 

gene lists (Figure 4a). Many additional pathways were enriched in multiple gene lists in meta-411 

analysis. Individual enrichment analysis also showed gene lists were enriched for many 412 

disease-relevant pathways. For example, in addition to observing many proteins in networks 413 

associated with inflammatory and antimicrobial processes, we observe VEGFA-VEGFR2 414 

signaling enriched in %LAA950 NHW, FEV1 NHW, and FEV1 AA networks (Figure 4b).   415 

 416 

Network QTLs (nQTLs) Show Genetic Underpinnings of COPD Protein Networks 417 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.26.24303069doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.26.24303069
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 18

 

We tested for association between the top 3 NetSHy scores of each protein network and 418 

common genetic variants from WGS. Seven NetSHy scores were associated with at least one 419 

variant at a genome wide significant level (Table 5, Figure 5). NetSHy1 of smoking in both AA 420 

and NHW participants show genetic association signals on 2q37.1 within or near the gene 421 

ALPG. NetSHy2 of FEV1 in NHW participants is associated with variants on chr1 near LEFTY1. 422 

NetSHy2 of %LAA950 in AA participants is associated with a single variant in MGAT5, and 423 

NetSHy2 and NetSHy3 of %LAA950 in NHW participants show associations with the ABO 424 

locus. NetSHy3 of %LAA950 in NHW additionally shows an association signal on chr19 within 425 

the gene SIGLEC9. Both ABO lead variants have previously been found to be associated with 426 

lung function. Rs8176693 was nominally associated with FEV1/FVC in a European population 427 

[54] and rs9921085 is associated with both FEV1 (p-value = 1.00 x 10-14) and FVC (p-value = 428 

1.10 x 10 -14) in the UK Biobank [55]. 429 

We next assessed whether these genetic associations were driven by top proteins in 430 

networks. For each NetSHy score with a significant association, we ran a genome-wide 431 

association scan for the top 5 loading proteins contributing to each NetSHy score. We identified 432 

associations with proteins in  %LAA950 NHW NetSHy 2 (Ganglioside GM2 activator),  433 

%LAA950 NHW NetSHy3 (Cadherin 17 and sRAGE), FEV1 NHW NetSHy2 (Regenerating islet 434 

derived protein 3 alpha), Smoking AA NetSHy1 (Cob(I)yrinic acid a,c-diamide 435 

adenosyltransferase mitochondrial, alkaline phosphatase placental type, and insulin growth 436 

factor binding protein 1), and Smoking NHW NetShy1 (Gastrokine 2, Interleukin 12 subunit beta, 437 

Alkaline phosphatase placental type, and alkaline phosphatase placental like 1) (Supplement 438 

Tables 4).  439 

In each instance where an nQTL and a single-protein genetic association were on the 440 

same chromosome, we tested for colocalization of these signals using coloc. When single 441 

protein and nQTL signals colocalized, we reran the associated GWAS with the single protein 442 

abundance values included as a covariate to serve as a conditional analysis. After conditional 443 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.26.24303069doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.26.24303069
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 19

 

analysis, 4 NetSHy associations with genetic loci of the 7 remain: NHW %LAA950 NetSHy3 – 444 

SIGLEC9, AA %LAA950 NetSHy2 - MGAT5, NHW %LAA950 NetSHy2 – ABO, and NHW FEV1 445 

NetSHy2 – LEFTY1 (Supplement Table 4).  446 

 447 

Discussion  448 

Summary 449 

We used SmCCNet to generate protein correlation networks associated with FEV1, 450 

%LAA950, and smoking status separately in NHW and AA COPDgene participants, containing 451 

13 to 104 proteins.  We used smoking exposure as a paradigm to develop methods and 452 

contrast race groups as smoking has been well studied. We then used the same approach to 453 

investigate other COPD phenotypes such as FEV1 and %LAA, where our understanding was 454 

comparatively limited.  The derived networks demonstrated stronger or as strong correlations 455 

with phenotypes and exposure than individual proteins demonstrating the beneifts of a network 456 

approach. Smoking and %LAA950 networks were similar between NHW and AA, and replicated 457 

well in the SPIROMICS cohort, while FEV1 networks showed notable differences across the two 458 

groups and lower level of replicability. 459 

We ran genome-wide association study analysis on NetSHy scores to identify potential 460 

genetic variants associated with the protein networks, which we refer to as nQTLs. Finally, we 461 

assessed whether discovered nQTLs were independent of genetic association signals of single 462 

top proteins included in the network and identified three genetic variants associated with 463 

%LAA950 networks. Through this work, we have identified novel networks of correlated proteins 464 

related to COPD phenotypes of interest, as well as common genetic variants associated with 465 

these networks. It is worth noting that at many of the proteins in the identified networks were not 466 

significantly correlated with the respective phenotype/exposure (Table 2). This demonstrates 467 

the advantages of a network approach, which enabled the identification of proteins that were not 468 

identified on their own but appear to play a supplementary role in influencing the outcome of 469 
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interest through their interactions with other proteins that do have a strong association with the 470 

phenotype/exposure. 471 

Enrichment analysis of networks demonstrates that network proteins across the 472 

phenotypes are associated with processes and pathways such as response to bacterium and 473 

antimicrobial peptides, hormone activity, extracellular matrix signaling, and interferon signaling. 474 

Antimicrobial proteins include UCRP and LPLC1 in our smoking networks, as well as proteins 475 

such as MIP1a and IgD in FEV1 networks, and PXDN and RNase1 in %LAA950 networks. 476 

UCRP is integral to the response to infection of multiple respiratory pathogens, including 477 

influenza and SARS-CoV-2 [56, 57]. UCRP has previously been demonstrated to be 478 

upregulated at the RNA level in alveolar macrophages from COPD patients with more severe 479 

disease (based on GOLD staging) [58]. LPLC1 is thought to be involved in innate immune 480 

responses to bacterial infection, including in the lung [59]. LPLC1 has previously been 481 

demonstrated to be upregulated in sputum of smokers with and without COPD [60]. 482 

Furthermore, protein levels in sputum are correlated with smoking pack-years and spirometric 483 

measures of lung function (FEV1 & FEV1/FVC) [61]. MIP-1a is an inducible chemokine that 484 

promotes inflammation and monocyte and macrophage recruitment. Gene and protein 485 

expression is increased in COPD PBMCs relative to healthy controls [62] as well as in sputum 486 

[63]. MIP-1a has also been shown to promote tight junction injury in airway epithelium [62].  IgD 487 

is the major antigen receptor type on peripheral B-cells. It induces TNF, IL1B, and IL1RN, in 488 

addition to other cytokines [64]. Serum IgD has previously been shown to be increased in 489 

COPD subjects [65]. PXDN is a heme-containing peroxidase secreted into extracellular matrix 490 

that is involved in extracellular matrix formation. PXDN also directly binds gram-negative 491 

bacteria in innate immune response, contributing to lung host defense [66]. RNase 1 is an 492 

endonuclease targeting single- and double-stranded RNAs. RNASE1 has previously been seen 493 

to be upregulated at the gene expression level in PBMCs from COPD patients compared to 494 

those from healthy controls [67]. 495 
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Networks also contain hormones and proteins involved in hormone signaling. These 496 

include leptin and IGFBP-1 in smoking networks, glucagon in %LAA950 networks, and renin in 497 

FEV1 networks. Leptin is an adipocyte-derived hormone with pro-inflammatory effects. There is 498 

conflicting evidence of altered leptin concentrations in COPD [68–70]. Low levels of IGFBP-1 499 

which binds both IGF 1 and 2, can indicate impaired glucose tolerance, vascular disease, and 500 

hypertension. IGF and IGFBP concentrations have been shown to be altered in COPD and 501 

smoking [71]. Glucagon is a pancreatic hormone involved in glucose metabolism and 502 

homeostasis and has been shown to reduce airway hyperresponsiveness [72]. Renin is an 503 

endopeptidase secreted by the kidneys that targets angiotensinogen, resulting in elevated blood 504 

pressure and vasoconstriction [73]. Upregulation of renin-angiotensin signaling can drive 505 

pulmonary fibrosis [74]. Angiotensin II regulates response to lung injury and apoptosis in 506 

alveolar epithelium [75] and there is some evidence that angiotensin-converting enzyme 507 

inhibitors and related drugs result in reduced exacerbations and mortality in COPD [76, 77]. 508 

Networks additionally contain molecules involved in tissue remodeling in COPD [78]. For 509 

example, our FEV1 networks contain sRAGE, a soluble receptor that binds advanced 510 

glycosylation end products, which accumulate in vascular tissues during aging. COPD patients 511 

show lower plasma and serum levels of sRAGE. Additionally, sRAGE levels are associated with 512 

emphysema severity and reduced FEV1 [79]. Smoking networks contain molecules such as 513 

EDIL3 and CRLD2. EDIL3 (EGF-like repeat and discoidin I-like domain-containing protein 3) is 514 

an integrin ligand that promotes adhesion of endothelial cells and is involved in angiogenesis 515 

and vascular remodeling. Plasma levels of EDIL3 have been shown to be decreased in COPD 516 

patients and associated with increased risk of acute exacerbation [80]. CRLD2 (Cysteine-rich 517 

secretory protein LCCL domain-containing 2) [CRISPLD2] is a secreted protein that promotes 518 

matrix assembly and modulates airway branching and alveogenesis [81]. Glucocorticoid 519 

treatment increases gene and protein expression in airway smooth muscle cells, which in turn 520 

regulates cytokine levels [82]. Heterozygous knockout mice display features similar to 521 
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bronchopulmonary dysplasia [83].  CRLD2 has also been shown to attenuate inflammatory 522 

signaling induced by LPS in lung fibroblasts and epithelial cells.  523 

 Note that some of the proteins above reached nominal significance (p<0.001) in a 524 

univariate analysis (Supplement Table 3) with the respective exposure/outcome but very few 525 

reached statistical significance accounting for multiple testing (FDR < 0.10). This further 526 

illustrates the benefits of a network approach for identifying proteins that may not have the 527 

strongest univariate signal but may have strong interactions with other proteins related to the 528 

exposure/outcome. 529 

 530 

nQTL Findings 531 

We identified 7 nQTL signals for 6 unique NetSHy scores. nQTLs may play a role in the 532 

regulation of the network as opposed to individual pQTL which may only affect a single protein.  533 

As nQTLs may be driven by a single strong pQTL, we examined pQTLs for top network proteins 534 

and performed colocalization analysis. Four of the 7 nQTLs remained associated after 535 

conditional analysis adjusting for protein levels of top network proteins with colocalized pQTL 536 

protein values. These signals are a variant (rs72846742) on chr2 with AA %LAA950 NetSHy2, a 537 

locus overlapping SIGLEC9 on chr19 with NHW %EMP NetSHy3, variants in the ABO locus 538 

with NHW %LAA950 NetSHy 2, and a locus on chr1 with NHW FEV1 NetSHy2. We note that 539 

while SIGLEC9 was not one of the top 5 protein loadings for NHW %LAA950, it is present in the 540 

network. rs72846742 has been previously associated with smoking intensity [84] and is within 541 

the first intron of MGAT5 (alpha-1,6-mannosylglycoprotein 6-beta-N-542 

acetylglucosaminlytransferase). It has also been shown to be an eQTL for MGAT5 in blood by 543 

the eQTLGen consortium [85]. This gene encodes a glycosyltransferase primarily implicated in 544 

cancer. A recent study reports MGAT5 genetic variation associated with COPD in a Chinese 545 

population [86].  546 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.26.24303069doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.26.24303069
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 23

 

The ABO locus has been extensively studied and variants in this gene have been 547 

associated with increased risk of numerous diseases. Despite multiple studies of ABO allele 548 

frequencies in COPD, no consistent association with disease or related phenotypes has been 549 

reported. The lead variant, within an intron of ABO, has been shown to act as both an eQTL and 550 

pQTL for ABO [87, 88] and has been associated with numerous phenotypes generally related to 551 

blood traits and cardiovascular disease. 552 

Genes within the chr1 locus associated with NHW FEV1 NetSHy2 include EPHX1, 553 

TMEM63A, LEFTY1, LEFTY2, and PYCR2. We note that LEFTY2 encodes left-right 554 

determination factor 2, a protein that is within the NHW FEV1 network despite not being a top 555 

protein loading on NetSHy2. This protein is a secreted ligand that binds TGF-beta receptors. 556 

TGF-beta signaling has been implicated in many aspects of COPD [89]. The lead variant in the 557 

locus, rs360060, has been shown to act as an eQTL for TMEM63A, LEFTY1, and EPHX1, and 558 

is predicted to most likely affect TMEM63A by the OpenTargets Platform [88]. The variants on 559 

chr19 are proximal to or within the gene body of SIGLEC9. Protein levels of SIGLEC9 have 560 

been shown to be increased in plasma and neutrophils from COPD patients [90] and one 561 

variant, rs2075803, has previously been associated with higher exacerbation frequency and 562 

greater emphysema in a small cohort [91]. As many nQTL signals seemed driven by single-563 

protein associations, future applications of this framework may address this through approaches 564 

such as regressing pQTL signals from the protein data [92].    565 

It is important to note that this work was performed using SomaScan platform data, and 566 

although there was replication in an independent cohort for the same platform, our findings may 567 

not replicate across other proteomic assays. Furthermore, although SomaScan is one of the 568 

most comprehensive proteomic profiling methods, it only captures a subset of the proteome so 569 

may be missing proteins in the network. However, our genetic investigation of the FEV1 570 

networks showed signals in loci well-studied in the context of COPD, such as EPHX1 [93, 94], 571 

although the EPHX1 protein was not included in the SomaScan panel. This finding suggests 572 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.26.24303069doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.26.24303069
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 24

 

that the protein networks and its genetic associated loci can capture biologically meaningful 573 

signals involved in COPD, even if they are not directly assayed in our study.  In the future as 574 

platforms become more comprehensive, we will be able to expand on these networks in addition 575 

to incorporating other omics measurements. In addition, our results are subject to sources of 576 

noise inherent in these types of studies including the use of blood, as opposed to primary tissue, 577 

non-fasting measurements, and differences in medication use. 578 

Across all network results, the respective networks had at most 0.33 correlation with 579 

smoking and at most 0.14 with FEV1 or %LAA950. Although the correlations with the two 580 

phenotypes may not seem strong, they were still larger than the correlation values observed for 581 

individual proteins (maximum correlation found for any protein was 0.12 for both phenotypes 582 

and race groups) and consistent with what we have observed in our previous biomarker studies 583 

[17, 79].  584 

We decided to analyze NHW and AA participants separately within COPDGene for a 585 

variety of reasons. In COPDGene, NHW and AA participants display major differences in terms 586 

of demographics and disease severity. We implemented a matching scheme to better match 587 

NHW and AA groups on age, GOLD stage, and smoking status. In spite of this, groups still 588 

exhibited some differences in demographics and disease. To further address demographic 589 

confounding with omics signals, we regressed age, sex, and clinical center from the proteomic 590 

data prior to network generation. We decided to only include non-modifiable covariates which 591 

are unlikely to be influenced by disease in our regression model. Additionally, matching allowed 592 

us to down-sample NHW participants to a sample size closer to the AA group, mitigating 593 

differences in results that may have been driven by power/sample size issues, which occurs in 594 

many studies where data sets from European race/ancestry are typically much larger than other 595 

groups. Finally, we assessed whether networks derived from one race group replicated in the 596 

other group in terms of both network structure and NetSHy scores. We found that the smoking 597 

and %LAA950 networks were replicated across the race groups indicating shared interactions, 598 
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even when all proteins in the network did not overlap. On the other hand, FEV1 did not show 599 

strong replication across race groups and/or study cohorts. This is not surprising given that 600 

spirometry generally shows a great degree of variability [95, 96]. Consequently, networks 601 

associated with FEV1 may capture such inherent variability, potentially reducing their 602 

replicability.  603 

Although there were many similarities, we emphasize that any observed differences 604 

between race groups are likely the result of biases in sampling and potentially driven by social 605 

determinants of health; differing results between race groups do not indicate nor support 606 

differing biology between these groups. SDoH may induce proteomic changes leading to 607 

increased inflammation [97]. When examining self-rated health (SRH) data, poor SRH scores 608 

are linked to a rise in inflammatory plasma proteins such as leptin in CVD populations. 609 

Additionally, SDoH variables such as education i.e., university degree attainment, while typically 610 

associated with poorer health outcomes were not related to SRH [98]. This current work shows 611 

leptin’s inflammatory nature being implicated in COPD. There are few studies examining SDoH 612 

and COPD and pose a novel path forward for investigation.  613 

 614 

Conclusion 615 

In this work, we constructed protein networks that are related to COPD-relevant 616 

phenotypes, namely FEV1 and %LAA950, and the primary exposure of smoking, separately in 617 

NHW and AA COPDGene participants. We demonstrate the ability to derive sparse protein 618 

networks associated with these phenotypes that replicate both across race sub-groups and 619 

across cohort studies. By leveraging NetSHy network summarization scores, we were further 620 

able to identify common genetic variants associated with NetSHy scores. This work 621 

demonstrates both the utility of a combined proteomic-genetic-network approach to identify 622 

novel proteins and their interactions involved in COPD phenotypes.  623 

  624 
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 928 

Figure Legends 929 

Figure 1: Networks associated with smoking exposure for NHW and AA 930 

populations. NHW network consists of 34 proteins while AA network has 17 proteins. Red 931 

edges connect proteins that have positive correlations with smoking exposure while blue edges 932 

link negatively correlated proteins. The line width is proportional to the connection 933 

strength. Correlations between networks in NHW and AA populations with the smoking 934 

exposure are 0.33 and 0.23, respectively. 935 

Figure 2: Networks associated with FEV1 for NHW and AA populations. NHW network 936 

consists of 13 proteins while AA network has 22 proteins. Red edges connect proteins that have 937 

positive correlations with smoking exposure while blue edges link negatively correlated 938 

proteins. The line width is proportional to the connection strength. Correlations between 939 

networks in NHW and AA populations with the smoking exposure are 0.13 and 0.14, 940 

respectively. 941 

Figure 3: Networks associated with %LAA950 for NHW and AA populations. NHW network 942 

consists of 21 proteins while AA network has 104 proteins. Red edges connect proteins that 943 
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have positive correlations with smoking exposure while blue edges link negatively correlated 944 

proteins. The line width is proportional to the connection strength. Correlations between 945 

networks in NHW and AA populations with the smoking exposure are 0.14 and 0.12, 946 

respectively. 947 

Figure 4. Pathway Enrichment Analysis. A. Heatmap of top 20 significantly enriched 948 

pathways across protein lists identified through Metascape meta-analysis. Enriched pathways 949 

are colored by –log10(p-value). B. Top 10 enriched pathways by network.  950 

Figure 5. Network QTL Associations with Protein Network NetSHy Summary 951 

Scores. Manhattan plots display the significance (-log10 of p-values, y axis) of genome-wide 952 

association tests across all chromosomes (x axis) in African Americans (left panels A-D), and 953 

non-Hispanic whites (right panels, A-D). Each row corresponds to the following associations: A) 954 

Emphysema NetSHy2, B) Emphysema NetSHy3, c) FEV1 NetSHy2, D) Smoking NetSHy1. The 955 

top SNP of each association signal is highlighted in red, and it is labeled with the rsID of the 956 

SNP, along with the name of the closest gene, when applicable. 957 
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Table 1. Characteristics of COPDGene matched study populations and SPIROMICS by 
race 

 COPDGene SPIROMICS 

Characteristics 

NHW 

N=1660 

AA 

N=1513 

NHW 

N=1459 

AA 

N=333 

Demographics     

Age (yr) mean (SD) 62.9 (8.0)* 60.2 (7.1)* 65.42 (8.18)£ 58.46 (8.71)£ 

Males n(%) 790 (47.6%) 745 (49.2%) 650 (44.6)£ 175 (52.6)£ 

Females n(%) 870 (52.4%) 768 (50.8%) 809 (55.4)£ 158 (47.4)£ 

Smoking Exposure     

Smoking Status n(%):            Former  647 (39%) 531 (35.1%) 965 (67.2)£ 116 (35.2)£ 

                                              Current  1013 (61.0%) 982 (64.9) 470 (32.8)£ 214 (64.8)£ 

Pack-years median(IQR) 42.3 (25.5)* 35.7 (24.3)* 45.00 (27.0)£ 37.50 (20.0)£ 

Clinical      

BMI kg/m2 (mean(SD)) 28.4 (6.3)* 29.4 (7.1)* 27.77 (5.09) 27.67 (6.06) 

COPD GOLD Stages n(%):  PRISm      209 (12.6%)* 256 (16.9%)* 33 (2.3)£ 13 (3.9)£ 

                GOLD 0 Smoker Controls 678 (40.8%)* 727 (48.1%)* 389 (26.7)£ 145 (43.7)£ 

                                             GOLD 1 158 (9.5%)* 105 (6.9%)* 237 (16.3)£ 32 (9.6)£ 

                                             GOLD 2 370 (22.3%)* 247 (16.3%)* 465 (31.9)£ 70 (21.1)£ 

                                             GOLD 3 185 (11.1%)* 129 (8.5%)* 235 (16.1)£ 47 (14.2)£ 

                                             GOLD 4 60 (3.6%)* 49 (3.2%)* 97 (6.7)£ 25 (7.5)£ 

Pulmonary Function (mean(SD))     

FEV1  (liter) 2.3 (0.9*) 2.1 (0.8)* 2.09 (0.90) 1.99 (0.87) 

FEV1 Percent Predicted 76.8 (23.4)* 79.9 (23.7)* 71.88 (25.87)£ 76.32 (28.06)£ 

FEV1/FVC  0.67 (0.15)* 0.71 (0.14)* 0.59 (0.16)£ 0.64 (0.17)£ 

FVC (liter) 3.3 (1.0)* 2.9 (0.9)* 3.51 (1.02)£ 3.05 (0.93)£ 

Emphysema     

Emphysema (% LAA < -950 HU) 
median(IQR) 1.5 (4.4)* 0.9 (3.4)* 3.84 (10.23)£ 1.78 (10.33)£ 

PD15adj (g/L) 87.0 (24.0)* 95.1 (28.0)* 78.91 (25.42)£ 88.92 (31.47)£ 

Blood Cell Counts (mean (SD))     

Platelets (K/μL) 242.3 (70.4) 241.7 (72.9) 244.14 (67.71)£ 260.70 (71.18)£ 
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WBC (K/μL) 7.6 (2.1)* 6.6 (2.2)* 7.23 (2.16)£ 6.57 (2.12)£ 

+P-values comparison of the two sexes within Study cohort using a chi square test for categorical data, 2-sample t-
tests for normally distributed continuous variables and Wilcoxon Rank Sums tests for non-normal continuous 
variables. 

 

NHW: non-Hispanic White; AA: African American; PRISm: Preserved ratio impaired spirometry; FEV1: Forced 
expiratory volume in 1 second; FEV1/FVC: Ratio of the forced expiratory volume in one second to the forced vital 
capacity. 

*Significantly different p≤0.01 between races in COPDGene 

£Significantly different p≤0.01 between races in SPIROMICS 
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Table 2. Summary results for each phenotype- and population-specific subnetwork. 

M denotes the number of proteins in each subnetwork. The number of proteins within the 
network that are significant in a univariate analysis are included (FDR <0.10). Correlations for 
the network are calculated by correlating the first three NetSHy scores and the respective 
phenotype.  

 

  

Phenotype Population M 

Univariate 
(FDR < 
0.10) 

Correlation between NetSHy scores and 
phenotype 

1 2 3 

Smoking 
NHW 34 27 0.33 0.21 0.02 

AA 17 7 0.23 0.14 0.03 

FEV1 
NHW 13 2 0.14 0.15 0.07 

AA 22 1 0.13 0.09 0.01 

%LAA950 
NHW 21 4 0.14 0.09 0.01 

AA 104 6 0.12 0.09 0.12 
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 Table 3: Results of direct network comparison and projection using subnetworks associated with 
smoking exposure, FEV1, and %LAA950 across NHW and AA 

M denotes the number of proteins in each network. To perform the direct network comparison, we used 
the p-norm difference test (PND) test with the exponent � � 6, referred to as PND6 (Arbet et al., 2021). 
Small p-value indicates that two networks being compared are different. NetSHy correlations are the 
correlations between the first three NetSHy scores and each respective phenotype and exposure, while 
projection correlations are calculated using the projection scores.  

 

 

Phenotype 
Union 

network 

Direct comparison Network Projection 

PND6 p-value  Component 1 2 3 

Smoking M = 44 0.340 0.955 

NHW (M = 34) on 
AA 

NetSHy correlation 0.235 0.143 0.031 

Projection�correlation 0.232 0.126 0.020 

AA (M = 17) on 
NHW 

NetSHy correlation 0.329 0.208 0.018 

Projection�correlation 0.354 0.125 0.034 

FEV1 M = 34 0.493 <0.001 

NHW (M = 13) on 
AA 

NetSHy correlation 0.144  0.032  0.028  

Projection�correlation 0.022  0.087  0.026  

AA (M = 22) on 
NHW 

NetSHy correlation 0.137  0.154  0.073  

Projection�correlation 0.060  0.032  0.045  

%LAA950 M = 117 0.375 1 

NHW (M = 21) on 
AA 

NetSHy correlation 0.077  0.067  0.118  

Projection�correlation 0.095  0.060  0.043  

AA (M = 104) on 
NHW 

NetSHy correlation 0.144  0.091  0.014  

Projection�correlation 0.101  0.004  0.073  

Table 4: Summary results of network projections using subnetworks associated with smoking exposure across 
NHW and AA, in two independent cohort studies COPDGene (C) and SPIROMICS (S) 

NHW Data 

 Network  Data  
Component 

1  2  3  

Original  C-NHW  C-NHW  0.329  0.208  0.018  

Across populations  C-AA   C-NHW   
0.354  

(0.303, 0.403)  

0.125  

(0.057, 0.202)  

0.034  

(0.001, 0.083)  
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Original correlations represent correlations between NetSHy scores and smoking exposure in a 
population within the same cohort. The remaining correlations are calculated through network projections 
across populations and/or cohorts. The 95% bootstrap confidence intervals are recorded in parentheses. 
Values in bold are when the original correlations (first row in each sub table) fall within the confidence interval, 
indicating replication. 

 

  

Across cohorts  C-NHW  S-NHW   
0.373  

(0.334, 0.416)  

0.186  

(0.135, 0.235)  

0.027  

(0.002, 0.082)  

Across populations & cohorts  C-AA  S-NHW  
0.393  

(0.347, 0.432)  

0.031  

(0.002, 0.130)  

0.011  

(0.001, 0.059)  

AA Data 

 
Network Data 

Component 

1  2  3  

Original  C-AA  C-AA  0.235  0.143  0.031  

Across populations  C-NHW  C-AA  0.232  

(0.188, 0.272)  

0.126  

(0.082, 0.178)  

0.020  

(0.001, 0.057)  

Across cohorts  C-AA  S-AA  0.249  

(0.163, 0.325)  

0.073  

(0.004, 0.199)  

0.019  

(0.003, 0.149)  

Across populations & cohorts  C-NHW  S-AA  0.245  

(0.175, 0.317)  

0.116  

(0.008, 0.229)  

0.019  

(0.002, 0.130)  
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Table 5. Results of genome-wide significant association tests of NetSHy scores. 

Phenotype Population 
NetSHy 
Score 

Variant 

(rsID) 
MAF Beta 

p-
value 

No. 
Hits 

Closest 
Gene 

Annotation 
Colocalization 

with pQTL 
PP (H4) 

p-value 
post sensitivity 

%LAA950 

AA 2 
chr2:134214910 

(rs72846742) 
0.083 0.390 

1.0E-
08 

1 MGAT5 Intronic None - - 

NHW 

2 
chr9:133262254 

(rs8176693) 
0.080 -0.392 

7.2E-
09 

9 ABO Intronic None - - 

3 

chr9:133273983 

(rs992108547) 
0.196 0.287 

1.2E-
10 

17 ABO Intronic Cadherin 17 99.50% 3.30E-03 

chr19:51127225 
(rs2258983) 

0.422 -0.217 
2.6E-

09 
3 SIGLEC9 

Nonsynonymous 
coding 

Cadherin 17 0.0075% - 

FEV1 NHW 2 
chr1:225890637 

(rs360060) 
0.325 0.358 

2.2E-
22 

65 
LEFTY1 

+ AL117348.2 
Intronic 

Left right  

determination 

 factor 2 

99.50% 3.51E-04 

Smoking 

 

 

AA 1 
chr2:232409765 

(rs56080708) 
0.0708 -0.446 

7.1E-
10 

3 ALPG 
Nonsynonymous 

coding 

Alkaline  

phosphatase  

placental type 

99.90% 2.34E-01 

NHW 1 
chr2:232421944 

(rs12478529) 
0.237 -0.418 

9.4E-
24 

74 ALPG None 

Alkaline  

phosphatase  

placental type 

96.70% 2.86E-02  

The genetic association with the smallest p-value for each network is listed, along with its minor 
allele frequency (MAF), effect size (Beta), and the total number of SNPs associated (No. Hits). 
Colocalization tests were performed to test whether the sub-networks share genetic signals with 
any of the top five proteins contributing the most to it. A posterior probability (PP) of the shared 
variant hypothesis (H4) greater than 0.9 indicates probable colocalization of genetic signals. For 
colocalized signals, we further ran sensitivity analyses that used the same genetic association 
regression model as previously but adjusting for the levels of the protein. Significant results (p ≤ 
5x10-8) are highlighted in bold. AA: African American. NHW: Non-Hispanic white.  
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