1 **Global Assessment of Palliative Care Need:** Serious Health-Related Suffering Measurement Methodology 2 Xiaoxiao J Kwete[†], ^{1,2} Afsan Bhadelia[†], ^{1,3} Héctor Arreola-Ornelas, ^{1,4,5,6} Oscar 3 Mendez,⁵ William E. Rosa,^{1,7} Stephen Connor,⁸ Julia Downing,⁹ Dean Jamison,¹⁰ 4 David Watkins, ¹¹ Renzo Calderon, ¹, Jim Cleary, ¹² Joe Friedman, ¹³ Liliana De Lima, ¹⁴ 5 Christian Ntizimira, ¹⁵ Tania Pastrana, ¹⁶ Pedro E. Pérez-Cruz, ¹⁷ Dingle Spence, ¹⁸ M.R. 6 Rajagopal, ¹⁹ Valentina Vargas Enciso, ¹ Eric L. Krakauer[‡], ²⁰ Lukas Radbruch[‡], ²¹ 7 Felicia Marie Knaul^{‡1,5,22,23} 8 9 † Joint first authors 10 [‡] Joint last/senior authors 11 12 ¹University of Miami Institute for Advanced Study of the Americas, University of 13 Miami, Miami, FL, USA 14 ² Yangzhou Philosophy and Social Science Research and Communication Center, 15 16 Yangzhou, China ³ Department of Public Health, College of Health and Human Sciences, Purdue 17 University, West Lafayette, IN, USA 18 ⁴ Institute for Obesity Research & School of Government and Public Transformation, 19 Tecnológico de Monterrey, Monterrey, Mexico. 20 ⁵ Tómatelo a Pecho, A.C., Mexico City, Mexico. 21 ⁶ Fundación Mexicana para la Salud (FUNSALUD), Mexico City, México. 22 ⁷ Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering 23 Cancer Center, New York, NY, USA 24 ⁸ Worldwide Hospice Palliative Care Alliance, London, UK 25 ⁹ International Children's Palliative Care Network, Bristol, UK 26 ¹⁰ University of California, San Francisco, USA 27 ¹¹ Department of Global Health, University of Washington, Seattle, WA, USA 28 29 ¹² Indiana University School of Medicine, Indianapolis, IN, USA 30 ¹³ University of California in Los Angelas, School of Medicine, Los Angeles, CA, 31 32 **USA** ¹⁴ International Association of Hospice and Palliative Care, Houston, TX, USA 33 ¹⁵ African Center for Research on End of Life Care, Kigali, Rwanda 34 ¹⁶ Department for Palliative Medicine, RWTH Aachen University, Germany 35 ¹⁷ Programa Medicina Paliativa y Cuidados Continuos, Facultad de Medicina, 36 Pontificia Universidad Católica de Chile (PUC), Santiago, Chile 37 ¹⁸ University of the West Indies, Mona, Jamaica 38 ¹⁹ Pallium India Trust, Kerala, India 39 ²⁰ Department of Global Health & Social Medicine, Harvard Medical School, Boston, 40 MA. USA 41 ²¹ University of Bonn, Bonn, Germany 42 22 Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 43 44 USA 45 46 47 53 54 55 58 65 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 ²³ Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA #### **Abstract** 48 Inequities and gaps in palliative care access are a serious impediment to health systems 49 especially low- and middle-income countries and the accurate measurement of need 50 across health conditions is a critical step to understanding and addressing the issue. 51 Serious Health-related Suffering (SHS) is a novel methodology to measure the 52 palliative care need and was originally developed by The Lancet Commission on Global Access to Palliative Care and Pain Relief. In 2015, the first iteration – SHS 1.0 - was estimated at over 61 million people worldwide experiencing at least 6 billion days of SHS annually as a result of life-limiting and life-threatening conditions. In this 56 paper, an updated methodology - SHS2.0 - is presented building on the work of the 57 Lancet Commission and detailing calculations, data requirements, limitations, and assumptions. The updates to the original methodology focus on measuring the number 59 of people who die with (decedents) or live with (non-decedents) SHS in a given year 60 to assess the number of people in need of palliative care across health conditions and 61 populations. Detail on the methodology for measuring the number of days of SHS that 62 was pioneered by the Lancet Commission, is also shared, as this second measure is 63 essential for determining the health system responses that are necessary to address 64 palliative care need and must be a priority for future methodological work on SHS. The discussion encompasses opportunities for applying SHS to future policy making 66 assessment of future research priorities particularly in light of the dearth of data from 67 low- and middle-income countries, and sharing of directions for future work to 68 develop SHS 3.0. > **Keywords:** serious health-related suffering; palliative care; suffering measurement; palliative care need ## I. Background Over 60 million people annually experience serious health-related suffering (SHS) that is amenable to palliative care. However, most reside in low-resource and rerual areas with nonexistent or inadequate palliative care services, and limited access to medicines and technologies that can reduce SHS,(1) emblematic of the tragedy and injustice of overall disparities in healthcare. Palliative care is a core component of universal health coverage (UHC), making the lack of access to palliative care a serious impediment to SDG Goal 3, namely, to "ensure healthy lives and promote well-being for all at all ages"(2, 3) and to achieving Sustainable Development Goal 10 focused on reducing inequality within and among all countries.(1, 2) Efforts to address this global health failing and to close the divide in access to palliative care have been thwarted by various factors. (1, 4) One is the dearth of 87 91 94 97 101 111 127 86 methods and data to quantify global palliative care need and this was a major area of work of The Lancet Commission on Global Access to Palliative Care and Pain Relief 88 (hereafter referred to as Lancet Commission or the Commission) in developing SHS. 89 Although evidence is required to develop appropriate and targeted recommendations 90 for closing gaps in access to palliative care, measurement of the burden of SHS has not kept pace with progress in measuring the burden of disease. (1, 5) A scientific 92 focus on measurement of SHS(6, 7) is a necessary complement to existing measures 93 of the burden of disease such as quality-adjusted life years (QALYs) and disability adjusted life years (DALYs). Further, measurement of SHS has value and purpose in 95 its own right as a global health issue and as part of efforts to achieve the SDGs. 96 The Lancet Commission report presented a breakthrough by introducing the concept of serious health-related suffering (SHS) to quantify the global and country-98 specific need for palliative care and pain relief in terms of both the number of 99 individuals who experience SHS (population in need of palliative care services), and 100 the number of days of each type of SHS (as an input to develop more effective health system responses to address palliative care need) in a given year. Building on more 102 limited efforts to measure population-based need for palliative care in previous 103 publications, (4) the Commission estimated the 2015 global burden of SHS at 61 104 million: 25.5 million people who died - 45% of the 56.2 million deaths worldwide -105 and an additional 35.5 million people who experienced an SHS-associated condition 106 and did not die in that year, with at least 6 billion symptom days experienced by those 107 people. The estimates were calculated by a systematic process documented briefly in 108 the Lancet Commission report and in its entirety in an white paper. (1, 8) 109 The Lancet Commission Report has been cited by over 1000 research article 110 publications as of this writing, and the data has been used by various international organizations and initiatives including the International Narcotic Control Board 112 (INCB), the Worldwide Hospice Palliative Care Alliance (WHPCA), and the Disease 113 Control Priorities (3rd edition), as well as various country champions of palliative 114 care in their evidence generation, policy making and advocacy endeavors. (9-11) 115 The Lancet Commission Secretariat was transformed into an interdisciplinary 116 Research Hub on Global Access to Palliative Care and Pain Relief - jointly led by the 117 University of Miami Institute for Advanced Study of the Americas and the 118 International Association for Hospice and Palliative Care - to promote evidence 119 generation, dissemination, and translation to policy and practice to achieve universal 120 access to palliative care. The research hub built on the original Commission 121 methodology – SHS1.0 - to generate the next iteration – SHS 2.0. 122 In this paper, the SHS 2.0 methodology is summarized, exclusively dealing with 123 measuring the number of people who die with (decedents) or live with (non-decedents) 124 SHS. The assumptions, strengths, and weaknesses of both the original and the 2.0 125 iteration for measuring people with SHS are discussed. The methodology for 126 measuring the number of days of SHS is also detailed. Pioneered by the Lancet Commission, measuring days with SHS is essential for determining the health system - responses to palliative care need and although not undertaken as part of SHS2.0, must - be a priority for future methodological work on SHS. A guide to calculating the - burden of SHS is provided, including specific instructions on measuring the number - of people who die with (decedents) or live with (non-decedents) SHS and the number - of symptom days they experience annually, as well as secondary indicators that may - be constructed with the SHS database. The paper concludes with a discussion on the - potential applications of SHS data for researchers, policymakers, and practitioners as - well as directions for future work and priorities for developing SHS 3.0. It is linked to - another methods paper on measuring distributed opioid morphine equivalent (DOME) - and comparing DOME against the need for palliative care (SHS). ## II. Defining and measuring SHS 138 139 - 140 Serious health-related suffering, as defined by the Lancet Commission, is the "pain, - suffering, and severe distress associated with
life-threatening or life-limiting health - 142 conditions and with end of life"(1) that cannot be relieved without medical - intervention and that is potentially amenable to relief through palliative care. SHS is - not bound by time or prognosis and includes complex, chronic or acute, life - threatening or life-limiting health conditions.(12) - The definition of palliative care adopted by the Lancet Commission is the one - used by the World Health Organization (WHO) at the time: "an approach that - improves the quality of life of patients and their families facing the problems - associated with life-threatening illness through the prevention and relief of suffering - by means of early identification and assessment and treatment of pain and other - problems, physical, psychosocial, and spiritual".(1, 13) SHS 2.0 adopts the consensus- - based definition spearheaded by the IAHPC that was initiated as one of the - recommendations of the Commission report and engaged a group of global - stakeholders from low, middle, and high-income countries. Specifically, "palliative - care is the active holistic care of individuals across all ages with serious health-related - suffering due to severe illness and especially of those near the end of life. It aims to - improve the quality of life of patients, their families, and their caregivers."(12) - The SHS burden is presented both as the number of people experiencing SHS due - to life-limiting or life-threatening conditions and as the number of symptom-days of - 160 SHS experienced. Individuals experiencing SHS are distinguished as either decedents - or non-decedents and the conditions, multipliers, and estimates in each differ. - Decedents are defined as individuals who died within the year of calculation and are - thus captured in the mortality database. Non-decedents are individuals who did not - die within the year of calculation and are thus captured in the prevalence database. - Non-decedent categories of SHS include conditions 1) that may have been cured but - from which SHS persists; 2) from which patients recover but that nonetheless caused - 167 SHS; 3) with survival with chronic severe disability and with SHS symptoms; and 4) - have a slowly progressive course. Symptom-days are defined as the number of days - decedents and non-decedents lived with any symptoms and are calculated for each - symptom and aggregated to measure total palliative care need. The latter is key to analyzing the response to SHS, for example in DOME for specific symptoms such as pain or dyspnea. ## General considerations in the selection processes The selection of conditions, development of multipliers, and calculation of the number of people and days of SHS was informed by a literature search, individual and group expert discussions, and Delphi processes with online surveys for SHS 1.0 as described in the Appendix to the Commission report. Expert panel(s) of palliative care clinicians with experience providing clinical care in different parts of the world, especially in LMICs were engaged in the process. To estimate symptoms and symptom duration (days of SHS), as part of the work of the Commission and SHS1.0, experts were asked to consider a typical patient with each of the conditions and based on their daily experience, to generate an estimate of the prevalence and duration of each symptom. During the expert consultation stage, including focus group discussions and semi-structured interviews, results from the literature review were presented. Experts were asked to provide responses and feedback based on their work experiences even when those experiences were contrary to the evidence presented to them. Either individually or in groups, all data and estimates were vetted, considering assumptions and limitations or gaps to ensure that all relevant aspects or scenarios are reasonably accounted for when possible. It is expected that these data will serve to provide content validity for estimation of the global burden of remediable suffering.(14) See appendix table 1 for a full list of the experts' consensus building practices undertaken by the LC. Finally, the Delphi method for consensus-building also was used to determine the duration (average number of days requiring palliative care) for which palliative care was needed for each of the conditions included in the database. (15) Experts were purposively sampled and were considered to be 'informed individuals' (16) and 'specialists' (17) within the field of palliative care, in this case palliative care. (18) Both rounds of the Delphi requested 18 palliative care experts living in LMICs to estimate the number of days of palliative care that would be required for a patient with each of the given conditions. The responses from the first round were pooled to identify a group average range and standard deviation for each condition. The second round of the Delphi presented respondents with the average range of days of palliative care with confidence intervals for each parameter. Experts were asked to respond again to the same questions based on knowledge of the group's prior responses. The response rate for round one was 83% and for round two was 27%. Results from each round are presented in Tables 2. See appendix table 2 for the results from the rounds 1 and 2 of the Delphi study. Due to limited resources, estimation for symptom-days is only available from the Lancet Commission (SHS1.0) and was not updated for SHS 2.0. - Taking children in account in SHS 2.0 - 213 The initial SHS database from the Commission work did not differentiate the SHS - burden experienced by adults and children. Hence for SHS 2.0 and in collaboration with and under the leadership of the International Children's Palliative Care Network 216 (ICPCN) with the engagement of IAHPC and WHPCA, an additional expert panel 217 was convened for SHS 2.0 comprised of 8 pediatric palliative care specialists from both high-income and low- and middle-income settings around the world. Literature review and analysis, (19) an online survey, two virtual meetings each lasting at least 220 90 minutes, and various internal discussions were conducted to differentiate the calculation of palliative care needs for children and adults in select conditions. Time-series analysis 218 219 221 222 223 237 249 251 - A major improvement for SHS 2.0 is the time-series analysis to incorporate the - sensitivity of SHS to changes in disease trajectories, changes in pathogens, emergence - of new diseases, and with the evolution of and advancements in medical technologies - 227 to address the burden of disease, each of which impacts the SHS burden. This gap was - 228 identified through the incorporation of time series mortality and prevalence data to - analyze historical trends in the SHS burden. Data for 1990, 2000, 2010 and 2019 are - presented in the updated calculations. Those years were selected to represent the - earliest obtainable evidence, and data points every 10 years, and 2019 was selected as - the most recent year since it was the most updated year of data at the time of the - 233 commencement of this analysis. The need to account for endogenous variables was - particularly evident for people living with human immunodeficiency viruses - 235 (PLWHIV), as well as patients living with tuberculosis, cancer, or cerebrovascular - 236 disease, and for children. - 238 Switching from WHO's Global Health Estimates (GHE) to IHME's Global Burden of - 239 Diseases (GBD) database - 240 The Lancet Commission estimated the SHS burden in the most recent year of - available data at the time (2015) and using WHO's global mortality database, Global - Health Estimates (GHE). However, due to the lack of prevalence data in GHE, non- - 243 decedents were computed using fixed survivor-to-deaths ratios generated from global - 244 disease-specific reports. This assumed that all countries experience the global average - 245 survivor-to-deaths ratio for all conditions with non-decedents categories, not 246 accounting for country-level variation in the epidemiological profile of survivors and 247 limiting the applicability of country-specific analyses. SHS 2.0 was improved along several dimensions by using the GBD database released by the Institute for Health Metrics and Evaluation (IHME). Firstly, the GBD 250 includes country-specific data on mortality and prevalence. The prevalence data strengthens the calculation of non-decedents with SHS. In addition, GBD data date - back to 1990, permitting the calculation of the burden of SHS over three decades. - 253 Further, the Lancet Commission report defined children as being 0-15 years of age as - more disaggregated data was not available. For SHS 2.0, children are defined as 0–19- - 255 year-olds to be consistent with other key publications on children's palliative care - 256 need around the world using the GBD data break-down of age groups.(19) - 257 Several other global databases have also been used for SHS 2.0 in order to compile better, country- and disease-specific mortality or prevalence data. Specifically, the UNAIDS database for ART coverage(20) and the International Agency for Research on Cancer (IARC)(21) for data on cancer patients by years of diagnosis. ## **Selection of SHS-associated conditions** The first step in estimating the SHS burden was to identify the health conditions that most commonly cause SHS from the ICD-10 classification list that require palliative care at the end-of-life due to life-threatening conditions or living with a lifelimiting condition (SHS 1.0). The global SHS 2.0 database includes 21 conditions, and these are presented in Table 1 with their corresponding ICD-10 codes and GBD codes. [Table 1: 21 conditions included in the global SHS database in ICD-10 codes and GBD disease codes All 21 groups of conditions include decedent categories, considering that at least a proportion of people dying from those conditions suffer from serious health-related
suffering. In addition, non-decedent categories of SHS are included for some of the 21 conditions that: may have been cured but from which SHS persists (drug-resistant tuberculosis, some hemorrhagic fevers such as Ebola, some malignancies, some inflammatory diseases of the central nervous system); from which patients recover but that caused SHS (serious injuries, renal failures, preterm birth complications and birth trauma); with survival with chronic severe disability and with SHS symptoms (cerebrovascular disease, leukemia, congenital malformations, injury, birth trauma, human immunodeficiency viruses / acquired immunodeficiency syndrome (HIV/AIDS), some musculoskeletal disorders, liver diseases); and, have a slowly progressive course (malignancies, dementia, Parkinson's disease, multiple sclerosis, type-1 diabetes, thalassemia, and sickle cell disorders). In the original Lancet Commission report, the non-decedents category for 11 conditions were considered. In SHS 2.0, non-decedents categories for four more conditions were added and differentiating factors were used that are important to estimating suffering patterns. Panel 1 provides a detailed description of how decedents and non-decedents in need of palliative care are estimated for each condition as well as key literature and extra databases used to calculate the decedents and non-decedents with SHS. Conditions are ranked using the alphabetical order of their ICD-10 codes. As the result of the exercise to estimate palliative care needs for children, there was consensus that the following conditions be added due to their substantive contribution to SHS among children for both decedents and non-decedents: 1) diabetes mellitus, 2) sickle cell disorders, 3) thalassemia, and the following conditions for non-decedents categories of: 1) leukemia, 2) liver diseases, 3) chronic kidney diseases, 4) neonatal preterm birth and birth trauma. Hence, while SHS 1.0 included 20 conditions, SHS 2.0 includes 21 groups of conditions with the addition of endocrine, metabolic, blood, and immune disorders which include diabetes mellitus, sickle cell disorders, and thalassemia for decedents and non-decedents. The review of the case of diabetes in children prompted an overall review of the included conditions. For diabetes mellitus in adults, deaths from sequelae are attributed to the proximal cause and hence considered captured in other conditions included in the SHS database and specifically, cerebrovascular disease, cardiomyopathy and/or heart failure, chronic ischemic heart disease, renal failure, and atherosclerosis. Because deaths from diabetic ketoacidosis or hyperglycemic hyperosmotic non-ketotic syndrome typically result in death so rapidly that there is no time to institute quality palliative care services, these conditions are not included. In the pediatric population, diabetes mellitus is added due to the concerns over pain and suffering caused by type-1 diabetes even in the absence of organ complications. Efforts to alleviate SHS experienced by a newborn, the assurance of the newborn's comfort and that of distraught parents should accompany aggressive life-sustaining treatments if they are to reasonably provide more benefit than burden. Palliative care must also be available as an alternative to potentially harmful life-sustaining interventions when a newborn is moribund. Hence, in both SHS 1.0 and SHS 2.0, extremely premature and very low birth weight newborns whose survival is unlikely, and babies born with severe hypoxic ischemic encephalopathy or congenital anomalies not compatible with life are included in the list of SHS conditions. In both SHS 1.0 and SHS 2.0, leukemia is considered a separate condition than the rest of the malignancies due to its distinctive patients' demographics and suffering patterns. ## Selection of types or symptoms of suffering Patients' suffering varies by type, severity, and duration and a clinically, economically, and strategically useful measure of SHS requires estimation of not only the number of patients who suffer, but also the type of suffering and duration of suffering. Therefore, overarching categories of suffering were identified in SHS1.0 and then within those categories, the types or symptoms were associated with each condition. Palliative care literature typically divides suffering into four categories – physical, psychological, social, and spiritual – to encompass the full spectrum of human suffering. While the Lancet Commission accepted and adopted all four categories as SHS, the focus was on estimating the prevalence and duration of only physical and psychological categories of suffering and corresponding symptoms. The empirical evidence from published literature or expertise to produce reasonable estimates of the prevalence and duration of each type of social and spiritual suffering were not sufficient. To estimate SHS as precisely as possible, the Commission's expert group identified the most common symptoms of physical and psychological suffering, and then estimated the prevalence and duration of each type of suffering associated with each condition or its treatment. Through literature review and evidence-informed expert consensus building exercises, physical and psychological types of suffering (symptoms), their frequencies and durations for each condition were identified as part of Commission work. See Figure 1 for details. Specifically, the types of physical suffering include: moderate or severe pain, mild pain, weakness, fatigue, shortness of breath, nausea and vomiting, constipation, diarrhea, dry mouth, itching, wounds and bleeding. The types of psychological suffering identified include: – anxiety and worry, depressed mood, delirium or confusion, and dementia with disorientation, agitation, or memory loss. Table 2 summarizes the duration of each type of physical and psychological suffering and appendix table 3 lists the results from the literature review on prevalence of the most commonly reported type of physical suffering among patients with serious, complex, or life0limiting health problem. [Table 2: The estimates of duration of each type of physical and psychological suffering by condition] Most published data on symptom prevalence comes from high or upper-middle income countries where both disease-modifying and palliative treatments are most accessible. Furthermore, most of the literature either focused on physical and psychological symptoms among a single group of patients (such as cancer), or a single symptom (such as pain) in patients with various conditions. Data, mostly from high income countries, indicates that well over 50% of people who die of or live with malignant neoplasms and AIDS experience pain, and that pain is also common among those who live with heart disease, chronic obstructive pulmonary disease (COPD), renal failure, neurologic disease and dementia.(22, 23) Dyspnea (shortness of breath) is especially common among people who live with COPD and heart failure and only slightly less common among those who live with malignant neoplasms and AIDS.(24) Depressed mood and anxiety are widespread among patients with a variety of advanced life-threatening illnesses including metastatic cancer and trauma.(25, 26) There are fewer studies among patients with most other serious, complex, or life-limiting health problems. Of note, dementia appears both in the list of conditions (Alzheimer's disease and other primary dementias) and as a symptom of other conditions (HIV/AIDS, cerebrovascular disease, and other neurologic conditions). The term dementia is therefore used in two ways, and the distinction in use of each instance is required. ## **Identifying multipliers for each condition** The next step in measuring SHS was to determine the proportion of people with each condition who experience SHS. These are called multipliers. Multipliers are mathematical factors that estimate number of people dying or living with SHS based on different data sources. They reflect different strategies applied in the estimation and are provided separately for decedents and non-decedents. For decedents, the multipliers are always a percentage between 0 and 100%, to be applied to total deaths. For non-decedents, the multipliers take one of the three different forms: 1) a percentage between 0 and 100% to be applied to total number of patients living with the disease; 2) a ratio that can go over 100% to be applied to total deaths; or 3) a ratio that can go over 100% to be applied to total decedents in need of palliative care. See table 4 with more details. To identify the proportion of people with each condition who experience SHS for the different conditions and sub-conditions and therefore identify appropriate multiplies to use for each, an extensive literature review was conducted for both decedents and non-decedents. Empirical evidence of symptom burden for some conditions was identified, but most studies were conducted in high-income settings. Evidence identified from the literature could not directly be used as multipliers since much of it was focused on patients in a certain stage of care whilst the SHS calculation requires multipliers for both people who die within that year – decedents-and another for people who live with a condition – non-decedents. As a result, empirical evidence on percentage of patients with each condition experiencing SHS from the literature review were summarized and presented as the basis of discussion in various expert consensus building exercises. When estimating the SHS burden of non-decedents, experts were asked to consider the SHS burden of an "average" patient for each condition among all patients living with that condition who are not in their last year of life. Because SHS 2.0 incorporates analysis across a number of years, it was possible to implement improvements to the multipliers for HIV and tuberculosis (TB). SHS stemming from HIV among non-decedents was
differentiated between individuals undergoing anti-retroviral treatment (ART) from those who are not, reflecting how the advent of ART and increased access to such treatment revolutionized care for PLWHIV and in turn, SHS associated with HIV. Furthermore, extensively drugresistant TB (XDR-TB) is differentiated from multidrug-resistant TB (MDR-TB), because antimicrobial resistance and the rise of XDR TB pose major challenges to treatment of tuberculosis which is different from MDR-TB. For cancer, SHS2.0 also incorporates data across additional years for the estimation of multipliers. In SHS2.0, unlike for the Commission report, five-year survival data were used to estimate non-decedent SHS for malignant neoplasms and leukemia. The GBD data reports only overall survival and does not further disaggregate by years since diagnosis. Hence, the GBD data were adjusted based on the prevalence and mortality data extracted from the Global Cancer Observatory (GLOBOCAN) 2018 (See Panel 1 and Table 3) that report cancer survivorship for 1,3 and 5 years from diagnosis. [Table 3. Multipliers of cancer survivors at 1, 2, 3, 4, and 5 years of diagnosis A country-specific linearly interpolated trend was applied to estimate prevalence for year 2 and 4 post diagnosis. The approximation of survival was estimated as the ratio between the total deaths and the prevalence in the same period. Lastly, to estimate non-decedent burden for 1990, 2000 and 2010 given that information on 5-year prevalence and survival is not available by year since diagnosis, the GLOBOCAN 2018 data are adjusted using country-income specific quintile distribution data on percentages of all cancer survivors being with each year of diagnosis. (see Table 4 for detail). [Table 4. Percentiles used to impute number cancer survivors at 1, 2, 3, 4, and 5 years of diagnosis in historical years] Cerebrovascular diseases constitute a major component of overall SHS, yet its non-decedent category was a limitation in SHS1.0. For SHS2.0, non-decedent SHS was calculated for patients living in the year prior to their last year of life, assuming that most patients who live for extended periods with this condition do not experience SHS (as the condition is largely asymptomatic until it becomes serious enough to result in death). Still, data are scarce on the proportion of cerebrovascular disease patients in the final years of life and hence with SHS. An estimate of the proportion of 433 patients who are diagnosed and die in the same year was developed based on a 434 literature search focusing on differences by country income level and this was applied 435 to two years of cerebrovascular disease mortality. (see Tables 5, 6 and appendix table 4). [Table 5: Estimation model used in calculation of cerebrovascular disease patients 436 living with SHS – part 1] [**Table 6:** Estimation model used in calculation of 437 438 cerebrovascular disease patients living with SHS – part 2] Because data were not 439 available on the number of deaths per year of patients diagnosed in the last year, a 440 literature search was carried out on the survival of these patients in countries by 441 income level. In other words, the calculation factored in the percentage of newly 442 diagnosed patients that would die within one year as the percentage among all deaths 443 that would occur due to newly diagnosed patients. As literature covering all income 444 groups was not available in all years of interest, i.e. 1990, 2000, 2010 and 2019, 445 missing years and income groups were imputed to the nearest income group and/or to 446 all the year (Tables 8 and 9). The new method limited the estimation of SHS only to 447 patients within the last 1-2 years of their life, since most patients living with 448 cerebrovascular disease can spend years living without SHS. While this method gives 449 us a more realistic estimate of the suffering endured by cerebrovascular disease 450 patients, there is little literature to report an estimate of the percentage of total 451 cerebrovascular disease patients who are in the last 1-2 years of their life (Table 10). 452 Therefore, we applied a series of assumptions plus a limited compilation of data from 453 our literature review to construct the matrix of percentages of cerebrovascular disease 454 patients living within the last 1-2 years of their life by income group, to 1990, 2000, 455 2010, and 2019. These assumptions are limitations of this study, given the varying 456 strength of the underlying data. 457 Table 7 presents the multipliers used to calculate SHS for all 21 conditions, 458 separating decedents and non-decedents. [Table 7. Multipliers used to calculate SHS 459 burden for 21 conditions] ## **III. Data limitations and Future Iterations** The measurement of the global burden of SHS presented in the Lancet Commission report set a precedent and the update to SHS2.0 is an important move forward in measuring the number of people in need of palliative care. However, there are important limitations and there remains work to refine the estimation strategy and hence the estimates. #### **Data limitations** 460 461 462 463 464 465 466 467 468 469 471 474 470 First, although a literature review was conducted by condition and symptoms, due to a dearth of reliable empirical data on the types, prevalence, and duration of suffering 472 caused by each SHS associated health condition, both SHS1.0 and 2.0 rely heavily on 473 expert opinion. Moreover, research on palliative care has so far concentrated on Europe and the United States accounting for over 90% of all publications on palliative care but only 15% of the global population. The fact that 85% of the global population produced only 6.5% research publications points to the glaring lack of information on the elements of suffering for the majority of people in the world.(27) Further, the expert groups are relatively small reflecting limitations in available funding to develop the field of SHS. This makes it especially difficult to develop either disease, region, or country income-specific estimates. The reliance on identifying an "average" patient limits the possibility of exploring regional, cultural or other differences, as well as the effect of providing differential levels of palliative care. The next step in the SHS work is to undertake disease-specific expert panels to refine estimates of people with SHS and especially symptoms and symptom days. This is the focus of research planned for SHS 3.0 and has been piloted for breast cancer and will soon commence on HIV. Second, there are conditions which generate SHS but are not included in the analysis to-date due to limited scope. For example, chronic paranoid schizophrenia and other severe chronic psychiatric disorders generate severe suffering but are not included in the methods presented here. Another important example is people living in the context of humanitarian crisis,(28) including armed conflict(29) but also climate emergencies, communicable disease outbreaks or those under threat of political, sexual, or ethnic violence who suffer from various types of physical and psychological suffering. Similarly, our work to date extends to 2019. Estimating the shorter-term SHS that was associated with the coronavirus disease 2019 (COVID-19) pandemic, and the longer-term sequelae for those who suffered the disease should be a key next step in the analysis. This should include the suffering associated with bereavement and the lack of access to palliative care support for caregivers, family members and the community during COVID-19 lockdowns. The wealth of data and publications on the pandemic will make this analysis more feasible. Family caregivers who experience various kinds of physical, psychological, social, and spiritual suffering as a result of their care work are not included in the estimates. While methods to estimate the types, prevalence, or duration of physical, psychological, social, or spiritual suffering of the main family or informal caregiver have not been within the scope of SHS calculations to-date, this is an important area of future SHS methodological development. Family caregivers typically provide many hours of daily care to patients with serious, chronic, complex, or life-limiting health problems and in many health care settings, especially in LMICs, where they must remain with the patient when admitted to the hospital. Across the world, caregiving work at home and in the communities is predominantly provided by women, and often uncompensated or undercompensated.(30) It has been shown that caregiving can itself represent a source of suffering.(31, 32) Family caregivers may have their own need for palliative care and support in managing bereavement. Expert opinion provides important information, but a patient-centered approach needs to be included in future work on SHS. Confirmatory research on symptom prevalence and severity with patient- and caregiver- reported real-life data must complement future work. This limitation applies to the symptoms as well as many dimensions of suffering that are important for patients, caregivers, and practitioners. The expert panel identified 11 physical and 4 psychological symptoms, but this is far from an exhaustive list of all possible physical and psychological symptoms patients can experience. Social or spiritual suffering is also not estimated despite being a source of grave concern due to the impact on overall quality of life.(33, 34) In the context of paucity of resources, of poorly organized healthcare systems and of marginalization of large chunks of the population, the impact on the burden of suffering is likely to be considerable. Further, the quantity of suffering is estimated only in terms of number of people who died from or lived with SHS (SHS 1.0 and SHS 2.0), or the number of symptom days they each experience (SHS 1.0). This approach neglects the intensity or tolerability of suffering experienced. In SHS
3.0, opportunities for understanding the scope and intensity of social and spiritual suffering for patients in need of palliative care will be explored. Gathering patient- and caregiver reported data is the optimal solution to fill in these gaps and should be a priority for donors and foundations interested in improving access to palliative care and achieving the Sustainable Development Goals (SDGs). To date, only a few pilot and exploratory surveys have been undertaken.(35, 36) Another important area for future work is to determine to what extent suffering can be alleviated with existing practices and techniques at various resource-levels. This also means that the multipliers – percentage of deaths or survivors in need of palliative care by condition – are time-period specific and should change over time based on previously noted endogenous variables, including the change in disease trajectories and their suffering patterns, as health care technologies and systems evolve. Last but not least, our work looks at one side of the issue: the demand side. It is equally important, if not more, to measure how much of the need for palliative care is fulfilled, by whom, in what quality, and where. Combined with analysis of the actual provision of palliative care, we will be able to identify gaps and provide more tailored policy recommendations. ## **Future Iterations** The methods described in this paper are pioneering in the field. However, our exploration has only expanded our vision of the bigger, unknown world, leaving more gaps to be filled with future research. Even the more detailed estimate of "symptom-days" – as opposed to number of people – has limitations as a measure of the burden of SHS experienced by patients in the absence of a method to weigh the tolerability or intensity of each symptom. Specifically, the number of days is calculated for each symptom using the available information on symptom prevalences and duration for each condition. Simple aggregation of days with each symptom may lead to overestimation from double counting, as many patients with advanced disease will suffer from more than one symptom at the same time. As such, the Commission report presented two aggregate indicators to evaluate the total symptom burden: 1) the "at least" SHS-days, which equals the symptom-days from the single most prevalent symptom, in most case, pain, of each condition, and 2) the total symptom days should is the sum total of all symptoms. The actual days of suffering experienced by people with SHS should be a number between these two bounds. Ongoing refinement of the calculation of the number of days of SHS experienced by the population in a given year is a core area for SHS 3.0. Moreover, and as described, it is important to note that the calculation of the number of days of SHS is derived from the calculation of the number of people with SHS, not the other way around. As a contribution to measurement of burden, several "summary indicators" or ways to characterize the suffering experienced by patients were developed. Panel 2 presents these secondary indicators that were constructed for the Lancet Commission report. Another dimension that has not been measured to date is to match SHS to an estimate of palliative care need assessment such as the estimated number of required "palliative care visit-days" – the number of days in which a palliative care provider should see the patient, family or caregiver. Symptom days measures only the days during which the symptom(s) persist(s), regardless of whether a visit by or with a palliative care provider is needed. Severe, refractory, or poorly tolerated symptoms may require daily visits while well-controlled symptoms may require a visit only every 2 to 4 weeks. Indeed, provision of effective palliative care can, and should, reduce the number of symptom days as well as the severity of the symptoms. In doing this, palliative care reduces the SHS burden. This remains an area for future discussion and analysis. ## IV. Discussion This paper is designed to serve as a reference document for calculating SHS. Detailing the methodology is also intended to promote transparency in ongoing efforts to measure the burden of SHS and to promote wider discourse on the assessment of SHS burden that will inform future iterations of SHS measurement and data strengthening. Improving the science of the measurement of SHS will support policies that increase palliative care access and infrastructure as a component of UHC and improve population health. The estimates generated from this methodology can be used independently or can serve as an input to the development of composite metrics that compare interventions in terms of suffering averted. Researchers can apply the methods presented using country-specific data (i.e. not GBD estimates, which are used here) to generate national and sub-national calculations of SHS.(37, 38) Researchers can also use our methods to project trends and examine the future scale of the burden of SHS overall or by condition.(39) The SHS burden data is also a necessary input to calculating the cost of an essential package of palliative care services, as introduced by the Lancet Commission.(37) Data on SHS burden is critical to evaluating health status and as such, for the monitoring and evaluation of health systems performance to achieving universal access to palliative care.(40) The number of people with SHS (calculated without a threshold or cutoff in terms of days of SHS experienced) provides a specific insight on palliative care need – an estimated number of patients that need access to palliative care services. Policymakers and practitioners can be guided by the magnitude of SHS within their countries, the distribution of SHS across conditions, age ranges, and geographical locations, and the corresponding need for palliative care, so that they may examine it against the availability of palliative care service. SHS data are hence useful in assessing the need and efficacy of approaches to health system strengthening and UHC, health reforms or across health insurance schemes. Further, the evidence on need can further the argument for adoption of the packages of palliative care services, as was begun with work on the essential package by the Lancet Commission with the Disease Control Priorities (DCP)-3.(11) The number of days of SHS is therefore also essential and particularly to measure how need must translate into a health system response such as through an essential package of palliative care services. a starting point for further scientific inquiry and consensus-building. The methods described in this paper pave the way forward for future research that examines both the demand side—suffering patterns—and the supply side—ways to address them—for people worldwide. With the methodology to measure SHS, as established by this paper, what's needed next are better tools to measure the responses to relief, building on existing efforts such as DOME. The next step and complement to this paper is another on DOME that begins to identify access to one fact of palliative care – pain relief medicine, plus a paper looking specifically at SHS in children. Matching DOME and SHS provides an indicator of health system performance and progress over time in delivering palliative care and reducing the unmet burden of SHS. Acknowledging this and the previously presented limitations, this paper provides Estimating the burden of SHS should be a continual endeavor to incorporate scientific, societal, economic, and health care system change into the quest to reduce suffering and improve population health. This must include monitoring advances, but also the challenges that pose a risk to human health and quality of life, including climate change, war, and humanitarian crises. The measurement of serious health-related suffering can serve as a basis for promoting people-centered health systems and analyzing progress toward SDG3 and for future iterations of global health goals and the quest for UHC. It also has the potential to change the focus of today's healthcare system from diseases alone to suffering. The tools shared in this paper and its contributions toward better conceptualization and measurement of the burden and alleviation of SHS should catalyze this work. #### V. Acronyms | v. rici onymis | | |----------------|--| | Acronyms | Full names | | AIDS | Acquired immunodeficiency syndrome | | ART | Anti-retroviral treatment | | COPD | Chronic obstructive pulmonary disease | | COVID-19 | Coronavirus disease 2019 | | DALYs | Disability adjusted life years | | DCP | Disease control priorities | | DOME | Distributed opioid morphine equivalent | | GBD | Global Burden of Diseases | | GHE | Global Health Estimates | |----------|--| | GLOBOCAN | Global Cancer Observatory | | HIV | Human immunodeficiency viruses | | IAHPC | International Association for Hospice | | | and Palliative Care | | ICD | International Classification of Diseases | | ICPCN | International Children's Palliative Care | | | Network | | IHME | Institute for Health Metrics and | | | Evaluation | | LMICs | Low- and middle-income countries | | MDR-TB | Multidrug-resistant tuberculosis | | PLWHIV | People Living with HIVs | | QALYs | Quality-adjusted life years | | SDG | Sustainable Development Goal | | SHS | Serious health-related suffering | | TB | Tuberculosis | | UHC | Universal health coverage | | UMIA | University of Miami Institute for | | | Advanced Study of the Americas | | WHO | World Health Organization | | WHPCA | Worldwide Hospice Palliative Care | | | Alliance | | XDR-TB | Extensively drug-resistant tuberculosis | ## VI. Acknowledgments The authors are grateful to the Lancet Commission on Palliative Care and Pain Relief Study Group and acknowledged contributors in the Lancet Commission report for their inputs to an earlier iteration of this
work. We would also like to thank all palliative care specialists who contributed to experts panels and related Delphi processes for the Lancet Commission and subsequent pediatric specific expert reviews for SHS 2.0. We thank Kathy Foley for her various inputs to the Lancet Commission and beyond to help make this work a reality. Finally, we thank all individuals who have supported this work in different ways and at varying points. ## VII. Conflicts of Interest XK and AB report consulting fees from the University of Miami Institute for the Advanced Study of the Americas for part of the submitted work and consulting fees through a research grant from the Medical Research Council to the University of Edinburgh for work related to palliative care outside the submitted work. FMK reports research grant funding to the University of Miami from the U.S. Cancer Pain Relief for part of the submitted work and from ABC Global Alliance outside the submitted work; research grant funding from the Medical Research Council to the University of Miami and FUNSALUD (Mexican Health Foundation) for work related to palliative care outside the submitted work; research grant funding to Tómatelo a - 663 Pecho, A.C. from Breast Cancer Now related to palliative care outside the submitted - work; research grant funding to Tómatelo a Pecho, A.C. outside submitted work from - 665 Merck Sharp & Dohme, Avon Cosmetics; research grant funding to the University of - 666 Miami outside submitted work from Merck KGaA/EMD Serono; and personal fees - from Merck KGaA/EMD Serono and Tecnológico de Monterrey. FMK is on the - 668 board of the IAHPC, Founding President of Tómatelo a Pecho, A.C, and Senior - Economist for FUNSALUD. All other authors declare no competing interests. ## VIII. Funding - We acknowledge support from the University of Miami and U.S. Cancer Pain Relief - 673 for this work. 670 671 674 Panel 1: Core assumptions for estimating decedents and non-decedents in need of palliative care ## **Hemorrhagic Fever** #### **Decedents** • 100% of deaths from hemorrhagic fever, which is about 5% of other infectious diseases. #### **Non-Decedents** Approximately the same number of patients who recover from the disease as those who die from it.(41-45) ## Tuberculosis (TB) #### **Decedents** - 100% of patients who die from MDR-TB.(46-48) MDR-TB deaths estimates were provided by the GBD database separately from the drug susceptible TB deaths, so we no longer need to estimate the deaths from MDR-TB using the proportion calculated from global reports as we did for SHS 1.0. - 90% of drug-susceptible TB deaths. Regular TB deaths were calculated using total TB deaths minus MDR-TB deaths as described above. #### **Non-Decedents** • given the natural history of TB as a consition of relatively short duration as compared to other SHS conditions, especially in the case of MDR-TB and XDR-TB, we estimated the number of MDR and XDR TB patients living with SHS in any given year to be the incidence number minus the deaths number. Subsequently, the non-decedents in need of palliative care for tuberculosis was estimated to be 100% of XDR-TB patients plus 50% of MDR-TB patients living with SHS: Total TB-nondec = 100% * XDR-TB (incidence-deaths) + 50% * MDR-TB (incidence-deaths) ## HIV/AIDS #### **Decedents** • 100% of people who die from HIV/AIDs.(24, 49-52) ## **Non-Decedents Not on Treatment** • 50% of people living with HIV (PLHIV) (non-decedents in 2015) required some type of palliative care.(53-56) #### **Non-Decedents on Treatment** • For PLHIV who are on ART, the percentage with SHS was estimated at approximately 15%, much lower than those without ART. GBD country-specific prevalence of HIV/AIDs was used to estimate PLHIV. Data on percentage of HIV patients on anti-retroviral therapy (ART) (ART coverage) was obtained from the World Bank Group based on UNAIDS estimates, and average levels of ART coverage for each income group were calculated using country-specific data available for each time point. Actual country income group classifications for each respective year were utilized to generate ART coverage averages by income group. We used the below assumption: Number of HIV patients living with SHS = [HIV prevalence * proportion of HIV patients on ART * 15%] + [HIV prevalence * (1 - proportion of HIV patients on ART) * 50%] • Due to the timeline of the advent of antiretroviral (ARV) drugs and combination therapy, widespread introduction of ARVs after the surge of HIV prevalence, time delay in rollout of ARVs in low-income countries as compared to lower-middle, upper-middle, and high-income countries and data availability on ART coverage, ARV adjustment was only made for the years of 2000 (all income groups except low-income countries), 2010, and 2019. For 1990, based on unavailability of ART or ART coverage at 0%, the number of HIV patients with SHS equals total prevalence multiplied by 50%. ## Malignant neoplasms (except leukemia) #### **Decedents** • 90% of patients who die from malignant neoplasms (except leukemia).(24, 57-59) #### Non-Decedents - According to International Agency for Research on Cancer (IARC), there were 32.6 million people older than 15 who were alive with a cancer diagnosis within the previous 5 years in 2012.(60) Shi, et al.,(61) report that 28% of people who survive one year with cancer have a "high-symptom burden." We assumed that people with a high-symptom burden need palliative care. Zucca, et al.(62), report that few people who survive cancer for more than five years have symptoms that require palliative care unless they have a recurrence or another disease. Data on the percentage of the 32.6 million non-decedents who survive 1, 2, 3, 4, and 5 years, and on the need for palliative care at years 2, 3, 4, or 5 was unavailable. The International Agency for Research on Cancer (IARC) has data on survivorship from selected cancers in selected countries, (60) but in the absence of global data, we estimated the number of non-decedents by year since their cancer diagnosis and the percentage of these non-decedents who need palliative by year since cancer diagnosis (Table 2). IHME prevalence data on malignant neoplasms includes all persons with a cancer diagnosis, regardless of their years, so we decided not to use their cancer prevalence data. The IARC has data on survivorship from selected cancers in selected countries within 5 years of diagnosis, (60) but only for 1, 3 and 5 years of diagnosis. Thus, IARC data was used, and a linear distribution was assumed to impute for patients with 2 and 4 years of diagnosis respectively. [Table 2. Multipliers cancer survivors at 1, 2, 3, 4, and 5 years of diagnosis] - Since cancer mortality data in GLOBOCAN is not available for the previous four years for each country, the following was assumed: *Mort5years=Mort2018*5* - Mort2018 corresponds to cancer mortality in 2018 (GLOBOCAN database). Countries were grouped by income level, based on World Bank 2017 classifications. Five-year survival by income group was estimated, generating the following: - Low income = 0.30 - Lower-middle income=0.361 - Upper-middle income=0.459 - High-income=0.574 - Similarly, each income group was divided into quintiles according to its 5-year survival rate. Table 6 shows the assumptions for calculating the survival rate for each year that is not available from the GLOBOCAN database. - Based on table 6 below, it is assumed that survival in the low-income region in 1990 is similar to what survival in the first quintile of that region is today. In 2000, the same group of low-income countries had what the first two survival quintiles for low-income countries have today; that is, 0.24. Meanwhile, in 2010 the first three quintiles correspond to 0.26. For 2017, the current distribution reported by GLOBOCAN was used. [Table 3. Percentiles used to impute number cancer survivors at 1, 2, 3, 4, and 5 years of diagnosis in historical years] ## Leukemia #### Decedents 90% of patients who die from leukemia; needs of people with leukemia are of shorter duration or lower intensity than those of people with solid tumors. An exception is some patients in HICs with chronic, difficult-to-control graft-versus-host disease. This globally unusual need was taken into consideration when estimating the duration of need among leukemia patients. ## Non-Decedents • Non-decedent category for leukemia was added for SHS 2.0 and was calculated separately for children and adults. For children, we estimate that 85% of total survivors living in low-income and lower-middle income countries, 60% of total survivors living in upper-middle income countries, and 25% of total survivors living in high-income countries are living with SHS. Overall, that constitutes 65% of the global total survivors. The children's expert group placed particular emphasis on the burden of leukemia in low-income countries and the differentials across countries and this is reflected in the multipliers. This approach innovates on previous estimates and is an ongoing area of discussion for alignment with measuring SHS for other conditions. For adults, the calculation is the same as for other malignant neoplasms. #### **Dementia** #### **Decedents** Approximately 80% of people who die from Alzheimer's disease or other dementias in the year they die.(24, 63-65) #### Non-Decedents • Approximately 25% of these people had advanced or late dementia. Moens et al.(24) found that 40% of persons with advanced or late dementia had symptoms requiring palliative care (the need for psychological and social support for caregivers likely would yield a higher percentage of need for palliative care, but data on this need are lacking). We thus estimated that 10% (25% * 40%) of people living with dementia are experiencing SHS. The number of people living with dementia came from GBD's prevalence database. ## Inflammatory disease of central neural system #### **Decedents** • [70% of patients who die from syphilis]
+ [50% of patients who die from measles] + [100% of patients who die from tetanus] + [30% of patients who die from meningitis] + [30% of patients who die from encephalitis] + [100% of patients who die of trypanosomiasis] + [90% of patients who die from rabies]. #### **Non-Decedents** • For every two patients who die from tetanus and require palliative care, there will be one patient who survives tetanus that requires palliative care. # Extrapyramidal & movement disorders; other degenerative disease of CNS; demyelinating disease of CNS; Epilepsy; Cerebral palsy & other paralytic syndromes #### **Decedents** • [65% of patients who die from Parkinson's disease] + [50% of patients who die from epilepsy] + [100% of patients who die from multiple sclerosis] + [65% of patients who die from other neurological conditions].(66-78) ## Non-Decedents - Parkinson's disease: Advanced disease and the attendant distressing symptoms occur approximately nine years after symptoms first appear, (79) and we estimate conservatively that 25% of patients survive long enough to have advanced disease and do not die in a given year. Based on the work of Moens, et al., (24) we estimate that 40% of these patients require palliative care. We thus estimated that 10% (25% * 40%) of people living with Parkinson's disease are experiencing SHS and thus need palliative care.. - Multiple sclerosis (MS): MS has a long prognosis and shortens life by only 0 6 years. Thus, we estimated that 5% of people with MS who do not die in a given year have end stage disease. Based on the work of Moens, et al.,(24) we estimated that 34% of these patients about 2% of total survivors require palliative care. The number of people living with multiple sclerosis was calculated by applying the ratio of global survivors: deaths. #### Cerebrovascular diseases #### Decedents • 65% of people who die from stroke.(80-88) #### Non-Decedents • The mortality number for the next year was subtracted from the proportion of deaths expected to be within 1 year of diagnosis to approximate the number of cerebrovascular patients living with SHS. Mortality from three sub-categories of stroke, i.e., ischemic stroke, hemorrhagic stroke, and subarachnoid hemorrhage were summed, each subtracted from the proportion of deaths expected to be within the first year of diagnosis. Since actual data for the number of deaths for each year of - patients diagnosed within the last year was not available, cohort survival data from literature review were used. In other words, we used the possibility that newly diagnosed patients would die within a year as the percentage among all deaths that would be from the newly diagnosed. - As literature that covered all income groups across all historical years of interest was not available, missing years and income groups were imputed with the closest income group and/all year. The new method limited the estimation of SHS to only patients within the last 1-2 years of their life, since the majority of patients living with cerebrovascular disease can spend years living without SHS. While this method gives us a more realistic estimation of the suffering endured by cerebrovascular disease patients, there is scarce literature to inform an estimate of the percentage of total cerebrovascular disease patients who are within the last 1-2 years of their lives. Thus, a series of assumptions plus a limited compilation of data from our literature review were applied to construct the matrix of percentages of cerebrovascular disease patients living within the last 1-2 years of their lives by income group, for 1990, 2000, 2010 and 2017. These assumptions are limitations of this study given the varying strength of the underlying data. See table 4-6 for details. [Table 4: Estimation model used in calculation of cerebrovascular disease patients living with SHS part 1]; [Table 5: Estimation model used in calculation of cerebrovascular disease patients living with SHS part 2]; [Table 6. List of literature review used in calculating the 5-year survival by income group and by year] ## Chronic rheumatic heart disease; Cardiomyopathy & heart failure #### **Decedents** • [65% of patients who die from rheumatic heart disease] + [70% of patients who die from hypertensive heart disease] + [40% of patients who die from cardiomyopathy, myocarditis and endocarditis] + [30% of patients who die from Chagas disease].(24, 89-94) ## Chronic ischemic heart disease #### **Decedents** • 5% of patients who die from ischemic heart disease.(95) # Chronic lower respiratory disease; lung disease due to external agents; interstitial lung disease; other disease of respiratory system #### **Decedents** • [80% of patients who die from COPD] + [50% of patients who die from other respiratory diseases except asthma].(24, 96-98) #### Diseases of liver ## **Decedents** • [95% of patients who die from cirrhosis of liver] + [28% of patients who die from other digestive diseases].(99-103) ## **Non-Decedents** • There is little literature describing the suffering of the general liver patients population. We found a recent publication of patients with end-stage liver disease but the inclusing criteria included decompensated liver diseases,(104) while the vast majority of patients living with liver disease are mild or well compensated. In another study, D'Amico et al observed that patients with decompensated cirrhosis (or end stage liver disease ESLD), this is those who have complications and who cannot access to a liver transplant, have a median survival of 2 years.(105) We thus estimated that for adults, if patients with end-stage disease may have SHS for two years before deaths, so the non-decedents number equal that of the decedents. For children, the early onset of liver diseases can cause more damage to the growing organ and thus generate more suffering. So we estimated that the number of pediatric patients living with liver diseases that cause serious health-related suffering is about 3 time that of the deaths every year. #### Renal failure #### **Decedents** • 45% of patients who die from kidney disease.(24, 106-108) ## **Non-Decedents** • We couldn't find any literature on the suffering of a "typical" or "average" patients living with chronic kidney diseases. We thus took a similar approach as other conditions: we assumed an average of 3 years from onset of SHS to deaths for a "typical" or "average" patient. Thus, the number of non-decedents were calculated as twice the number of decedents with SHS. For children, the early onset of kidney diseases can cause more damage to the growing organ and thus generate more suffering. So we estimated that the number of pediatric patients living with chronic kidney diseases that cause serious health-related suffering is about 3 time that of the deaths every year. ## Low birth weight & prematurity; birth trauma #### **Decedents** • [75% of patients who die from preterm birth complications] + [40% of patients who die from birth asphyxia and birth trauma].(109-113) #### Non-Decedents • The non-decedent category for low birth weight and birth trauma was only added for children. We estimate that about 1% of children under 5 low birth weight survivors, 20% of children under 5 birth trauma survivors, and 10% of 5–19-year-old birth trauma survivors experience SHS. #### Congenital malformations/anomalies #### **Decedents** • 60% of patients who die from congenital anomalies.(109, 113-115) #### Non-Decedents • As data was not found on the prevalence or longevity of patients with severe congenital malformations, an annual estimate of at least the same number of patients who die of congenital malformations was used for those who do not die, which equals 60% of total deaths. ## Injury, poisoning, external causes #### **Decedents** • 30% of patients who die from injuries (intentional and unintentional).(116, 117) Many patients die so quickly that there is no time to institute palliative care or pain control. #### Non-Decedents Each year, at least twice the number of patients who die of injuries do not die yet need palliative care or pain control. ## Atherosclerosis #### **Decedents** • 35% of patients who die from other circulatory disease require palliative care.(118, 119) ## Musculoskeletal disorders ## Decedents • 70% of patients who die from musculoskeletal diseases require palliative care.(120) ## **Non-Decedents** • Each year, at least twice the number of patients who die of musculoskeletal disorders do not die yet need palliative care. This category did not include patients with mild pain or with symptoms that do not significantly disrupt social or occupational functioning. ## Malnutrition ## **Decedents** • 100% of deaths from protein-energy malnutrition.(121, 122) ## Endocrine, metabolic, blood, and immune disorders - Diabetes mellitus: Although diabetes mellitus in adults is not included due to the high overlap with conditions of other key organs that were already included in the estimate, the expert panel on children's palliative care needs decided to include this condition due to the fact that most of the deaths from diabetes in children are from type-1 diabetes, a congenital condition that can cause SHS without any complication of other key organs. 67% of deaths from diabetes and 10% of survivors with diabetes in children require palliative care. Diabetes mellitus in adults was not included. - Thalassemia: 100% of deaths from thalassemia in children require palliative care. For non-decedents, the expert panel acknowledged that the proportion of patients in need is highly related to the access to treatment, quality of treatment, ability to do transplant and/or regular transfusion. Also, major thalassemia presents different suffering patterns from minor thalassemia. Finally, the panel decided to differentiate the suffering pattern by age groups: for children under 5, 70% and for children 5-19, 10%. - Sickle cell disorders: For children, 100% of deaths and 70% of survivors
experience SHS. For adults, previous scholars have found that between 30% and 50% patients living with sickle cell disorders experience pain in most of the days surveyed.(123) Considering other physical and psychological sufferings, 50% of all adult patients living with sickle cell disorders were estimated to experience SHS. ## Panel 2: Indicator-specific descriptions, assumptions, and limitations ## **Indicator 1:** Total symptom-days by condition 677 678 679 680 - **Description:** The sum of the symptom-days from each symptom by condition. - Assumptions and limitations: No weighting of tolerability of symptoms. Assumption that coinciding symptoms make the suffering worse and thus that the symptom-days from each coinciding symptom should be added together. This assumption generates an overestimation of the total number of days of a patient's suffering. ## **Indicator 2:** AT LEAST symptom-days by condition - **Description:** The symptom-days of the one symptom of longest duration. This would be the LEAST or minimal number of symptom-days experienced by the patient. - Assumption and limitation: Assumes that any other symptoms began and ended during period of the symptom of longest duration. In most cases, this will be an underestimate of the total number of days of a patient's suffering. ## **Indicator 3:** AT LEAST non-pain symptom-days by condition - **Description:** The symptom-days of the one non-pain symptom of longest duration. This would be the LEAST or minimal number of non-pain symptom-days experienced by the patient. - Assumption and limitation: Assumes that any other non-pain symptoms began and ended during period of the non-pain symptom of longest duration. In many cases, this will be an underestimate of the total number of days of a patient's suffering from non-pain symptoms. ## **Indicator 4:** Total pain-days by condition - **Description:** The sum of mild pain-days and moderate to severe pain-days. - **Assumption and limitation:** The mild pain days do not overlap the moderate to severe pain-days. Thus, this indicator shows total days in pain. However, it does not include any other symptoms. ## Indicator 5: Pain plus At LEAST non-pain symptom-days by condition - Description: This indicator was generated by adding the total pain-days and the AT LEAST non-pain symptom-days (indicator 3). - Assumption and limitation: This is one possible indicator of the burden of suffering for a patient. Indicator 6: Total days in need of palliative care by condition - Description: An estimation of days requiring palliative care by condition by palliative care experts with experience treating patients in LMICs using a Delphi process. - Assumption and limitation: Based only on the opinion of clinical palliative care experts from LMICs in each region. ## References 681 682 683 684 - 1. Knaul FM, Farmer PE, Krakauer EL, et al. Alleviating the access abyss in palliative - care and pain relief—an imperative of universal health coverage: the Lancet - 687 Commission report. The Lancet 2018;391:1391-1454. - 688 2. United Nations Department of Economic and Social Affairs. Sustainable - Development Goals. 2024. Available from: https://sdgs.un.org/goals. - 690 3. World Health Organization. Strengthening of palliative care as a component of - 691 comprehensive care throughout the life course. 2014. - 692 4. Connor S, Bermedo M, Baxter S, et al. Global atlas of palliative care at the end of - 693 life. 2014. World Health Organization and Worldwide Palliative Care Alliance 2014. - 5. Network. GBoDC. Global Burden of Disease Study 2019 (GBD 2019) Results. In: - 695 Seattle, United States: Institute for Health Metrics and Evaluation (IHME), 2019. - 696 6. Krikorian A, Limonero JT. An integrated view of suffering in palliative care. - 697 Journal of palliative care 2012;28:41-49. - 7. Gutiérrez-Sánchez D, Gómez-García R, Cuesta-Vargas AI, Pérez-Cruzado D. The - 699 suffering measurement instruments in palliative care: A systematic review of - psychometric properties. International Journal of Nursing Studies 2020;110:103704. - 8. Knaul FM, Farmer PE, Krakauer EL, et al. Technical Note and Data Appendix for - "Alleviating the access abyss in palliative care and pain relief—an imperative of - 703 universal health coverage: the Lancet Commission report". 2017. Available from: - 704 https://www.mia.as.miami.edu/_assets/pdf/data-appendix-lcgapcpc-oct122017_xk-4- - 705 22-201.pdf. - 706 9. Amblàs J, Bauer R, Beas E, et al. Building integrated palliative care programs and - 707 services. Collaboration with the World Health Organization Collaborating Centre - 708 Public Health Palliative Care Programmes 2017. - 709 10. Gómez-Batiste X, Connor S, Murray S, et al. Principles, definitions and concepts. - 710 Building Integrated Palliative Care Programs and Services. Barcelona: Chair of - 711 Palliative Care 2017:45-62. - 712 11. World Health Organization. Palliative care. 2020. Available from: - 713 https://www.who.int/news-room/fact-sheets/detail/palliative-care. Accessed Jan 15, - 714 2024. - 715 12. Radbruch L, De Lima L, Knaul F, et al. Redefining palliative care—a new - 716 consensus-based definition. Journal of pain and symptom management 2020;60:754- - 717 764. - 718 13. Almanasreh E, Moles R, Chen TF. Evaluation of methods used for estimating - 719 content validity. Research in social and administrative pharmacy 2019;15:214-221. - 720 14. Dalkey N, Helmer O. An experimental application of the Delphi method to the use - of experts. Management science 1963;9:458-467. - 722 15. McKenna HP. The Delphi technique: a worthwhile research approach for nursing? - 723 Journal of advanced nursing 1994;19:1221-1225. - 724 16. Goodman CM. The Delphi technique: a critique. Journal of advanced nursing - 725 1987;12:729-734. - 726 17. Keeney S, Hasson F, McKenna HP. A critical review of the Delphi technique as a - 727 research methodology for nursing. International journal of nursing studies - 728 2001;38:195-200. - 729 18. Connor SR, Downing J, Marston J. Estimating the global need for palliative care - 730 for children: a cross-sectional analysis. Journal of pain and symptom management - 731 2017;53:171-177. - 732 19. United Nations. UNAIDS DATA 2019. 2019. Available from: - 733 https://www.unaids.org/sites/default/files/media_asset/2019-UNAIDS-data_en.pdf. - 734 Accessed Jan 15, 2024. - 735 20. International Agency for Research on Cancer. Cancer Today. 2019. Available from: - 736 https://gco.iarc.fr/today/online-analysis- - 737 table?v=2020&mode=cancer&mode population=continents&population=900&popul - 738 ations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&popul - 739 ation_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer= - 740 1&include_nmsc=0&include_nmsc_other=1. Accessed Jan 15, 2024. - 741 21. Moens K, Higginson IJ, Harding R, et al. Are there differences in the prevalence - of palliative care-related problems in people living with advanced cancer and eight - 743 non-cancer conditions? A systematic review. Journal of pain and symptom - 744 management 2014;48:660-677. - 745 22. Solano JP, Gomes B, Higginson IJ. A comparison of symptom prevalence in far - advanced cancer, AIDS, heart disease, chronic obstructive pulmonary disease and - renal disease. Journal of pain and symptom management 2006;31:58-69. - 748 23. Becher S, Smith M, Ziran B. Orthopaedic trauma patients and depression: a - prospective cohort. Journal of orthopaedic trauma 2014;28:e242-e246. - 750 24. Alvi T, Minhas FA. Type of presentation of dissociative disorder and frequency of - 751 co-morbid depressive disorder. J Coll Physicians Surg Pak 2009;19:113-6. - 752 25. Pastrana T, Vallath N, Mastrojohn J, et al. Disparities in the contribution of low- - and middle-income countries to palliative care research. Journal of pain and symptom - 754 management 2010;39:54-68. - 755 26. Nouvet E, Sivaram M, Bezanson K, et al. Palliative care in humanitarian crises: a - 756 review of the literature. Journal of International Humanitarian Action 2018;3:1-14. - 757 27. Rosa WE, Grant L. Focus: Climate Change and Environmental Health: Palliative - 758 Justice Post-COP27. The Yale Journal of Biology and Medicine 2023;96:257. - 759 28. International Labour Office. The Unpaid Care Work and the Labour Market. An - analysis of time use data based on the latest World Compilation of Time-use Surveys. - 761 In: Geneva: International Labour Office, 2019. - 762 29. Brinda EM, Rajkumar AP, Enemark U, Attermann J, Jacob K. Cost and burden of - 763 informal caregiving of dependent older people in a rural Indian community. BMC - Health Services Research 2014;14:1-9. - 765 30. Schulz R, Sherwood PR. Physical and mental health effects of family caregiving. - Journal of Social Work Education 2008;44:105-113. - 767 31. Rattner M. Increasing our understanding of nonphysical suffering within palliative - 768 care: A scoping review. Palliative & Supportive Care 2022;20:417-432. - 769 32. VanderWeele TJ. Suffering and response: Directions in empirical research. Social - 770 Science & Medicine 2019;224:58-66. - 33. Bhadelia A, Greaves N, Doubova S, Knaul FM. Understanding the value of - alleviating health-related suffering and palliative care centered in lived experience: - 773 the SAVE Toolkit. 2023. - 774 34. Doubova SV, Bhadelia A, Pérez-Moran D, et al. Dimensions of suffering and the - need for palliative care: experiences and expectations of patients living with cancer - and diabetes and their caregivers in Mexico–a qualitative study. BMJ open - 777 2023;13:e075691. - 778 35. Pérez-Cruz PE, Undurraga E, Arreola-Ornelas H, et al. Bridging gaps to universal - 779 palliative care access in Chile: Serious health-related suffering and the cost of - 780 expanding the package of care services. The Lancet Regional Health–Americas - 781 2023;19. - 782 36. Krakauer EL, Kwete XJ, Rassouli M, et al. Palliative care need in the Eastern - 783 Mediterranean Region and human resource requirements
for effective response. PLOS - 784 Global Public Health 2023;3:e0001980. - 785 37. Sleeman KE, Gomes B, de Brito M, Shamieh O, Harding R. The burden of serious - health-related suffering among cancer decedents: Global projections study to 2060. - 787 Palliative Medicine 2021;35:231-235. - 788 38. World Health Organization. Assessing the development of palliative care - 789 worldwide: a set of actionable indicators. 2021. Available from: - 790 https://www.who.int/publications/i/item/9789240033351. Accessed Jan15, 2024. - 791 39. Krakauer EL, Kwete X, Verguet S, et al. Palliative care and pain control. 2018. - 792 40. West TE, von Saint André-von Arnim A. Clinical presentation and management of - 793 severe Ebola virus disease. Annals of the American Thoracic Society 2014;11:1341- - 794 1350. - 795 41. Schieffelin JS, Shaffer JG, Goba A, et al. Clinical illness and outcomes in patients - with Ebola in Sierra Leone. New England journal of medicine 2014;371:2092-2100. - 797 42. Dallatomasina S, Crestani R, Sylvester Squire J, et al. Ebola outbreak in rural - 798 West Africa: epidemiology, clinical features and outcomes. Tropical Medicine & - 799 International Health 2015;20:448-454. - 800 43. MacNeil A, Farnon EC, Wamala J, et al. Proportion of deaths and clinical features - in Bundibugyo Ebola virus infection, Uganda. Emerging infectious diseases - 802 2010;16:1969. - 44. Boozary AS, Farmer PE, Jha AK. The Ebola outbreak, fragile health systems, and - 804 quality as a cure. Jama 2014;312:1859-1860. - 45. Harding R, Foley KM, Connor SR, Jaramillo E. Palliative and end-of-life care in - the global response to multidrug-resistant tuberculosis. The Lancet infectious diseases - 807 2012;12:643-646. - 46. Organization WH. Companion handbook to the WHO guidelines for the - 809 programmatic management of drug-resistant tuberculosis, World Health Organization, - 810 2014. - 47. Nathanson E, Gupta R, Huamani P, et al. Adverse events in the treatment of - 812 multidrug-resistant tuberculosis: results from the DOTS-Plus initiative. The - International Journal of Tuberculosis and Lung Disease 2004;8:1382-1384. - 48. Harding R, Selman L, Agupio G, et al. Prevalence, burden, and correlates of - physical and psychological symptoms among HIV palliative care patients in sub- - 816 Saharan Africa: an international multicenter study. Journal of pain and symptom - 817 management 2012;44:1-9. - 818 49. Vogl D, Rosenfeld B, Breitbart W, et al. Symptom prevalence, characteristics, and - distress in AIDS outpatients. Journal of pain and symptom management 1999;18:253- - 820 262. - 821 50. McArthur JC, Brew BJ. HIV-associated neurocognitive disorders: is there a - 822 hidden epidemic? Aids 2010;24:1367-1370. - 51. Namisango E, Harding R, Atuhaire L, et al. Pain among ambulatory HIV/AIDS - patients: multicenter study of prevalence, intensity, associated factors, and effect. The - 825 Journal of Pain 2012;13:704-713. - 826 52. Parker R, Stein DJ, Jelsma J. Pain in people living with HIV/AIDS: a systematic - review. Journal of the International AIDS Society 2014;17:18719. - 828 53. Sims A, Hadigan C. Cardiovascular complications in children with HIV infection. - 829 Current HIV/AIDS Reports 2011;8:209-214. - 830 54. Simms V, Higginson IJ, Harding R. Integration of palliative care throughout HIV - disease. The Lancet Infectious Diseases 2012;12:571-575. - 832 55. Teunissen SCCM, Wesker W, Kruitwagen C, et al. Symptom Prevalence in - Patients with Incurable Cancer: A Systematic Review. Journal of Pain and Symptom - 834 Management 2007;34:94-104. - 56. Tranmer JE, Heyland D, Dudgeon D, et al. Measuring the Symptom Experience of - 836 Seriously Ill Cancer and Noncancer Hospitalized Patients Near the End of Life with - the Memorial Symptom Assessment Scale. Journal of Pain and Symptom - 838 Management 2003;25:420-429. - 57. van den Beuken-van Everdingen MHJ, Hochstenbach LMJ, Joosten EAJ, Tjan- - 840 Heijnen VCG, Janssen DJA. Update on Prevalence of Pain in Patients With Cancer: - 841 Systematic Review and Meta-Analysis. Journal of Pain and Symptom Management - 842 2016;51:1070-1090.e9. - 58. International Agency for Research on Cancer. Global Cancer Observatory, Cancer - Facts Sheet. 2019. Available from: https://gco.iarc.fr/. Accessed Jan 15, 2024. - 845 59. Shi Q, Smith TG, Michonski JD, et al. Symptom burden in cancer survivors 1 year - 846 after diagnosis. Cancer 2011;117:2779-2790. - 60. Zucca AC, Boyes AW, Linden W, Girgis A. All's Well That Ends Well? Quality of - 848 Life and Physical Symptom Clusters in Long-Term Cancer Survivors Across Cancer - Types. Journal of Pain and Symptom Management 2012;43:720-731. - 850 61. Mitchell SL, Teno JM, Kiely DK, et al. The Clinical Course of Advanced - Dementia. New England Journal of Medicine 2009;361:1529-1538. - 852 62. American Geriatrics Society Ethics C, Clinical P, Models of Care C. American - 853 Geriatrics Society Feeding Tubes in Advanced Dementia Position Statement. Journal - of the American Geriatrics Society 2014;62:1590-1593. - 855 63. Teno JM, Gozalo PL, Lee IC, et al. Does Hospice Improve Quality of Care for - 856 Persons Dying from Dementia? Journal of the American Geriatrics Society - 857 2011;59:1531-1536. - 858 64. Riedel O, Klotsche J, Spottke A, et al. Frequency of dementia, depression, and - other neuropsychiatric symptoms in 1,449 outpatients with Parkinson's disease. - 860 Journal of Neurology 2010;257:1073-1082. - 65. Dissanayaka NNW, Sellbach A, Matheson S, et al. Anxiety disorders in - 862 Parkinson's disease: Prevalence and risk factors. Movement Disorders 2010;25:838- - 863 845. - 864 66. Rosenbaum RB. Understanding Parkinson's disease: a personal and professional - view, Bloomsbury Publishing USA, 2006. - 866 67. Téllez-Zenteno JF, Ronquillo LH, Moien-Afshari F, Wiebe S. Surgical outcomes - in lesional and non-lesional epilepsy: A systematic review and meta-analysis. - 868 Epilepsy Research 2010;89:310-318. - 68. de Cerqueira AC, Semionato de Andrade P, Godoy Barreiros JM, Teixeira AL, - Nardi AE. Psychiatric disorders in patients with multiple sclerosis. Comprehensive - 871 Psychiatry 2015;63:10-14. - 69. Patterson K, Marshall JC, Coltheart M. Surface dyslexia: Neuropsychological and - 873 cognitive studies of phonological reading., Routledge, 2017. - 70. Browne P, Chandraratna D, Angood C, et al. Atlas of Multiple Sclerosis 2013: A - growing global problem with widespread inequity. Neurology 2014;83:1022-1024. - 876 71. Rolak LA. Multiple Sclerosis: It's Not The Disease You Thought It Was. Clinical - 877 Medicine & Research 2003;1:57-60. - 72. Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple - 879 sclerosis. Neurology 2014;83:278-286. - 880 73. Brønnum-Hansen H, Koch-Henriksen N, Hyllested K. Survival of patients with - multiple sclerosis in Denmark. Neurology 1994;44:1901-1901. - 882 74. Kalia LV, Kalia SK, Lang AE. Disease-modifying strategies for Parkinson's - 883 disease. Movement Disorders 2015;30:1442-1450. - 75. Shang Q, Ma CY, Lv N, et al. Clinical study of cerebral palsy in 408 children with - periventricular leukomalacia. Exp Ther Med 2015;9:1336-1344. - 76. Hirsh AT, Gallegos JC, Gertz KJ, Engel JM, Jensen MP. Symptom burden in - individuals with cerebral palsy. J Rehabil Res Dev 2010;47:863-76. - 888 77. About Parkinson's. 2024. Available from: http://www.epda.eu.com/about- - parkinson-s/. Accessed Jan 15, 2024. - 78. Schnitzler A, Woimant F, Nicolau J, Tuppin P, de Peretti C. Effect of - 891 Rehabilitation Setting on Dependence Following Stroke: An Analysis of the French - 892 Inpatient Database. Neurorehabilitation and Neural Repair 2013;28:36-44. - 893 79. Krishnamurthi RV, Moran AE, Feigin VL, et al. Stroke Prevalence, Mortality and - 894 Disability-Adjusted Life Years in Adults Aged 20-64 Years in 1990-2013: Data from - the Global Burden of Disease 2013 Study. Neuroepidemiology 2015;45:190-202. - 896 80. Feigin VL, Krishnamurthi RV, Parmar P, et al. Update on the Global Burden of - 897 Ischemic and Hemorrhagic Stroke in 1990-2013: The GBD 2013 Study. - 898 Neuroepidemiology 2015;45:161-176. - 899 81. Boysen G, Marott JL, Grønbæk M, Hassanpour H, Truelsen T. Long-Term - 900 Survival after Stroke: 30 Years of Follow-Up in a Cohort, the Copenhagen City Heart - 901 Study. Neuroepidemiology 2009;33:254-260. - 902 82. Brønnum-Hansen H, Davidsen M, Thorvaldsen P. Long-Term Survival and - 903 Causes of Death After Stroke. Stroke 2001;32:2131-2136. - 904 83. De Wit L, Putman K, Baert I, et al. Anxiety and depression in the first six months - after stroke. A longitudinal multicentre study. Disability and Rehabilitation - 906 2008;30:1858-1866. - 907 84. Broomfield NM, Quinn TJ, Abdul-Rahim AH, Walters MR, Evans JJ. Depression - and anxiety symptoms post-stroke/TIA: prevalence and associations in cross-sectional - data from a regional stroke registry. BMC Neurology 2014;14:198. - 910 85. Klimiec E, Dziedzic T, Kowalska K, et al. PRospective Observational POLIsh - 911 Study on post-stroke delirium (PROPOLIS): methodology of hospital-based cohort - 912 study on delirium prevalence, predictors and diagnostic tools. BMC Neurology - 913 2015;15:94. - 86. Brainin M, Heiss W-D. extbook of stroke medicine, Cambridge University Press, - 915 2019. - 916 87. Rustad JK, Stern TA, Hebert KA, Musselman DL. Diagnosis and treatment of - 917 depression in patients with congestive heart failure: a review of the literature. The - 918 primary care companion for CNS disorders 2013;15:26254. - 919 88. Ahmed A, Rich MW, Fleg JL, et al. Effects of Digoxin on Morbidity and Mortality - 920 in Diastolic Heart Failure. Circulation 2006;114:397-403. - 921 89. Cully JA, Johnson M, Moffett ML, Khan M, Deswal A. Depression and Anxiety - in Ambulatory Patients With Heart Failure. Psychosomatics 2009;50:592-598. - 923 90. Jiang W, Kuchibhatla M, Cuffe MS, et al. Prognostic Value of Anxiety and - 924 Depression in Patients With Chronic Heart Failure. Circulation
2004;110:3452-3456. - 925 91. Havranek EP, Ware MG, Lowes BD. Prevalence of depression in congestive heart - 926 failure. American Journal of Cardiology 1999;84:348-350. - 92. Vaccarino V, Kasl Stanislav V, Abramson J, Krumholz Harlan M. Depressive - 928 symptoms and risk of functional decline and death in patients with heart failure. - 929 Journal of the American College of Cardiology 2001;38:199-205. - 93. Bankier B, Januzzi JL, Littman AB. The High Prevalence of Multiple Psychiatric - 931 Disorders in Stable Outpatients With Coronary Heart Disease. Psychosomatic - 932 Medicine 2004;66. - 933 94. Ley B, Collard HR, King TE. Clinical Course and Prediction of Survival in - 934 Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care - 935 Medicine 2011;183:431-440. - 936 95. Lanken PN, Terry PB, DeLisser HM, et al. An Official American Thoracic Society - 937 Clinical Policy Statement: Palliative Care for Patients with Respiratory Diseases and - 938 Critical Illnesses. American Journal of Respiratory and Critical Care Medicine - 939 2008;177:912-927. - 940 96. John H, Kevin G-J, June R, et al. The distribution of COPD in UK general - 941 practice using the new GOLD classification. European Respiratory Journal - 942 2014;43:993. - 943 97. Nusrat S, Khan MS, Fazili J, Madhoun MF. Cirrhosis and its complications: - evidence based treatment. World J Gastroenterol 2014;20:5442-60. - 945 98. Bianchi G, Marchesini G, Nicolino F, et al. Psychological status and depression in - patients with liver cirrhosis. Digestive and Liver Disease 2005;37:593-600. - 947 99. Aghanwa HS, Ndububa D. Specific psychiatric morbidity in liver cirrhosis in a - 948 Nigerian general hospital setting. General Hospital Psychiatry 2002;24:436-441. - 949 100. Weissenborn K, Bokemeyer M, Krause J, Ennen J, Ahl B. Neurological and - 950 neuropsychiatric syndromes associated with liver disease. AIDS 2005;19. - 951 101. Nardelli S, Pentassuglio I, Pasquale C, et al. Depression, anxiety and alexithymia - 952 symptoms are major determinants of health related quality of life (HRQoL) in - 953 cirrhotic patients. Metabolic Brain Disease 2013;28:239-243. - 954 102. Peng J-K, Hepgul N, Higginson IJ, Gao W. Symptom prevalence and quality of - 955 life of patients with end-stage liver disease: A systematic review and meta-analysis. - 956 Palliative Medicine 2018;33:24-36. - 957 103. D'Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators - 958 of survival in cirrhosis: A systematic review of 118 studies. Journal of Hepatology - 959 2006;44:217-231. - 960 104. Murtagh FEM, Addington-Hall JM, Edmonds PM, et al. Symptoms in Advanced - 961 Renal Disease: A Cross-Sectional Survey of Symptom Prevalence in Stage 5 Chronic - 962 Kidney Disease Managed without Dialysis. Journal of Palliative Medicine - 963 2007;10:1266-1276. - 964 105. Weisbord SD, Carmody SS, Bruns FJ, et al. Symptom burden, quality of life, - advance care planning and the potential value of palliative care in severely ill - haemodialysis patients. Nephrology Dialysis Transplantation 2003;18:1345-1352. - 967 106. Cohen LM, Moss AH, Weisbord SD, Germain MJ. Renal Palliative Care. Journal - 968 of Palliative Medicine 2006;9:977-992. - 969 107. Himelstein BP, Hilden JM, Boldt AM, Weissman D. Pediatric Palliative Care. - 970 New England Journal of Medicine 2004;350:1752-1762. - 971 108. Connor SR, Sisimay C. Assessment of the need for palliative care for children: - 972 three country report: South Africa, Kenya and Zimbabwe. In: London: United Nations - 973 Children's Fund (UNICEF), International Children's Palliative Care Network - 974 (ICPCN), 2013. - 975 109. Kenner C, Press J, Ryan D. Recommendations for palliative and bereavement - 976 care in the NICU: a family-centered integrative approach. Journal of Perinatology - 977 2015;35:S19-S23. - 978 110. Madden K, Wolfe J, Collura C. Pediatric Palliative Care in the Intensive Care - 979 Unit. Critical Care Nursing Clinics 2015;27:341-354. - 980 111. McCormick MC, Brooks-Gunn J, Buka SL, et al. Early Intervention in Low Birth - 981 Weight Premature Infants: Results at 18 Years of Age for the Infant Health and - 982 Development Program. Pediatrics 2006;117:771–780. - 983 112. Dastgiri S, Gilmour WH, Stone DH. Survival of children born with congenital - 984 anomalies. Arch Dis Child 2003;88:391-4. - 985 113. World Health Organization. Birth defects: report by the Secretariat. In: Geneva: - 986 WHO, 2010. - 987 114. Mosenthal AC, Murphy PA. Trauma Care and Palliative Care: Time to Integrate - the Two? Journal of the American College of Surgeons 2003;197. - 989 115. Holbrook TL, Galarneau MR, Dye JL, Quinn K, Dougherty AL. Morphine Use - 990 after Combat Injury in Iraq and Post-Traumatic Stress Disorder. New England Journal - 991 of Medicine 2010;362:110-117. - 992 116. Jones WS, Schmit KM, Vemulapalli S, et al. Treatment Strategies for Patients - 993 With Peripheral Artery Disease. In: Agency for Healthcare Research and Quality (US), - 994 Rockville (MD), 2013. - 995 117. Bendermacher BLW, Willigendael EM, Teijink JAW, Prins MH. Medical - 996 management of peripheral arterial disease. Journal of Thrombosis and Haemostasis - 997 2005;3:1628-1637. - 998 118. Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bulletin of - 999 the World Health Organization 2003;2003:646-656. - 1000 119. Belachew T, Nekatibeb H. Assessment of outpatient therapeutic programme for - 1001 severe acture malnutrition in three regions of Ethiopia. East African medical journal - 1002 2007;84:577-588. 1007 1008 - 1003 120. World Health Organization. The treatment and management of severe protein- - energy malnutrition. In: Geneva, Switzerland: WHO, 1981. - 1005 121. Smith WR, Penberthy LT, Bovbjerg VE, et al. Daily Assessment of Pain in - 1006 Adults with Sickle Cell Disease. Annals of Internal Medicine 2008;148:94-101. - 1009 1. Knaul FM, Farmer PE, Krakauer EL, et al. Alleviating the access abyss in palliative care - and pain relief—an imperative of universal health coverage: the Lancet Commission report. - 1011 The Lancet 2018;391:1391-1454. - 1012 2. United Nations Department of Economic and Social Affairs. Sustainable Development - 1013 Goals. 2024. Available from: https://sdgs.un.org/goals. - 1014 3. World Health Organization. Strengthening of palliative care as a component of - 1015 comprehensive care throughout the life course. 2014. - 1016 4. Connor S, Bermedo M, Baxter S, et al. Global atlas of palliative care at the end of life. - 1017 2014. World Health Organization and Worldwide Palliative Care Alliance 2014. - 1018 5. Network. GBoDC. Global Burden of Disease Study 2019 (GBD 2019) Results. In: Seattle, - 1019 United States: Institute for Health Metrics and Evaluation (IHME), 2019. - 1020 6. Krikorian A, Limonero JT. An integrated view of suffering in palliative care. Journal of - 1021 palliative care 2012;28:41-49. - 1022 7. Gutiérrez-Sánchez D, Gómez-García R, Cuesta-Vargas Al, Pérez-Cruzado D. The - 1023 suffering measurement instruments in palliative care: A systematic review of psychometric - properties. International Journal of Nursing Studies 2020; 110:103704. - 1025 8. Knaul FM, Farmer PE, Krakauer EL, et al. Technical Note and Data Appendix for - 1026 "Alleviating the access abyss in palliative care and pain relief—an imperative of universal - health coverage: the Lancet Commission report". 2017. Available from: - 1028 https://www.mia.as.miami.edu/_assets/pdf/data-appendix-lcgapcpc-oct122017_xk-4-22- - 1029 201.pdf. - 1030 9. International Narcotic Control Board. Progress in ensuring adequate access to - internationally controlled substances for medical and scientific purposes. In: Vienna :: UN, - 1032 2019. - 1033 10. Connor S, Morris C, Jaramillo E, et al. Global Atlas of Palliative Care (2nd Edition). In: - 1034 London, UK: Worldwide Palliative Care Alliance, 2020. - 1035 11. Krakauer EL, Kwete X, Verguet S, et al. Palliative care and pain control. 2018. - 1036 12. Radbruch L, De Lima L, Knaul F, et al. Redefining palliative care—a new consensus- - based definition. Journal of pain and symptom management 2020;60:754-764. - 1038 13. World Health Organization. Palliative care. 2020. Available from: - 1039 https://www.who.int/news-room/fact-sheets/detail/palliative-care. Accessed Jan 15, 2024. - 1040 14. Almanasreh E, Moles R, Chen TF. Evaluation of methods used for estimating content - validity. Research in social and administrative pharmacy 2019;15:214-221. - 1042 15. Dalkey N, Helmer O. An experimental application of the Delphi method to the use of - 1043 experts. Management science 1963;9:458-467. - 1044 16. McKenna HP. The Delphi technique: a worthwhile research approach for nursing? Journal - 1045 of advanced nursing 1994;19:1221-1225. - 1046 17. Goodman CM. The Delphi technique: a critique. Journal of advanced nursing - 1047 1987; 12:729-734. 1048 18. Keeney S, Hasson F, McKenna HP. A critical review of the Delphi technique as a 1049 research methodology for nursing. International journal of nursing studies 2001;38:195-200. 1050 19. Connor SR, Downing J, Marston J. Estimating the global need for palliative care for 1051 children: a cross-sectional analysis. Journal of pain and symptom management 2017;53:171-1052 177. 1053 20. United Nations. UNAIDS DATA 2019. 2019. Available from: 1054 https://www.unaids.org/sites/default/files/media_asset/2019-UNAIDS-data_en.pdf. Accessed 1055 Jan 15, 2024. 1056 21. International Agency for Research on Cancer. Cancer Today. 2019. Available from: 1057 https://gco.iarc.fr/today/online-analysis-1058 table?v=2020&mode=cancer&mode_population=continents&population=900&populations=90 1059 0&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages 1060 group%5B%5D=0&ages group%5B%5D=17&group cancer=1&include nmsc=0&include n 1061 msc other=1. Accessed
Jan 15, 2024. 1062 22. Alnajar M, Darawad M, Khater W, et al. Exploring Palliative Care Needs Among Patients 1063 With Cancer and Non-Cancer Serious Chronic Diseases: A Comparison Study. Am J Hosp 1064 Palliat Care 2024:10499091241235920. 1065 23. Calsina-Berna A, Amblàs Novellas J, González-Barboteo J, et al. Prevalence and clinical 1066 characteristics of patients with Advanced Chronic Illness and Palliative Care needs, identified 1067 with the NECPAL CCOMS-ICO© Tool at a Tertiary Care Hospital. BMC Palliat Care 1068 2022;21:210. | 1069 | 24. Moens K, Higginson IJ, Harding R, et al. Are there differences in the prevalence of | |------|--| | 1070 | palliative care-related problems in people living with advanced cancer and eight non-cancer | | 1071 | conditions? A systematic review. Journal of pain and symptom management 2014;48:660- | | 1072 | 677. | | 1073 | 25. Islam N, Biswas J, Kowshik MM, et al. Depression, anxiety, and performance status | | 1074 | among the women with metastatic breast cancer receiving palliative care in Bangladesh: A | | 1075 | cross sectional study. Health Sci Rep 2022;5:e911. | | 1076 | 26. Abbas M, Reich AJ, Wang Y, et al. The burden of pre-admission pain, depression, and | | 1077 | caregiving on palliative care needs for seriously ill trauma patients. J Am Geriatr Soc | | 1078 | 2023;71:2229-2238. | | 1079 | 27. Pastrana T, Vallath N, Mastrojohn J, et al. Disparities in the contribution of low-and | | 1080 | middle-income countries to palliative care research. Journal of pain and symptom | | 1081 | management 2010;39:54-68. | | 1082 | 28. Nouvet E, Sivaram M, Bezanson K, et al. Palliative care in humanitarian crises: a review | | 1083 | of the literature. Journal of International Humanitarian Action 2018;3:1-14. | | 1084 | 29. Rosa WE, Grant L. Focus: Climate Change and Environmental Health: Palliative Justice | | 1085 | Post-COP27. The Yale Journal of Biology and Medicine 2023;96:257. | | 1086 | 30. International Labour Office. The Unpaid Care Work and the Labour Market. An analysis of | | 1087 | time use data based on the latest World Compilation of Time-use Surveys. In: Geneva: | | 1088 | International Labour Office, 2019. | | 1089 | 31. Oechsle K, Ullrich A, Marx G, et al. Psychological burden in family caregivers of patients | |------|---| | 1090 | with advanced cancer at initiation of specialist inpatient palliative care. BMC Palliat Care | | 1091 | 2019;18:102. | | 1092 | 32. Dipio R, Acuda W, Namisango E, Nalubega-Mbowa MG. Prevalence and factors | | 1093 | associated with depressive symptoms among family caregivers of palliative care patients at | | 1094 | Hospice Africa Uganda. Palliat Support Care 2022;20:375-382. | | 1095 | 33. Rattner M. Increasing our understanding of nonphysical suffering within palliative care: A | | 1096 | scoping review. Palliative & Supportive Care 2022;20:417-432. | | 1097 | 34. VanderWeele TJ. Suffering and response: Directions in empirical research. Social | | 1098 | Science & Medicine 2019;224:58-66. | | 1099 | 35. Bhadelia A, Greaves N, Doubova S, Knaul FM. Understanding the value of alleviating | | 1100 | health-related suffering and palliative care centered in lived experience: the SAVE Toolkit. | | 1101 | 2023. | | 1102 | 36. Doubova SV, Bhadelia A, Pérez-Moran D, et al. Dimensions of suffering and the need for | | 1103 | palliative care: experiences and expectations of patients living with cancer and diabetes and | | 1104 | their caregivers in Mexico–a qualitative study. BMJ open 2023;13:e075691. | | 1105 | 37. Pérez-Cruz PE, Undurraga E, Arreola-Ornelas H, et al. Bridging gaps to universal | | 1106 | palliative care access in Chile: Serious health-related suffering and the cost of expanding the | | 1107 | package of care services. The Lancet Regional Health-Americas 2023;19. | | 1108 | 38. Krakauer EL, Kwete XJ, Rassouli M, et al. Palliative care need in the Eastern | | 1109 | Mediterranean Region and human resource requirements for effective response. PLOS | | 1110 | Global Public Health 2023;3:e0001980. | 1111 39. Sleeman KE, Gomes B, de Brito M, Shamieh O, Harding R. The burden of serious health-1112 related suffering among cancer decedents: Global projections study to 2060. Palliative 1113 Medicine 2021;35:231-235. 1114 40. World Health Organization. Assessing the development of palliative care worldwide: a set 1115 of actionable indicators. 2021. Available from: 1116 https://www.who.int/publications/i/item/9789240033351. Accessed Jan15, 2024. 1117 41. West TE, von Saint André-von Arnim A. Clinical presentation and management of severe 1118 Ebola virus disease. Annals of the American Thoracic Society 2014;11:1341-1350. 1119 42. Schieffelin JS, Shaffer JG, Goba A, et al. Clinical illness and outcomes in patients with 1120 Ebola in Sierra Leone. New England journal of medicine 2014;371:2092-2100. 1121 43. Dallatomasina S, Crestani R, Sylvester Squire J, et al. Ebola outbreak in rural West 1122 Africa: epidemiology, clinical features and outcomes. Tropical Medicine & International Health 1123 2015;20:448-454 1124 44. MacNeil A, Farnon EC, Wamala J, et al. Proportion of deaths and clinical features in 1125 Bundibugyo Ebola virus infection, Uganda. Emerging infectious diseases 2010;16:1969. 1126 45. Boozary AS, Farmer PE, Jha AK. The Ebola outbreak, fragile health systems, and quality 1127 as a cure. Jama 2014;312:1859-1860. 1128 46. Harding R, Foley KM, Connor SR, Jaramillo E. Palliative and end-of-life care in the global 1129 response to multidrug-resistant tuberculosis. The Lancet infectious diseases 2012;12:643-1130 646. 1131 47. Organization WH. Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis, World Health Organization, 2014. 1132 1133 48. Nathanson E, Gupta R, Huamani P, et al. Adverse events in the treatment of multidrug-1134 resistant tuberculosis: results from the DOTS-Plus initiative. The International Journal of 1135 Tuberculosis and Lung Disease 2004;8:1382-1384. 1136 49. Harding R, Selman L, Agupio G, et al. Prevalence, burden, and correlates of physical and 1137 psychological symptoms among HIV palliative care patients in sub-Saharan Africa: an 1138 international multicenter study. Journal of pain and symptom management 2012;44:1-9. 1139 50. Vogl D, Rosenfeld B, Breitbart W, et al. Symptom prevalence, characteristics, and distress 1140 in AIDS outpatients. Journal of pain and symptom management 1999;18:253-262. 1141 51. Solano JP, Gomes B, Higginson IJ. A comparison of symptom prevalence in far advanced 1142 cancer, AIDS, heart disease, chronic obstructive pulmonary disease and renal disease. 1143 Journal of pain and symptom management 2006;31:58-69. 1144 52. McArthur JC, Brew BJ. HIV-associated neurocognitive disorders: is there a hidden 1145 epidemic? Aids 2010;24:1367-1370. 1146 53. Namisango E, Harding R, Atuhaire L, et al. Pain among ambulatory HIV/AIDS patients: 1147 multicenter study of prevalence, intensity, associated factors, and effect. The Journal of Pain 1148 2012;13:704-713. 1149 54. Parker R, Stein DJ, Jelsma J. Pain in people living with HIV/AIDS: a systematic review. 1150 Journal of the International AIDS Society 2014;17:18719. 1151 55. Sims A, Hadigan C. Cardiovascular complications in children with HIV infection. Current 1152 HIV/AIDS Reports 2011;8:209-214. 1153 56. Simms V, Higginson IJ, Harding R. Integration of palliative care throughout HIV disease. 1154 The Lancet Infectious Diseases 2012; 12:571-575. | 1155 | 57. Teunissen SCCM, Wesker W, Kruitwagen C, et al. Symptom Prevalence in Patients with | |--|--| | 1156 | Incurable Cancer: A Systematic Review. Journal of Pain and Symptom Management | | 1157 | 2007;34:94-104. | | 1158 | 58. Tranmer JE, Heyland D, Dudgeon D, et al. Measuring the Symptom Experience of | | 1159 | Seriously III Cancer and Noncancer Hospitalized Patients Near the End of Life with the | | 1160 | Memorial Symptom Assessment Scale. Journal of Pain and Symptom Management | | 1161 | 2003;25:420-429. | | 1162 | 59. van den Beuken-van Everdingen MHJ, Hochstenbach LMJ, Joosten EAJ, Tjan-Heijnen | | 1163 | VCG, Janssen DJA. Update on Prevalence of Pain in Patients With Cancer: Systematic | | 1164 | Review and Meta-Analysis. Journal of Pain and Symptom Management 2016;51:1070- | | | | | 1165 | 1090.e9. | | 1165
1166 | 1090.e9.60. International Agency for Research on Cancer. Global Cancer Observatory, Cancer Facts | | | | | 1166 | 60. International Agency for Research on Cancer. Global Cancer Observatory, Cancer Facts | | 1166
1167 | 60. International Agency for Research on Cancer. Global Cancer Observatory, Cancer Facts Sheet. 2019. Available from: https://gco.iarc.fr/ . Accessed Jan 15, 2024. | | 1166
1167
1168 | 60. International Agency for Research on Cancer. Global Cancer Observatory, Cancer Facts Sheet. 2019. Available from: https://gco.iarc.fr/ . Accessed Jan 15, 2024. 61. Shi Q, Smith TG, Michonski JD, et al. Symptom burden in cancer survivors 1 year after | | 1166
1167
1168
1169 | 60. International Agency for Research on Cancer. Global Cancer Observatory, Cancer Facts Sheet. 2019.
Available from: https://gco.iarc.fr/ . Accessed Jan 15, 2024. 61. Shi Q, Smith TG, Michonski JD, et al. Symptom burden in cancer survivors 1 year after diagnosis. Cancer 2011;117:2779-2790. | | 1166
1167
1168
1169
1170 | 60. International Agency for Research on Cancer. Global Cancer Observatory, Cancer Facts Sheet. 2019. Available from: https://gco.iarc.fr/ . Accessed Jan 15, 2024. 61. Shi Q, Smith TG, Michonski JD, et al. Symptom burden in cancer survivors 1 year after diagnosis. Cancer 2011;117:2779-2790. 62. Zucca AC, Boyes AW, Linden W, Girgis A. All's Well That Ends Well? Quality of Life and | | 1166
1167
1168
1169
1170
1171 | 60. International Agency for Research on Cancer. Global Cancer Observatory, Cancer Facts Sheet. 2019. Available from: https://gco.iarc.fr/ . Accessed Jan 15, 2024. 61. Shi Q, Smith TG, Michonski JD, et al. Symptom burden in cancer survivors 1 year after diagnosis. Cancer 2011;117:2779-2790. 62. Zucca AC, Boyes AW, Linden W, Girgis A. All's Well That Ends Well? Quality of Life and Physical Symptom Clusters in Long-Term Cancer Survivors Across Cancer Types. Journal of | 1175 64. American Geriatrics Society Ethics C, Clinical P, Models of Care C. American Geriatrics 1176 Society Feeding Tubes in Advanced Dementia Position Statement. Journal of the American 1177 Geriatrics Society 2014;62:1590-1593. 1178 65. Teno JM, Gozalo PL, Lee IC, et al. Does Hospice Improve Quality of Care for Persons 1179 Dying from Dementia? Journal of the American Geriatrics Society 2011;59:1531-1536. 1180 66. Riedel O, Klotsche J, Spottke A, et al. Frequency of dementia, depression, and other 1181 neuropsychiatric symptoms in 1,449 outpatients with Parkinson's disease. Journal of 1182 Neurology 2010;257:1073-1082. 1183 67. Dissanayaka NNW, Sellbach A, Matheson S, et al. Anxiety disorders in Parkinson's 1184 disease: Prevalence and risk factors. Movement Disorders 2010;25:838-845. 1185 68. Rosenbaum RB. Understanding Parkinson's disease: a personal and professional view, 1186 Bloomsbury Publishing USA, 2006. 1187 69. Téllez-Zenteno JF, Ronquillo LH, Moien-Afshari F, Wiebe S. Surgical outcomes in lesional 1188 and non-lesional epilepsy: A systematic review and meta-analysis. Epilepsy Research 1189 2010;89:310-318. 1190 70. de Cerqueira AC, Semionato de Andrade P, Godoy Barreiros JM, Teixeira AL, Nardi AE. 1191 Psychiatric disorders in patients with multiple sclerosis. Comprehensive Psychiatry 1192 2015;63:10-14. 1193 71. Patterson K, Marshall JC, Coltheart M. Surface dyslexia: Neuropsychological and 1194 cognitive studies of phonological reading., Routledge, 2017. 1195 72. Browne P, Chandraratna D, Angood C, et al. Atlas of Multiple Sclerosis 2013: A growing 1196 global problem with widespread inequity. Neurology 2014;83:1022-1024. - 1197 73. Rolak LA. Multiple Sclerosis: It's Not The Disease You Thought It Was. Clinical Medicine - 1198 & Research 2003;1:57-60. - 1199 74. Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis. - 1200 Neurology 2014;83:278-286. - 1201 75. Brønnum-Hansen H, Koch-Henriksen N, Hyllested K. Survival of patients with multiple - 1202 sclerosis in Denmark. Neurology 1994;44:1901-1901. - 1203 76. Kalia LV, Kalia SK, Lang AE. Disease-modifying strategies for Parkinson's disease. - 1204 Movement Disorders 2015;30:1442-1450. - 1205 77. Shang Q, Ma CY, Lv N, et al. Clinical study of cerebral palsy in 408 children with - 1206 periventricular leukomalacia. Exp Ther Med 2015;9:1336-1344. - 1207 78. Hirsh AT, Gallegos JC, Gertz KJ, Engel JM, Jensen MP. Symptom burden in individuals - with cerebral palsy. J Rehabil Res Dev 2010;47:863-76. - 1209 79. About Parkinson's. 2024. Available from: http://www.epda.eu.com/about-parkinson-s/. - 1210 Accessed Jan 15, 2024. - 1211 80. Schnitzler A, Woimant F, Nicolau J, Tuppin P, de Peretti C. Effect of Rehabilitation Setting - on Dependence Following Stroke: An Analysis of the French Inpatient Database. - 1213 Neurorehabilitation and Neural Repair 2013;28:36-44. - 1214 81. Krishnamurthi RV, Moran AE, Feigin VL, et al. Stroke Prevalence, Mortality and Disability- - 1215 Adjusted Life Years in Adults Aged 20-64 Years in 1990-2013: Data from the Global Burden - 1216 of Disease 2013 Study. Neuroepidemiology 2015;45:190-202. 1217 82. Feigin VL, Krishnamurthi RV, Parmar P, et al. Update on the Global Burden of Ischemic 1218 and Hemorrhagic Stroke in 1990-2013: The GBD 2013 Study. Neuroepidemiology 1219 2015;45:161-176. 1220 83. Boysen G, Marott JL, Grønbæk M, Hassanpour H, Truelsen T. Long-Term Survival after 1221 Stroke: 30 Years of Follow-Up in a Cohort, the Copenhagen City Heart Study. 1222 Neuroepidemiology 2009;33:254-260. 1223 84. Brønnum-Hansen H, Davidsen M, Thorvaldsen P. Long-Term Survival and Causes of 1224 Death After Stroke. Stroke 2001;32:2131-2136. 1225 85. De Wit L, Putman K, Baert I, et al. Anxiety and depression in the first six months after 1226 stroke. A longitudinal multicentre study. Disability and Rehabilitation 2008;30:1858-1866. 1227 86. Broomfield NM, Quinn TJ, Abdul-Rahim AH, Walters MR, Evans JJ. Depression and 1228 anxiety symptoms post-stroke/TIA: prevalence and associations in cross-sectional data from 1229 a regional stroke registry. BMC Neurology 2014;14:198. 1230 87. Klimiec E, Dziedzic T, Kowalska K, et al. PRospective Observational POLIsh Study on 1231 post-stroke delirium (PROPOLIS): methodology of hospital-based cohort study on delirium 1232 prevalence, predictors and diagnostic tools. BMC Neurology 2015;15:94. 88. Brainin M, Heiss W-D. extbook of stroke medicine, Cambridge University Press, 2019. 1233 1234 89. Rustad JK, Stern TA, Hebert KA, Musselman DL. Diagnosis and treatment of depression 1235 in patients with congestive heart failure: a review of the literature. The primary care 1236 companion for CNS disorders 2013;15:26254. 1237 90. Ahmed A, Rich MW, Fleg JL, et al. Effects of Digoxin on Morbidity and Mortality in 1238 Diastolic Heart Failure. Circulation 2006;114:397-403. 1239 91. Cully JA, Johnson M, Moffett ML, Khan M, Deswal A. Depression and Anxiety in 1240 Ambulatory Patients With Heart Failure. Psychosomatics 2009;50:592-598. 1241 92. Jiang W, Kuchibhatla M, Cuffe MS, et al. Prognostic Value of Anxiety and Depression in 1242 Patients With Chronic Heart Failure. Circulation 2004;110:3452-3456. 1243 93. Havranek EP, Ware MG, Lowes BD. Prevalence of depression in congestive heart failure. 1244 American Journal of Cardiology 1999;84:348-350. 1245 94. Vaccarino V, Kasl Stanislav V, Abramson J, Krumholz Harlan M. Depressive symptoms 1246 and risk of functional decline and death in patients with heart failure. Journal of the American 1247 College of Cardiology 2001;38:199-205. 1248 95. Bankier B, Januzzi JL, Littman AB. The High Prevalence of Multiple Psychiatric Disorders 1249 in Stable Outpatients With Coronary Heart Disease. Psychosomatic Medicine 2004;66. 1250 96. Ley B, Collard HR, King TE. Clinical Course and Prediction of Survival in Idiopathic 1251 Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine 1252 2011;183:431-440. 1253 97. Lanken PN, Terry PB, DeLisser HM, et al. An Official American Thoracic Society Clinical 1254 Policy Statement: Palliative Care for Patients with Respiratory Diseases and Critical Illnesses. 1255 American Journal of Respiratory and Critical Care Medicine 2008;177:912-927. 1256 98. John H, Kevin G-J, June R, et al. The distribution of COPD in UK general practice using 1257 the new GOLD classification. European Respiratory Journal 2014;43:993. 1258 99. Nusrat S, Khan MS, Fazili J, Madhoun MF. Cirrhosis and its complications: evidence 1259 based treatment. World J Gastroenterol 2014;20:5442-60. 1260 100. Bianchi G, Marchesini G, Nicolino F, et al. Psychological status and depression in 1261 patients with liver cirrhosis. Digestive and Liver Disease 2005;37:593-600. 1262 101. Aghanwa HS, Ndububa D. Specific psychiatric morbidity in liver cirrhosis in a Nigerian 1263 general hospital setting. General Hospital Psychiatry 2002;24:436-441. 1264 102. Weissenborn K, Bokemeyer M, Krause J, Ennen J, Ahl B. Neurological and 1265 neuropsychiatric syndromes associated with liver disease. AIDS 2005;19. 1266 103. Nardelli S, Pentassuglio I, Pasquale C, et al. Depression, anxiety and alexithymia 1267 symptoms are major determinants of health related quality of life (HRQoL) in cirrhotic 1268 patients. Metabolic Brain Disease 2013;28:239-243. 1269 104. Peng J-K, Hepgul N, Higginson IJ, Gao W. Symptom prevalence and quality of life of 1270 patients with end-stage liver disease: A systematic review and meta-analysis. Palliative 1271 Medicine 2018;33:24-36. 1272 105. D'Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators of 1273 survival in cirrhosis: A systematic review of 118 studies. Journal of Hepatology 2006;44:217-1274 231. 1275 106. Murtagh FEM, Addington-Hall JM, Edmonds PM, et al. Symptoms in Advanced Renal 1276 Disease: A Cross-Sectional Survey of Symptom Prevalence in Stage 5 Chronic Kidney 1277 Disease Managed without Dialysis. Journal of Palliative Medicine 2007;10:1266-1276. 1278 107. Weisbord SD, Carmody SS, Bruns FJ, et al. Symptom burden, quality of life, advance 1279 care planning and the potential value of palliative care in severely ill haemodialysis patients. Nephrology Dialysis Transplantation 2003;18:1345-1352. 1280 | 108. Cohen LM, Moss AH, Weisbord SD, Germain MJ. Renal Palliative Care. Journal of | |---| | Palliative Medicine 2006;9:977-992. | | 109. Himelstein BP, Hilden JM, Boldt AM, Weissman D. Pediatric Palliative Care. New | | England Journal of Medicine 2004;350:1752-1762. | | 110. Connor SR, Sisimay C. Assessment of the need for palliative care for children: three | |
country report: South Africa, Kenya and Zimbabwe. In: London: United Nations Children's | | Fund (UNICEF), International Children's Palliative Care Network (ICPCN), 2013. | | 111. Kenner C, Press J, Ryan D. Recommendations for palliative and bereavement care in | | the NICU: a family-centered integrative approach. Journal of Perinatology 2015;35:S19-S23. | | 112. Madden K, Wolfe J, Collura C. Pediatric Palliative Care in the Intensive Care Unit. | | Critical Care Nursing Clinics 2015;27:341-354. | | 113. McCormick MC, Brooks-Gunn J, Buka SL, et al. Early Intervention in Low Birth Weight | | Premature Infants: Results at 18 Years of Age for the Infant Health and Development | | Program. Pediatrics 2006;117:771–780. | | 114. Dastgiri S, Gilmour WH, Stone DH. Survival of children born with congenital anomalies. | | Arch Dis Child 2003;88:391-4. | | 115. World Health Organization. Birth defects: report by the Secretariat. In: Geneva: WHO, | | 2010. | | 116. Mosenthal AC, Murphy PA. Trauma Care and Palliative Care: Time to Integrate the | | Two? Journal of the American College of Surgeons 2003;197. | | | 1301 117. Holbrook TL, Galarneau MR, Dye JL, Quinn K, Dougherty AL. Morphine Use after 1302 Combat Injury in Iraq and Post-Traumatic Stress Disorder. New England Journal of Medicine 1303 2010;362:110-117. 118. Jones WS, Schmit KM, Vemulapalli S, et al. Treatment Strategies for Patients With 1304 1305 Peripheral Artery Disease. In: Agency for Healthcare Research and Quality (US), Rockville 1306 (MD), 2013. 1307 119. Bendermacher BLW, Willigendael EM, Teijink JAW, Prins MH. Medical management of 1308 peripheral arterial disease. Journal of Thrombosis and Haemostasis 2005;3:1628-1637. 1309 120. Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bulletin of the World 1310 Health Organization 2003;2003:646-656. 1311 121. Belachew T, Nekatibeb H. Assessment of outpatient therapeutic programme for severe 1312 acture malnutrition in three regions of Ethiopia. East African medical journal 2007;84:577-588. 1313 122. World Health Organization. The treatment and management of severe protein-energy 1314 malnutrition. In: Geneva, Switzerland: WHO, 1981. 1315 123. Smith WR, Penberthy LT, Bovbjerg VE, et al. Daily Assessment of Pain in Adults with 1316 Sickle Cell Disease. Annals of Internal Medicine 2008;148:94-101. 1317