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ABSTRACT

Integrating modern machine learning and clinical decision-making has great promise for mitigating
healthcare’s increasing cost and complexity. We introduce the Enhanced Transformer for Health
Outcome Simulation (ETHOS), a novel application of the transformer deep-learning architecture for
analyzing high-dimensional, heterogeneous, and episodic health data. ETHOS is trained using Patient
Health Timelines (PHTs)—detailed, tokenized records of health events—to predict future health
trajectories, leveraging a zero-shot learning approach. ETHOS represents a significant advancement
in foundation model development for healthcare analytics, eliminating the need for labeled data and
model fine-tuning. Its ability to simulate various treatment pathways and consider patient-specific
factors positions ETHOS as a tool for care optimization and addressing biases in healthcare delivery.
Future developments will expand ETHOS’ capabilities to incorporate a wider range of data types and
data sources. Our work demonstrates a pathway toward accelerated AI development and deployment
in healthcare.

Keywords Healthcare · Deep Learning · Transformer · Timelines

1 Introduction

Healthcare in the U.S. is the world’s most expensive, and the quality and safety of care do not compare well to other
developed countries Schneider and Williams II [2021]. While electronic healthcare records are now ubiquitous in the
U.S., and decision-support technologies are widely implemented, most are rule-based, and their effectiveness so far has
been limited Bates et al. [2022]. Artificial intelligence has emerged as a technique with great potential for improving
care, but most organizations are not using it to any major degree. Two major limiting factors have been (1) the lack of
large, labeled datasets, which are expensive and time-consuming to develop; and (2) limited system capacity to deliver
recommendations to the appropriate clinician at the optimal time. In this manuscript, we describe a novel method called
the Enhanced Transformer for Health Outcome Simulation (ETHOS), which we believe can help address many of the
limitations that have prevented widespread AI adoption.

ETHOS is a novel application of the transformer deep-learning architecture, originally conceptualized for natural
language processing Vaswani et al. [2017]. This architecture, a cornerstone in large language model (LLM) development,
is repurposed in ETHOS to analyze health-related data, moving beyond the textual focus of traditional LLMs. ETHOS
is designed to process Patient Health Timelines (PHTs)—detailed tokenized chronological records of health-related
events—to predict future health timelines. In PHTs, a token serves as the fundamental unit of information, encapsulating
diverse data types such as patient admissions, administered medications, or time intervals. We elaborate on this pivotal
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Figure 1: Implementing the ETHOS Model with EMR Data. (a) Extraction of raw patient data from the MIMIC-IV
database, encompassing tables of admissions, patient demographics, medical procedures, among others. (b) The
tokenization process, utilizing data from 90% of patients for model training and the remaining 10% for testing,
transforms complex medical records into structured PHT for efficient model processing. (c) Training phase illustration,
employing a transformer architecture optimized across 8 GPUs over a span of 36 hours. (d) Demonstration of ETHOS’s
zero-shot inference capabilities, highlighting its proficiency in performing tasks such as predicting inpatient mortality
and readmission rates, leveraging forecasted future PHTs.

aspect of our methodology in the Methods section. Our model takes the patient’s health history, as represented by PHT,
and subsequently forecasts future PHT (fPHT) on a token-by-token basis (refer to Figure 1).

ETHOS’s generative capabilities are gained in unsupervised learning. Once trained, ETHOS can forecast future health
events without requiring task-specific training. This is done through a zero-shot learning approach, making ETHOS
a versatile foundation model for numerous healthcare applications. With appropriate modifications, ETHOS can be
adapted to a broad range of data types, including but not limited to medical images, clinical and discharge notes,
monitoring data, data from wearables, or omics data.

In this research, we leverage the recently released MIMIC-IV v.2.2 dataset Johnson et al. [2023], a rich open-source
repository accompanied by our code, allowing others to replicate our findings. MIMIC-IV is expansive, chronicling
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more than 400,000 hospitalizations in more than 200,000 patients. Although relatively large, we anticipate that the
performance of our system will further improve as we expand the dataset with additional patient histories and data
types.

Importantly, we utilize the MIMIC-IV dataset in its original noisy form without any data modifications, cleaning, or
targeted imputation for missing entries. The information is retained in the face of large data inconsistencies, such as
discharge dates noted before admission dates. We operated under the assumption that, within large enough datasets
and appropriate tokenization and training methods, ETHOS would be robust enough to handle the noisy input and
automatically manage the noise/anomalies in the input data. The resilience of ETHOS to data inaccuracies and missing
information has important implications for the efficiency of downstream model development. Healthcare data inevitably
contains errors, some of which may not be immediately apparent or easily rectifiable. Attempts to clean large datasets
can be impractical and may inadvertently introduce biases and errors. Our approach highlights the vital need for
algorithms adept at managing these challenges, a prerequisite for the large-scale development of reliable and robust
healthcare AI applications.

Our research showcases the zero-shot learning capabilities of ETHOS in predicting inpatient and ICU mortality,
estimating ICU length of stay (LOS), and determining readmission probabilities. Additionally, we illustrate the model’s
versatility by performing a regression task to estimate the first-day Sequential Organ Failure Assessment (SOFA)
score Raith et al. [2017] at the time of ICU admission using information before admission (see example in Figure 1d).
The SOFA score is a critical tool for monitoring a patient’s condition in the ICU, evaluating organ function or failure
across six systems—respiratory, cardiovascular, hepatic, coagulation, renal, and neurological—with each system
scored from 0 to 4, culminating in a total possible minimum score of 0 and maximum score of 24. Furthermore, we
predict Diagnostic-Related Group (DRG) classifications, encompassing over 771 categories, at the time of hospital
discharge. The DRG system categorizes hospital cases into standardized case complexity-based Medicare and Medicaid
payment groups, encouraging efficient patient care without compromising quality. The diversity of tasks ETHOS can
perform, from mortality predictions and LOS estimation to SOFA scoring and DRG classification, highlights its broad
applicability and zero-shot learning efficiency.

ETHOS is a foundation model Moor et al. [2023], introducing a novel approach in the landscape of data analysis
within the healthcare domain. The other foundational models developed recently have fallen into two broad categories.
The first of these categories encompasses Clinical Language Models (CLaMs), a specialized subset of large language
models (LLMs) Brown et al. [2020] tailored for processing clinical and biomedical text data. These models are typically
trained on extensive datasets containing clinical notes, biomedical literature, and other healthcare-related text sources.
CLaMs are proficient in various clinical tasks such as extracting drug names, summarizing medical dialogues, predicting
clinical outcomes, and responding to patient queries Wornow et al. [2023], Zack et al. [2024], Li et al. [2019], Jiang
et al. [2023], Wang et al. [2024]. The second category comprises Foundation Models for Electronic Medical Records
(FEMRs), representing another class of clinical foundation models tailored specifically for EMR data analysis. FEMRs
undergo training on the extensive medical histories of patients, covering both structured data (such as demographics
and lab results) and unstructured data (including progress notes and radiology reports). Unlike CLaMs, FEMRs are
not designed to generate clinical text. Instead, they produce machine-understandable representations of patient data,
facilitating tasks such as patient phenotyping and outcome prediction Jiang et al. [2023], Steinberg et al. [2021], Li
et al. [2023], Savcisens et al. [2024]. Similarly, data that chronicles human lives, akin to EMR, can also be modeled
effectively in this manner.

The primary distinction between ETHOS and previously published methods lies in our approach, which eliminates the
need for fine-tuning or labeled data to produce accurate inferences or predictions. We demonstrate inference across
a wide array of tasks without task-specific training. Moreover, the ability of ETHOS to forecast future PHTs opens
the door to a wide array of bespoke and innovative applications, facilitating its use in unique scenarios in healthcare,
some of them explored in the discussion section. Unlike many studies, which often apply specific criteria for selecting
data for training and testing, our methodology imposes no such limitations. This feature is crucial for considering the
scalability of the ETHOS approach to data sets comprising millions or even hundreds of millions of patients.

2 Results

2.1 Tokenization of MIMIC data and training of ETHOS

Figure 2a summarizes some statistics of the tokenization process, including the number of tokens generated and other
details. Figure S3b presents visualizations of the 768-dimensional embeddings reduced to a 2D plane using Principal
Component Analysis (PCA) for quantile tokens, which encode all quantitative values in the data. The tokens are
arranged from Q1 (the lowest quantile) to Q10 (the highest quantile). This suggests that the transformer model has
learned a sequential relationship between the tokens that mirrors their natural order, ascertaining this order from the data
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Figure 2: Tokenization and Embedding Visualizations of MIMIC-IV Data. (a) Overview of key insights derived
from the tokenization process applied to MIMIC-IV data. (b) Visualization of embedding vectors for quantile tokens
(Qs), which categorize quantitative information across the dataset. Each quantitative measure (e.g., blood pressure) is
encoded by a preceding category-specific token followed by a quantile token, delineating its position within a predefined
value range. This method facilitates a structured, scalable representation of complex data types via a systematic token
sequence. (c) Visualization of embedding vectors for time-interval tokens, illustrating the temporal distribution and
relationships within the PHT.

during the training process. The proximity between points could reflect the model’s differentiation among the quantiles.
We observe that the gaps between Q4, Q5, and Q6 are narrower than those between Q9 and Q10. This may suggest
that the model deems the variance between population-average values to be less substantial than that of extremely high
values. For example, the difference in clinical significance between a blood pressure reading of 110 mmHg (Q5) and
one of 130 mmHg (Q6) is less pronounced than the difference between 140 mmHg (Q9) and 160 mmHg (Q10), which
could account for the greater disparity in the embedding vectors of high quantiles.

The embeddings for time-interval tokens, representing the approximate durations between different tokenized events
in PHT, are illustrated in Figure S3b. These embeddings display a pattern analogous to that observed for Q tokens,
where ETHOS systematically arranged them according to the actual time values they represent. Remarkably, the model
perceives the two shortest (5m-15m, 15m-1h), and two longest (3m-6m, 6m) intervals as relatively similar.

2.2 ETHOS inferences

In our study, we conducted zero-shot inferences for a diverse array of classification tasks, including readmission to the
ICU, inpatient mortality, ICU mortality, combined inpatient and ICU mortality in patients with sepsis, readmission to
the ICU for patients with intracerebral hemorrhage, assignment of DRG class assessed at inpatient discharge. We also
demonstrate regression of first-day SOFA score at the time of ICU admission and regression of the length of stay in
ICU in days assessed upon admission. The results corresponding to these tasks are summarized in Figure 3. We also
provide precision-recall curves of the corresponding results in Figure S7.

To situate our results within the broader scientific discourse, we conducted a literature review, concentrating on
contemporary studies that utilized the MIMIC-III and MIMIC-IV datasets for similar tasks and reported their outcomes.
A notable observation from our review is that many of these studies either lacked publicly available source code or
implemented specific exclusion criteria for their data selection. Such practices pose challenges for directly comparing
their results with our approach. Nonetheless, we posit that the numerical outcomes reported in these works provide
a valuable benchmark for assessing the performance of ETHOS. Furthermore, we conducted a direct comparative
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Figure 3: Receiver Operating Characteristic (ROC) Curves for Predictive Tasks via the ETHOS Model. Each
graph delineates the model’s efficacy in forecasting distinct clinical outcomes, specifically mortality and readmission
rates. Accompanying each ROC curve are the case count (N), the outcome prevalence, and the 95% confidence interval
for the AUC. Points marked with an ’X’ denote specific thresholds utilized for classification decisions within the
ETHOS model. Area under precision-recall (PR) curves is also provided and PR-curves are presented in supplementary
material. The AUC of the existing study represents the performance of the best algorithms identified in the literature,
with references provided within the text.
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analysis of ETHOS against specialized algorithms developed in-house, with these findings detailed in the supplementary
materials.

We conducted an analysis focusing on risk estimation for inpatient and ICU mortality, calculated at the respective points
of patient admission to the hospital and ICU. The test set comprised 43,309 hospital admissions with a 2.0% mortality
and 7,483 ICU admissions with a 7.0% mortality. The ETHOS model demonstrated robust performance, achieving
an AUC of 0.921 (95% CI: 0.908-0.931) for hospital mortality and 0.927 (95% CI: 0.914-0.938) for ICU mortality.
Comparatively, in the ICU mortality risk prediction domain, the highest performance identified in our literature review
was an AUC of 0.918 (95% CI: 0.915-0.922) reported by Pang et al. [2022] using the XGBoost model. On the lower
end, Chen et al. [2023] reported an AUC of 0.642 ± 0.101. Within a specific subgroup of the test set of 3,324 patients
with sepsis with 10.8% mortality prevalence, ETHOS’s prediction of ICU mortality exhibited an AUC of 0.889 (95%
CI: 0.870-0.906), which is a better performance than obtained in a study by Pan et al. [2023], which estimated ICU
mortality in adult sepsis patients using SOFA and additional features, achieving an AUC of 0.762 ± 0.006. We also
estimated performance for a task of ICU mortality estimation for patients remaining in ICU for at least 24 hours in
which we obtained an AUC of 0.928 (95% CI: 0.916-0.939).

Furthermore, ETHOS estimated the length of stay (LoS) in the ICU with a mean absolute error (MAE) of 2.262 days
(95% CI: 2.161-2.355 days). These results paralleled those of18, who reported an MAE of 2.42 ± 0.10 days. ICU
LoS prediction and mortality risk, underscoring the competitive zero-shot performance of ETHOS across multiple key
healthcare metrics.

For the ICU readmission task, ETHOS’ AUC of 0.807 (95% CI: 0.786-0.827) is slightly smaller than the AUC of
0.82 obtained using knowledge graph embeddings Carvalho et al. [2023] and is higher than the AUC of 0.791 (95%
CI, 0.782–0.800) using LSTMs based on MIMIC-III data Lin et al. [2019]. Additionally, we applied our method to a
task characterized by a relatively low prevalence, specifically focusing on only 174 cases of patients with hemorrhage
admitted to the ICU present within our test set. The prediction of readmission by ETHOS yielded an AUC of 0.667
(95% CI: 0.402-0.839), comparable to the AUC of 0.736 (95% CI: 0.668-0.801) achieved by previous studies Miao et al.
[2024] using LightGBM. For hospital readmission, ETHOS achieved an AUC of 0.749 (95% CI: 0.743-0.755), lower
than the AUC of 0.791 [0.766-0.816] obtained by Tang et al. [2023]. It’s important to recognize that although MIMIC
offers a wealth of data on acute care, it might not encompass all the subtleties necessary for readmission research,
including comprehensive post-discharge outcomes or data on readmissions to various hospitals. Consequently, the
accuracy of results for tasks related to readmission may be limited, regardless of the method employed.

We explored the task of predicting the first-day SOFA score at the time of admission (Figure 4). Given that the SOFA
score is a critical indicator of survival, particularly in sepsis Raith et al. [2017], Minne et al. [2008], this prediction can
serve as a valuable indirect prognostic marker of ICU patient health status. We achieved a SOFA score estimation with
an MAE of 1.502 (95% CI: 1.475-1.534). To our knowledge, no prior literature predicts first-day SOFA at the time of
admission.

For the DRG assignment, we observed a top-1 (out of 771 classes) accuracy rate of 84.8% (95% CI: 84.4%-85.2%) in
28,932 hospitalizations using our methodology, a significant improvement over the 52% reported by Wang et al. [2024],
who explored DRG estimation using LLMs from discharge notes. This marked enhancement in performance can be
attributed to the comprehensive nature of ETHOS, which incorporates a wide array of clinical events leading up to
discharge within the PHT. In contrast, the approach taken by Wang et al. [2024] relies solely on discharge notes, which
may not encompass the breadth of information captured by PHT, thus potentially explaining the disparity in accuracy
rates.

We want to reiterate an important point: all comparisons presented in this section are made between ETHOS, trained
indiscriminately on the entire test population and task-specific algorithms developed using much smaller MIMIC
data subsets obtained after data curation. In addition to the results in this section, in supplementary materials, we
benchmark the performance of ETHOS against XGBoost Chen and Guestrin [2016], recurrent neural networks, and
logistic regression.

3 Discussion

This work introduces an innovative approach to developing a Foundation Model for medical data derived from EMRs,
designed to execute zero-shot inferences across a diverse range of tasks. Our model generates interpretable, causally
forecasted future patient health timelines. By "causal," we mean that predictions are made solely based on information
that occurred in the past. We applied and evaluated this model using the MIMIC-IV EMR datasets, comparing its
performance with the results of methods published in the literature for the same tasks. Our objective, however, was
not merely to surpass the performance of these specialized SOTA implementations. Instead, we aimed to demonstrate
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Figure 4: ETHOS Model Performance on SOFA Estimation and DRG Classification. (a) Estimation of the first-day
Sequential Organ Failure Assessment (SOFA) score at ICU admission by ETHOS, which generates a sequence of three
tokens: the admission type (orange token), a SOFA token (indicating the SOFA score estimation will follow), and a
quantile token (q-token indicated by question mark) predicting probabilities of the SOFA score’s quantile, as detailed
at the bottom of the panel (a). The fixed position of the SOFA token ensures its consistent prediction immediately
after ICU admission. The SOFA score is derived using quantile probabilities generated by ETHOS and average value
of SOFA for ten quantiles (values of 1.0, 3.5 . . . ). Since SOFA value 24 was not present in the dataset we predict
values 0-23. (b) Correlation plot between actual and predicted SOFA scores. (c) For Diagnostic Related Groups (DRG)
classification. The model is trained to insert a DRG token after tokens typically used at discharge time, utilizing a
placeholder “DRG_UNKNOWN” for if DRG is unknown in the training set. Predicted probabilities are used to compute
the top-1,2,3,5 DRG classifications. (d) Visualization of DRG classification accuracy, showcasing the model’s predictive
performance.

that ETHOS, a single foundation model trained just once with zero-shot derived inference, can achieve performance
levels comparable to that of multiple models optimized for various tasks. This underscores the potential of ETHOS to
streamline the application of AI in healthcare by leveraging a single unified model development architecture and set
of methods for multiple prediction tasks, thereby greatly enhancing medical data model development efficiency and
scalability.

The application of patient timelines for generating insights has been established in existing research Jiang et al. [2023],
Steinberg et al. [2021], Li et al. [2023], Savcisens et al. [2024], Bornet et al. [2023], as has the implementation of
foundation models Moor et al. [2023]. Our methodology sets itself apart by integrating a zero-shot capability, obviating
the need for additional training beyond the initial model. The design of ETHOS accommodates various approaches to
inference, including few-shot predictions, although this necessitates fine-tuning for specific downstream tasks. Notably,
the zero-shot prediction methodology introduces capabilities absent in few-shot prediction. To forecast future outcomes,
ETHOS generates multiple health timelines representing possible future scenarios. This functionality exploits the
model’s capacity to explore and evaluate potential future events, thereby potentially estimating uncertainties. Future
work will undoubtedly concentrate on refining this aspect of ETHOS. Moreover, ETHOS is specifically engineered to
produce causal predictions in the form of future timelines, ensuring they are inherently comprehensible to human users.
This is achieved through a novel tokenization process for medical data, a distinctive feature of our work.
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The generation of multiple scenarios using the zero-shot approach places significant demands on time and computational
resources. We estimated the inference time based on the average duration required to generate 1,000 tokens. On a
single Nvidia A100 GPU, this process took approximately 15 seconds. Given that computations are executed in batches
and are thus highly parallelizable, we anticipate that in a potential production environment, response times could vary
between 1 to 30 seconds. This variation is contingent upon the complexity of the downstream task at hand.

Another highly distinctive capability of ETHOS is the potential to generate individualized care-integrated PHT-based
projected healthcare expenditures. This capability is exemplified through the prediction of Diagnosis-Related Group
(DRG) codes but is not limited to this application. Specifically, ETHOS can model future PHTs at critical decision-
making junctures in patient care. For instance, ETHOS can model outcomes for administering either drug A or B,
considering the patient’s unique conditions (such as sex, age, race, gender, income, etc.) to determine which path
might yield better clinical and cost outcomes. In this regard, ETHOS has the potential to revolutionize medical
decision-analytic modeling science by incorporating a level of personalization previously unavailable in conventional
decision-analytic models. This has the potential to enhance clinical decision-making and incorporate individualized
real-time quantitatively robust value-based care policies into clinical care. This is a potentially transformative change,
radically unlike current evidence-based medicine practices, which rely on high-quality data obtained from and averaged
across patient populations Zack et al. [2024], Obermeyer et al. [2019], Abid et al. [2021].

In designing ETHOS, we have considered explainability, fairness, and transparency. These are vital aspects of our
ongoing research. In future work, we plan to implement and test advanced visualization attention layers of the
transformer Vig [2019] to gain insights into the model’s reasoning process. Additionally, a dedicated interface for
decision-making is envisaged further to enhance the usability of ETHOS in clinical settings.

Envisioning the development of a robust AI method that offers fully personalized advice on a wide range of medical
questions necessitates learning from an extensive dataset of patients. Such a model must assimilate as much data as
possible and be adaptable to a vast array of medical tasks. ETHOS represents a significant stride in this direction.
Built on a transformer architecture, it is inherently scalable and, as a zero-shot learner, is versatile enough to address
numerous key medical prediction tasks without task-specific training. Currently, ETHOS does not incorporate various
types of critical information, including clinical and discharge notes, medical imaging and pathology images, genetic
data, socioeconomic factors, lifestyle considerations, and monitoring signals. Nonetheless, the conceptual framework
for incorporating these diverse data types is relatively straightforward. This can be done by leveraging the encoder and
cross-attention mechanisms inherent in the transformer architecture; we anticipate the potential for integrating a nearly
limitless amount of information during training. This expansion of ETHOS’s capabilities forms the cornerstone of our
future work, promising to enhance its applicability and efficacy in personalized medical advice and diagnostics.

We aim to modify further and train ETHOS to apply it across diverse data sources. This capability is currently hindered
by variations in data collection methodologies, disparities in data quality, and the presence or absence of certain data
types across different sources. Additionally, non-overlapping populations present significant challenges, rendering
ETHOS not yet generalizable. To mitigate some of these compatibility issues, we propose the development of a universal
tokenization format McDermott et al. [2023]. While this approach may resolve certain discrepancies, it does not address
all underlying compatibility concerns. The ultimate solution, we believe, lies in a system capable of transforming
tokenized data from one healthcare system to another, akin to text translation between languages. Specifically, for
ETHOS, this would mean converting the patient journey, as encapsulated by the PHT, from one system’s format to
another. This conversion would not only facilitate a consistent and unified representation of patient histories across
different systems but also offer insights into the operational nuances of these systems. Pursuing such a translation
strategy represents a vital direction for our future research endeavors, alongside evaluating the methodologies introduced
in this paper through analysis of prospectively collected data.

ETHOS and LLMs such as GPT-4o, Claude 3 Opus, and Gemini 1.5 Ultra, although built upon similar AI principles,
serve different purposes and exhibit distinct capabilities. ETHOS is specifically designed to predict fPHTs through
explicit modeling of quantitative values and temporal sequences. This approach allows ETHOS to leverage structured
patient data to generate predictions. In contrast, LLMs are general-purpose models optimized for tasks involving
knowledge integration, reasoning, and interactive conversation. They do not explicitly model quantitative values and
time sequences, which are important for accurate clinical decision support. Studies, such as those by Hager et al. [2024]
and Wang and Zhao [2024], highlight the limitations of LLMs in handling temporal information and decision support
tasks, emphasizing the potential need for specialized models like ETHOS. There is a potential of ETHOS to be used in
conjunction with LLMs through retrieval-augmented generation (RAG) mechanisms, offering a promising direction for
future AI applications in healthcare. In supplementary material, we present a comparison in predictive performance of
ETHOS and LLM (GPT-4o). Furthermore, while LLMs excel in processing vast amounts of unstructured text, their
computational performance in generating detailed and contextually accurate patient predictions remains suboptimal
compared to ETHOS because of efficient representation of information in ETHOS tokenized PHTs.
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This work has limitations. We utilized the MIMIC dataset, which may be cleaner than many routine clinical datasets.
Performance and usability should be tested prospectively in diverse datasets and in real-time. The transformer model in
the current version of ETHOS is relatively simple and uses only 2048 PHT tokens for predictions. When token density
per time is large, this may not contain sufficient information for optimal performance. Mitigation of the limitation is
expected with additional computational infrastructure.

In conclusion, ETHOS presents a promising approach to deriving insights from massive clinical datasets without labor-
intensive labeling or distinct model creation for each prediction task. This approach has the potential to significantly
lower the costs and complexities associated with AI model development, thereby accelerating the development and
implementation of healthcare AI.

4 Methods

4.1 Data

In this study, the Medical Information Mart for Intensive Care (MIMIC-IV) database served as a data source, providing
a rich and comprehensive collection of de-identified health-related information4. Managed collaboratively by the
Massachusetts Institute of Technology (MIT), Beth Israel Deaconess Medical Center (BIDMC), and Philips Healthcare,
MIMIC-IV encompasses detailed records for more than 200,000 patients who were admitted to hospital and critical care
units at BIDMC in Boston, Massachusetts, between 2008 and 2019. The following tables from the MIMIC-IV were
used: 1) Patients, which contains static information about the patients, such as gender, date of birth, and date of death;
2) Admissions, which holds information about patient admissions to the hospital, including admission and discharge
times, as well as information related to the hospital stay; 3) Icustays, which is specifically related to intensive care unit
(ICU) stays, including the timings and type of ICU; 4) Labevents, which contains laboratory test results for patients.
We used the 200 most frequent tests covering 95% of tests completed; 5) Prescriptions, which holds information on
medications prescribed to patients during their stay, with each drug converted to ATC code 1. We converted GSN codes
in MIMIC-IV to ATC codes using conversion tables Bornet et al. [2023]; 6) Procedures which contains information
about procedures performed on patients, coded using ICD10-PCS codes; 7) Diagnoses which contains diagnostic
information, typically coded using ICD10-CM codes. We converted ICD9 to ICD10-CM if needed using conversion
table 2; 8) Emar, which holds information related to the documentation and administration of medications to patients; 9)
Omr with information about measurements taken from a patient, such as blood pressure or BMI; 10) Services with
information about the clinical service under which a patient is managed during their hospital stay; 11) drgcodes DRG
codes which are a classification system used in the healthcare industry to categorize hospital cases into groups that are
expected to have similar hospital resource use; 12) SOFA, taken from the derived tables in MIMIC. The remaining
tables were not used in the current ETHOS implementation as they will require additional processing. For example,
clinical notes require natural language processing to be converted to meaningful tokenized information.

4.2 Patient health timelines (PHTs), tokenization

The core concept behind ETHOS is the Patient Health Timeline (PHT), as depicted in Figure 1. The fundamental
component of the PHT is the token, which represents a distinct unit of information occurring within the patient’s health
timeline. To construct the PHT, we gathered all pertinent data from tables 1 to 12 of the MIMIC-IV database, as
detailed in the Data section. We arranged this data chronologically based on timestamps, as shown in Figure 5, into a
chronological sequence of health-related events for each patient. These events were timestamped with a floating-point
number in 64-bit precision to denote the patient’s age at the time of occurrence of the event. Subsequently, events
from the MIMIC-IV tables were converted into tokens. Each event was represented by 1 to 7 tokens to encapsulate
information about the event, as illustrated in Figure S5a. We crafted this encoding process to ensure each token conveys
specific, meaningful information, with examples in Figure S5c-f. A comprehensive list of token encodings within the
PHT is available in the supplementary material. The final step of tokenization involved the insertion of time-interval
tokens to represent the intervals between events, depicted in Figure 2c. We employed 13 different time-interval tokens to
represent the intervals. No interval token was inserted if the duration between tokens was less than 5 minutes. Typically,
a single time-interval token was placed between other types of tokens unless the interval exceeded one year. In such
cases, multiple 6-month tokens were used to approximate the actual interval. For example, an interval of 1.4 years was
represented by three 6-month tokens, while four 6-month tokens represented 1.76 years. One interval-tokens were
inserted the exact time of events was dropped from PHTs.

1https://www.whocc.no
2https://www.cms.gov/medicare/coding-billing/icd-10-codes
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Figure 5: Stages of PHT Construction and Tokenization in ETHOS The process begins with assembling a chrono-
logical list of events from MIMIC-IV tables, Each entry on the list is time stamped with 64-bit real value only 6
significant digits show for clarity, indicating the patient’s age at which the event occurred. Subsequently, list elements
are transformed into tokens using ETHOS tokenization scheme. Based on the event’s nature, one event can be translated
into 1 up to 7 tokens. Each token derived from the same event shares its timestamp. The final step involves representing
time gaps between events by inserting time-interval tokens. If the time difference between events is less than 5
minutes—the minimum value represented by the token for the shortest time interval—no token is added. After adding
interval-tokens, timestamps are stripped from the timeline.

The patient’s age and the commencement date of the PHT were represented using the same token set. We used 20
distinct tokens to denote age intervals such as 0-5 years, 5-10 years, and so forth. For instance, to encode information
about a 46-year-old patient with PHT beginning in 1982, we inserted a "45_50 years" token at the 4th position in the
PHT. To signify the year 1982, we used a "15_20 years" token at the 5th position of the PHT, considering 1970 as the
baseline year. We emphasize that age and the commencement of the PHT are encoded in five-year intervals, given
that health status typically does not undergo rapid changes with age, making finer granularity unnecessary. However,
we plan to scrutinize these assumptions in subsequent research. The token denoting the commencement of the PHT
delineates the temporal context of the medical data—identifying whether it corresponds to earlier medical practices
(e.g., 1990s), contemporary practices, or periods in between. Using tokens with a precision of five years is done
under the premise that technological and methodological progress within the medical field does not advance at a pace
that justifies the necessity for time intervals more granular than five-year spans. Pertinent to the MIMIC dataset, the
obfuscation of actual dates through uniform random adjustments for each patient—a measure implemented to safeguard
privacy—compromises the utility of this temporal information for ETHOS, as it obscures the precise date of the start of
PHT. However, the absence of precise reference dates is less critical, given that the entire dataset was collected over a
relatively brief period, from 2008 to 2019 (Johnson et al. [2023]).

As mentioned previously, token locations within the timeline are contingent upon the temporal occurrence of events.
Nonetheless, certain data elements are temporally invariant, or at least presented as such within the MIMIC-IV database.
In our implementation, we designate six static tokens to encapsulate the information encoded in these static data
elements. Although, in reality, some of these variables may change over time, they are represented as invariable
constants in the MIMIC database. We encoded this information in the six static tokens exactly as recorded in the
MIMIC dataset. These include gender, marital status, race, body mass index (BMI), birth date, and the start date of the
timeline. While PHTs have the potential to extend to hundreds of thousands of tokens, our current methodology utilizes
a maximum of 2048 subsequent tokens within the transformer model context, as elaborated in the "Methods: ETHOS
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Training" section. To accommodate invariant data, we substitute the initial six tokens of the 2048-token context with
static information tokens, where the sixth token demarcates the temporal juncture of the seventh token, which is the
first token of the actual timeline. Although the transformer architecture inherently facilitates the inclusion of static
data via its encoder component and cross attention module3, we opted for a more streamlined approach as described,
deferring the integration of an encoder implementation to future endeavors where more substantial time-invariant data
like genetics is used.

Medical encounters yield a plethora of numerical data. We employ a quantile-based tokenization strategy to process
continuous numerical values, such as blood pressure readings or cholesterol levels. Specifically, all numerical values are
transformed into integers representing the quantile to which each value corresponds. Quantile ranges were determined
using the training dataset, where histograms of all numerical values were generated and subsequently divided into
quantiles. We chose to utilize ten quantiles, a decision aimed at striking a balance between the need for precise
representation of numerical data and the clinical reality that significant changes in health indicators often manifest as
relatively large variations, such as shifts of 10 or 20 percent (Figure S4). This rationale underpins our selection of ten
quantiles for tokenization.

In our study, Diagnosis-Related Group (DRG) codes for each inpatient stay were utilized, despite the absence of
assigned times when they were created in the MIMIC tables. Given that a DRG code is assigned after or during
discharge, we positioned it after a trio of tokens representing discharge-related information: the discharge token, a
quantile token indicating the length of the hospital stay, and a token specifying the discharge destination (e.g., home).
Additionally, we incorporated data from MIMIC regarding the initial SOFA score for ICU patients, placing this token
after the patient’s admission-to-the-ICU token, along with a token denoting the ICU type. Given that the SOFA score in
the dataset ranges from 0 to 23 (with the score of 24 never appearing), we uniformly map scores from 0-23 across 1-10
quantiles. Consequently, in quantile Q1, SOFA scores of 0, 1, and 2 (average of 1) are included, while quantile Q2
encompasses SOFA scores of 3 and 4 (average of 3.5), and this pattern continues accordingly.

ETHOS operates as a causal network. It relies solely on information available up to the time being considered in making
predictions. Consequently, to ensure causality, actual values of DRG codes and SOFA scores are not employed during
inference; instead, predictions of these values are used. This principle ensures that future-obtained information does
not influence the prediction of yet-to-occur events. In essence, if tokens are integrated into the timeline based on their
approximate occurrence time, their actual values must not be utilized for inference purposes, or they are placed in the
timeline far in the future to ensure they are inserted after they occurred.

For the tokenization of drugs, whether administered or prescribed, we utilized the ATC classification system due to its
hierarchical, tree-like structure (Figure S1). Each ATC code, comprising up to seven characters, was encoded using up
to three sequential tokens: the first token for the initial three characters, the second for the subsequent character, and
the third optional token, for the remaining suffix. Similarly, ICD-10-CM codes were encoded with three tokens: the
first representing the first three characters of the code, the next two by the second token, and the final token capturing
the code’s remaining suffix. For ICD-10-PCS codes, each character in the seven-character code was represented by
a distinct token. The rationale behind such tokenization is that the initial characters in those coding schemes denote
specific classes of drugs and diseases or procedures, which are interpretable and have distinct meanings which we
anticipated to be important for the network’s self-attention mechanisms. Looking ahead, our approach, which assigns
well-defined meanings to each token, will be crucial for refining attention mechanisms and enhancing the model’s
explainability. This method ensures that individual tokens contribute significantly to the interpretability of the network’s
outcomes. For more information on the tokenization process applied to MIMIC data in our analysis, as well as examples
of Patient Health Timelines (PHTs), readers are directed to Table S3 and Table S4 where we present real PHTs used in
this work with annotations. A summary of all tokenized components of the MIMIC dataset is in Table S2.

4.3 ETHOS training

We employ a model inspired by the decoder architecture of the transformer Vaswani et al. [2017], drawing parallels
between tokenized text in Natural Language Processing (NLP) and our approach to tokenizing PHTs. We based our
model development on Andrej Kapathy’s implementation of GPT-2 3. The design choice slightly varies from the
original transformer paper, because instead of using fixed sinusoidal positional encodings, it utilizes learneable position
embeddings that are added to the token embeddings at the stage where tokens are converted to their corresponding
embeddings. The ETHOS model’s training begins by synthesizing a dataset from existing patient records. Each patient’s
PHT is ended with a "End of timeline" token, and then they are concatenated, creating a single long sequence of tokens
for the training. Similarly to generative LLM, ETHOS is trained to predict a single token based on the context of
preceding ones. Given the large data scale and model complexity, this phase is resource-intensive similar to methods for

3https://github.com/karpathy/nanoGPT
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training used for NLP transformers used in LLMs (Vaswani et al. [2017], Thirunavukarasu et al. [2023]). We estimated
that the size of the network training task that we face with ETHOS is similar to GPT-2 Brown et al. [2020], and therefore
we used the size of the transformer used in that network as a starting point (details on the hyperparameter search and
choice can be seen in Figure S2). We made heuristic adjustments to the size of the network to optimize the value of the
loss function. Further details on our training methodology of transformers are provided in Brown et al. [2020] and for
our implementation in supplementary material and full complete code published on GitHub 4.

4.4 Evaluation of Clinical Outcomes and Tasks Using ETHOS

The experiments were chosen so the results can be compared to the work of others in terms of the estimation of inpatient
mortality and readmission on MIMIC data. Patients in the MIMIC were randomly divided into training and testing
groups, with splits of 90%/10% (Table S1).

The chance of inpatient mortality was assessed at the time of admission for all inpatient stays for patients in the
test set unless the discharge day was unknown. This was performed by the generative process that began with the
admission token and ended upon generating a discharge or death token, repeating this cycle 20 times. The ’N’,
representing the number of times a death token was generated first, was divided by 20 to estimate the chance of
inpatient mortality. Similarly, the likelihood of ICU mortality was computed for the MIMIC dataset, with an additional
experiment conducted where predictions were made starting 24 hours after ICU admission, rather than at the point of
ICU admission. In the same simulation, the LOS in the ICU was estimated by aggregating the time-interval tokens
generated in the simulated timeline until the discharge token appeared. Instances where the patient died in the ICU
during the simulation were excluded from the LOS calculation. We opted for 20 repetitions, yielding 21 unique
probability estimators, which were adequate for constructing robust Receiver Operating Characteristic (ROC) curves
yielding excellent Gaussian fits (Figure 3). Nevertheless, alternative repetition counts may also be employed.

To calculate the probability of 30-day inpatient readmission, the generation of fPHTs commenced at the discharge token
from inpatient stays and ceased upon the appearance of either a new admission or death token or when the cumulative
time tokens generated exceeded 30 days. The simulation was repeated 20 times. The probability of 30-day readmission
was then derived as M/20, where ’M’ is the count of terminations occurring because of patient new admission tokens
across the 20 repetitions.

In our approach, tasks are accomplished by simulating future patient health timelines. Yet, ETHOS offers additional
methods for deriving insights, two of which we illustrate here. For instance, in the construction of PHTs following
each ICU admission, a sequence is created starting with a token that identifies the type of ICU, followed by a SOFA
score token, and then by a Q token that signifies the actual SOFA score on the first day. We predict the SOFA score
using SOFA Q node probabilities as generated by ETHOS and the mean SOFA score per quantile as assigned during
tokenization (Figure 4a).

The exact timing of the 1-day SOFA score assessment is not specified in the dataset, leading to a potential causality
issue by inserting the SOFA score immediately after admission, as it relies on data acquired subsequently. During the
model’s training phase, ETHOS permits this apparent causality violation. However, such true values of 1-day SOFA
scores, not available at the moment of ICU admission, are not used for simulating future timelines during inference to
prevent causality violation during inference. Instead, these scores are predicted from prior information, as demonstrated
in our study. This feature of ETHOS enables the inclusion of information with indeterminate timing.

Another distinctive inference capability facilitated by ETHOS is DRG class estimation. As illustrated in Figure 4c, the
token denoting the DRG class is consistently positioned following the discharge token and a Q token specifying the
length of hospital stay. With 771 unique tokens available for this purpose, we infer the actual class by generating a
probability array in the final network layer of the transformer for the DRG token. This array is then utilized to predict
the classification’s top-1 and top-2 accuracy metrics.

4.5 Statistical Analysis

The performance of classification algorithms of binary tasks was assessed using Receiver Operating Curve Analysis
(ROC). The ROC curves were fitted to experimental points using Gaussian models with unequal variances for binary
hypotheses (code provided). Values of Areas Under Curves (AUCs) and 95% confidence intervals (CI) were calculated
using bootstrapping (code provided). For multiclass classification (DRG task), we used top-1 and top-2 accuracy. We
used mean absolute error (MEA) for the regression tasks to indicate prediction fidelity with 95% confidence intervals
estimated using bootstrapping. Python numpy and scikit-learn were used.

4https://github.com/ipolharvard/ethos-paper
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4.6 Comparison of ETHOS to existing methods

Employing the data segmentation as detailed in Table S1, we evaluated traditional algorithms for predicting 30-day
hospital readmission rates and juxtaposed these outcomes with those obtained via ETHOS. The features used in Figure S6
were culled from data accrued during the patient’s hospitalization, adhering to the feature derivation methodology
outlined by Tang et al. [2023]. Attempting to apply the algorithm devised by the authors to our dataset presented
challenges, notably due to the Graph Neural Network (GNN) implementation by Tang et al., which necessitates the
computation of a similarity score for each pair of admissions. Given the significantly larger volume of admissions in our
dataset—approximately 400,000, in stark contrast to the 14,500 reported by Tang et al.—this task proved impractical
on a compute node with 2TB of RAM, defying all efforts to achieve it within a reasonable timeframe. Consequently,
we limited our application to the data preprocessing and feature extraction segments of Tang et al.’s methodology.
The adapted and modified code from Tang et al.’s repository, which we cloned for feature extraction, is accessible on
GitHub 5. For models unsupportive of temporal sequence analysis, such as Logistic Regression and XGBoost, we
modified the approach to handle time-varying features by consolidating them over time. This entailed distilling the
minimum, first quartile, median, third quartile, and maximum values of dynamically changing features. Furthermore,
we integrated the day of admission as a unique feature to retain an element of temporal dimension within the dataset. In
Figure S6 ETHOS was compared to one of the leading proprietary LLM models - GPT-4o in two temperature variants:
0.3 and 0.5. We constructed a comprehensive prompt that directs the model to analyze a timeline of 2048 tokens and
calculate the probability of patient readmission for 2000 cases from the test set. This prompt is structured into four
distinct parts: task instructions, a basic patient description corresponding to ETHOS’s static information, PHT and
a detailed description of subgroups of tokens and their identification. The complete codebase for this experiment
including the prompt design is accessible on GitHub 6. ETHOS significantly outperforms both variants of GPT-4o for
the same subset of testing samples.
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Supplementary Information

Characteristics Train/Validation Test Total

Patient number 241,015 26,758 267,773

Age, years, mean (std) 50.27 (20.76) 50.15 (20.80) 50.25 (20.77)

Gender
Female 130,115 14,473 144,588
Male 110,900 12,285 123,185

Race
White 109,274 12,090 121,364
Unknown 87,420 9,724 97,144
Black 21,048 2,361 23,409
Hispanic 8,991 1,014 10,005
Other 7,506 823 8,329
Asian 6,776 746 7,522

Marital Status
Unknown 84,533 9,369 93,902
Married 70,297 7,649 77,946
Single 60,822 6,910 67,732
Widowed 15,068 1,719 16,787
Divorced 10,295 1,111 11,406

Table S1: Demographic characteristics of the dataset. The characteristics are reported at the time of the first hospital
admission and used by ETHOS.

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2024. ; https://doi.org/10.1101/2024.02.29.24303512doi: medRxiv preprint 

http://arxiv.org/abs/2306.11547
https://doi.org/10.1038/s41591-024-03097-1
https://www.nature.com/articles/s41591-024-03097-1
http://arxiv.org/abs/2310.00835
https://doi.org/10.1038/s41591-023-02448-8
https://www.nature.com/articles/s41591-023-02448-8
https://doi.org/10.1101/2024.02.29.24303512
http://creativecommons.org/licenses/by-nc-nd/4.0/


Zero Shot Health Trajectory Prediction Using Transformer

Figure S1: Tokenization schema of ATC, ICD10-CM, and ICD10-PCS. Different colors correspond to parts of the
codes encoded by different tokens in examples below.
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Figure S2: Architecture of the Transformer Decoder Model employed in ETHOS. We closely mirrored the original
decoder design by Vaswani et al. [2017]. This iteration of the model was initially sized in alignment with GPT-2 (Brown
et al. [2020]), reflecting a comparable scale of training data. Included are select training traces and a detailed account of
the operational model, complete with parameter specifications outlined in the accompanying table.
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(a) t-SNE graph of embeddings of tokens to represent three
first characters of ICD10-CM code. Points in the graph are
differentiated by color and symbol type representing the
first letter of an ICD code (25 categories) which broadly
indicate diagnostic area. Note that these broad diagnostic
areas only partially are separated.

(b) Visualization of embedding vectors for quantile tokens
representing patient age and used to also indicate start of
the PHT. This is a similar visualization as in the main paper
Figure 2 for quantiles and time-interval tokens. As before
we discern a certain structure in which tokens are correctly
ordered in PCA reduced 2D embedding space.

Figure S3: Learned token embeddings projected into 2 dimensions.

Figure S4: The variability in the representation of time intervals and quantile tokens within the tokenized dataset.
The longest used interval was 6 months as it was relatively rare to have intervals much longer than that. Notably, for
tests with discrete ordered outputs, a reduced number of quantiles was employed, resulting in a non-uniform frequency
distribution across these specific categories.

19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2024. ; https://doi.org/10.1101/2024.02.29.24303512doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.29.24303512
http://creativecommons.org/licenses/by-nc-nd/4.0/


Zero Shot Health Trajectory Prediction Using Transformer

Figure S5: Various examples of information encoding via tokens. Depending on the ICD-10-CM code, 1 to 3 tokens
are utilized for representation, with the first token corresponding to the code’s first three characters, the fourth and
fifth characters possibly represented by another token, and an optional third token for the remaining characters in the
ICD code. (b) Medications, coded by ATC codes, are similarly encoded by 1 to 3 tokens based on the specificity of
the code, with the first token representing the first three characters, the second for the next two, and the third for the
remaining characters. (c) Blood pressure measurements are consistently encoded using three tokens: one to indicate
the BP measurement and two quantile tokens for systolic and diastolic pressure values, respectively. (d) ICD-PCS
codes may be represented by up to seven tokens, with each token denoting one character of the code. (e) Lab tests are
depicted by a token that describes the type of test followed by a quantile token for the test’s numerical value. Finally, (f)
demographics are depicted which are part of static tokens, always positioned at the beginning of the PHT.
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Figure S6: Comparison of Ethos to existing methods. Features were derived from patient hospitalization data
following Tang et al. [2023]. Applying their algorithm was impractical due to the need to compute similarity scores for
each admission pair in our larger dataset (400,000 vs. 14,500 admissions), which exceeded our 2TB RAM capacity. We
therefore used only their data preprocessing and feature extraction methods. Modified code from Tang et al.’s repository
is available on GitHub (www.github.com/ipolharvard/readmit-stgnn). For non-temporal models like Logistic
Regression and XGBoost, time-varying features were summarized using statistical measures, and the day of admission
was included as a feature. ETHOS was compared to GPT-4o at temperatures 0.3 and 0.5. We created a prompt directing
the model to analyze 2048 tokens and calculate readmission probability for 2000 cases. ETHOS outperformed both
GPT-4o variants.
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Figure S7: Precision-recall curves and corresponding scores for Predictive Tasks via the ETHOS Model.
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Event or Information Token # # of Unique Tokens Notes

Sex 1 2 Always at position 1 in PHT
Race 1 6 Always at position 2 in PHT
Marital status 1 5 Always at position 3 in PHT
BMI 1 1 (+10) Always at position 4 in PHT
Age at the start of timeline 1 21 Always at position 5 in PHT
Years from 1970 at the start of timeline 1 21 Always at position 6 in PHT
Deaths 1 1 N/A
Emergency Department Stays 2 2 (+10) Admission/discharge + Q
Inpatient Stays 6 18 (+10) N/A
Transfers 1 19 19 different transfer types
ICU Stays 4 11 (+10) N/A
Diagnoses - ICD-10-CM 1-3 2936 N/A
Procedures - ICD-10-PCS 1-7 35 N/A
Blood Pressure 3 1 (+10) BP token + 2Qs (sys+dia)
Administered Medications 1-3 312 By tokenizing ATC code
Lab tests 2 200 (+10) Used most frequent 200 lab tests + Q
SOFA 2 1 (+10) Always follow ICU admin

DRG 1 772 Always follow Q token after inpatient
discharge. 771 DRG classes + unknown

Table S2: Medical events extracted from the MIMIC database and an overview of the token encodings utilized.
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Table S3: Example of a tokenized timeline with a hospital admission

Patient Health Timeline Notes
ED_ADMISSION_START Admission to Emergency Department
_2h-6h Time interval between 2h and 6h
LAB_pH_units Lab test of pH and the unit is units
_Q4 Quantile token referring to the lab test of pH
LAB_Protein_mg/dL
_Q4
LAB_RBC_#/hpf
_Q1
LAB_Specific Gravity
_Q2
LAB_WBC_#/hpf
_Q1
LAB_Alanine Aminotransferase (ALT)_IU/L
_Q3
LAB_Albumin_g/dL
_Q3
LAB_Alkaline Phosphatase_IU/L
_Q1
LAB_Anion Gap_mEq/L
_Q5
LAB_Asparate Aminotransferase (AST)_IU/L
_Q8
LAB_MCHC_g/dL
_Q9
LAB_MCV_fL
_Q7
LAB_Monocytes_%
_Q7
LAB_Neutrophils_%
_Q3
LAB_Platelet Count_K/uL
_Q3
LAB_RDW_%
_Q1
LAB_Red Blood Cells_m/uL
_Q8
LAB_White Blood Cells_K/uL
_Q5
LAB_Absolute Basophil Count_K/uL
_Q5
LAB_Absolute Eosinophil Count_K/uL
_Q4
LAB_Absolute Monocyte Count_K/uL
_Q6
_6h-12h
INPATIENT_ADMISSION_START Token indicating an admission to the hospital
TYPE_OBSERVATION The type of the admission is observation
INSURANCE_MEDICARE The patient’s insurance is MEDICARE

ICD_Other symptoms and signs involving cognitive
functions and awareness

The primary diagnosis at the beginning of the hospital stay
is Altered mental status, unspecified (R4182), which is
broken down into two tokens: R41 and 82

ICD_4-5_82
ICD_Dorsalgia
ICD_4-5_16

Continued on next page
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Table S3 – Continued from previous page

Patient Health Timeline Notes
ICD_Malaise and fatigue
ICD_4-5_1
ICD_Personal history of certain other diseases
ICD_4-5_73
ICD_Other hypothyroidism
ICD_4-5_9
ICD_Type 2 diabetes mellitus
ICD_4-5_21
ICD_Dorsalgia
ICD_4-5_5
ICD_Abnormalities of gait and mobility
ICD_4-5_2
TRANSFER_MED Transfer to a different care unit - MED
_6h-12h
ATC_stomatological preparations
ATC_4_A
ATC_SUFFIX_D05
ATC_diuretics ATC_4_A
ATC_4_A
ATC_SUFFIX_A03
ATC_agents acting on the renin-angiotensin system
ATC_4_A
ATC_SUFFIX_A03
_6h-12h
ED_ADMISSION_END Discharge from Emergency Department

_Q10 Quantile referring to the length of the stay in Emergency
Department based on all stays in the data

INPATIENT_ADMISSION_END Discharge from the hospital
_Q2 Quantile referring to the length of the stay in the hospital
based on all stays in the data
DISCHARGED_UNKNOWN The reason of discharge
UNKNOWN_DRG DRG assigned to the hospital stay
_=6mt Time interval of 6 months

Table S4: Example of a tokenized timeline with an admission to ICU

Patient Health Timeline Notes
ICU_STAY_START Admission to ICU token
Surgical Intensive Care Unit (SICU) Type of ICU
SOFA Indicates SOFA quantile follows
_Q1 Q indicating quantile of SOFA score
_15m-1h time-interval
LAB_Sodium_mEq/L Lab test results
_Q7
LAB_Urea Nitrogen_mg/dL
_Q3
LAB_L_no_unit
_Q4
_15m-1h time-interval
LAB_Base Excess_mEq/L
_Q6
LAB_Calculated Total CO2_mEq/L
_Q8

Continued on next page
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Table S4 – Continued from previous page

Patient Health Timeline Notes
LAB_pCO2_mm Hg
_Q7
LAB_pH_units
_Q7
LAB_pO2_mm Hg
_Q5
_2h-6h
ATC_anti-asthmatics Medications start and administered with specified time intervals
ATC_4_A
ATC_SUFFIX_C02
_5m-15m
ATC_analgesics
ATC_4_B
ATC_SUFFIX_E01
_2h-6h
ATC_drugs for acid related disorders
ATC_4_B
ATC_SUFFIX_C02
_1h-2h
ATC_antithrombotic agents
ATC_4_A
ATC_SUFFIX_B01
_15m-1h
ATC_beta blocking agents
ATC_4_A
ATC_SUFFIX_B02
_1h-2h
ATC_mineral supplements Patient is medicated until the end of ICU stay
ATC_4_C
ATC_SUFFIX_C02
_15m-1h
ATC_laxatives
ATC_4_
A ATC_SUFFIX_D04
_1h-2h
ATC_analgesics
ATC_4_B
ATC_SUFFIX_E01
_15m-1h
ATC_antipruritics, anesthetics, etc.
ATC_4_
A ATC_SUFFIX_A32
LAB_Hematocrit_% Here lab test results are reported
_Q7
LAB_Hemoglobin_g/dL
_Q6
LAB_MCH_pg
_Q8
LAB_MCHC_g/dL
_Q5
LAB_MCV_fL
_Q9
LAB_Platelet Count_K/uL
_Q3
LAB_RDW_%

Continued on next page
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Table S4 – Continued from previous page

Patient Health Timeline Notes
_Q4
LAB_Red Blood Cells_m/uL
_Q5
LAB_White Blood Cells_K/uL
_Q4
LAB_RDW-SD_fL
_Q6
LAB_INR(PT)_no_unit
_Q4
LAB_PT_sec
_Q5
LAB_PTT_sec
_Q2
LAB_Anion Gap_mEq/L
_Q4
LAB_Bicarbonate_mEq/L
_Q4
LAB_Calcium, Total_mg/dL
_Q3
LAB_Chloride_mEq/L
_Q5
LAB_Creatinine_mg/dL
_Q2
LAB_Glucose_mg/dL
_Q8
LAB_H_no_unit
_Q9
LAB_I_no_unit
_Q2
LAB_Magnesium_mg/dL
_Q2
LAB_Phosphate_mg/dL
_Q1
LAB_Potassium_mEq/L
_Q6
LAB_Sodium_mEq/L
_Q6
LAB_Urea Nitrogen_mg/dL
_Q2
LAB_L_no_unit
_Q2
_1h-2h
ATC_antithrombotic agents
ATC_4_A
ATC_SUFFIX_B01
ICU_STAY_END Patient is discharged from ICU

_Q5 Quantile token indicates the length of stay in ICU.
Here it is 5, indicating about average
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