
 

 

Zapping the brain to enhance sport performance? Evidence from an 
umbrella review of the effect of transcranial direct current stimulation 
on physical performance 

Darías Holgado1,2,3 Daniel Sanabria2,3, Miguel A. Vadillo4 and Rafael Román-Caballero2,3,5,6  

1 Institute of Sport Sciences, University of Lausanne, Quartier, UNIL-Centre, Bâtiment, Synathlon, 
Lausanne, Switzerland  

2 Department of Experimental Psychology, University of Granada, Spain 

3 Mind, Brain & Behavior Research Center, University of Granada, Spain  

4 Department of Basic Psychology, Autonomous University of Madrid, Madrid, Spain 

5 Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, Canada 

6 McMaster Institute for Music and the Mind, McMaster University, Hamilton, Canada 

Corresponding author: Darías Holgado (darias.holgado@unil.ch) and Rafael Román-Caballero 
(rrarroca@ugr.es) 

Abstract 

Concepts such as "neuro-doping" or brain doping have contributed to an expansion in the area of 
transcranial direct current stimulation (tDCS) and its impact over exercise and physical performance in 
recent years. Here we assess the evidence supporting the healthy population using an umbrella review 
of meta-analyses investigating the role of tDCS to enhance exercise performance. We identified 9 meta-
analyses encompassing 50 crossover studies and 683 participants that met our inclusion criteria. Despite 
the fact that most meta-analyses reported a positive effect of tDCS, our analyses revealed overly low 
statistical power in the primary studies, publication bias, and large variability in pre-processing and 
analytic decisions. Indeed, a specification-curve analysis showed that the final effect could range from 
g = −0.23 to g = 0.33, depending on decisions such as the formula used for estimating the effect size 
and multiple additional analytic steps. Moreover, a meta-analysis of all the primary studies included in 
the umbrella review showed a small effect of tDCS (gz = 0.28, 95%CI [0.18, 0.39]) that became 
substantially smaller and inconclusive after accounting for publication bias, grm = 0.10, 95%CrI [−0.04, 
0.20], BF10 = 0.99. In summary, our findings highlight that current evidence, from both individual 
studies and meta-analyses, does not conclusively support the idea that tDCS enhances performance 
outcomes.  
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Introduction 

In the pursuit of optimizing performance, exercise scientists explore avenues for marginal gains, a trend 
exacerbated by the escalating pressure on athletes to continually enhance their abilities. A recently 
prominent method garnering attention from athletes across various sports is transcranial direct current 
stimulation (tDCS; (1). The underlying premise behind tDCS usage is its potential to elevate physical 
performance by stimulating specific brain regions (e.g., motor or prefrontal cortex) engaged during 
exercise. While the precise mechanisms through which tDCS may enhance physical exercise 
performance remain elusive, the current hypothesis attributes potential improvements to factors such as 
diminished pain perception, heightened corticospinal excitability, and a reduction in perceived effort 
during exercise (2). 

The increasing interest in this technique in recent years is evident from the escalating number of primary 
studies (3–5), narrative reviews (6), systematic reviews (7), and meta-analyses (8–10) published in the 
last few years. Although the focus of these studies and meta-analyses might vary slightly, the main 
conclusions of the literature are that (1) tDCS has an ergogenic effect, albeit a small one; (2) tDCS 
might be more effective in some exercise performance domains than others; (3) the level of expertise 
of the population might be relevant (i.e., novice participants might have more room for improvement); 
(4) little is known of the long-term effect of the stimulation; (5) the effects may be modulated by various 
factors (e.g., the area stimulated, the electrode placement, the duration of stimulation, etc.). 

This umbrella review delves into the current landscape of tDCS and its impact on exercise performance. 
The overarching objective is to discern the validity of claims asserting tDCS as a beneficial ergogenic 
aid, evaluating whether these assertions are substantiated by robust evidence or merely represent a 
transient trend in the field. 

Methods 

Pre-registration  

The methods and planned analyses of this umbrella review were pre-registered on 29 December 2022 
at PROSPERO (CRD42022384967) and in the OSF repository: https://osf.io/73qsu/. All major 
deviations from the pre-registered protocol and analysis plans are transparently identified in the 
manuscript.  

Data and code availability 

The data analyzed and the code used for the analysis in this study are publicly available at the OSF 
repository: https://osf.io/73qsu/. 

Literature search 

We conducted a systematic literature search following the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses guidelines (last search in January 2023) in Medline, Web of Science and 
Scopus using the following Boolean operators: ("physical exercise" OR "exercise performance” OR 
"physical activity" OR sport) AND (tDCS OR tES OR "brain stimulation" OR “transcranial 
stimulation”) AND (meta-analysis OR metaanalysis OR “systematic review”). Additionally, we 
searched on Google Scholar to identify unpublished meta-analyses meeting the inclusion criteria. 
Search was limited to papers published in English.  
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Inclusion and exclusion criteria 

We followed the Participant-Intervention-Comparison-Outcome process to select the meta-analyses 
included in this umbrella review: (1) Participants: healthy participants of all ages and both sexes. (2) 
Intervention: within and between studies investigating the effects of tDCS on physical exercise 
performance. (3) Comparison: anodal or cathodal stimulation vs. sham control. (4) Outcome: meta-
analyses and primary studies should report at least one measure of physical exercise performance. Upon 
review, we observed that most of the literature is composed of primary studies with within-participant 
manipulations. We advance here that only 3 of the 53 studies that met the inclusion criteria involved 
between-group designs (11–13). For the sake of simplicity, we decided a posteriori to restrict the 
analyses to the 50 studies with within-participant designs, although the conclusions were not affected 
when the three between-group studies were included (Supplementary Material 1). 

Data Extraction 

The following data were extracted from each meta-analysis by DH and RRC: (1) list of authors and 
year of publication from each primary article included in the meta-analysis; (2) latest search date and 
publication date; (3) type and estimation method of effect size; (4) reported final effect size; (5) method 
for dealing with dependence between effect sizes; (6) type of exercise outcome and stimulation 
analyzed; (7) number of included studies; (8) analysis of publication bias; and (9) protocol registration. 
In addition, for our assessment of transparency and reproducibility practices, we coded whether the 
meta-analysis reported compliance with reporting guidelines, competing interests, search limits, search 
terms, full search strategy, eligibility criteria, double coding, use of methods to assess risk of bias in 
primary studies, dealing with dependence between effect sizes and the combination of between- and 
within-participant designs, outlier identification, statistical model, estimation method of the 
heterogeneity variance, software, and code and data availability. 

At the primary study level, DH, DS, MAV and RRC extracted the following information from the 
studies included in the meta-analyses in duplicated: (1) list of authors and year of publication; (2) pooled 
number of participants for the stimulation and sham group; (3) sample characteristics; (4) type of 
exercise test; (5) exercise category; (6) exercise outcome assessed; (7) study design; (8) target brain 
area, electrode montage, stimulation duration and intensity, electrode surface, number of sessions, and 
concurrence of the stimulation; (10) t or F value; and (11) means and standard deviations for each 
condition (when we could not extract exact means and standard deviations but graphic information was 
available, we estimated the values from the graphs using the software WebPlotDigitizer; (14). Based 
on these data, we identified 50 primary studies that met the criteria of the present umbrella review. 
Moreover, the effect sizes were only extracted for the comparisons of interest. Therefore, effect sizes 
comparing conditions with and without supplementation (e.g., caffeine) or assessing the impact of other 
factors than tDCS (e.g., mental fatigue) were excluded.  

Statistical analysis 

Graph analysis 

To explore the overlap in primary studies across the reviewed meta-analyses, we created a bipartite 
network graph (with meta-analyses and primary studies as two different categories of nodes) using the 
igraph R package (15). To analyze the centrality and closeness of the nodes, we converted the two-
mode network into two one-mode networks and, for meta-analyses, we used the tnet R package (16) to 
calculate the sum of weights on ties originating from a node as centrality score and the normalized 
closeness score for nodes (dividing raw closeness score by N − 1). 
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Effect size 

Given that most of the primary studies adopted a study design in which the physical performance of the 
same sample of participants was compared after tDCS vs. a sham condition (within-participant designs 
contrasting posttest performance), we opted for a Cohen's dz, which we preferentially estimated from t 
and F values (dz = t/√n or dz = √F/√n). If those values were not available (note that with F value we 
mean the statistic for the main effect of stimulation in a repeated measures ANOVA with only two 
tDCS conditions), we used the following formula as a standardized mean difference-based effect size: 

𝑑! 	= 	
"!"##

#$$%	&	$%%	'	(	×	*	×	$$	×	$%
;          (1) 

where Mdiff represents the difference of means, S1 and S2 the standard deviations of the contrasted 
conditions, and r the repeated-measures correlation. Its variance was estimated as: 

𝑉+&	 =	
,
-
	+ 	+&

%
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.             (2) 

Note that this decision was taken considering that the intra-individual difference score is the most 
natural unit of analysis in this type of research, which aims to prove the causal effect of tDCS using the 
participant themself as a control for other background variables (for a more detailed discussion, see 
(17). Therefore, we excluded a minority of three studies with between-group designs (see Inclusion 
and exclusion criteria) and estimated dz in the remaining studies. We estimated repeated-measures 
correlations from t values and F values from one-way repeated measures ANOVA (i.e., F = √t) to reach 
an overall repeated-measures correlation that could be imputed in studies that did not report any of both 
statistics. Overall, we could extract 44 correlations from 26 studies (mean of 1.7 correlations per study, 
1–6) and, subsequently, we obtained a meta-analytic Pearson’s r of .846, 95%CI [.76, .93]. For studies 
in which means and standard deviations could not be extracted, dz was calculated directly from the t 
value and the number of participants: dz = t/√n. Additionally, we provide a transformation of that effect 
into common language effect (CL; (18); i.e., the probability that a randomly sampled score from the 
treatment condition is greater than another score sampled from the control condition). 

Although the main analyses reported in our umbrella review were based on studies with within-
participant designs, all the analyses were repeated including the three studies that implemented 
interventions between groups (Supplementary Material 1). To combine effects across within and 
between-participant designs, we used drm and ds formulas for within- and between-participant designs, 
respectively: 
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whose variance were estimated as 

𝑉+./ 	= 	𝑉+& 	× 2(1 − 𝑟)	             (5) 

and 
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All estimates and their variance were corrected for small-sample bias: 

𝐽	 = 	1	 −	 3
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,             (7) 

𝑔	 = 	𝐽	 × 	𝑑,             (8) 

𝑉6 	= 	 𝐽( 	× 	𝑉+.             (9) 

Meta-analysis and heterogeneity 

We implemented multilevel meta-analytic models using the robust variance estimation approach (RVE; 
(19), which deals with a correlated structure of outcomes from the same primary study. We used the 
RVE method using the robumeta R package (20). The usual heterogeneity indexes, τ2 and I2, were 
computed. 

Outlier detection and moderator analysis 

We assessed whether the observed heterogeneity could be due to the presence of outliers and moderating 
variables. We fitted a multilevel model with the rma.mv function of metafor (21) and estimated the 
studentized residuals. Studies with studentized residuals higher than 2 were identified as outliers. In 
addition, as already planned in the registration of this study, we examined the influence of the following 
moderators: (1) target brain area (motor, prefrontal, or temporal cortex); (2) stimulation duration (in 
min; continuous variable); (3) stimulation intensity (in mA; continuous variable); (4) concurrence of 
the stimulation with the exercise task (online, offline or offline-online); (5) type of outcome (endurance 
or strength exercise); and (6) muscle involved (whole body vs. isolated)1. Moreover, we investigated 
the role of further moderators (previously not included in the registered protocol): (1) year of publication 
(continuous variable); (2) age of the sample (in years; continuous variable); (3) training status (untrained 
vs. trained); (4) stimulation polarity (cathodal vs. anodal); (5) electrode montage (single vs. bicephalic 
vs. high definition, HD); (6) electrode surface (in mm; continuous variable); (7) return location 
(extracephalic vs. cephalic); and (8) number of sessions (continuous variable). 

Statistical power and publication bias 

To estimate the power of individual studies, we took as reference an approximation of our final 
uncorrected effect (gz = 0.30), and found out the number of participants needed to reach specific power 
thresholds, assuming a one-tailed t-test and an alpha of .05. To test for publication bias, we relied on 
two types of methods, based either on funnel plot asymmetry (FAT) or selection models. Among the 
first category is the inclusion of the effect-size precision estimate as a moderator in the multilevel model 
to test whether there is a general relationship between the observed effect sizes and their precision (i.e., 
funnel plot asymmetry; (22). Within this procedure, the intercept of the meta-regressive model would 
be taken as the best estimate of the underlying effect (i.e., the estimated effect when the sampling error 
is zero), a method that has been proposed to follow a conditional procedure (precision-effect test–
precision-effect estimate with standard error, PET–PEESE; (23). The logic of PET-PEESE can be 
extended to multilevel models (24–26). We conducted FAT and PET-PEESE with Fisher’s z for being 

 
1 Our combined analysis with within- or between-participant designs (using grm and gs as estimates of the effect 
size, respectively) showed no difference between the effects of both study designs, βwithin vs. between = −0.10, p = 
.714. 
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a variance-stabilizing transformation for the effect size and preventing the artifactual dependence 
between Cohen’s d and its precision estimate (27). For the Fisher’s z transformation, we converted dz 
into drm (17), and then drm into Fisher’s z (28). 

Within the second type, selection models (29) assume that the probability of publication depends on the 
p value. In our meta-analysis, we used a three-parameter selection model (3PSM) with a one-tailed p-
value cutpoint of .025, selecting only significant studies. A way to account for dependence among effect 
sizes with this model is to combine all the effect sizes coming from the same sample generating an 
average estimate for each study, and conduct the classic methods on these aggregates (26). We used the 
MAd package in R (30) to generate within-study aggregates, while we carried out 3PSM with the 
weightr package (31). 

Finally, we conducted a robust Bayesian meta-analysis (RoBMA; (32) that yields one single model-
averaged estimate after simultaneously applying (1) meta-regressive models for the relationship 
between effect sizes and their standard errors (PET–PEESE) and (2) selection models that estimate 
relative publication probabilities (selection model). RoBMA makes inferences guided mostly by those 
models that predict the observed data best. Based on the reviewed meta-analyses that reflect a prior 
belief of a substantial effect of tDCS on exercise performance, we selected a normal distribution 
centered at 0.30 and with one standard deviation as the prior of the effect in the alternative hypothesis. 
For the effect belonging to the null hypothesis, we assumed a normal distribution centered at 0 an equal 
standard deviation. As with the FAT and PET-PEESE method and 3PSM, RoBMA was conducted with 
a Fisher’s transformation of dz and within-study aggregates. 

To reduce the impact of heterogeneity on the output of publication-bias analyses, we drew out known 
heterogeneity due to outliers and moderators (stimulation intensity and polarity) in all the methods. 
Thus, we excluded outlying studies and outcomes coming from cathodal tDCS (which represented a 
minority) and added stimulation intensity as a continuous moderator (re-centered at 0). In the case of 
RoBMA, we first fitted a univariate meta-analysis with the aggregates and stimulation intensity as a 
moderator, from which the raw residuals plus the intercept of that model served as the input for RoBMA. 

Specification curve 

Finally, we conducted an exploratory specification curve analysis (33) with all the primary studies. In 
the specification curve, we estimated the final effect size and its significance for a total of 32 possible 
combinations of four analytic decision levels: (a) how to deal with within-study dependence (no strategy 
or assuming within-effects independence, an RVE multilevel model, and fitting a univariate model with 
aggregate effect sizes); (b) the identification and exclusion or not of outlying studies; (c) the inclusion 
or not of influential moderators to adjust the outcome (that is, type of control group and baseline 
difference); and (d) the strategies to assess and correct the final outcome for publication bias (PET-
PEESE, 3PSM, and no correction). Although all meta-analyses estimated the effect size following the 
gs formula, we conducted the specification-curve analysis adopting three formulas of the effect size for 
comparative purposes: grm, gs, and gz. The analysis led to 96 different combinations of specifications, 
as 3PSM cannot be conducted with a multilevel model. Six models did not converge properly (all of 
them with 3PSM, and gs or gz), which led to a total of 90 outcomes. 

Results 

A total of 9 meta-analyses (8–10, 34–39) meeting the inclusion criteria were selected from among the 
1,145 records retrieved in the search. We identified 70 primary studies in the meta-analyses, of which 
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50 met the inclusion criteria for our umbrella review (see Supplementary Material 2 for exclusion 
reasons), involving a total of 683 participants. We extracted 101 effect sizes from them, a mean of two 
outcomes per study (range 1–6). Most of the primary studies used offline tDCS (45), only anodal 
stimulation (42), and young samples of participants (48; between 16.1 and 33 years old). The studies 
applied tDCS over the primary motor cortex (36), prefrontal cortex (11), temporal cortex (6), or the 
cerebellum (1) to investigate its benefits on strength and endurance exercise performance.  

Overlapping and variation in study sampling 

The graphical visualization of the connections between the meta-analyses and primary studies (Figure 
1) showed a large overlap in a significant portion of the meta-analyses (6 out of 9). The average 
centrality score (53.2, 95%CI [40.5, 65.8]) and the normalized closeness scores (1.14, 95%CI [0.96, 
1.33]) of this group differ from the indices of the other three remaining meta-analyses (10, 35, 37; 
centrality score: 11, 24, and 10; normalized closeness score: 0.40, 0.62, and 0.39), as evidence of this 
distancing from the central group (Table 1). The separation of these meta-analyses could be due to 
divergences in the inclusion criteria they used, especially regarding the selection of participants. While 
most of the meta-analyses only required that participants should be healthy adults, the works by Alves-
Lobão et al. (35) and Maudrich et al. (10) constrained their reviews to studies with samples of athletes. 
Hu et al. (37), on the contrary, selected tDCS interventions with untrained adults. Alves-Lobão et al. 
(35) additionally restricted their search to articles from 2009 onwards. Finally, these meta-analyses are 
among the most recent and, therefore, included recent articles that earlier reviews missed due to a 
temporal reason. Other divergences in the age criteria of participants (some meta-analyses included 
older adults; (34, 36), stimulation polarity (some meta-analyses included cathodal stimulation; (9, 34–
36), and the inclusion of only endurance and sprint performance during cycling and running tasks in 
Kaushalya et al. (39) had less impact on the overlap of meta-analyses2. At the primary study level, 
although the reviewed meta-analyses included an average of 15 primary studies (4–34), a large 
proportion of primary studies only appeared in one meta-analysis (19 out of 50). This denotes that the 
central group of reviews was built from sharing few primary studies (only 20 primary studies appeared 
at least in three reviews). 

 
2 The fact that only two studies were conducted with older adults and that all cathodal tDCS interventions were 
applied in studies that also used anodal tDCS meant that the divergences of criterias in age and type of intervention 
did not result in differences in study samples. 
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Figure 1. Network graph of the reviewed meta-analyses. Meta-analysis nodes are represented by letters 
(A–I), while the included primary studies are depicted by numerical nodes (1–49). 

Table 1. Results of network analyses. 

Meta-analysis Centrality score Closeness score 

Alix-Fages et al. (2019) 66 1.35 

Alves-Lobão et al. (2022) 11 0.40 

Chinzara et al. (2021) 78 1.50 

Holgado et al. (2019) 66 1.35 

Hu et al. (2022) 24 0.62 

Kaushalya et al. (2022) 31 0.85 

Lattari et al. (2018) 35 0.87 

Machado et al. (2019) 43 0.96 

Maudrich et al. (2022) 10 0.39 
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Transparency and reproducibility practices 

Before analyzing the results of meta-analyses quantitatively, we explored their transparency and 
reproducibility practices (40). Most of the meta-analyses included statements of compliance with 
reporting guidelines (8 out of 9; Figure 2), were free of competing interests (8), indicated the search 
limits (8), the search terms used (9), the full search strategy (exact terms and the Boolean connectors; 
9), the eligibility criteria (9), described in details the collection process of study characteristics (9), 
methods to assess risk of bias in included studies (9), stated the statistical model assumed for the 
synthesis process (9), and identified the software used to carry out the analyses (9)3. However, few 
meta-analyses pre-registered their protocols (2; Alves-Lobão et al., 2022; Machado et al., 2019) and, 
although some of them used a double coding strategy (5), none reported a measure of inter-coder 
agreement. Two meta-analyses based their quantitative synthesis on unstandardized mean differences 
(Hu et al., 2022; Machado et al., 2019), combining measures from a different scale, while the remaining 
meta-analyses used Cohen’s d as the estimate of the effect size. Despite the disparity of formulas 
proposed for calculating Cohen's d depending on the error term used for standardization (17), only two 
meta-analyses specified the formula in the article (39) or in the scripts of analyses (8). Most of the meta-
analyses did not report how they dealt with correlated structures of effects (i.e., multiple outcomes from 
the same sample; 2) and how they combined effect sizes from between- and within-participant designs 
(1 out of 7). They also failed to describe sensitivity analyses to assess the effect of outliers (2), state the 
estimation method of the heterogeneity variance (1), assess the impact of publication bias (4); and make 
available their scripts of analyses when R packages were used (1 out of 3). Finally, even when most of 
the meta-analyses reported some raw data in the paper (8), in most of the cases this report was in the 
article itself and not in a machine-readable format (1). 

 
3 Note that most of the reviewed meta-analyses (6) used Review Manager (Cochrane Collaboration, Oxford, UK; 
(9, 10, 34, 37–39), while three reviews relied on R packages (8, 35, 36). We restricted the assessment of code 
availability and the report of the effect-size formula in the code to these three latter meta-analyses. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 9, 2024. ; https://doi.org/10.1101/2024.03.07.24303915doi: medRxiv preprint 

https://www.zotero.org/google-docs/?UO6RMg
https://www.zotero.org/google-docs/?ukCztr
https://doi.org/10.1101/2024.03.07.24303915
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

Figure 2. Percentage of meta-analyses according to their transparency and reproducibility practices. 

Overall effect of tDCS on exercise performance 

The seven meta-analyses that evaluated the effect of tDCS using standardized effect sizes (i.e., (9, 37) 
used unstandardized mean differences) showed on average an effect of 0.44 (0.22 – 1.44). However, 
among these meta-analyses, the extremely disparate value of the review by Alves-Lobão and 
collaborators (35); 2022; g = 1.44) makes this work an outlier. Excluding this meta-analysis, the average 
meta-analytic effect was reduced substantially: g = 0.27 (0.22–0.34). This outcome is similar in 
magnitude to the overall effect obtained in our own meta-analysis using a multilevel model with all 
primary studies included from the nine meta-analyses. We observed an overall effect of gz = 0.28, 
95%CI [0.18, 0.39], p < .0001, CL = .58, and moderate heterogeneity, I2 = 55.63% (Figure 3A). 

Since multiple decisions could produce variability between the reviewed meta-analyses and ours (e.g., 
the way the individual effect sizes were estimated or the strategy adopted to deal with the dependence 
generated by the inclusion of several outcomes from the same sample), we re-estimated the overall 
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effect of each meta-analysis with the same original samples of primary studies, excluding primary 
studies that did not meet our inclusion criteria this time. On average, the seven reported standardized 
effects departed 0.23 gs units from their corresponding re-estimated effects (0.05 after excluding Alves-
Lobão and collaborators, (35); Figure 3B).  

 

Figure 3. (A) Overall effect of the model with the individual effects of all the included primary studies. 
The final effect and its confidence interval are represented by the location and the width of the diamond, 
while the horizontal line depicts the prediction interval. Filled circles are the individual effects, while 
the black ones represent outlier studies. (B) Relationship between the reported effect sizes of the 
reviewed meta-analyses and the effect sizes estimated in our reanalysis. The dashed diagonal indicates 
the perfect match between the two estimates. 

Outliers and moderating variables 

The moderate heterogeneity observed in our multilevel meta-analysis with all primary studies (I2 = 
56.46%) might be due to the presence of outliers or other sources of variability, such as moderating 
variables. Five outlying studies were detected (4, 41–44) as they contributed with extremely large effect 
sizes (i.e., gz < −0.8 or > 2; see dark points in Figure 2a). After excluding those studies, heterogeneity 
reduced substantially (I2 = 34.08%) while the overall effect size remained significant, gz = 0.26, 95%CI 
[0.17, 0.36], p < .0001, CL = .57. In addition, two factors explained part of the between-studies 
variability: stimulation polarity and intensity (Table 2). While anodal tDCS showed a positive effect 
on exercise performance, gz = 0.28, 95%CI [0.19, 0.38], p < .0001, cathodal tDCS did not have a 
significant impact, gz = 0.03, 95%CI [−0.19, 0.25], p = .713 (Figure 4A). This result was supported by 
a numerical trend toward a greater improvement in performance with anodal stimulation compared to 
cathodal stimulation in studies where the two tDCS protocols were applied to the same sample: gz, anodal 

vs. cathodal = 0.39, 95%CI [−0.08, 0.86], p = .081. For stimulation intensity, higher mA produced a higher 
effect, p = .021 (Figure 4B). 
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Table 2. Results of moderator analyses. 

Moderator Test 

Year β = 0.02, p = .211 

Age β = −0.001, p = .828 

Training status (untrained vs. trained) β = −0.12, p = .236 

Target brain area (prefrontal, temporal, and motor cortex) βprefrontal vs. motor = −0.03, p = .829 

βtemporal vs. motor = −0.13, p = .405 

βprefrontal vs. temporal = 0.10, p = .590 

Stimulation polarity (cathodal vs. anodal) β = −0.26, p = .049 

Stimulation duration β = 0.01, p = .335 

Stimulation intensity β = 0.30, p = .034 

tDCS montage (single, bicephalic, and HD) βHD vs. bicephalic = −0.18, p = .588 

βsingle vs. bicephalic = −0.26, p = .128 

βHD vs. single = 0.08, p = .798 

Electrode surface (in mm) β = 0.006, p = .411 

Return location (extracephalic vs. cephalic) β = −0.16, p = .074 

Concurrence with the task (online vs. offline) β = −0.13, p = .430 

Number of sessions β = 0.04, p = .425 

Type of outcome (strength vs. endurance) β = −0.18, p = .069 

Muscle involved (whole body vs. isolated muscle) β = 0.18, p = .055 
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Figure 4. (A) Difference between the effects of anodal and cathodal tDCS on exercise performance. 
The final effect and its confidence interval are represented by the location and the width of the diamond, 
respectively. (B) Increase in the effect of tDCS with higher stimulation intensity. The dashed line 
denotes the trend estimated by the model. In both panels, filled circles are the individual effects, while 
the black ones represent outlier studies. 

Power analysis and publication bias 

The mean number of participants per study was 13 participants, a sample size that would largely stand 
with insufficient statistical power (< 80%) to test in a one-tailed contrast for a target effect such as the 
observed effect in our comprehensive meta-analysis (approximated to gz = 0.30 for the sake of 
simplicity). For an effect of that size, most of the studies achieved a power of less than 40% (48 out of 
50; Figure 5A) and only one study reached a power larger than 50%, (3); 54%). One of the reasons for 
this limitation could have been the grounding of the primary studies’ power analysis on the outcomes 
of other studies with disproportionately large effects (e.g., (11, 45, 46). Thus, in a closer examination 
of the accumulation of evidence in this literature, it can be observed that the average final effect of the 
published meta-analyses and the effects of individual studies have become increasingly closer to the 
effect observed in our meta-analysis over the years (Figure 5B). However, this evidence has not been 
translated to proper power analyses in the primary studies. The studies that performed power analyses 
to estimate their sample sizes (20 out of 50) have selected increasingly larger target outcomes over time 
and, whereas meta-analyses and accumulated evidence suggested an uncorrected effect size of 0.30, 
primary studies have based their estimation on larger effect sizes (approximated to gz = 0.80, on 
average). In addition to reducing the likelihood of observing a significant effect if the effect truly exists, 
low statistical power also reduces the likelihood that a statistically significant result reflects a true effect 
(47). When a small study observed a significant and large effect, it is more probable that the result did 
not represent a true effect and that its estimated magnitude was inflated. 
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Figure 5. (A) Sample size distribution of the included primary studies and the achieved statistical power 
for an effect of gz = 0.30 and a one-tailed test. (B) Evolution of the average final effect from primary 
studies (estimated by our multilevel meta-analyses over the years), the average final effect of the 
published meta-analyses, and the reference effects used by primary studies to conduct power analyses. 
(C) Funnel plot of the individual effects. The altitude of the solid funnel denotes the unadjusted effect, 
while the altitude of the dashed funnel denotes the adjusted one. Filled circles represent the individual 
effects. 

Complementarily, we assessed publication bias after taking into account the identified sources of 
heterogeneity (i.e., outliers and moderators). We tested for FAT with a multilevel model that included 
standard error as an additional moderator. Our FAT model showed a numerical trend of standard error 
to explain part of the remaining heterogeneity (β = 0.62, p = .056; Table 3) and the adjusted effect of 
tDCS on exercise performance became non-significant, Fisher’s z = −0.04, 95%CI [−0.18, 0.10], p = 
.539, CL = .48 (Figure 5C). In contrast, 3PSM did not detect significant evidence of publication bias, 
χ2(1) = 1.00, p = .317, and the publication-bias corrected effect was significant, gz = 0.21, 95%CI [0.04, 
0.37], p = .017, CL = .56. However, when we applied robust Bayesian meta-analysis to integrate both 
publication bias assessment approaches into a single model-averaged estimate, the model suggested 
moderate evidence of publication bias, BFpb = 3.10, and inconclusive evidence of a positive effect, BF10 
= 0.99, for a posterior mean estimate of Fisher’s z = 0.05, 95%CrI [−0.02, 0.10], CL = .53.  
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Table 3. Results of methods of publication bias. 

Method Publication bias test Corrected effect 

FAT and PET-PEESE β = 0.64, p = .056 Fisher’s z = −0.04, 95%CI [−0.18, 0.10], p = .539 (or 

gz = −0.08, 95%CI [−0.37, 0.20], CL = .48) 

3PSM χ2(1) = 1.00, p = .317 gz = 0.21, 95%CI [0.04, 0.37], p = .017, CL = .56 

RoBMA BFpb = 3.10 Fisher’s z = 0.05, 95%CrI [−0.02, 0.10], BF10 = 0.99 (or 

grm = 0.10, 95%CrI [−0.04, 0.20], CL = .53) 

Influence of analytical decisions 

The differences in the multiple analytic steps the meta-analyses adopted could largely influence their 
outcomes. The meta-analyses differed, for example, in the approach used to deal with the within-effects 
dependence, whether they addressed (or not) outlying studies, the use (or not) of influential moderators 
and methods for assessing publication bias to adjust the final effect. To examine the impact of all these 
decisions on the meta-analytic outcome, we conducted an exploratory (not pre-registered) specification 
curve analysis. The analysis revealed that the final effect could vary greatly depending on the effect 
size formula used and analytic decisions (from performance impairment, g = −0.23, to performance 
enhancement, g = 0.33; Figure 6). Common specifications in the reviewed meta-analyses, such as not 
dealing with within-study dependence using univariate models (8 out of 9), not identifying outliers (7), 
or not correcting for publication bias (5) led to higher effects and more likely to be significant. In 
general, the uncorrected effect of tDCS was larger when the formula used was gz instead of grm or gs 
because gz takes into account the correlation between repeated measures (i.e., higher between-measure 
correlation leads to a decrease in the standard deviation of the difference score used to standardize and 
a subsequent increase of d for the same difference score). Therefore, our specification curve analysis 
highlighted the large impact of analytic decisions on the final effect and that most of the meta-analyses 
opted for specifications that tend to find more positive outcomes. 
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Figure 6. Specification curve of meta-analytic models. The summary effect size of the target studies 
(and its 95%CI) varied across the multiple combinations of analytic decisions. Empty circles represent 
the effects resulting from models without publication-bias adjustment, whereas filled circles show the 
corrected summary effect. Light-gray shades distinguish non-significant results from significant ones. 

Discussion 

Within this umbrella review, we scrutinized the assertion that tDCS holds a potential ergogenic impact 
on exercise performance. Through a comprehensive re-analysis of 9 meta-analyses, comprising 50 
individual studies, encompassing 101 effect sizes, and involving 683 participants, there was no 
conclusive evidence to support the hypothesis that transcranial brain stimulation results in discernible 
physical performance benefits in healthy adults. Our findings underscore the notion that the accelerated 
proliferation of studies and meta-analyses in this domain in recent years lacks the corresponding rigor 
and substantive evidence needed to definitively support the purported ergogenic effects on exercise 
performance. We have identified that the inconclusive evidence stems from both theoretical and 
methodological factors, a clarification of which is provided below.  

From a theoretical point of view, the rapid advancement of this brain stimulation technology has brought 
the concept of “brain-doping” to the forefront of discussions (1, 48, 49). Nevertheless, the mechanisms 
underlying the purported effects remain unclear, with much of the impact ascribed merely to tDCS 
influencing the brain. A critical issue with this assertion lies in its foundational assumption that specific 
brain areas play a fundamental role in exercise performance. Although it might seem intuitive, the 
existence of a specific brain region responsible for regulating effort, task execution, or the perception 
of effort is not conclusively established yet, and the evidence remains unclear (50–52). The majority of 
primary studies in this field have utilized motor cortex stimulation to enhance performance with the 
foundational premise that this form of stimulation holds the potential to heighten corticospinal 
excitability, thereby amplifying the neural drive to muscles (2). This enhancement, in turn, is anticipated 
to optimize the ability for force generation while concurrently postponing the onset of fatigue or 
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reducing pain perception (41). In contrast, other multiple studies chose the prefrontal cortex as the 
stimulation site (3, 53). Certain models propose that the prefrontal cortex serves as a regulatory 
framework that consolidates information encountered during physical activity, both centrally and 
peripherally, exercising top-down control (54). The prefrontal cortex is suggested to integrate afferent 
signals from the anterior cingulate cortex and the orbitofrontal cortex, associated with motivational and 
emotional processing (55). Nevertheless, the potential implications for performance remain uncertain 
when considering whether merely augmenting excitability or inhibiting pain in a typical state can have 
a discernible impact (56). Another aspect that has so far eluded extensive discussion in the literature, 
yet could bear notable significance, pertains to the participant's condition. Conventionally, stimulation 
is administered during periods of rest, before exercise when fatigue is absent or there is no sensation of 
pain. An intriguing possibility arises—could stimulation exert a more substantial effect post-exercise? 
This consideration speculates on the prospect of stimulation serving as an excitability mechanism for 
accelerated recovery, potentially enabling individuals to perform more promptly following physical 
exertion (or during exhaustive exercise). 

Given the inconclusive nature and divergent outcomes associated with tDCS, there has been a 
proliferation of alternative approaches proposed to enhance its efficacy. Many unanswered questions 
persist, including considerations about the optimal timing of stimulation, the participant's cognitive 
state, and the most effective intensity. Criticism within this technique arises, as doubts are cast on the 
effectiveness of single-electrode stimulation. The uncertainty lies in how the electrical current disperses 
across the entire skull (57). To overcome this constraint, the utilization of HD-tDCS has been suggested 
as a means to enhance focus during stimulation. This approach aligns with the principles of traditional 
tDCS but employs additional electrodes with reduced sizes and precise placements to intricately target 
specific brain regions. However, exploration of this avenue in the literature remains limited, with only 
four studies included in our umbrella review employing this montage and our moderator analysis did 
not show that the montage impacted the overall effect. Likewise, insights from related fields suggest 
that conducting stimulation concurrently with task performance, known as online stimulation, might 
enhance its effects, benefiting on the brain's increased susceptibility during task engagement (58, 59). 
In other words, when the brain is actually engaged in the target task is when one might expect an effect 
(60). Nevertheless, within the scope of this comprehensive analysis, only five primary studies have 
explored this particular aspect and, our moderator analysis did not indicate any discernible influence 
from this factor. 

From a methodological perspective, we first delve into our exploratory analysis of the transparency and 
reproducibility practices of the meta-analyses included in this umbrella review and their potential 
impact on the results (40). Although the decision concerning how the effect size is estimated might have 
an enormous impact on the results and conclusions of meta-analyses, only 2 of 9 meta-analyses included 
the formula used to calculate the effect size (8, 39). This issue was also underscored in the amalgamation 
of effect sizes without accounting for study design distinctions, such as between- versus within-
participant designs. Moreover, many meta-analyses incorporated multiple outcomes from the same 
sample, yet they did not specify how correlated structures from the same participants were addressed 
or how diverse outcomes were synthesized. Our specification curve analysis emphasizes that meta-
analyses involve methodological choices that can significantly impact the ultimate results. By exploring 
various model specifications, we can gather insights into the robustness of our findings. The chosen 
decision can lead to a wide-ranging summary effect, ranging from indicating a negative impact of tDCS 
on exercise performance to suggesting a positive effect. However, most of the previous meta-analyses 
chose specifications for data preprocessing and analyses that are more prone to find a positive effect 
(i.e., lack of assessment of publication bias, no consideration of the influence of outliers and moderator 
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studies to account for heterogeneity and conduct analyses of publication bias after removing these 
sources of variability, failure to deal with dependence between effect sizes from the same sample, and 
the use of a between-groups formula of the effect size for within-participant designs). It is evident that 
the conclusions drawn from these meta-analyses are constrained by these methodological 
considerations. 

Furthermore, it is important to note that while meta-analyses might offer a valuable approach to 
addressing the issue of low statistical power, they should not be taken as the ultimate answer to the 
debate. The effectiveness of meta-analyses in overcoming the limitations of individual studies heavily 
relies on the quality of the reports incorporated into the analysis. Indeed, a well-designed, adequately 
powered, and thoroughly researched individual study holds the potential to provide more insightful and 
reliable information to determine the causal role of tDCS under specific conditions than the collective 
body of meta-analyses published so far. However, our power analysis has unveiled a concerning trend 
within the individual studies encompassed by our umbrella review. On average, these studies 
demonstrated less than 40% statistical power to detect the purported summary effect size (approximated 
to gz = 0.30). This issue can be attributed to various factors. Notably, a mere 20 out of the 50 studies 
included in our review conducted a power analysis (or any other justification, refer to Supplementary 
Material 3). Moreover, many of them selected extreme effect sizes (e.g., (11, 45, 46) as a reference for 
their power analysis, even when for some cases reviews and meta-analyses suggesting a substantially 
smaller effect (e.g., (38) were available by that moment. Another noteworthy issue we identified is the 
misapplication of effect types. Some primary studies utilized metrics like η2 or Cohen's d to determine 
sample size, despite their experimental designs not aligning well with such measures. This mismatch 
suggests a potential source of inconsistency in the reported power and, consequently, the reliability of 
the findings. 

In summary, our findings underscore that the current body of evidence from both individual studies and 
meta-analyses exploring the impact of tDCS on exercise performance does not conclusively substantiate 
the notion that tDCS holds the potential to enhance exercise performance outcomes. In the most 
optimistic scenario, the estimated effect stands at gz = 0.28 (CL = .58; i.e., the probability that a 
randomly sampled score from the tDCS condition is greater than the sham condition is 8% above the 
chance level), a value that undergoes substantial reduction upon adjusting for publication bias. 
However, the inherent low power to detect this effect across all primary studies included in this review 
raises skepticism about the practical utility of tDCS. While the field has witnessed a surge of interest in 
recent years, it remains challenging to unequivocally affirm its usefulness. To address this uncertainty, 
it is imperative to develop more refined hypotheses and methodologies for future investigations in this 
domain. 
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