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Abstract 

Obsessive-compulsive disorder (OCD) affects ~1% of the population and exhibits a high SNP-

heritability, yet previous genome-wide association studies (GWAS) have provided limited 

information on the genetic etiology and underlying biological mechanisms of the disorder. We 

conducted a GWAS meta-analysis combining 53,660 OCD cases and 2,044,417 controls from 

28 European-ancestry cohorts revealing 30 independent genome-wide significant SNPs and a 

SNP-based heritability of 6.7%. Separate GWAS for clinical, biobank, comorbid, and self-report 

sub-groups found no evidence of sample ascertainment impacting our results. Functional and 

positional QTL gene-based approaches identified 249 significant candidate risk genes for OCD, 

of which 25 were identified as putatively causal, highlighting WDR6, DALRD3, CTNND1 and 

genes in the MHC region. Tissue and single-cell enrichment analyses highlighted hippocampal 

and cortical excitatory neurons, along with D1- and D2-type dopamine receptor-containing 

medium spiny neurons, as playing a role in OCD risk. OCD displayed significant genetic 

correlations with 65 out of 112 examined phenotypes. Notably, it showed positive genetic 

correlations with all included psychiatric phenotypes, in particular anxiety, depression, anorexia 

nervosa, and Tourette syndrome, and negative correlations with a subset of the included 

autoimmune disorders, educational attainment, and body mass index.. This study marks a 

significant step toward unraveling its genetic landscape and advances understanding of OCD 

genetics, providing a foundation for future interventions to address this debilitating disorder. 
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Introduction 

Obsessive-compulsive disorder (OCD) is a chronic psychiatric illness that affects approximately      

1% of the population (Fawcett, 2020) and is characterized by obsessions and compulsions that 

vary in type and severity as well as over time across individuals. OCD is responsible for 

profound personal and societal costs (World Health Organization, 2008), including a substantial 

risk of suicide (~10 times higher than the population prevalence; Fernandez de la Cruz, 2017) 

as well as an increase in general mortality (Meier, 2016). OCD is highly heritable, with twin-

based heritability estimates ranging between 27-47% in adults and 45-65% in children (Blanco-

Vieira et al., 2023; Burton et al., 2018; Pauls, 2008; van Grootheest et al., 2005). The SNP-

based heritability of OCD has been reported to be between 28% and 37% (SEs between 4-11%; 

Mahjani, 2022a; IOCDF & OCGAS et al., 2018; Davis et al., 2013), with heritability estimates for 

childhood-onset OCD at the higher end of the range, in line with findings from twin studies.  

     Two preliminary iterations of the OCD GWAS meta-analysis presented here, both containing 

a subset of the data included in this analysis, showed robust evidence of association of common 

genetic variation with OCD (Strom et al., 2021, Strom et al., 2024), and SNP-based heritabilities 

of 8.5% (SE = 0.4%, assuming a 3% population prevalence) and 16% (SE = 1.2%, assuming a 

2% population prevalence). The first GWAS (Ncases = 14,140, Ncontrols = 562,117; Strom et 

al., 2021) found one genome-wide significant SNP associated with OCD, while the second 

(Ncases = 37,015, Ncontrols = 948,616; Strom et al., 2024) identified 15 independent genome-

wide significant SNPs. Both studies found genetic correlations with other psychiatric disorders 

and traits and results from tissue enrichment and single-cell enrichment analysis provided 

preliminary insights into brain regions and cell types involved in OCD susceptibility. Multiple 

cortical regions, the amygdala, and hypothalamus, as well as 12 cell types (all neurons) were 

linked to OCD. Although representing valuable initial steps, it is evident that further expansion of 

the sample size in genetic studies for OCD is necessary for a more comprehensive 
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understanding of the underlying genetic etiology, its genetic relationships with other related 

disorders, and to begin elucidating the biological mechanisms underlying OCD susceptibility.  

 

The current study combines the data from the two preliminary OCD-GWASs described above 

and adds additional cohorts (~9,000 cases). This results in the largest and most well-powered 

GWAS of OCD to date, with a ~20-fold increase of OCD-cases compared to the previous 

largest published OCD GWAS (IOCDF and OCGAS et al., 2018) Based on the results from the 

meta-analysis, we conducted secondary analyses, including positional and functional fine-

mapping of SNPs and genes, structural equation modeling to examine possible genetic 

differences in sample ascertainment across cohorts, protein and transcriptome-wide association 

analyses, single-cell enrichment, and genetic correlations with other traits. These results provide 

more detailed insight into the genetic underpinnings and biology of OCD.  

Results 

GWAS meta-analysis of OCD identifies 30 independent genome-
wide significant variants 
We conducted a GWAS meta-analysis of 28 European-ancestry OCD case-control cohorts, 

comprising 53,660 cases and 2,044,417 controls (effective sample size of ~210,000 

individuals). Ascertainment of the OCD cases varied across cohorts: OCD diagnosis was either 

determined a) by a healthcare professional in a clinical setting (18 cohorts, N = 9,089 cases), b) 

from health records or biobanks (7 cohorts, N = 9,138 cases), c) in a clinical setting or from 

health records with the additional characteristic that all OCD cases were primarily collected for 

another psychiatric disorder they comorbidly exhibited (3 cohorts, N = 5,266 cases), or d) by 

self-reported clinical diagnosis in a consumer-based setting (23andMe, Inc., N = 30,167 cases). 
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Cohort details, including phenotypic assessment, quality control, and individual cohort GWAS 

analyses are in Supplementary Note 1 with an overview in Supplementary Table S1. We 

identified 30 independent SNPs (see Supplementary Note 2 for a definition of independence) 

among the 1,672 SNPs that exceeded the genome-wide threshold for significance (� �

5�10���; Manhattan plot in Figure 1, regional association plots and forest plots in 

Supplementary Figures S1-S30, and a list of all independent genome-wide significant SNPs in 

Table 1 with additional details in Supplementary Table S2 and S3). The independence of the 

30 lead SNPs was subsequently validated using conditional and joint analysis (GCTA-COJO) 

(Yang et al., 2012) (Supplementary Table S4). An analysis of the X-chromosome, conducted in 

a subset of the data for which this information was available (23andMe dataset, N = 30,167), 

yielded no significant associations (see Supplementary Note 3 for details). Of the 15 genome-

wide significant SNPs reported in pre-prints previously (Strom et al., 2021; Strom et al., 2024), 

13 were genome-wide significant in the current GWAS, with the remaining two showing 

suggestive significance (� � 5.23�10���  and � � 2.2�10���; Supplementary Table S5).   

 

No statistically significant heterogeneity was observed across individual cohorts for the 30 

genome-wide significant SNPs, as assessed with Cochran’s Q-test (see Supplementary 

Figure S31), the I² statistic, and GenomicSEM’s (Grotzinger et al., 2019) ����-statistic (see 

Supplementary Table S2). Additional genome-wide analyses of samples grouped by clinical, 

comorbid, biobank, and 23andMe (Supplementary Table S3, Supplementary Figures S32-

S36) showed little evidence of sample ascertainment impacting our results, as demonstrated by 

moderate to high genetic correlation estimates across the subgroups (between 0.63, SE = 0.11 

for biobanks and comorbid, and 0.92, SE = 0.07 for 23andme and comorbid, see 

Supplementary Table S6), and an excellent fit for a one-factor GenomicSEM model of the four 

subgroups (Supplementary Table S7 and Supplementary Figure S37). See Supplementary 
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Note 4 for analyses details. The SNP-heritability (assuming a 1% population prevalence) was 

6.7% (SE = 0.3%), with slightly higher estimates for the clinical (����
�  = 16.4%, SE = 1.5%) and 

comorbid (����
�  = 13.3%, SE = 1.7%) subgroups (see Supplementary S1 for all sub-group 

heritability estimates). 

 

Gene-based findings  

Positional and functional QTL gene mapping 

We identified risk genes for OCD using six positional and functional QTL gene-based mapping 

approaches. Positional mapping was performed with mBAT-combo (Li et al., 2023). Functional 

eQTL mapping was performed with Transcriptome-wide Association Study (TWAS) (Gusev et 

al., 2016) using PsychENCODE gene expression weights (Gandal et al., 2018), and Summary-

based Mendelian Randomization (SMR) (Zhu et al., 2016) using whole blood eQTLGen (Võsa 

et al., 2021) and MetaBrain (Qi et al., 2018) datasets. Functional protein QTL (pQTL) mapping 

was done using a protein-wide association study (PWAS) of human brain protein expression 

panels (Wingo et al., 2021). Finally, we used PsyOPS, which combines positional mapping with 

biological annotations, to further prioritize risk genes within genome-wide significant loci. We 

identified 207 significant (Bonferroni correction, P < 2.67 × 10-6) genes with mBAT-combo, and 

24 genes using TWAS (P < 4.76 × 10-6), 14 of which were conditionally independent. The SMR-

eQTLGen analysis identified 39 significant risk genes (P < 4.28 × 10-6), and the SMR-MetaBrain 

analysis identified 14 risk genes (P < 9.23 × 10-6). The PWAS identified 3 significant genes (P < 

3.39 × 10-5), while PsyOPS prioritized 29 genes. In total, 251 genes were significantly 

associated with OCD through at least one gene-based approach, and 48 were implicated by at 

least 2 methods. For details about mapping approaches, the respective QTL data used in the 
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analyses, and individual results for each gene-based approach, refer to the Online Methods, 

Supplementary Note 6, and Supplementary Tables S8-S13.  

 

From the list of 48 genes implicated by at least 2 approaches, we prioritized likely causal genes 

for OCD using colocalization (TWAS-COLOC) and SMR-heterogeneity in dependent 

instruments (SMR-HEIDI) tests. Colocalization was used to identify significant TWAS 

associations where the underlying GWAS and eQTL summary statistics are likely to share a 

single causal variant. Similarly, HEIDI was used to select SMR associations where the same 

causal variant affects gene expression and trait variation. 25 of the 48 genes that were 

implicated in OCD by at least two gene-based tests were also significant in either the TWAS-

COLOC or SMR-HEIDI tests, implying causality (Figure 2A). Only two of the 25 genes were 

prioritized by both TWAS-COLOC and SMR-HEIDI, the WD repeat domain 6 gene (WDR6; 

implicated by mBAT-combo, TWAS, and SMR) and the DALR Anticodon Binding Domain 

Containing 3 gene (DALRD3; also implicated by mBAT-combo, TWAS, and SMR). Another 

gene of interest, Catenin Delta 1 gene (CTNND1), was implicated by 3 of our 5 approaches 

(mBAT-combo, TWAS, PWAS) and showed evidence for colocalization. Only three genes were 

implicated in the PWAS, of which CTNND1 was the only gene that was implicated in both the 

PWAS and the TWAS. In the PWAS, downregulation of CTNND1 protein expression in human 

dorsolateral prefrontal cortex was significantly associated with OCD risk (� � �4.49, � �

7.11�10��	; Supplementary Table S12), consistent with the downregulation of CTNND1 gene 

expression in prefrontal cortex in the TWAS (� � �6.86, � � 6.90�10�
�; Supplementary 

Table S9).  

Tissue and cell type enrichment analysis 
After mapping significantly associated SNPs from the GWAS meta-analysis to likely causal 

genes, we explored which tissues or cell types showed enriched gene expression of OCD 
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associated genetic signals. We performed tissue and cell type enrichment analysis using a 

previously described approach (Bryois et al., 2020) on published human gene expression 

datasets from bulk tissue RNA-Seq data from GTEx and single-cell RNA-sequencing data from 

the adult mouse central and peripheral nervous system (Zeisel et al., Cell, 2018). We found 

enrichment of OCD GWAS signals in 6 out of 13 human brain tissue types in GTEx, but no 

enrichment in human peripheral tissues (Figure 2B, Supplementary Table S14). In the adult 

mouse central and peripheral nervous system, we found enrichment of OCD GWAS signals in 

41 out of 166 tested cell types from mouse brain using the MAGMA gene-set enrichment test. 

Strong enrichment of OCD GWAS signal was especially observed in excitatory neurons of 

hippocampus and cerebral cortex, as well as D1 and D2 medium spiny neurons (Figure 2C, 

Supplementary Table S15). 

Genetic relationship of OCD with other phenotypes 
Using phenome-wide association analysis, we examined whether the 30 independent OCD-

associated variants identified by our GWAS meta-analysis have previously been associated with 

other phenotypes (see Supplementary Tables S16a-d for look-ups in four, partially overlapping 

GWAS-databanks and Table 1 for highlighted associations). 22 of the 30 variants have 

previously been associated with other phenotypes, including psychiatric disorders or traits such 

as SCZ (seven SNPs), depression/MDD (two SNPs), bipolar disorder (BD, one SNP), and 

neuroticism traits (seven SNPs). In addition, associations within other phenotypic domains have 

been previously reported; e.g., seven SNPs have been reported to be associated with 

educational attainment, and eight with body fat mass or body mass index.  

We further used bivariate linkage-disequilibrium score regression (LDSC) to investigate the 

extent of genetic correlations between OCD and 112 previously published GWASs 

encompassing psychiatric, substance use, cognition, socioeconomic status (SES), personality, 

psychological, and neurological phenotypes, among others (Figure 3). 65 phenotypes showed a 
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significant correlation with OCD after false-discovery rate (FDR) correction for multiple testing. 

OCD was significantly positively correlated with all tested psychiatric phenotypes, the highest 

correlations being with anxiety (ANX, �� �  0.70, 95% CI �0.63, 0.77�, ��
�  � 4.26�10��	 , 

followed by depression (DEP, �� �  0.60, CI � 0.04, ��
�  � 7.05�10�
�	), anorexia nervosa 

(AN, �� �  0.52, 95% CI �0.46,0.58�, ��
�  � 1.99�10���), Tourette syndrome (TS, �� �  0.47, 

95% CI �0.38, 0.56�, ��
�  � 6.64�10���), and post-traumatic stress disorder (PTSD, �� �  0.48, 

95% CI �0.47, 0.49�, ��
�  � 8.07�10�
�) (Figure 3). Significant positive genetic correlations 

were also obtained for neuroticism (�� �  0.53, 95% CI �0.49, 0.57�, ��
�  � 1.95�10�
��), in 

particular for the worry subcluster (�� �  0.64, 95% CI �0.59, 0.69�, ��
�  � 3.19�10�
��), and all 

individual items belonging to the worry subcluster, with slightly lower estimates for the 

depressive sub-cluster (�� �  0.35, 95% CI �0.33, 0.37�, ��
�  � 2.94�10��	). Suicide attempt 

(�� �  0.40, 95% CI �0.32,0.48�, ��
�  � 1.30�10��
), history of childhood maltreatment (�� �

 0.37, 95% CI �0.29, 0.45�, ��
�  � 3.56�10���), and tiredness (�� �  0.36, 95% CI �0.29, 0.43�, 

��
�  � 5.52�10���) were also notable for strong positive associations with OCD. Of the 

assessed neurological disorders, OCD only significantly correlated with migraine (�� �  0.15, 

95% CI �0.8, 0.22�, ��
�  � 1.94�10���).  Some auto-immune disorders, such as Crohn’s 

disease (�� �  �0.13, 95% CI ��0.18, �0.08�, ��
�  � 4.79�10��	), ulcerative colitis (�� �  �0.14, 

95% CI ��0.22, �0.06�, ��
�  � 6.05�10���), and inflammatory bowel disease (�� �  �0.14, 

95% CI ��0.20, �0.08�, ��
�  � 1.16�10���) showed negative correlations with OCD (see Figure 

3, Supplementary Table S17, and Supplementary Note 5 for a more in depth discussion of all 

significant genetic correlations, as well as Supplementary Table S18 and Supplementary 

Figure S38 and S39 for sub-group specific genetic-correlation estimates).  
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Discussion 

The OCD GWAS reported here, comprising over 53,000 cases, identified 30 independent 

genome-wide loci. Common SNPs explained 6.7% of the variation in OCD risk in our meta-

analysis (LDSC with an assumed population prevalence of 1%), a significant reduction from the 

28-37% reported previously (Davis et al., 2013; Stewart et al., 2013; Mattheisen et al., 2015; 

IOCDF & OCGAS et al., 2018; Mahjani et al., 2022a),  Nevertheless, heritability estimates were 

higher for the clinical (16.4%) and comorbid subgroups (13.3%). The current estimates are 

comparable to those of other psychiatric and substance use disorders, with SNP-h2 estimates 

ranging between 9 and 28% (Derks et al., 2022). Similar to ADHD (Demontis et al., 2019; 2023), 

depression (Howard et al., 2018; Wray et al., 2019; Cai et al., 2020; Als et al., 2023), and other 

psychiatric disorders, expanding the phenotype definition in OCD has increased genetic 

heterogeneity, potentially accounting for the observed decrease in SNP-h² compared to earlier 

studies with more homogeneous data.  

 

The most significant SNP rs78587207 (� �  5.28�10�
�) identified in the GWAS analysis is 

located on chr11q12.1 and has been previously associated with several traits, most noteworthy 

with some neuropsychiatric phenotypes, including SCZ (� �  1.26�10��; Pardiñas et al., 2018), 

depressive symptoms (� �  2.74�10�

; Baselmans et al., 2019), and neuroticism (� �

 2.96�10�

; Baselmans et al., 2019). Gene-based analyses identified four putative causal 

genes within this locus in the current analysis. The closest gene to rs78587207 is catenin delta 

1 (CTNND1), which encodes the cell adhesion molecule p120-catenin. This gene was 

associated with OCD using three gene-based tests (mBAT-combo, TWAS, and PWAS) and we 

found strong evidence for colocalization of the TWAS signal for CTNND1 in dorso-lateral 

prefrontal cortex (dlPFC) samples from the PsychENCODE consortium. dlPFC has been 
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consistently implicated in the neural circuitry of OCD as well as in compulsivity more broadly as 

part of the cortico-striatal-thalamo-cortical circuitry (van den Heuvel et al., 2016; Shephard et al., 

2021). The protein product of CTNND1 is a regulator of cell-cell adhesion (Davis et al., 2003) 

and plays a crucial role in gene transcription, Rho GTPase activity, and cytoskeletal 

organization (Yanagisawa et al., 2008; Daniel et al., 1999; Ishiyama et al., 2010). Other credible 

causal genes in the locus include cleavage factor polyribonucleotide kinase subunit 1 (CLP1), 

Thioredoxin Related Transmembrane Protein 2 (TMX2), and Zinc Finger DHHC-Type 

Palmitoyltransferase 5 (ZDHHC5). Rare genetic mutations in CLP1 are associated with 

pontocerebellar hypoplasia type 10, a very rare autosomal recessive neurodegenerative 

disease characterized by brain atrophy and delayed myelination resulting in intellectual disability 

(Schaffer et al., 2014). TMX2 is associated with increased risk of neurodevelopmental disorders 

with microcephaly, cortical malformations, spasticity, and congenital nervous system 

abnormalities (Vandervore et al., 2019). ZDHHC5, is broadly expressed in the brain, including 

the frontal cortex. ZDHHC5 has not been implicated in brain development but has been linked to 

Lung Acinar Adenocarcinoma and Lung Papillary Adenocarcinoma in prior studies (Zhang et al., 

2021).  

 

We identified a total of 25 credible causal genes based on robust evidence using multiple 

positional and functionally-informed gene-based approaches (see Figure 2A). Notably, 

DLGAP1, which has been previously suggested to be implicated in OCD pathogenesis 

(Mattheisen et al., 2015, IOCDF & OCGAS et al., 2018), was not identified in either the GWAS 

or in the gene-based analyses.  Of the 25 genes that were implicated, 15 were within 6.5 kb of a 

SNP that surpassed genome-wide significance in the meta-analysis. In addition to the four 

genes located on chr11q12.1 near the top SNP in the meta-analysis, several others identified in 

the gene-based analyses are of particular interest. These genes include WDR6 and DALRD3, 

which had the strongest evidence from the gene-based analyses. These genes lie in a gene-rich 
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region on chr3p21.31, which in addition to harboring multiple genome-wide significant SNPs in 

our analysis, has been previously associated with a broad range of psychiatric disorders and 

related traits, including SCZ (Pardiñas et al., 2018), well-being (Watanabe et al., 2019), and the 

worry-subcluster of neuroticism (Nagel et al., 2018).  

 

The gene WDR6 (WD repeat domain 6) is broadly expressed in the brain, particularly the 

hypothalamus. Its protein product is involved in cell growth arrest (Xie et al., 2007), and recent 

studies have implicated the gene in anorexia nervosa and Parkinson’s disease (Adams et al., 

2023; Kia et al., 2021). DALRD3 (DALR Anticodon Binding Domain Containing 3) is located on 

chromosome 3 in the same region as WDR6. DALRD3, when fully disrupted, has been 

implicated in a form of epileptic encephalopathy with associated developmental delay (Lentini et 

al., 2020). In addition, a third gene in the 3p21 locus, CELSR3 (Cadherin EGF LAG seven-pass 

G-type receptor 3), encodes a protocadherin that is highly expressed in the developing basal 

ganglia (Wu et al., 2022). Multiple loss-of-function mutations in CELSR3 have been associated 

with Tourette syndrome, which co-occurs with OCD in 10-20% of patients (Willsey et al., 2017; 

Zhao et al., 2020). 

 

Four other genes identified through these analyses are located in the MHC locus, a region on 

chromosome 6 that plays a major role in the adaptive immune system and has been repeatedly 

linked to major psychiatric disorders based on convergent evidence from genome-wide 

association, transcriptomic, and imaging genetics studies (Debnath et al., 2018). The newly 

identified MHC association for OCD is notable as both genetic and epidemiological studies 

show a relationship between autoimmune disorders and OCD (Mataix-Cols et al., 2018; Tylee et 

al., 2018, Westwell-Roper et al., 2019). These studies suggest that individuals with variants in 

these genes may carry both a propensity to infections and/or autoimmune disorders and liability 

to OCD, perhaps via genetic pleiotropy (Zhang et al., 2022). Further, specific types of OCD 
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have may themselves have an autoimmune origin (pediatric acute-onset neuropsychiatric 

disorders associated with streptococcus (PANDAS), and Pediatric acute-onset neuropsychiatric 

syndrome (PANS); Swedo et al., 1998; Wilbur et al., 2019). Nevertheless, we were surprised to 

discover several negative genetic correlations between OCD and some autoimmune disorders 

such as Crohn’s disease, ulcerative colitis, and inflammatory bowel disease in our analyses, 

suggesting that there is heterogeneity (and perhaps pleiotropy) in the genetic relationships 

between autoimmune disorders and OCD.  

 

Tissue and cell type enrichment analysis revealed significant enrichment of OCD SNP-

heritability in several tissues and cell types, with the strongest enrichment in excitatory neurons 

of hippocampus and cerebral cortex, and in Dopamine D1 Receptor (D1R)-positive and 

Dopamine D2 Receptor (D2R)-positive medium spiny neurons (MSNs) in the striatum.  MSNs 

represent the major cell types in the striatum, in which D2R-positive MSNs promote movement 

and motivation, while D1R-positive MSNs decrease movement and drive (Fieblinger et al., 

2021). In addition, Dopamine D2 Receptor antagonists, e.g., haloperidol and risperidone, have 

been demonstrated to be effective augmenting medications in treatment-refractory OCD 

(Komossa et al., 2010). These findings are consistent with and build on previous work linking 

various neuronal cell types to psychiatric and cognitive phenotypes, in particular, SCZ, BD, 

educational attainment, and cognitive performance (Olislagers et al.; 2022). 

 

The functional and positional gene-based analyses, and in particular the tissue and cell type 

enrichment findings, align with what is known about the neural circuitry and circuit level 

dysfunction in OCD that has been identified through neuroimaging and deep brain stimulation 

studies. For example, frontal cortex and anterior cingulate cortex, which were enriched in our 

tissue-based analyses, as well as hippocampus and striatum, which were implicated in our cell-

based analyses, are among the regions that have been consistently implicated in neuroimaging 
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studies of OCD (Boedhoe et al., 2018; Bruin et al., 2020; van den Heuvel et al., 2016, 2022). 

Enrichment in medium spiny neurons (MSNs) in striatum is consistent with their role in the 

observed aberrant circuitry in OCD, where the medium spiny neurons D1 project to the globus 

pallidus interna and substantia nigra in the direct pathway, and the D2-type MSNs project to the 

globus pallidus externa in the indirect pathway (Haber, 2016). 

 

Our analyses of the shared genetic risk between OCD and other psychiatric disorders provides 

further insights into the etiology of OCD. In line with previous observations (Derks et al., 2022; 

Romero et al., 2022), we found significant genetic correlations between OCD and various 

psychiatric disorders and traits. The strongest genetic correlations were observed for anxiety 

disorders, depression, and anorexia nervosa, all of which are highly comorbid with OCD 

(Sharma et al., 2021). This aligns with previous findings from cross-disorder analyses 

suggesting a shared genetic susceptibility among most psychiatric disorders (Derks et al., 2022; 

Lee et al., 2019; Grotzinger et al. 2019). Future studies can investigate to what extent genetic 

overlap is explained by true genetic pleiotropy vs. alternative mechanisms such as shared 

diagnostic criteria or mediation through unmeasured traits (Martin et al., 2017). A notable 

exception is our finding that risk variants for OCD are protective for alcohol dependence 

(Walters et al., 2018), which is at odds with epidemiological evidence strongly linking OCD and 

alcohol related disorders (Virtanen et al. 2022). Though not all epidemiological evidence is 

consistent; a large review paper (Sharma et al., 2021) reported a lower than expected lifetime 

comorbidity of substance use disorders in OCD (7.2% in adults), compared to the general 

population (10.7%) The observed pattern of correlations with other phenotypes can be thought 

of as falling into two categories: compulsivity/impulsivity and rumination/worry/neuroticism. In 

both categories, the patterns of genetic correlations appear to follow a gradient across 

disorders/traits. For example, in the compulsivity/impulsivity category, strong positive 

correlations are seen with AN and TS, which are disorders with strong compulsive features, with 
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less positive associations seen with ADHD, and negative correlations with alcohol dependence 

and risk-taking behaviors, which are all phenotypes characterized by impulsivity. A similar 

gradient is observed for the rumination/worry/neuroticism related phenotypes, with strong 

positive correlations with ANX, as well as ruminative phenotypes such as worry, transitioning to 

less strong correlations with individual depression related items.  Neurological disorders also 

showed only weak evidence for a shared genetic etiology with OCD, and in fact, the evidence 

suggests that most neurological disorders, are genetically distinct from psychiatric disorders 

(Anttila et al., 2018).  

 

This study, when considered in the context of previously published OCD GWAS (Stewart et al., 

2013, Mattheisen et al., 2015, IOCDF & OCGAS et al., 2018),  as well as interim analyses of 

subsets (Strom et al., 2021, Strom et al., 2024) of the here presented GWAS meta-analysis, 

may also aid in projecting the yield in OCD risk gene discovery. The previously published OCD 

GWAS meta-analysis (IOCDF & OCGAS et al., 2018) reported no significant associations with a 

case size of ~2,700; more recent interim analyses posted on pre-print servers identified one 

significant association with a case size of ~14,700, and 15 significant associations with a case 

size of ~37,000. This indicates a transition from the flat (sample building) phase of SNP 

discovery described for GWAS (Sullivan et al., 2018; Supplementary Figure S19), where few 

to no genome-wide significant loci are identified, to the linear phase of SNP discovery, where 

even relatively small increases in sample size are expected to identify additional genome-wide 

significant loci. All of the 15 previously identified OCD-associated genetic loci (Strom et al., 

2024) had the same direction of effect in the current meta-analysis; 13 were also significant in 

this study, while the other two were in the suggestive range (� � 5.23�10���  and � �

2.2�10����. 
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The strengths of the current study include the marked increase in the number of OCD cases 

compared to the previously published OCD GWAS studies and the rigorous analytic methods, 

including two multivariate approaches (MTAG and GenomicSEM) to control for potential 

overlapping subjects in datasets and to examine potential heterogeneity between the multiple 

ascertainment approaches. Potential weaknesses include the inability to document comorbid 

psychiatric disorders in the majority of cases that were not ascertained from clinical collections 

or electronic registries, the lack of inclusion of other ancestries other than European, and the 

limited analysis of sex-chromosome data in only a subset of the data. 

 

     In summary, this work substantially advances the field of OCD genetics by identifying new 

OCD genetic risk loci and multiple credible candidate causal genes, including those expressed 

in brain regions and cell types that have been previously implicated in OCD (Piantadosi et al., 

2021). We have also shown that OCD is highly polygenic in nature, with many variants 

implicated not only in OCD but also in commonly comorbid disorders or traits, in particular 

anxiety, neuroticism, anorexia nervosa, and depression. As we have shown, common variants 

explain 6.7% of the phenotypic variation in OCD. This modest contribution suggests that, in 

addition to possible phenotypic heterogeneity contributing to a reduction in the observed SNP 

heritability, other types of genetic variation may also contribute to the etiology of OCD. Notably, 

recent whole-exome sequencing studies have suggested that a substantial proportion of OCD 

cases (22%) may be influenced by rare de novo coding variants (Cappi et al., 2020), especially 

in genes that are intolerant to loss of function (Halvorsen et al., 2021). Also rare, potentially 

damaging copy number variations represent part of the risk architecture for OCD (Mahjani et al., 

2022b). These findings emphasize the need for a comprehensive exploration of the contribution 

of both common and rare genetic factors, as well as their interplay, to the risk of OCD. Finally, 

with the implication of the MHC complex, we provide additional evidence for potential shared 

genetic influences underlying both OCD and increased liability to autoimmune processes, 
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although the directionality of those relationships remains to be definitively elucidated. In the 

future, increasing sample sizes further, will facilitate the discovery of additional OCD risk 

variants. In addition, future studies will need to collect more ancestrally diverse samples, include 

sex-specific analyses, and conduct additional clinical phenotyping to allow for elucidation of 

genetic and clinical relationships between OCD and co-occurring disorders. Finally, with the 

emergence of drug databanks describing the relations between drugs and molecular 

phenotypes (Knox et al., 2024), our results can be used for drug repurposing (i,e, identifying 

existing drugs targeting OCD risk genes) leading to new opportunities to find more effective 

treatment. 

Online Methods 

Subjects 

Supplementary Table S1 provides an overview of the individual cohorts We analyzed genomic 

data from 28 OCD case-control cohorts including 53,660 OCD cases and 2,044,417 controls of 

European ancestry. GWAS results based on some of these cases and controls have been 

published previously by the International OCD Foundation (IOCDF-GC; Stewart et al., 2013, 

IOCDF & OCGAS et al., 2018) and the OCD Collaborative Genetics Association Study 

(OCGAS; Mattheisen et al., 2015, IOCDF & OCGAS et al., 2018). These data were re-analyzed 

for the current publication using newly matched control participants that were genotyped with 

the same microarrays as the cases, making up 2,828 cases and 4,887 controls. GWAS results 

based on a subset of the cohorts are currently available as preprints 

� ������ � 14,140 , ��	
��	
� � 562,117,  Strom et al., 2021 and ������ � 37,015 , ��	
��	
� �

948,616, Strom et al., 2024). Of those cohorts, three (EstBB, FinnGen, iPSYCH) were updated 

to include additional OCD cases and controls compared to the samples in the preprints. Seven 
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cohorts are new to this study and were not included in any of the previously published GWAS 

������� � 6,120 , ��	
��	
� � 430,999�. Among all included individuals, 323 cases were part of a 

parent proband trio; in these cases, parents were used as pseudo controls. A total of 20,427 

cases met DSM-5 (DSM-5, 2013) or ICD-10 (World Health Organization, 2019) criteria for OCD 

as assessed by a healthcare professional or derived from (electronic) health records, while the 

remaining 32,233 cases were based on self-reported OCD diagnoses (23andMe, AGDS, and 

parts of UKBB). Cohort-specific sample and analytic details can be found in the Supplementary 

Note 1. Data collections were approved by the relevant institutional review boards at all 

participating sites, and all participants provided written informed consent.  

Individual GWAS analyses and harmonizing of results 

First, the data of each participating cohort were analyzed individually (see Supplementary Note 

1 for details). Genetic data were imputed using either the Haplotype Reference Consortium 

(HRC; McCarthy et al., 2016) or 1000 Genomes Project Phase 3 reference panels (The 1000 

Genomes Project Consortium, 2015). The resulting GWAS summary statistics were then 

harmonized before a conjoint meta-analysis of all autosomes was conducted. Each summary 

statistic data set was transformed to ’daner’ file format following RICOPILI (Lam et al., 2020) 

specifications. Next, each dataset was cleaned of variants that were likely to have poor 

underlying genotype data. All variants had to meet the following criteria for inclusion: minor 

allele frequency (MAF) > 1% in cases and controls, imputation quality (INFO) score > 0.8 and < 

1.2. If the effect measure, p-value or standard error (SE) was missing or was out of bounds 

(infinite), the SNP was removed. Once cleaned summary statistics were produced, all datasets 

were aligned to the HRC reference panel. If variants were reported on different strands, they 

were flipped to the orientation in the HRC-reference. Furthermore, strand-ambiguous A/T and 

C/G SNPs were removed if their MAF was > 0.4. In the event that A/T and C/G SNPs showed a 
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MAF < 0.4, allele frequencies were compared to frequencies in the HRC-reference. If an allele 

frequency match was found, i.e minor alleles were the same in the summary statistics and the 

HRC reference, the same strand orientation was assumed. If an allele mismatch was found, i.e., 

the allele had a frequency > 0.5 in HRC, it was assumed that alleles were reported on different 

strands and alleles were flipped subsequently. Marker-names were uniformly switched to those 

present in the HRC reference. If a variant did not overlap with the variants in the HRC reference, 

it was removed.  

GWAS meta-analysis 

Inverse variance weighted meta-analysis was conducted on 28 European cohorts using METAL 

(Willer et al., 2010). Heterogeneity was assessed with Cochran’s Q statistic and I² statistic 

(Higgins et al., 2002; 2003). Cochran’s Q is calculated as the weighted sum of squared 

differences between individual study effects and the pooled effect across studies, with the 

weights being those used in the pooling method. Q is distributed as a chi-square statistic with k 

(number of studies) minus 1 degrees of freedom. The I² statistic describes the percentage of 

variation across studies that is due to heterogeneity rather than chance. Unlike Q, it does not 

inherently depend upon the number of studies considered. The genomic control factor Lambda 

(�) was calculated for each individual GWAS and for the overall meta-analysis to identify 

residual population stratification or systematic technical artifact. GWAS summary statistics were 

subjected to linkage disequilibrium (LD) score regression (LDSC) analyses on high-quality 

common SNPs (INFO score > 0.9) to examine the LDSC intercept to distinguish polygenicity 

from other types of inflation, and to estimate the genetic heritability from the meta-analysis and 

genetic correlations between cohorts. The genomic inflation factor Lambda (�� was estimated at 

1.330 with an  ����� of 1.033, while the LDSC intercept was 1.0155, ��� � 0.0085�, indicating 

that the inflation was mostly due to polygenic signal and unlikely to be significantly confounded 
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by population structure. The genome-wide significance threshold for the GWAS was set at a p-

value of 5.0�10��. The 23andMe data included information on the X-chromosome; as this 

information was not present for all other cohorts, analysis of the X-chromosome was only 

conducted in this sub-cohort (see Supplementary Note 3 for details).   

 

We further conducted GWAS meta-analyses on four subgroups, defined by differences in their 

sample ascertainment: either a) clinical-OCD cases diagnosed by a health care professional in 

a clinical setting (������ � 9089, ��	
��	
� � 21,077; including IOCDF, IOCDF_trio, EPOC, 

NORDiC-nor, NORDiC-swe, EGOS, OCGAS, OCGAS-ab, OCGAS-gh, OCGAS-nes, 

Psych_Broad, WWF, MVP, Michigan/Toronto IGS, YalePenn, Chop, CoGa), b) comorbid-

individuals that were primarily ascertained for another comorbid psychiatric disorder (������ �

5266, ��	
��	
� � 43,760; AGDS, IPSYCH), c) biobank-data from large-scale biobanks or 

registries with ICD or DSM codes (������ � 9138, ��	
��	
� � 1,049,776; BioVU, EstBB, 

FinnGen, HUNT, MoBa, UKBB) or d) 23andMe data (������ � 30,167, ��������� � 929,804). 

While these groups are not exclusive (e.g., diagnoses in health records were originally given in 

a clinical setting, or comorbid cases were also assessed in a clinical setting or derived from 

health records), we defined these groups by the cohorts primary characteristic. We also 

conducted one meta-analysis including all clinical, comorbid, and biobank subgroups, while 

excluding the 23andMe data, resulting in 23,493 cases and 1,114,613 controls. As 23andMe is 

the only consumer-based dataset, we intended to compare this dataset to all others. 

SNP-based fine-mapping - GCTA-COJO 

We performed a conditional-and-joint analysis (GCTA-COJO) (Yang et al., 2011) to identify 

independent signals within significant OCD loci. This approach performs a conditional and joint 

analysis on the basis of conditional p-values before calculating the joint effects of all selected 
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SNPs. We used the stepwise model selection procedure to select independently associated 

SNPs. The linkage disequilibrium reference sample was created from 73,005 individuals from 

the QIMR Berghofer Medical Research Institute genetic epidemiology cohort. The distance 

assumed for complete linkage disequilibrium was 10Mb, and we used the default p-value 

threshold of 5�10��� to define a genome-wide significant hit. 

Multi-trait analysis of ascertainment subgroups 

We used multi-trait analysis of GWAS (MTAG; Turley et al., 2018) to conduct multivariable 

GWAS analyses for the OCD samples, reporting GWAS results for each of the ascertainment-

specific sub-groups. Through this approach we aimed to address potential concerns about 

heterogeneity in genetic liability for individual sub-groups following different ascertainment 

strategies. MTAG is a multi-trait analysis that is usually used to combine different but related 

traits into one meta-analysis by leveraging the shared heritability among the different traits and 

thereby gaining power. In this case, our aim was to generate ascertainment-specific estimates, 

while boosting power by leveraging the high shared heritability between the subgroups. The 

MTAG analysis resulted in four different GWAS summary statistics, one for each subgroup 

(clinical, comorbid, biobanks, 23andMe). We performed maxFDR analyses to approximate the 

upper bound on the FDR of MTAG results. 

GenomicSEM 

Similarly, we used genomic structural equation modeling (GenomicSEM, Grotzinger et al., 2019) 

to model the joint genetic architecture of the four subgroups. First, we ran a common-factor 

model without individual SNP effects, following the tutorial ‘Models without individual SNP 

effects’ on the GenomicSEM github website (see web resources). In brief, the summary 

statistics were first harmonized and filtered (with the munge-function), using HapMap3 as the 
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reference file, using the effective sample size (clinical: ���� � 21.562, comorbid: ���� � 18.794, 

biobanks: ���� � 36.124, 23andMe: ���� � 116.876) as the input sample size, and filtering 

SNPs to INFO > 0.9 and MAF > 0.01. In a second step, multivariable LDSC was run to obtain 

the genetic covariance matrix and corresponding sampling covariance matrix, using 

precomputed European-ancestry LD scores, a sample prevalence of 0.5 and a population 

prevalence of 0.02. In a third step we ran a confirmatory factor analysis (CFA) using the pre-

packaged comm-on factor model in GenomicSEM using diagonally weighted least squares 

(DWLS) estimation. We ran a multivariate GWAS to generate ����-values for the 30 significant 

SNPs, which indicate possible heterogeneous effects across the subgroups. The ���� statistic 

is mathematically similar to the Q-statistic from standard meta-analysis and is a Χ�-distributed 

test statistic with larger values indexing a violation of the null hypothesis that the SNP acts 

entirely through the common factor. In multivariate GWAS, the common factor defined by 

genetic indicators is regressed on each SNP, thereby generating summary statistics for the 

common factor (details can be found in the tutorial “GenomicSEM for Common Factor GWAS”, 

see web resources). First, summary statistics for all four subgroups were prepared for 

multivariate GWAS with the ‘sumstats’ function in GenomicSEM, which aligns and merges all 

files. Next, with the ‘commonfactorGWAS’ function, the S (genetic covariance) and V 

(corresponding sampling covariance) matrices from the LDSC output (from the model without 

SNP effects) and the summary statistics were combined to create a separate S and V matrix for 

each SNP containing the effect estimate. The function also transforms the effect estimates from 

the summary statistics and their SEs into covariances and SEs of covariances by taking the 

product of the regression coefficient and SNP variance from the reference file (1000 genomes 

phase 3) 
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SNP heritability estimation 

The proportion of the phenotypic variance that could be explained by the aggregated effect of all 

included SNPs (SNP-based heritability, ����
� ) was estimated using LDSC (Bulik-Sullivan et al., 

2015). The analysis was performed using pre-computed LDscores from samples restricted to 

European-ancestry in the 1000 Genomes Project (The 1000 Genomes Project Consortium, 

2015), filtered for SNPs included in the HapMap3 reference panel (Altshuler et al., 2010). SNP 

heritability was estimated based on the slope of the LDSC, with heritability on the liability scale 

calculated assuming a 1% population prevalence of OCD (Fawcett, 2020). To omit a downward 

bias in our estimates of liability scale heritability, following Grotzinger et al. (2023), we 

accounted for varying levels of ascertainment across cohorts in our meta-analysis by summing 

the effective sample sizes across the contributing cohorts and using that as the input sample 

size for LDSC. For the conversion to the liability scale, the sample prevalence was then 

specified as 0.5. The SNP-heritability was calculated for the whole OCD sample as well as for 

ascertainment-specific sub-groups.  

Genetic correlations 

We used cross-trait LDSC, a method that computes genetic correlations between GWASs 

without bias from ancestry differences or sample overlap to calculate genetic correlations 

between the primary OCD meta-analysis and other phenotypes of interest (Bulik-Sullivan et al., 

2015). The selection of traits was based on phenotypic relevance and/or prior report of a genetic 

relationship with OCD. The genetic correlation between traits is based on the estimated slope 

from the regression of the product of Z-scores from two GWASs on the LD score and represents 

the genetic covariation between two traits based on all polygenic effects captured by the 

included SNPs. The genome-wide LD information used by these methods was based on 
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European populations from the HapMap 3 reference panel (Altshuler et al., 2010), and GWAS 

summary statistics were filtered to only include SNPs that were part of the 1,290,028 HapMap 3 

SNPs. 

To ensure the internal consistency of the datasets included in our meta-analysis, we calculated 

genetic correlations between all cohorts we considered to have a sample size large enough for 

LDSC (effective sample size of � 1000) and between the four ascertainment-specific 

subgroups. 

We further calculated genetic correlations between OCD and 112 other disorders and traits. The 

source studies of the GWAS summary statistics can be found in Supplementary Table S17. As 

a follow-up, we also calculated genetic correlations between the 112 phenotypes and each 

ascertainment-specific sub-cohort and compared the genetic correlation patterns between the 

four groups.  

Gene-based analyses 

To match the significant SNPs to the genes whose function they likely influence, we conducted 

a series of positional and functional gene mapping analyses. The positional mapping employed 

MBAT-combo (Li et al., 2022), while the functional mapping tested whether genetic variants 

associated with OCD were also associated with differential expression of nearby genes (within 1 

Mb window) using a) Transcriptome-wide Association Study (TWAS) (Gusev et al., 2016) 

utilizing PsychENCODE data and included colocalization with COLOC (Giambartolomei et al., 

2014; Wallace, 2020) and b) summary-based Mendelian Randomization (SMR; Zhu et al., 2016) 

Zhu et al., 2016) using whole-blood eQTL information and brain tissues from MetaBrain, 

alongside the HEIDI test which tests for heterogeneity in GWAS signal and eQTL association. 

Further, a protein-wide association study (PWAS) was conducted. As a final step, genes within 
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each locus were prioritized using PsyOPS (Wainberg et al., 2022), which integrates both 

positional and functional information. The details of each method are described below. 

Positional gene mapping (MBAT-combo) 
 
A gene-based analysis was conducted using multivariate Set-Based Association Test (mBAT-

combo) (Li et al., 2022) within GCTA version 1.94.1 (Yang et al., 2011). mBAT-combo has the 

advantage of being better powered than other gene-based association test methods to detect 

multi-SNP associations in the context of masking effects (i.e., when the product of the true SNP 

effect sizes and the LD correlation is negative). To ensure that the overall power is maximized 

independent of masking effects at specific loci, mBAT-combo combines mBAT and fastBAT test 

statistics through a Cauchy combination method, which allows the combination of different test 

statistics without a priori knowledge of the correlation structure. The European subsample (N = 

503 individuals) from Phase 3 of the 1000 Genomes Project (The 1000 Genomes Project 

Consortium, 2015) was used as the linkage disequilibrium (LD) reference panel with the 

fastBAT default LD cut-off of 0.9 applied. After filtering SNPs with MAF > 0.01, there were 

6,629,124 SNPs for analysis in our sample. A gene list consisting of 19,899 protein coding 

genes was used to map the base pair position of genes using genome build hg19.  

Functional gene mapping 

Transcriptome-Wide Association Study (TWAS) 

 
We used TWAS FUSION (Gusev et al., 2016) to perform a transcriptome-wide association 

study of OCD. We used brain gene expression weights from the PsychENCODE (D. Wang et 

al., 2018) and LD information from the 1000 Genomes Project Phase 3 (The 1000 Genomes 

Project Consortium, 2015). TWAS FUSION uses reference LD and reference gene expression 

panels with GWAS summary statistics to estimate the association between gene expression 
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and OCD risk. These data were processed with the test statistics from the OCD GWAS to 

estimate the expression-GWAS association statistic. We corrected for multiple testing using 

Bonferroni correction. 

We performed colocalization analyses using the COLOC R function (Giambartolomei et al., 

2014; Wallace, 2020) implemented in TWAS FUSION. Colocalisaton is a Bayesian method 

used to calculate the posterior probabilities (PP) that individual lead SNPs within a significant 

TWAS locus are 1) independent (e.g., 2 causal SNPs in LD, one affecting transcription, and one 

affecting OCD; posterior probability [PP3]) or 2) share the same associated variant (e.g., a 

single causal SNP affects both transcription and OCD [PP4]). We also performed a conditional 

analysis to determine whether identified associations represented independent associations. 

This was performed using the FUSION software, which jointly estimates the effect of all 

significant features within each locus by using residual SNP associations with OCD after 

accounting for the predicted expression of other features.  

Summary-Based Mendelian Randomisation (SMR) 

 
SMR (Zhu et al., 2016) was performed using default settings and eQTL meta-analysis summary 

statistics from European populations for whole blood from eQTLGen (Võsa et al., 2021), and all 

five nervous system tissues from MetaBrain (Basal ganglia, Cerebellum, Cortex, Hippocampus 

and Spinal Cord) (Klein et al., 2021). The HEIDI (heterogeneity in dependent instruments) test is 

performed alongside SMR to test for effect size heterogeneity between the GWAS and eQTL 

summary statistics.  

Psychiatric Omnilocus Prioritization Score 

We used the gene prioritization method PsyOPS (Psychiatric Omnilocus Prioritization Score) 

(Wainberg et al., 2022) to rank genes within genome-wide significant loci. This supervised 

approach integrates biological annotations on mutational intolerance, brain-specific expression, 
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and involvement in neurodevelopmental disorder for genes within significant loci. Genes with 

the top PsyOPS score within each locus were used for further gene prioritization (see “Gene 

prioritization” below). In the instance where two genes in the same locus had the same PsyOPS 

score, the gene nearest the index SNP was prioritized. 

Protein-wide association study 

We performed a protein-wide association study (PWAS) using protein expression data from 

human brain samples. Human brain proteome reference weight data were obtained using the 

Religious Orders Study and Rush Memory and Aging Project (ROS/MAP) and Banner Sun 

Health Research Institute (Banner) study. The ROS/MAP proteomes were generated from the 

dorsolateral prefrontal cortex (DLPFC) of 376 participants of European ancestry and included 

1,476 proteins with significant SNP-based heritability (p-value < 0.01). The Banner PWAS 

weights were generated from 152 individuals of European ancestry and included 1,147 proteins 

with significant SNP-based heritability. The PWAS was performed using the TWAS FUSION 

software (Gusev et al., 2016) with LD reference information from the 1000 Genomes Project 

Phase 3 (The 1000 Genomes Project Consortium, 2015). We corrected for multiple testing 

using Bonferroni correction. 

Gene prioritization 

We created a list of prioritized genes using both gene-based tests and colocalization/HEIDI 

filters. Results from each gene-based test were first restricted to protein coding genes with 

unique gene identifiers based on the release from GENCODE (v40) for hg19. The following 

criteria were then used to prioritize genes: (i) a significant (Bonferroni corrected) association 

from at least two gene-based tests (mBAT-combo, TWAS FUSION, SMR, or PsyOPS), and (ii) 

evidence of colocalization (COLOC PP4 > 0.8) and/or significant SMR association with HEIDI P 
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>0.05. Joint/conditional tests of association and significant PWAS associations were used as 

ancillary approaches to further annotate the prioritized gene list. 

 

Tissue and cell-type enrichment analysis 

An analysis of tissue and cell-type enrichment of OCD GWAS association signals was 

conducted using MAGMA (v1.08) (de Leeuw et al., 2015) and partitioned LD score regression 

(Finucane et al., 2015). Bryois et al.'s approach (Bryois et al., 2020) was employed to determine 

gene expression specificity in bulk tissue RNA-seq data from 37 tissues in GTEx (v8) and 

single-cell RNA sequencing data from 19 regions in the mouse central and peripheral nervous 

systems (Zeisel et al., 2018). The analysis was limited to protein-coding genes with 1:1 

orthologs between mice and humans. Gene expression in each tissue or cell type was 

calculated relative to total expression across all tissues or cell types. Enrichment analysis was 

performed on genes with the top 10% specificity values in each tissue or cell type, as previously 

defined (Bryois et al., 2020). 

 

To evaluate the enrichment of tissue and cell type specific genes in OCD genetic association 

signals, we applied MAGMA and partitioned LDSC. We restricted the analysis to summary 

statistics for SNPs with a high INFO score (> 0.6) and frequency in the entire cohort (MAF > 

0.01). Using MAGMA (v1.08), we tested if genes with the top 10% specificity in a tissue or cell 

type showed enrichment in gene-level genetic associations for OCD, with the 1000 genomes 

phase 3 European sample genotypes serving as the LD reference panel. We used standard 

gene boundaries (35kb upstream of the transcription start site to 10kb downstream of the 

transcription stop site). Partitioned LDSC was used to examine whether SNPs within 100kb 

regions of the top 10% specifically expressed genes were enriched for SNP-based heritability 

for OCD. All results were corrected for multiple testing with an FDR threshold of 0.05. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2024. ; https://doi.org/10.1101/2024.03.13.24304161doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.13.24304161
http://creativecommons.org/licenses/by-nc-nd/4.0/


OCD GWAS                 Strom, Gerring, Galimberti & Yu et al. 

29 

Identification of previously reported associations for significant 
SNPs 
Multiple resources were used to identify previously reported associations of our 30 significant 

SNPs with other phenotypes: We used the IEU open gwas project (Elsworth et al., 2020), 

PheWAS analysis of gwasATLAS (Watanabe et al., 2019), the NHGRI-EBI GWAS Catalog 

(Buniello et al., 2019), and identified credible SNPs through causaldb (J. Wang et al., 2020). 

Causaldb estimates causal probabilities of all genetic variants in GWAS significant loci using 

three state-of-the-art fine-mapping tools including PAINTOR, CAVIARBF and FINEMAP 

(Benner et al., 2016; Chen et al., 2015; Kichaev et al., 2014; Kichaev & Pasaniuc, 2015). We 

used default settings for our causaldb queries. 
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Figures 
 

 

 

 

Figure 1: Manhattan plot of OCD GWAS meta-analysis: The y-axis represents –log10 p-
values for the association of variants with OCD using an inverse-variance weighted fixed 
effects model. The x-axis shows chromosomes 1 to 22. The horizontal red line represents the 
threshold for genome-wide significance (� �  5�10����. Index variants of genome-wide 
significant loci are highlighted as a green diamond. 
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Figure 2: (A) List of 25 genes that were implicated in at least two of the five different gene-
based tests (significance indicated by grey dots) and passed the TWAS colocalization and/or 
SMR-Heidi filters (significance indicated by orange dots). Conditionally independent genes 
within each locus are indicated by blue dots. (B) Enrichment of OCD GWAS signal in human 
brain-related tissues from GTEx (v8). No significant enrichment was observed in the 
peripheral tissues (not included in the figure). The horizontal bar size represents the 
significance of the enrichment measured using the MAGMA gene set enrichment test or 
partitioned LDSC. (C) Top 20 brain cell types enriched with OCD GWAS signal using 
MAGMA. Blue crosses represent a significant enrichment of OCD GWAS signals (false 
discovery rate, FDR < 0.05), while pink crosses indicate non-significant enrichment. Grey 
points represent the association (-log10[p-value]) for each cell cluster (“level 5” analysis 
defined by Zeisel 2018) in a given cell type (e.g., Excitatory neurons, cerebral cortex). 
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Figure 3: Genetic correlations (rg) between the OCD GWAS results and 112 psychiatric, 
substance use, cognition/socioeconomic status (SES), personality, psychological, neurological, 
autoimmune, cardiovascular, anthropomorphic/diet, fertility, and other phenotypes. References 
of the corresponding summary statistics of the GWAS studies can be found in Supplementary 
Table S1. Error bars represent 95% confidence intervals, red circles indicate significant 
associations after FDR correction for multiple testing. Black circles indicate associations that are 

not significant after FDR correction.  
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Tables 
Table 1: Genome-wide-significant SNPs associated with OCD. Shown are the SNP, the 
chromosome (CHR), base pair position on the genome (BP), p-value (P), effect estimate as an 
odds ratio (OR), standard error of the effect estimate (SE), effect allele and non-effect allele 
(A1/A2), frequency of A1 in cases ( !���� and in controls ( !����, imputation quality score 
(INFO), number of genes in a region of 6.5kb around the SNP (N Genes 6.5kb), and a curated 
list of phenotypes that also showed a genome-wide significant association with this SNP (in one 
or more of the following four databases: causalDB (J. Wang et al., 2020), GenomeAtlas 
(Watanabe et al., 2019), NHGRI-EBI GWAS catalog (Buniello et al., 2019), IEU Open GWAS 
project (Elsworth et al., 2020). If fewer than 4 traits are significant across all four databases, all 4 
traits are shown, if more than 5 traits are significant across the databases, neuropsychiatric traits 
are prioritized (closely related traits are summarized into one trait category). Previously identified 
GWAS hits for OCD (or SNPs in high LD with a previously identified SNP) are in cursive. For a 
full list of associations in the four databases see Supplementary Table S17a-d). A more 
detailed list of the significant SNPs can be found in Supplementary Table S2. 
 

 

SNP Position P OR SE 
A1/A

2 ����� ����� INFO 

N 
Gen
es 

6.5k
b 

Selection of other 
significant traits 

rs78587207 11q12.1 5.28x10-12 0.9522 0.0071 T/G 0.681 0.677 0.987 11 

SCZ, well-being, 
neuroticism, 
educational 
attainment 

rs13262595 8q24.3 1.31x10-11 0.9566 0.0066 G/A 0.552 0.561 0.989 2 

SCZ, well-being, 
neuroticism, 
educational 
attainment 

rs4990036 6p21.33 1.45x10-11 0.9299 0.0108 T/C 0.119 0.123 0.985 118 
SCZ, depression, 
blood cell count, lung 
function  

rs10877425 12q14.1 1.62x10-11 0.9526 0.0072 G/A 0.513 0.516 0.985 0 - 

rs7626445 3p21.31 1.74x10-11 0.9551 0.0068 T/C 0.647 0.654 0.994 32 
neuroticism, 
smoking, blood cell 
count, height 

rs2564930 3p21.1 3.41x10-11 0.9546 0.007 T/C 0.339 0.345 0.988 12 
SCZ, neuroticism, 
blood cell count, BMI 

rs4702 15q26.1 9.07x10-10 1.0414 0.0066 G/A 0.455 0.449 0.984 5 
SCZ, BD, MDD, risk 
taking behavior  
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rs35518360 4q24 1.39x10-9 1.0757 0.0121 T/A 
0.082

8 
0.0756 0.947 1 

SCZ, neuroticism, 
educational 
attainment, BMI 

rs4904738 14q21.1 1.48x10-9 0.9605 0.0067 T/C 0.558 0.553 0.984 1 MDD 

rs254779 5q14.3 1.53x10-9 0.9606 0.0067 T/C 0.419 0.421 0.988 4 
educational 
attainment, cognition, 
fat mass 

rs2198140 8p12 2.18x10-9 0.9590 0.007 T/C 0.496 0.513 0.979 1 cognition 

rs12516488 5p12 3.79x10-9 1.0531 0.0088 G/A 0.825 0.826 0.994 1 
neuroticism, age at 
first birth, age at first 
sexual intercourse 

rs3899258 5q11.1 4.94x10-9 1.0509 0.0085 G/A 0.782 0.792 0.989 2 - 

rs3027160 17p13.1 5.35x10-9 1.0497 0.0083 T/C 0.775 0.782 0.996 19 sleep, height 

rs203768 2q33.1 6.14x10-9 0.9513 0.0086 T/C 0.824 0.817 0.992 5 SCZ 

rs11263940 1p34.3 7.23x10-9 0.9578 0.0074 T/C 0.689 0.69 0.991 0 
neuroticism, well-
being 

rs67839857 5q14.3 7.63x10-9 1.0423 0.0072 G/A 0.692 0.691 0.994 0 - 

rs1555466 20p11.23 8.42x10-9 1.0490 0.0083 T/C 0.218 0.224 0.996 0 ease of skin tanning 

rs9886111 7q21.13 8.59x10-9 0.9598 0.0071 G/C 0.701 0.711 0.992 2 - 

rs9287859 2q24.3 9.83x10-9 0.9595 0.0072 G/A 0.39 0.39 0.994 1 - 

rs2087319 4q12 1.59x10-8 0.9579 0.0076 C/A 0.74 0.744 0.968 6 
height, blood 
pressure 

rs11125759 2p16.1 1.79x10-8 0.9690 0.0071 G/A 0.569 0.556 0.991 1 BMI, sleep 

rs6474628 9p23 1.89x10-8 1.0380 0.0066 T/G 0.579 0.585 0.999 0 - 

rs11768238 7q33 2.28x10-8 0.9601 0.0073 G/A 0.661 0.661 0.998 2 

educational 
attainment, age at 
first sexual 
intercourse 

rs9479138 6q25.1 2.41x10-8 1.0397 0.007 T/G 0.339 0.34 0.975 1 

educational 
attainment, age at 
first sexual 
intercourse, age at 
first birth, lung 
function 

rs1567288 4q22.3 3.80x10-8 0.9643 0.0066 G/A 0.548 0.55 0.981 1 - 

rs4831130 3q13.31 3.93x10-8 1.0427 0.0076 T/G 0.753 0.74 0.984 2 - 

rs17718444 3p13 4.25x10-8 0.9622 0.007 T/C 0.323 0.32 0.984 2 

educational 
attainment, lung 
function, use of 
sun/uv protection 

rs6660196 1q24.1 4.86x10-8 1.0403 0.0072 T/G 0.638 0.642 0.989 1 blood cell count 
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rs4931 20q13.12 5.00x10-8 0.9609 0.0073 C/A 0.278 0.279 0.993 5 
blood cell count, 
height, BMI 
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Web Resources & Code availability 
Core analysis code for RICOPILI can be found at 
https://sites.google.com/a/broadinstitute.org/ricopili/. This includes PLINK (https://www.cog-
genomics.org/plink2/), EIGENSOFT (https://www.hsph.harvard.edu/alkes-price/software/), 
Eagle2 (https://alkesgroup.broadinstitute.org/Eagle/), Minimac3 
(https://genome.sph.umich.edu/wiki/Minimac3), SHAPEIT3 
(https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html), METAL 
(https://genome.sph.umich.edu/wiki/METAL_Documentation) and LDSR 
(https://github.com/bulik/ldsc). MAGMA can be found at https://ctg.cncr.nl/software/magma .  
Genomic SEM, specifically the tutorial ‘Models without Individual SNP effects’ can be found 
here: https://github.com/GenomicSEM/GenomicSEM/wiki/3.-Models-without-Individual-SNP-
effects 
TWAS FUSION: http://gusevlab.org/projects/fusion/ 
PWAS: For access to the protein weights, see: 
https://www.synapse.org/#!Synapse:syn24872746  
GCTA (mBAT-combo and COJO): https://yanglab.westlake.edu.cn/software/gcta/#Overview 
LDSC and partitioned heritability: https://github.com/bulik/ldsc  
 

Data availability 
The meta-analyzed summary statistics (not including 23andMe data) will be made available via 
the Psychiatric Genomics Consortium Download page (https://www.med.unc.edu/pgc/download-
results/). 
 
The full GWAS summary statistics for the 23andMe discovery data set will be made available 
through 23andMe to qualified researchers under an agreement with 23andMe that protects the 
privacy of the 23andMe participants. Datasets will be made available at no cost for academic 
use. Please visit https://research.23andme.com/collaborate/#dataset-access/ for more 
information and to apply to access the data. 
 
MVP summary statistics are made available through dbGAP request under accession 
phs001672.v7.p1.   
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