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Abstract 

Genetic effects on changes in human traits over time are understudied and may have important 

pathophysiological impact. We propose a framework that enables data quality control, implements 

mixed models to evaluate trajectories of change in traits, and estimates phenotypes to identify 

age-varying genetic effects in genome-wide association studies (GWASs). Using childhood body 

mass index (BMI) as an example, we included 71,336 participants from six cohorts and estimated 

the slope and area under the BMI curve within four time periods (infancy, early childhood, late 

childhood and adolescence) for each participant, in addition to the age and BMI at the adiposity 

peak and the adiposity rebound. GWAS on each of the estimated phenotypes identified 28 

genome-wide significant variants at 13 loci across the 12 estimated phenotypes, one of which 

was novel (in DAOA) and had not been previously associated with childhood or adult BMI. Genetic 

studies of changes in human traits over time could uncover novel biological mechanisms 

influencing quantitative traits. 
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Introduction 

Genome-wide association studies (GWAS) have been informative over the past two decades in 

extending our knowledge of the genetic architecture of common complex traits and diseases. The 

vast majority of GWAS have concentrated on cross-sectional phenotypes (i.e., one measure per 

person per study). However, many human traits change over time, and there may be a genetic 

component underlying this dynamic process of change in the trait (see for example, E. N. Smith 

et al. 2010; Warrington et al. 2015; A. D. Smith et al. 2016; Gouveia et al. 2019; 2021; Wendel et 

al. 2021; Venkatesh et al. 2023). Therefore, studying trait trajectories is increasingly important to 

uncover novel loci beyond those found from GWAS of cross-sectional traits. 

 

Linear mixed models (LMMs) are often used to assess age- (or time) varying exposure-outcome 

associations (Molenberghs and Verbeke 2000). This statistical model summarises repeated 

measures data into an average trajectory across the sample (i.e. the fixed effects) as well as the 

individual variations around this average for each participant within the sample (i.e. the random 

effects). LMMs can be used to explore age- (time) varying effects of genetic variants on outcomes. 

Indeed, there are examples of using LMMs to estimate the association between selected SNPs 

and trajectories of change in phenotypes (see for example, Sovio et al. 2011; Mook-Kanamori et 

al. 2011; Howe et al. 2013; Brand et al. 2019; Elhakeem et al. 2023). However, scaling this 

approach up to conduct GWAS on longitudinal change in a trait can be extremely computationally 

intensive; for example, analysing 2.5 million SNPs and longitudinal BMI data in 7,916 individuals 

from the Avon Longitudinal Study of Parents and Children (ALSPAC) took approximately 1,440 

hours to complete (Warrington et al. 2015), in comparison to a few hours using standard software 

with a single measure per individual.  

 

There are current statistical methods available to utilise repeated measures of a phenotype within 

an individual and facilitate the detection of genetic variants that have age- (time) varying effects 

when the phenotype changes linearly over time. This includes methods that use a two-stage 

approach, in which (i) a LMM is fit to the repeated measures data and (ii) the best linear unbiased 

predictors of each individual’s trajectory are extracted and used as the outcome in the GWAS 

(Sikorska et al. 2013; Meirelles et al. 2013; Yuan et al. 2021). These two-step approaches reduce 

the computational challenge of fitting the LMM, allowing the GWAS to be conducted using 

standard software. As an alternative, Sikorska and colleagues (Sikorska et al. 2018) developed a 

method whereby the variances of the random intercept and slope, along with the variance of the 

residual, are estimated in a LMM without a genetic variant. This relies on the assumption that the 
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variances do not change when the genetic variant is included in the model. These estimated 

variances are then used in a large system of linear equations, which is solved to estimate the 

genetic effects at each SNP. These methods estimate the association between a genetic variant 

and change in a phenotype over time. In contrast, Ko and colleagues (2022) developed a method 

that estimates the genetic effect on within-subject variability that can be applied to biobank-scale 

repeated-measures data (Ko et al. 2022). All these methods described for longitudinal GWAS 

analyses are applicable for phenotypes that follow linear trajectories over time (Sikorska et al. 

2018; Yuan et al. 2021; Ko et al. 2022). However, this is not realistic for many traits, particularly 

when investigating change in a phenotype over a long period of time.  

 

An example of a trait with a non-linear trajectory is body mass index (BMI) across childhood. The 

BMI trajectory across childhood starts with a rapid increase soon after birth until the “adiposity 

peak” (AP) at approximately 9 months of age, followed by a gradual decline until the “adiposity 

rebound” (AR) around 4–6 years of age, followed by an increase again until the end of puberty 

and beyond (Rolland-Cachera et al. 1984). There is some evidence for age-varying genetic 

effects on BMI (Hardy et al. 2010; Elks et al. 2010; Sovio et al. 2011; Warrington et al. 2015); 

however, due to the lack of statistical methods for analysing non-linear trajectories on a GWAS 

scale, relatively little is known about the genetic determinants of the rate of change in BMI across 

early life.  

 

The aim of this study is to develop a framework to conduct GWAS to detect age- (time) varying 

genetic effects of non-linear trajectories using standard GWAS software. Due to restrictions in 

sharing individual participant data, this framework will be applied to individual participant data 

within each cohort and then GWAS summary statistics will be meta-analysed. The framework 

comprised of the following four procedures: (1) apply an algorithm to quality control the 

longitudinal data to ensure that only the most likely outliers are excluded based on within- and 

between-individual comparisons; (2) specify an appropriate model for a nonlinear growth 

trajectory using longitudinal data in a range of different cohorts; (3) ensure the chosen model is 

correctly parameterized; (4) estimate phenotypes that summarise the trajectory for subsequent 

GWAS analysis. The resulting GWAS summary statistics can be used in downstream analyses, 

such as genetic correlation and causal modelling. We describe an example standardised protocol 

via an easy-to-follow R package, called Early Growth Genetics Longitudinal Analysis (EGGLA), 

to perform each of these steps for BMI across childhood and provide a harmonised, reproducible 

set of GWAS summary statistics for further downstream analysis.  
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Results 

Our analysis included participants from six population-based cohorts (Table 1, Supplementary 

Table 1 and Supplementary text): 1) the Avon Longitudinal Study of Parents and Children 

(ALSPAC) (Boyd et al. 2013; Fraser et al. 2013), 2) the European subset of Children’s Hospital 

of Philadelphia (CHOP) (Connolly et al. 2020) 3) the African American subset of CHOP (Connolly 

et al. 2020), 4) the Northern Finland Birth Cohort 1966 (NFBC1966) (Nordström et al. 2021), 5) 

the Northern Finland Birth Cohort 1986 (NFBC1986) (Järvelin et al. 1997), and 6) OBésité de 

l'Enfant (OBE) (Meyre et al. 2004; 2009). We included measures of BMI at multiple times across 

early life, ranging from two weeks after birth to late adolescence (18 years for all cohorts except 

OBE, which had data until 16 years). 

 

Using a published algorithm to clean longitudinal data ensures that only the most likely 

outliers and errors are excluded 

We employed a unified approach to data cleaning across cohorts by using the growthcleanr 

(Daymont et al. 2017) R package, which flags duplicates and implausible values for exclusion. 

After data cleaning, we excluded between 4.2% and 16% of BMI measures within each cohort, 

most of which were excluded due to missing height or weight or duplicated measures 

(Supplementary Table 2). The final analysis for the growth modelling comprised 34,818 females 

(ranging from 308 to 10,814 per cohort) and 36,518 males (ranging from 252 to 12,002 per 

cohort). 

 

Developing an R package to conduct and compare nonlinear growth models across 

cohorts from different generations and of different ethnicities 

We developed an analysis framework to fit nonlinear growth models for GWAS and associated R 

package (https://m.canouil.dev/eggla/articles/eggla.html; Canouil et al. 2024; R Core Team 2022) 

named the Early Growth Genetics (EGG) Longitudinal Analysis (EGGLA) framework. The EGGLA 

R package provides four unified protocols to facilitate the analysis framework, including model 

diagnostics, model selection, running the chosen LMM, and estimating specific phenotypes. The 

R package was developed to standardise the analysis framework, allowing all six participating 

cohorts to provide a harmonised, reproducible set of GWAS summary statistics for further 

downstream analysis. The EGGLA protocols specific to longitudinal modelling of BMI are outlined 

in Supplementary Figure 1 and the Supplementary Text. The EGGLA model diagnostics protocol 

cycles through each of the three selected LMMs (linear spline, cubic spline, and cubic slope 

functions for age) with various complexities of random effects and correlation structure (no 
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structure and continuous autoregressive correlation structure of order 1 (CAR(1)); see methods 

for full description of the LMMs). Several reports are output at this stage to inform selection of the 

most appropriate model to characterise change in the phenotype (BMI in our illustrative 

application; see Supplementary Table 3 and Supplementary Text). To select our preferred model, 

we compared the model fit based on any convergence issues, performance metrics and visual 

inspection of the predicted curves.  

 

Several models either failed to converge or presented warning messages within each cohort 

(more issues were seen in cohorts with higher sample size and a larger number of repeated 

measures per individual; Table 2 and Supplementary Table 3). In each cohort, at least eight of 

the sixteen models converged without any issues (Supplementary Table 3). Specifying a CAR(1) 

correlation structure seemed to cause the most problems with model convergence across the 

cohorts/sexes, particularly for the models with a cubic slope or linear spline function for age in the 

fixed effects.  

 

We used the intraclass correlation coefficient (ICC), conditional R2, root mean squared error 

(RMSE) and residual standard deviation (SD) performance metrics to define the best fitting model. 

In ALSPAC, females in NFBC1966, NFBC1986, and OBE the best model included a cubic spline 

function for age in both the fixed and random effects and no correlation structure (Table 2 and 

Supplementary Table 3). For the males in NFBC1966, the best fitting model included a cubic 

spline function for age in the fixed effects, a cubic slope in the random effects and no correlation 

structure specified. The African American subset of CHOP was also best fit by the cubic spline 

function for age in the fixed effects and no correlation structure; however, the best-fitting random 

effects (cubic slope, cubic spline or linear spline function for age) was different for different 

performance metrics. Finally, the best fitting model in the European American subset of CHOP 

had a cubic slope in the fixed and random effects, with the CAR(1) correlation structure producing 

the best fit for three of the performance metrics (ICC, conditional R2, and SD) but no correlation 

structure producing the best fit for RMSE. Although the cubic spline in both fixed and random 

effects produced the most favourable performance metrics for most cohorts (Table 2 and 

Supplementary Table 3), the model fit with warning messages in the CHOP European Americans 

and males in NFBC1966 suggesting that the next best performing models (that converge without 

issues for all cohorts and sexes) should be considered. Therefore, our preferred model included 

a cubic spline function for age in the fixed effects, cubic slope in the random effects and no 

specified correlation structure. This model is described using the following equation: 
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Where the fixed parameters are represented by β0, β1, β2,… κk is the kth knot and: 

The parameter estimates for the random effects are represented by b0i, b1i, b2i,..., and εit are the 

error terms (see methods for further description on the model specification).  

 

Parameterising the preferred model by refining the knot placement for the cubic spline 

function, ensuring a better fit to the features of the BMI trajectory 

Because our preferred model included a cubic spline function for age, we sought to further 

optimize the knot placement (i.e. ages at which there is a change in slope) to ensure our model 

reflected the underlying BMI trajectory appropriately. We started with knot points at two, eight and 

12 years based on previous research (Warrington et al. 2015), which modelled BMI data from one 

to 17 years of age. However, our modelling of slightly younger ages could require different knot 

points. To this end, we ran models incrementing the first knot point by half year increments and 

second knot point by yearly increments; we decided to not move the third knot point as there is 

less change in the BMI trajectory after the adiposity rebound (i.e. by 12 years of age) and both 

our study and Warrington et al. included data across this time period (i.e. 12-17 years). In addition 

to the previous metrics used for selecting a preferred model, we estimated the age and BMI at 

the AP and AR to help us distinguish between models (see methods for description on how the 

AP and AR were estimated). 

 

Previous studies exploring the age of AP in European populations report an average age at 

approximately nine months (Cole, Freeman, and Preece 1995). In all the cohorts in this study, 

later placement of the first knot (at age one, one and a half, or two years) resulted in an increase 

in the estimated average age at AP (Supplementary Figure 2). The average age at AP when 

applying the first knot at one year of age across all included cohorts was 0.75 years (SD 0.05; 

Table 1 and Supplementary Table 1), whereas it was over one year of age when the first knot 

was at two years of age. In addition, the performance metrics were improved across the cohorts 

when applying the first knot at one year of age compared to at two years of age (Supplementary 

Figure 2). We therefore chose to apply the first knot at one year of age for our final preferred 

model. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 16, 2024. ; https://doi.org/10.1101/2024.03.13.24304263doi: medRxiv preprint 

https://www.zotero.org/google-docs/?8OOkfu
https://doi.org/10.1101/2024.03.13.24304263
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 

 

When comparing the model fit while moving the second knot (i.e. testing a knot at age six, seven, 

or eight years) we found there was very little variation in the performance metrics or in the 

estimated average age at AP and AR across the cohorts (Supplementary Figure 2). Therefore, 

we chose to keep knot two at our a priori age of eight years. 

 

Figure 1 shows the average BMI trajectories predicted from the fixed effects of our chosen model 

(with knot points at one, eight and 12 years) for each of the six cohorts. The OBE cohort had a 

substantially higher average BMI and steeper trajectory throughout early life reflecting the obese 

children recruited into the cohort (the BMI trajectory in OBE is from 2 weeks to 16 years of age 

as there were very few observations beyond age 16 years). The African American subset of the 

CHOP cohort had an earlier AR and steeper BMI trajectory throughout childhood than the other 

cohorts. The model fit the BMI data well in all cohorts tested (Figure 2 and Supplementary Figure 

3). 

 

Estimate phenotypes that summarise the BMI trajectory for subsequent GWAS analysis  

To estimate phenotypes from the BMI trajectory for GWAS analysis, we defined intervals of 

approximately linear change in BMI. We defined four time windows: infancy (two weeks - six 

months), early childhood (1.5 - 3.5 years), late childhood (6.5 - 10 years) and adolescence (12 - 

17 years). We calculated a BMI trajectory for each individual within each cohort by combining the 

estimated fixed effects, which are shared by all subjects within a cohort, with the predicted random 

effects, which are specific to each individual. We subsequently estimated phenotypes within each 

time window from the individual-specific BMI trajectories, including slopes and area under the BMI 

curve (AUC), in addition to age and BMI at the AP and AR. We did not estimate the adolescent 

phenotypes (slope and AUC) in OBE as they only had data to age 16 years.  

 

A summary of each of the estimated phenotypes is presented in Table 1 and Supplementary 

Table 1. The derived phenotypes illustrated the expected differences between the cohorts, 

indicating that our methods are generalizable to a range of cohorts. For example, individuals in 

the NFBC1966 and OBE cohorts had a steeper infancy slope (0.56 log BMI units per year for 

males in NFBC1966 and 0.54 log BMI units per year in OBE), in contrast to individuals in 

NFBC1986 (0.36 log BMI units per year in males). This is equivalent to a 75% change in BMI over 

the first year for males in NFBC1966, which equates to approximately 10kg/m2 over the first year 

if BMI is 14kg/m2 at two weeks of age (approximate BMI at two weeks of age across the cohorts 
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based on the height and weight data in Supplementary Table 1). Whereas in NFBC1986 males, 

it is equivalent to a 43% change in BMI, equating to approximately 6 kg/m2 over the first year if 

BMI is 14 kg/m2 at two weeks of age. This was also reflected in NFBC1966 and OBE having a 

higher BMI at the AP (for example, 18.22 kg/m2 in males from NFBC1966 and 18.39 kg/m2 from 

OBE) while NFBC1986 had a lower BMI at AP (17.75 kg/m2 in males). As seen in Figure 1 and 

Table 1, the age at AR was earlier for OBE (for example, 2.40 years for males) than the other 

cohorts (average age of 3.83 - 5.67 years). The mean rate of growth was similar across the 

cohorts during late childhood and adolescence, with the mean growth rate ranging between 0.02 

- 0.06 log BMI units per year (Table 1 and Supplementary Table 1), which is equivalent to a 2-6% 

change in BMI per year. 

 

We investigated the correlation between each of the estimated phenotypes (Supplementary Table 

4) and found high correlation (r>0.70) between several phenotypes consistently across the 

cohorts. For example, the infant and early childhood slopes showed a positive correlation 

(r ≥ 0.78) in both males and females in all cohorts. Both the infant (r ≥ 0.86) and early childhood 

(r ≥ 0.73) slopes were positively correlated with the age at AP. The late childhood slope was 

negatively correlated with the age at AR (r ≤ -0.84), which indicates that individuals with an earlier 

AR have a steeper slope from 6.5 to ten years. These correlations differed in the OBE cohort that 

included only children with obesity; the correlation between late childhood slope and age at AR 

were small for males (r = -0.09) and females (r = -0.10). The AUC’s generally showed strong 

positive correlations with the BMI at the AP and AR (infant AUC with BMI at AP, child AUC with 

BMI at both AP and AR and late child and adolescent AUC with BMI at AR). None of the estimated 

phenotypes were strongly correlated with the adolescent slope in any cohort (all r < 0.7). 

 

Finally, all of the estimated phenotypes were associated with BMI at age 18 years (16 years in 

OBE, as BMI at 18 years was not available), and the strength of the association increased over 

age (Supplementary Figure 4). For example, the adolescent AUC explained the majority of the 

variance in BMI at 18 years (between 74-91% across the cohorts), in contrast to a small amount 

of variance explained by the infancy AUC (between 0-10%) 

 

Meta-analysing the GWAS summary statistics and estimating genetic correlations 

We conducted GWAS for each of the estimated phenotypes within each cohort, then combined 

the results from the GWAS in cohorts with individuals of European ancestry using fixed effects 

inverse-variance meta-analysis (OBE was excluded from the meta-analysis of the adolescent 
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phenotypes as they did not have data beyond age 16 years). Using the summary statistics from 

the meta-analysis, we estimated the SNP-based heritability of each of the estimated phenotypes 

and genetic correlation between phenotypes using linkage disequilibrium score regression 

(LDSC). The SNP-based heritability of the estimated phenotypes ranged from 6-28% (Figure 3), 

which is comparable to the SNP-based heritability of BMI across childhood (15-45% (Helgeland 

et al. 2022)) and adulthood (22%, (Yengo et al. 2018)). Estimates of SNP-based heritability for 

the infancy slope, adolescent slope and age at AP were less than 10%, with large standard errors, 

indicating that the genetic correlation estimates with these phenotypes may not be reliable; 

however, we have presented them for completeness. AUC in infancy was correlated with AUC in 

early childhood (rg=0.91) and the BMI at both AP (rg=1) and AR (rg=0.66), but showed relatively 

low genetic correlations with all the other estimated phenotypes (rg< |0.43|), indicating a unique 

genetic profile for BMI during infancy. The genetic correlation between AUCs in subsequent time 

periods were high; for example, the genetic correlation between AUC in infancy and early 

childhood was rg=0.91, AUC in early childhood and late childhood rg=0.79, and AUC in late 

childhood and adolescence rg=0.96. This indicates that there could be a common set of genes 

related to BMI across time.  

 

Using LDSC and publicly available summary statistics, we estimated the genetic correlation 

between our estimated phenotypes based on longitudinal data and childhood BMI at different 

ages (Helgeland et al. 2022) and adult BMI using cross-sectional data (Yengo et al. 2018). We 

found high genetic correlation between our estimated AUCs and childhood BMI measured cross-

sectionally at the beginning and end of each age window (Supplementary Table 5). For example, 

the genetic correlation between early childhood AUC and BMI at age 1.5 years (the beginning of 

our early childhood time window) was 0.80 (SE=0.08), which was similar to the genetic correlation 

of 0.82 (SE=0.09) with BMI at age 3 years (near the end of our early childhood time window). In 

contrast, we estimated a moderate genetic correlation between our estimated slopes and 

childhood BMI (Supplementary Table 5), where the genetic correlation between early childhood 

slope and BMI at age 1.5 and 3 years of age was 0.13 (SE=0.09) and 0.39 (SE=0.10) respectively.  

 

We identified 28 genome-wide significant (P<5x10-8) variants at 13 loci associated with at least 

one of the 12 estimated phenotypes (Figure 4-6, Supplementary Table 6). The number of 

estimated phenotypes the loci were associated with ranged from one phenotype (LEPR 

associated with only Age AR and DAOA associated with only early childhood AUC) to seven 

phenotypes (SEC16B was associated with age and BMI at AR, age at AP, late childhood and 
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adolescent AUC and early and late childhood slope).  Of these 13 loci, 12 have previously been 

identified in GWAS of adulthood BMI or obesity-related traits and 9 have been associated with 

childhood BMI-related traits. We identified one novel locus in the DAOA region on chromosome 

13 that was most strongly associated with AUC in early childhood (1.5-3.5 years). Here, the A 

allele at rs79577162 (DAOA) reduces the AUC within this time-period (effect size=-0.02 log BMI 

years, P=4x10-8). Across the other derived phenotypes, the A allele at rs79577162 also decreases 

BMI at the AP (effect size=-0.13kg/m2, P=2x10-6) and AR (effect size=-0.14kg/m2, P=5x10-6), and 

decreases the AUC across all time periods (effect size for infancy AUC=-0.003 log BMI years, 

P=3x10-5; effect size for late childhood AUC=-0.04 log BMI years, P=1x10-4; effect size for 

adolescent AUC=-0.06 log BMI years, P=3x10-3); there was no evidence that the SNP impacts 

the slope across childhood (all P>0.24) or the age at the AP (P=0.25) or AR (P=0.25). Results 

were similar when OBE was excluded from the meta-analysis (Supplementary Figure 5). Twelve 

of the 28 the genome-wide significant variants identified in the European meta-analysis showed 

the same direction of effect in the CHOP African American subset and reached nominal 

significance (P<0.05) for at least one estimated phenotype (Supplementary Table 7), and a further 

12 loci showed the same direction of effect (P>0.05). 

 

The adolescent slope was not strongly associated with any region of the genome (Figure 5). The 

most significant locus was near FAM120AOS (rs11790060, P=7x10-8) on chromosome 9, a region 

previously associated with change in BMI over early life (Warrington et al. 2015) (Supplementary 

Figure 6).  

 

Variants near SEC16B, which have previously been shown to associate with adult BMI 

(Thorleifsson et al. 2009), were associated with the majority of our estimated phenotypes. For 

example, the T allele at rs509325 is associated with decreased age at the AP (effect size=-0.003 

years, P=1x10-8), and it is also associated with increased age at the AR (effect size=0.12 years, 

P=5x10-16) and decreased BMI at the AR (effect size=-0.08 kg/m2, P=5x10-8). The T allele is also 

associated with decreased early childhood slope between 1.5 and 3.5 years (-0.0011 log BMI 

units per year, P=2x10-11) and late childhood slope between 6.5 and 10 years (-0.0013 log BMI 

units per year, P=1x10-17), resulting in a lower AUC in the subsequent time periods (i.e. -0.0315 

log BMI years, P=3x10-13 for late childhood AUC and -0.0670 log BMI years, P=4x10-17 for 

adolescent AUC). Variants near FTO and ADCY3 are similarly associated with a number of the 

estimated phenotypes.  
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We also investigated the association between 112 unique SNPs previously identified childhood 

BMI or obesity associated SNPs and our estimated phenotypes (Supplementary Table 8). The 

majority of the 112 SNPs showed directionally concordant effects between the published BMI 

traits and our estimated phenotypes (76/112 SNPs increased infancy slope, 86/112 increased 

early childhood slope, 84/112 increased late childhood slope, 83/112 increased infancy AUC, 

97/112 increased early childhood AUC, 96/112 increased late childhood AUC, 96/112 increased 

adolescent AUC, 80/112 increased age at AP, 89/112 increased BMI at AP, 100/112 increased 

BMI at AR), with the exception of the adolescent slope (24/112). Given that an earlier age at AR 

is associated with higher BMI in later life, 82/112 SNPs associated with higher BMI traits were 

associated with earlier age at AR. At least half of the SNPs reached nominal significance (P<0.05) 

for the childhood to adolescent traits, except for adolescent slope, for which only 18/112 SNPs 

reached nominal significance. 
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Discussion 

We have developed a framework to perform non-linear growth modelling and conduct GWAS to 

detect age- (time) varying genetic effects of non-linear trajectories. To perform the analysis for 

BMI across childhood in multiple cohorts using our framework, we created an easy-to-use R 

package, called Early Growth Genetics Longitudinal Analysis (EGGLA). We consider childhood 

BMI an important and valuable example for testing our framework due to the established complex 

changes in adiposity that occur during the childhood, such as the AR and pubertal effects on BMI. 

We have shown that a LMM with a cubic spline function in the fixed effects and a cubic slope in 

the random effects, which is similar to a model used previously (Warrington et al. 2015), fit well in 

all the cohorts tested. We subsequently estimated phenotypes from this LMM and used them to 

conduct GWAS analyses. We identified 28 SNPs from 13 loci that associate with one or more of 

the estimated childhood BMI phenotypes, one of which was novel and has not been previously 

associated with childhood or adult BMI. These include 6 loci that were associated with the 

estimated AUCs, 6 loci that were associated with both change in BMI over time (estimated slopes) 

and the estimated AUCs and one that was associated with the age at AR but none of the AUCs 

or slopes. Although the majority of the identified loci had previously been identified in GWAS of 

BMI measured cross-sectionally in childhood and/or adulthood, our framework allows exploration 

of how the genetic effect changes over age (time), which is difficult to elucidate from cross-

sectional GWAS analyses. With a larger sample size, this framework is likely to be useful to 

explore GWAS of time varying phenotypes to identify novel genetic associations that are relatively 

stable across large age periods (i.e. through the association with estimated AUCs) and those that 

vary with age (through the association with estimated slopes).  

 

Given we have demonstrated our framework works well with the complex changes in BMI across 

childhood, we believe it is generalizable to longitudinal analysis of other traits. For example, the 

same procedure could be applied to height trajectories across childhood or changes in lean and 

fat mass. It could also be applied to other non-anthropometric traits, such as blood pressure or 

cholesterol trajectories across adulthood. The challenging aspect that will require further 

development for each trait of interest is defining an appropriate model to fit the repeated measures 

data that accurately describes the trajectory. However, once an appropriate model has been 

identified for the particular trait, then phenotypes can be estimated for subsequent GWAS 

analyses. We have provided the R package appropriate for modelling BMI trajectories across 

early life and details of the framework here so that it can be explored for use with other traits. 
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Our model fit the BMI data across a range of cohorts, including different ethnicities and different 

time points for data collection. For example, the final model had a similar fit in the two subsets of 

the CHOP cohort (the European American and African American), and the average BMI 

trajectories predicted from the model followed the expected growth patterns from previous 

research (Min et al. 2018), with the African American cohort having a higher BMI and faster rate 

of growth than the European American cohort. In the OBE cohort, there was very sparse data 

between the ages of 16 and 18 years; when we removed data after 16 years from the modelling, 

the model fit in OBE was comparable to the other cohorts. It is unknown how these models will 

perform in cohorts with data across a shorter age range; it may be necessary to incorporate 

alternative methods when cohorts are included with data across a different age ranges. 

 

We propose using the AUC as one of the summary measures of the trait trajectories. The AUC 

for childhood BMI has been described as "the child's cumulative ‘exposure’ to excessive body 

weight” (Wen et al. 2012), and has been used in epidemiological studies, but we have found no 

evidence that it has been used previously for GWAS of any trait. Using AUC has potential benefits 

over analysing BMI in a cross-sectional manner as it is a combination of both baseline BMI and 

the incremental change in BMI over the time-period, whereas cross-sectional BMI would be the 

BMI at a given time point. Additionally, using the AUC rather than BMI at a single time point 

potentially increases statistical power to detect a genetic effect as the multiple BMI measurements 

used to estimate the AUC would average out any errors in the measurements and therefore 

reduce the variance attributable to measurement error. The AUC was more highly phenotypically 

and genetically correlated with BMI at the AP and AR, as well as at age 18, whereas the slopes 

were more highly correlated with the timing of the AP and AR. Consistent with the correlations, 

the SNP effects for the AUC were more directionally concordant with previously identified BMI and 

obesity loci than the SNP effects for the slope. This indicates, at least for BMI in early life, that 

genetic studies of the estimated slope parameters could uncover novel biology driving BMI in 

childhood that the current studies of childhood BMI have failed to identify. In contrast, genetic 

studies of the estimated AUC parameters would be likely to provide similar findings to the current 

genetic studies of childhood BMI; however, because the AUC parameters are estimated from the 

trajectory, measurement of BMI at the exact same time points across cohorts is not necessary, so 

using AUC allows incorporation of more cohorts to enhance sample sizes and statistical power for 

genetic studies. 
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Our analyses of BMI showed consistent results with previous literature, further validating our 

approach. First, the phenotypic correlations between the age and BMI at the AP and AR are 

similar to the correlations from a paediatric cohort with data collected between 1980-2008 (Wen 

et al. 2012). For example, Wen et al (Wen et al. 2012) estimated the correlation between BMI at 

the AP and AR to be 0.76, and ours ranged between 0.69-0.91 across the cohorts. Similarly, their 

correlation between age and BMI at the AR was -0.48, and ours ranged between -0.39 to -0.67. 

This indicates that the dependencies between the estimated phenotypes are consistent 

regardless of the underlying LMM fit to the repeated measures data. Second, the genetic 

correlations between the infancy AUC/early childhood AUC/BMI at AP and the other estimated 

phenotypes were relatively low, indicating that genetic loci associated with BMI in the first 3-4 

years of life are likely to be different from those associated with BMI in later life. This observation 

is consistent with both a twin study that has shown that the genetic correlations differ between 

early and middle childhood (Silventoinen et al. 2022) and the MoBa study that show that the 

genetic correlation between childhood and adult BMI dramatically increases after the age of 5 

years (Helgeland et al. 2022). Third, the SNP-based heritability of the estimated phenotypes 

ranged from 6-28% and is similar to the SNP-based heritability of cross-sectional BMI in childhood 

(15-45%, (Helgeland et al. 2022)) and adulthood (22%, (Yengo et al. 2018)). The low SNP-based 

heritability observed for the infancy slope (0.07 (SD=0.03)) and age at AP (0.09 (SD=0.03)) was 

also seen by Couto Alves and colleagues (Couto Alves et al. 2019) (-0.03 (SD=0.08) for age AP). 

This low SNP-based heritability could be due to a higher environmental component operating at 

this age, a genetic component that is not tagged by the SNPs on the GWAS array or a maternal 

genetic component that is independent of the child’s genetic component. Alternatively, given the 

SNP-based heritability from cross-sectional BMI GWAS between 6 weeks of age and 1 year in 

the MoBa study ranged from 0.2-0.45 (Helgeland et al. 2022), it could indicate that our estimated 

phenotypes are not proxying the underlying BMI trajectory well through this age range. Therefore, 

further investigation into this low SNP-based heritability is warranted. 

 

The effect estimates at identified SNPs in our GWAS are consistent with previously reported 

effects on childhood growth. For example, Warrington et al. identified rs1558902 at the FTO locus 

to be associated with change in BMI over childhood, which is in high LD with rs55872725 (D’=1, 

r2=1) (Warrington et al. 2015). We found that the T allele at rs55872725 is associated with 

increased rate of BMI change from infancy to late childhood (P<7x10-7), but not associated with 

adolescent slope (P=0.129), which is consistent with the pattern of association identified by 

Warrington et al. (Warrington et al. 2015). Additionally, the T allele is associated with lower AUC 
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in infancy (P=0.002), not associated with AUC in early childhood (P=0.502) and then associated 

with higher AUC in late childhood and adolescence (P<4x10-14), which again is consistent with 

Warrington et al. where the genetic effect is associated with decreased BMI from 1-2 years of 

age, not associated with BMI from 3-5 years of age, then associated with increased BMI from 6 

years of age onwards (Warrington et al. 2015). Therefore, although we have used different 

methods to identify and describe the genetic effects on growth, we are able to recapitulate what 

has previously been described, validating our proposed framework. 

 

We have used our model to estimate the BMI and age at both the AP and AR. However, we 

acknowledge that the biological significance of these two markers remains unclear. It was initially 

thought that the relationship between age at AR and later risk of obesity was due to both the 

number and size of adipocytes increasing (Rolland-Cachera et al. 1984).  Later studies propose 

that it could be related to an increase in the rate of lean mass rather than fat mass development 

(Campbell et al. 2011; Plachta-Danielzik et al. 2013). Cole (Cole 2004) suggests that it is a 

statistical phenomenon driven by both high centile and upward centile crossing, which are 

separately associated with an early rebound. Our findings here, and further application of our 

framework to change in fat and lean mass across childhood, could provide insights related to 

these different hypotheses.  

 

There are several limitations to our approach. Firstly, the trajectories for each individual (i.e. the 

best linear unbiased predictors) are biased towards the average trajectory of the cohort (a 

property of LMMs known as ‘shrinkage’), particularly when the individual has fewer repeated 

measures or when their trajectory is vastly different from others in the cohort (Robinson 1991). 

This could result in a biased estimate of the SNP effect on the trajectory in GWAS. Future work 

could incorporate approaches to adjust for the bias introduced by shrinkage (for example, 

methods used by Sikorska et al. 2013; Meirelles et al. 2013; Yuan et al. 2021) into our framework. 

Secondly, we have not accounted for the high phenotypic and genetic correlation between the 

estimated phenotypes (see Figure 3 and Supplementary Table 4) in the GWAS meta-analysis. 

Performing a multivariate meta-analysis accounting for the high correlation between the estimated 

phenotypes may reduce the overlap between the genetic signals seen. It may also increase the 

power to detect a genetic locus by leveraging information from the other correlated phenotypes, 

as seen in analyses using the MTAG software (Turley et al. 2018). Further research on the most 

appropriate multivariate meta-analysis method is required. Third, one of the advantages of using 

repeated measurements per individual is to increase the statistical power to detect genetic 
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associations when the SNP is included in the fixed effects part of the LMM due to the smaller 

residual error variance. However, given we are reducing the dimension of our dataset back to a 

single measure per person (for each GWAS analysis), it is unclear what impact this has on the 

statistical power. Finally, BMI as a measure of adiposity during infancy is not commonly used 

clinically, with ponderal index (weight divided by height3) being preferred. However, to model the 

trajectory from 2 weeks to 18 years of age we needed to use one measure consistently. Further 

research into the effect of different powers of height, as investigated by Stergiakouli and 

colleagues (Stergiakouli et al. 2014), would be of interest. 

 

In conclusion, we have described a novel framework for conducting GWAS meta-analyses on 

longitudinal (repeated measures) phenotypes that have a non-linear trajectory over time. We 

provide an R package, EGGLA, to conduct these analyses for childhood BMI consistently across 

different cohorts. We have shown that the estimated phenotypes summarise the BMI growth 

trajectory across a range of cohorts and are able to detect genetic associations with known BMI-

associated regions of the genome and to detect new genetic associations. Performing similar 

analyses across a wider range of cohorts with BMI measures across childhood may identify 

additional novel loci for change in BMI across early life. Identification of such loci will enable 

downstream analyses, such as genetic correlation and causal modelling, to investigate 

relationships between, for example, early life growth and developmental milestones, cognition 

and later life cardio-metabolic disease.   
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Methods 

Overview 

The Early Growth Genetics (EGG) Longitudinal Analysis (EGGLA) framework comprises four 

main components: application of a LMM to longitudinal data (in this case, BMI measurements 

between 2 weeks and 18 years of age), model diagnostics, model refinement, and finally GWAS, 

all provided through a series of functions defined within the EGGLA R package (Canouil et al. 

2024; R Core Team 2022). The EGGLA R package was developed to provide a unified approach 

to harmonise analyses within six distinct cohorts. Although the package and accompanying 

documentation is specific to this longitudinal analysis with childhood BMI, it (and the described 

methods) serves as an exemplar for other consortium efforts to model other non-linear traits. The 

EGGLA R package is therefore publicly available on GitHub; it is also available as part of a Docker 

image, which provides all necessary tools for conducting LMM and GWAS analyses allowing the 

analyses to be run non-interactively through either Shell Command Language, Bourne-Again 

SHell, or interactively through R v4.2.0 (or greater). Further details of the application of the 

EGGLA R package to cohorts within the EGG consortium are described below. 

 

Cohorts and study participants 

We chose six cohorts to test our proposed methods, which include prospective general 

population-based birth cohorts from different generations and geographical locations (ALSPAC 

(Boyd et al. 2013; Fraser et al. 2013), NFBC1966 (Nordström et al. 2021) and NFBC1986 (Järvelin 

et al. 1997)), a retrospective cohort of children with obesity (OBE (Meyre et al. 2004; 2009)), and 

different ethnicities (individuals of African American and European American descent in CHOP 

(Connolly et al. 2020)). 

 

For the growth modelling, we included all individuals with anthropometric data between the ages 

of two weeks and 18 years, except for OBE, which had very sparse data between 16 and 18 

years, so after careful testing we excluded any measures after 16 years for the OBE cohort. 

Measures of height and weight from birth to two weeks were excluded to mitigate the effects of 

the weight drop arising after birth (DiTomasso and Cloud 2019). We excluded individuals who 

were part of a multiple birth (i.e., twins, triplets). All individuals with available anthropometric data 

were included in the growth modelling, regardless of whether they had genetic data, to ensure a 

precise estimate of the average BMI trajectory within each cohort. Cohort-specific covariates were 

included in the growth modelling; for example, ALSPAC included a binary indicator of 
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measurement source (questionnaire vs. clinic or health visitor measurement) to allow for 

differential measurement error. 

 

Data quality control 

We applied an automated algorithm developed by Daymont and colleagues (Daymont et al. 

2017), which is available as the R package, growthcleanr (https://cran.r-

project.org/web/packages/growthcleanr/index.html). This package compares each measurement 

with a weighted moving average of the individual’s other measurements to identify biologically 

implausible values in height and weight. The cleaning function flags potential data errors 

including: unit-switch errors (e.g., pounds recorded as kgs or height recorded as weight), very 

extreme values (i.e., z-score > 25), carried forwards (i.e., values identical over time for the same 

individual), duplicates (i.e., values recorded on the same day), large height absolute differences 

(i.e., a decrease in height by more than 3 cm in sequential measurements), single measurements 

and pairs (i.e., individual SD score for height was compared to their SD score for weight and vice-

versa), error load (i.e., exclude individuals who have a substantial proportion of values flagged to 

be excluded), and finally moderate outliers (i.e., found by calculating the exponentially weighted 

moving averages for moderate and extreme outliers). We excluded any height or weight values 

that were flagged as potential data errors (between 4.2% and 16% of measures within each 

cohort; Supplementary Table 2). We have incorporated the growthcleanr quality control into our 

EGGLA R package. 

 

After applying the cleaning protocol, measurements of height (m) and weight (kg) were used to 

derive BMI as weight(kg) / height(m)2. As BMI is skewed and heteroskedastic, a natural log 

transformation was applied before analysis. 

 

Linear mixed modelling 

LMM is one commonly used approach for overcoming some of the challenges in modelling 

longitudinal data. By selecting an appropriate function for age, the average trajectories of an 

outcome (i.e., average relationship between age and BMI) can be estimated as fixed effects in 

the LMM, while variation around this average on the individual level can be estimated as random 

effects (Laird and Ware 1982; Goldstein and Stavola 2010). Further details on LMM are given in 

the Supplementary Text. 
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Application of LMMs to BMI 

We applied LMMs to model the trajectory of BMI, on a natural-log scale, over time from two weeks 

to 18 years of age (except OBE, which had data until 16 years). We fit three different functions 

for age to capture the non-linear slope of the loge(BMI) trajectory: 1) a cubic slope for age, 2) 

linear smoothing splines with knot points at key inflection points on the curve, and 3) cubic 

smoothing splines with knot points between inflection points in the curve.  While we acknowledge 

that these three functions for age are not the only functions that could have been used to model 

the non-linearity in the trajectory, we chose these as they range from a simplistic function to model 

the non-linear trajectory (linear smoothing splines) to more complex function (cubic smoothing 

splines), but other functions may be more appropriate for comparison when investigating other 

traits. The linear smoothing splines were included as they have the benefit of being able to be 

used as the estimated slope phenotypes, rather than requiring estimated slopes to be derived 

separately. The three models are described by the equations below for individual i at time point t: 

 

1. LMM with cubic slope for age: 

 

2. LMM with linear smoothing splines: 

 

3. LMM with cubic smoothing splines: 

 

Where the fixed parameters are represented by β0, β1, β2,..., κk is the kth knot and: 

 

The parameter estimates for the random effects are represented by b0i, b1i, b2i,.., and are assumed 

to be multivariate normally distributed. εit are the error terms assumed to be normally distributed 

and independent of the parameter estimates for the random effects. For the LMM with linear 

smoothing splines, the placement of knot points was based on the underlying biology of the BMI 

trajectory, with piecewise slopes for the time period of infancy to the AR (first knot point at 5.5 
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years), a slope from the AR to the pubertal period (second knot point at 11 years), and finally from 

the pubertal period through adolescence. We attempted fitting a third knot point at 9 months, but 

the model failed to converge. For the LMM with cubic smoothing splines, we a priori fit knot points 

at 2, 8 and 12 years based on previous studies (Warrington et al. 2013). For the LMMs with the 

cubic slope and cubic smoothing splines, we also compared the model fit when reducing the 

degree of the polynomial in the random effects to decrease the complexity of the model and 

attempt to assist in model convergence. For example, for the cubic slope LMM, we fit random 

effects that had a quadratic function of age and a linear function of age, in addition to the cubic 

function of age. A list of these models is given in the Supplementary Table 3. 

 

The three LMMs were conducted on the loge(BMI) data within each cohort stratified for sex, and 

we conducted models with and without specifying a continuous autocorrelation structure of order 

1 (CAR(1)) correlation structure.  

 

Selection of the best model 

Assessment of model fit was appraised using the following indices of model quality and goodness 

of fit; R2 (conditional and marginal), intraclass correlation coefficient (ICC), Akaike’s Information 

Criterion (AIC), Bayesian Information Criterion (BIC), root mean squared error (RMSE), and 

residual SD. The selection of the overall best model was based on the most favourable model 

performance metrics across all cohorts, as well as model convergence and warning and error 

messages. It is important to note that the ‘best fitting model’ for each individual cohort was not 

necessarily chosen, as each cohort was slightly different for which model fit the data best. 

 

The best model was taken forwards for knot placement refinement. We used a systematic 

approach to refine the best fitting model further using an incremental series of knot points where 

knot 1 was placed at 1, 1.5, and 2 years; knot 2 was placed at 6, 7, and 8 years and knot 3 was 

placed at 12 years for all models. As for the model diagnostics above, indices of model quality 

and goodness of fit were used to determine our final BMI trajectory model. 

  

Estimating phenotypes for GWAS from the BMI trajectories 

From the BMI trajectories generated by our model, we sought to extract interpretable 

characteristics that we could subsequently interrogate for genetic associations. We estimated the 

age and BMI at the AP and AR, two features of the BMI trajectory that respectively mark the 

transitions from the rise in BMI across infancy to the decline in BMI in early childhood, then the 
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subsequent rise in BMI from early childhood. In addition, we hypothesised that there may be 

shared and/or distinct genetic contributions to BMI preceding and succeeding these features 

(Couto Alves et al. 2019). To this end we defined time periods of approximately linear change in 

BMI prior to the AP, between the AP and AR, from the AR to the approximate onset of puberty 

and through adolescence. In addition to the rate of change (slopes) over these time intervals, we 

also analysed the area under the BMI curve (AUC), an estimate of the child’s cumulative exposure 

to excessive body weight. We refer to each of these estimated parameters from the BMI 

trajectories as the estimated phenotypes. 

 

Deriving the adiposity peak and rebound 

We determined both the age (in years) and BMI (kg/m2) at the AP and AR from the BMI trajectory 

model. For each participant, loge(BMI) was predicted using the fixed and random coefficients from 

the models at intervals of 0.01 year. Then, the AP was defined as the first maximal loge(BMI) 

occurring between the ages of 0.25 and 10 years of age, and the AR was determined as the first 

nadir within that time interval. These cut-off points were chosen based on previous evidence of 

the mean ages of AP and AR in European populations (Sovio et al. 2011). The age and BMI for 

these two points was estimated by taking the exponential of predicted loge(BMI). We ensured that 

the age at AP is less than the age at AR; when this did not occur, the individual’s age and BMI at 

both AP and AR were set to missing. 

 

Choosing the time intervals for deriving slopes and AUCs 

A series of time periods of approximately linear change in BMI were defined, avoiding the 

inflection points at the AP and AR. The time intervals to derive these slopes (and AUCs) were 

determined visually from the population average BMI trajectories in each cohort and by minimising 

the proportion of individuals with AP and/or AR falling within the defined time periods 

(Supplementary Table 1). We chose the following time intervals for derivation of the slopes and 

AUCs: 

● 0 to 6 months (referred to as infancy) 

● 1 ½ years to 3 ½ years (early childhood) 

● 6 ½ years to 10 years (late childhood) 

● 12 years to 17 years (adolescence) 

Although these time intervals avoided the average age of the AP and AR, there was a small 

proportion of individuals with AP and/or AR falling within these time intervals. 
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Deriving the slopes 

Slopes for each individual for each time interval were estimated using: 

 

Where yb is the predicted value of log(BMI) from the LMM at the ending point for the time interval 

(e.g., 6 months for the infancy slope), ya is the predicted value of log(BMI) from the LMM at the 

starting point (e.g., 2 weeks for the infancy slope), and xa and xb are the ages at the earlier and 

later time points, respectively. 

 

Deriving the area under the curve (AUC) 

The AUCs for each time interval were estimated by integrating the best fitting model with respect 

to age. For example, the AUC for the model with cubic smoothing splines from equation (3) above 

would be estimated using the following: 

Where a is the earlier time point (e.g. 0 years for the infancy AUC) in each time interval and b is 

the later time point (e.g. 6 months for the infancy AUC). 

 

Final model checks 

Individuals were flagged as being an outlier for any of the estimated phenotypes (slopes, AUCs, 

age and BMI at AP/AR) based on the interquartile range (IQR) (Tukey JW 1977), with values 

outside twice the IQR flagged as outliers (i.e., two times the IQR above the third quartile and 

below the first quartile). If an individual was flagged as an outlier for any one of the estimated 

phenotypes, they were excluded from analyses involving any of the estimated phenotypes. We 

took this conservative approach to excluding outliers, because if an individual was flagged as an 

outlier for an estimated phenotype it likely indicates an issue with their whole predicted curve. Per 

cohort, this excluded the following proportions of individuals from further analysis: 5% in 

NFBC1986, 6% in NFBC1966, 9% in ALSPAC, 10% CHOP African American, 12% OBE and 16% 

in CHOP European American sample.  

 

Correlation matrices between the estimated phenotypes were generated to aid in downstream 

interpretation of GWAS results. We also conducted association analyses between each of the 

estimated phenotypes and BMI at the end of the trajectory for each cohort (i.e. BMI at age 16 
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years in OBE and 18 years for all other cohorts). We converted each of the estimated phenotypes 

and BMI at the end of the trajectory to z-scores by subtracting the mean and dividing by the 

standard deviation within each cohort so that we could compare across phenotypes. Analyses 

were adjusted for sex, and adjusted R2 were reported.  

 

GWAS of the estimated phenotypes 

Genotyping in each of the contributing cohorts was performed using high-density Illumina 

BeadChip arrays, and data cleaning and quality control (QC) were performed locally for each 

cohort (see Supplementary Table 1 for details). Imputation for all European cohorts was 

performed using the reference data from the Haplotype Reference Consortium (HRC) release 1.1 

(McCarthy et al. 2016). SNP positions were based on National Center for Biotechnology 

Information (NCBI) build 37 (hg19), and alleles were labelled on the positive strand of the 

reference genome. For the CHOP African American subset, imputation was performed using the 

TOPMED reference data (Kowalski et al. 2019) and SNP positions were based on NCBI build 38.  

 

We performed sex-combined GWAS on the 12 estimated phenotypes derived from the BMI 

trajectory models: the four estimated slopes, the four AUCs, and age and BMI at AP and AR (OBE 

performed GWAS on 10 estimated phenotypes as they did not estimate the adolescent slope and 

AUC due to lack of data after 16 years). Ancestry principal components were included in the 

models as covariates, along with sex and cohort-specific covariates where appropriate. GWAS 

was performed using the imputed allelic dosage data under an additive genetic model. For 

ALSPAC, NFBC1966, NFBC1986, and OBE, a linear model was applied using PLINK 2.0 (Chang 

et al. 2015). For CHOP, analyses using a linear mixed model in REGENIE (version 3.2.6) was 

used to account for the extended family structure (Mbatchou et al. 2021) 

 

Meta-analysis of the estimated phenotypes 

Prior to meta-analysis, variants were first filtered at the cohort level for monomorphic or multiallelic 

SNPs, indels, low sample size (<20), low minor allele count (≤3), large effect estimates (absolute 

value of beta or SE ≥10 units per allele [log BMI units per year for the estimated slopes, log BMI 

years for the estimated AUCs, years for the estimated age at AP and AR and kg/m2 for the 

estimated BMI at AP and AR]), and poor imputation quality (INFO <0.4 or R2 <0.3). Filtering as 

well as harmonisation of variants across the cohorts and comparisons of allele frequencies was 

performed using the EasyQC2 (v. 1.1.1.b5) software package (Winkler et al. 2014) We conducted 

an inverse-variance weighted fixed-effects meta-analysis, combining each of the five European 
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cohorts, for each of the estimated phenotypes using GWAMA v.2.1 (Mägi and Morris 2010). OBE 

was excluded from the meta-analysis of the adolescent phenotypes as it did not have data after 

16 years of age. Additionally, as OBE is an obesity cohort, we conducted a sensitivity meta-

analysis excluding OBE from the other meta-analyses to ensure that it was not driving any 

observed association. After meta-analysis, we excluded variants that were not present in ≥50% 

cohorts (i.e., 3 for the European cohorts; 2 for the European cohorts in the sensitivity analyses 

excluding OBE) as well as variants with minor allele frequency (MAF) < 0.005. Results were 

clumped and annotated using LocusZoom ((Boughton et al. 2021), version 0.14.0). In the African 

American subset of CHOP, we selected any genome-wide significant variants identified in the 

European meta-analysis and performed lift over to build 37 using UCSC Lift Genome Annotations 

browser tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver).  

 

Using the genome-wide summary statistics from the meta-analysis, we calculated the SNP-based 

heritability of each of the estimated phenotypes and the genetic correlations between phenotypes 

using LD score regression ((B. K. Bulik-Sullivan et al. 2015; B. Bulik-Sullivan et al. 2015), version 

1.0.1). We also estimated genetic correlations between the derived phenotypes and cross-

sectional BMI at birth, six months, 1.5 years, 3 years, 7 years, 8 years and adulthood using 

publicly available summary statistics. The specific ages for childhood BMI were selected so that 

they would be as close as possible to the cutoff points of our time windows of infancy, early and 

late childhood. The childhood BMI summary statistics from the Norwegian Mother, Father and 

Child Cohort Study (MoBA) were reported by (Helgeland et al. 2022). Summary statistics for adult 

BMI were obtained from the largest meta-analysis to-date of GWAS on cross-sectional adult BMI 

in individuals of European ancestry (Yengo et al. 2018). The summary statistics were formatted 

using a modified version of the supplied munge.sumstats python script. Variants with minor allele 

frequency less than 1% were removed; no filtering on imputation quality was performed as this 

was not available in the meta-analysis. SNP-based heritabilities and genetic correlations were 

calculated using the European LD scores available from the developers of LD score regression 

via the genomicSEM website (https://utexas.box.com/s/vkd36n197m8klbaio3yzoxsee6sxo11v). 
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Figure 1: Population average BMI trajectories predicted by our final chosen model (cubic 

spline function in the fixed effects with cubic slope function in the random effects) for each 

of the six cohorts for males (A) and females (B). BMI trajectories were predicted from 2 weeks 

to 17 years, which corresponds to the age range that the slopes and AUCs were predicted from, 

in all cohorts except OBE where they were predicted from 2 weeks to 16 years due to the lack of 

data after age 16. The year(s) of recruitment for each cohort are as follows: ALSPAC: 1991-1993, 

CHOP: 1988-present, NFBC1966: 1966, NFBC1986: 1985-1986, OBE: 1981-2001 
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Figure 2: Observed BMI measures versus fitted BMI values from our final chosen model 

(cubic spline function in the fixed effects with cubic slope function in the random effects) 

in males. A) ALSPAC; B) CHOP European subset; C) CHOP African American subset; D) 

NFBC1966; E) NFBC1986; F) OBE. BMI is given in kg/m2 
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Figure 3: SNP-based heritability and genome-wide genetic correlation between the twelve 

estimated phenotypes summarising growth across early life. SNP-based heritabilities, 

presented on the diagonals, and genetic correlations, presented on the off diagonals, were 

derived using linkage disequilibrium score regression. SNP-based heritabilities for AP age, 

infancy and adolescent slope are low, with high standard errors, and therefore the genetic 

correlations with these traits are unreliable but are shown for completeness. *estimates of genetic 

correlation were >1; given this is not possible we have set these to one.  
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Figure 4: Manhattan plots and quantile-quantile (QQ) plots of the meta-analyses for the 

area under the curve estimated phenotypes across infancy (0-0.5 years), early childhood 

(1.5-3.5 years), late childhood (6.5-10 years) and adolescence (12-17 years). Loci are labelled 

with their nearest gene annotated by LocusZoom. The red dotted line corresponds to the genome-

wide significance level of P<5x10-8.  
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Figure 5: Manhattan plots and quantile-quantile (QQ) plots of the meta-analyses for the 

slope estimated phenotypes across infancy (0-0.5 years), early childhood (1.5-3.5 years), 

late childhood (6.5-10 years) and adolescence (12-17 years). Loci are labelled with their 

nearest gene annotated by LocusZoom. The red dotted line corresponds to the genome-wide 

significance level of P<5x10-8.  
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Figure 6: Manhattan plots and quantile-quantile (QQ) plots of the meta-analyses for the age 

and BMI at adiposity peak and adiposity rebound estimated phenotypes. Loci are labelled 

with their nearest gene annotated by LocusZoom. The red dotted line corresponds to the genome-

wide significance level of P<5x10-8.  
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Table 1: Cohort information for cohort included in the analysis, including summary statistics of the estimated phenotypes. 

See Supplementary Table 1 for further information. The summary statistics are presented as mean (standard deviation). The OBE 

cohort was unable to estimate the adolescent phenotypes due to lack of data after the age of 16 years (N/A for not available).  

Country

Ethnicity

Collection type

Year of birth

Sample size 7197 6818 12002 10814 10533 10772 3800 3280 2734 2826 252 308

Number of BMI 

measures per person 

8.48 

(5.41)

8.83 

(5.41)

13.90 

(16.60)

13.90 

(16.40)

13.40 

(12.40)

12.60 

(12.00)

15.64 

(5.67)

15.90 

(5.74)

19.31 

(5.14)

19.54 

(5.32)

9.59 

(2.93)

9.59 

(2.91)

Age at adiposity peak 

(yrs)

0.77 

(0.04)

0.78 

(0.04)

0.75 

(0.04)

0.77 

(0.05)

0.72 

(0.04)

0.74 

(0.05)

0.73 

(0.03)

0.75 

(0.04)

0.70 

(0.03)

0.73 

(0.04)

0.75 

(0.08)

0.79 

(0.06)

BMI at adiposity peak 

(kg/m²)

17.75 

(1.00)

17.33 

(0.99)

17.58 

(0.82)

17.02 

(0.92)

17.94 

(1.02)

17.46 

(1.08)

18.22 

(1.15)

17.81 

(1.17)

17.75 

(1.09)

17.29 

(1.09)

18.39 

(1.03)

17.83 

(1.03)

Age at adiposity 

rebound (yrs)

5.69 

(1.19)

5.10 

(1.34)

4.90 

(1.51)

4.54 

(1.54)

4.22 

(1.20)

3.83 

(1.20)

5.67 

(0.99)

5.61 

(1.20)

5.06 

(1.01)

4.87 

(1.21)

2.40 

(0.67)

2.12 

(0.62)

BMI at adiposity 

rebound (kg/m²)

15.78 

(1.09)

15.75 

(1.17)

15.78 

(1.06)

15.57 

(1.13)

15.96 

(1.27)

15.82 

(1.43)

15.40 

(1.00)

15.25 

(1.16)

15.59 

(1.08)

15.48 

(1.17)

17.34 

(1.40)

17.28 

(1.19)

Derived infancy slope 

(0-0.5 years)

0.45 

(0.02)

0.47 

(0.02)

0.44 

(0.02)

0.46 

(0.02)

0.46 

(0.02)

0.48 

(0.02)

0.56 

(0.02)

0.58 

(0.02)

0.36 

(0.01)

0.38 

(0.01)

0.54 

(0.05)

0.48 

(0.03)

Derived childhood 

slope (1.5-3.5 years)

-0.03 

(0.01)

-0.02 

(0.01)

-0.03 

(0.02)

-0.02 

(0.02)

-0.03 

(0.02)

-0.02 

(0.02)

-0.04 

(0.01)

-0.04 

(0.01)

-0.03 

(0.01)

-0.03 

(0.01)

0.01 

(0.03)

0.01 

(0.02)

Derived late childhood 

slope (6.5-10 years)

0.02 

(0.01)

0.03 

(0.01)

0.03 

(0.02)

0.03 

(0.02)

0.04 

(0.02)

0.05 

(0.02)

0.02 

(0.01)

0.02 

(0.01)

0.03 

(0.01)

0.02 

(0.01)

0.06 

(0.02)

0.06 

(0.01)

Derived adolesent 

slope (12-17 years)

0.03 

(0.01)

0.03 

(0.01)

0.04 

(0.02)

0.04 

(0.02)

0.03 

(0.02)

0.03 

(0.02)

0.03 

(0.01)

0.03 

(0.01)

0.03 

(0.02)

0.03 

(0.02)
N/A N/A

Derived infancy AUC 

(0-0.5 years)

1.39 

(0.03)

1.38 

(0.03)

1.38 

(0.03)

1.36 

(0.03)

1.39 

(0.03)

1.38 

(0.03)

1.39 

(0.03)

1.37 

(0.03)

1.40 

(0.03)

1.38 

(0.03)

1.40 

(0.03)

1.38 

(0.03)

Derived childhood 

AUC (1.5-3.5 years)

5.65 

(0.11)

5.64 

(0.12)

5.61 

(0.11)

5.57 

(0.14)

5.62 

(0.14)

5.59 

(0.16)

5.61 

(0.12)

5.58 

(0.13)

5.59 

(0.12)

5.56 

(0.13)

5.75 

(0.19)

5.75 

(0.16)

Derived late childhood 

AUC (6.5-10 years)

9.86 

(0.32)

9.94 

(0.37)

9.93 

(0.46)

9.95 

(0.50)

10.14 

(0.57)

10.24 

(0.66)

9.70 

(0.28)

9.69 

(0.34)

9.82 

(0.34)

9.80 

(0.39)

11.19 

(0.51)

11.12 

(0.44)

Derived adolesent 

AUC (12-17 years)

15.07 

(0.57)

15.30 

(0.66)

15.32 

(0.96)

15.43 

(0.94)

15.73 

(1.21)

16.09 

(1.28)

14.76 

(0.51)

14.87 

(0.54)

15.01 

(0.65)

15.01 

(0.64)
N/A N/A

1981-2001

Pregnancy cohort
Random collection 

from Hospital visits

Random collection 

from Hospital visits

Prospective general 

population-based

Prospective general 

population-based

Retrospective obese 

children cohort

1991-1993 1988-present 1988-present 1966 1985-1986

European

Male Female

Bristol, UK Philadelphia, USA Philadelphia, USA Northern Finland Northern Finland France

European European African American European European

OBE

Male Female Male Female Male Female Male Female Male

NFBC1986

Female

Cohort information

ALSPAC
CHOP - European 

American

CHOP - African 

American
NFBC1966
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Table 2: Model fit parameters from each cohort for a selection of the methods. See Supplementary Table 3 for further information 

on the model parameters from the other methods. 

Model 
details 

Diagnostic 

Cohort 

Fixed 
effects / 
random 
effects 

ALSPAC 
CHOP - European 

American 
CHOP - African 

American 
NFBC1966 NFBC1986 OBE 

Male Female Male Female Male Female Male Female Male Female Male Female 

Cubic 
slope / 
Cubic 
slope 

R2 conditional 0.83 
Warning: 
Singular 
precision 
matrix in 
level -1 

0.96 0.96 0.88 0.92 0.80 0.81 0.84 0.84 0.84 0.86 

R2 marginal 0.31 0.32 0.35 0.48 0.58 0.30 0.31 0.30 0.31 0.68 0.70 

ICC 0.75 0.93 0.94 0.76 0.80 0.72 0.73 0.77 0.77 0.52 0.52 

RMSE 0.06 0.04 0.04 0.07 0.07 0.05 0.06 0.05 0.05 0.10 0.09 

Sigma 0.06 0.05 0.05 0.07 0.07 0.06 0.06 0.05 0.05 0.10 0.10 

Linear 
splines / 
Linear 
splines 

R2 conditional 0.84 0.86 0.95 
Warning: 
Singular 
precision 
matrix in 
level -1 

0.94 0.96 
Warning: 
Singular 
precision 
matrix in 
level -1 

0.82 0.85 0.84 0.85 0.86 

R2 marginal 0.33 0.40 0.33 0.35 0.44 0.32 0.31 0.32 0.68 0.70 

ICC 0.75 0.78 0.93 0.91 0.92 0.73 0.78 0.77 0.53 0.51 

RMSE 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.09 0.09 

Sigma 0.06 0.07 0.05 0.06 0.06 0.06 0.05 0.05 0.10 0.10 

Cubic 
splines / 

Cubic 
splines 

R2 conditional 0.91 0.92 
Warning: 
Singular 
precision 
matrix in 
level -1 

Warning: 
Singular 
precision 
matrix in 
level -1 

0.91 0.94 
Warning: 
Singular 
precision 
matrix in 
level -1 

0.89 0.90 0.90 0.93 0.92 

R2 marginal 0.37 0.42 0.62 0.72 0.37 0.34 0.35 0.73 0.74 

ICC 0.85 0.87 0.75 0.77 0.83 0.85 0.85 0.73 0.69 

RMSE 0.04 0.04 0.05 0.05 0.04 0.04 0.04 0.06 0.06 

Sigma 0.05 0.05 0.06 0.06 0.05 0.04 0.04 0.07 0.07 

Cubic 
splines / 

Cubic 
slope 

R2 conditional 0.85 0.87 0.94 0.95 0.91 0.94 0.86 0.86 0.86 0.83 0.91 0.90 

R2 marginal 0.53 0.63 0.47 0.42 0.58 0.71 0.42 0.46 0.45 0.48 0.84 0.83 

ICC 0.68 0.66 0.88 0.92 0.78 0.78 0.75 0.74 0.74 0.68 0.42 0.42 

RMSE 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.07 0.07 

Sigma 0.05 0.05 0.05 0.05 0.06 0.06 0.05 0.05 0.04 0.05 0.08 0.08 
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