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ABSTRACT  

Rationale: Early detection of clinical deterioration using early warning scores may 

improve outcomes. However, most implemented scores were developed using logistic 

regression, only underwent retrospective internal validation, and were not tested in 

important patient subgroups. 

Objectives: To develop a gradient boosted machine model (eCARTv5) for identifying 

clinical deterioration and then validate externally, test prospectively, and evaluate 

across patient subgroups.  

Methods: All adult patients hospitalized on the wards in seven hospitals from 2008-

2022 were used to develop eCARTv5, with demographics, vital signs, clinician 

documentation, and laboratory values utilized to predict intensive care unit transfer or 

death in the next 24 hours. The model was externally validated retrospectively in 21 

hospitals from 2009-2023 and prospectively in 10 hospitals from February to May 2023. 

eCARTv5 was compared to the Modified Early Warning Score (MEWS) and the 

National Early Warning Score (NEWS) using the area under the receiver operating 

characteristic curve (AUROC).  

Measurements and Main Results: The development cohort included 901,491 

admissions, the retrospective validation cohort included 1,769,461 admissions, and the 

prospective validation cohort included 46,330 admissions. In retrospective validation, 

eCART had the highest AUROC (0.835; 95%CI 0.834, 0.835), followed by NEWS 

(0.766 (95%CI 0.766, 0.767)), and MEWS (0.704 (95%CI 0.703, 0.704)). eCART’s 

performance remained high (AUROC ≥0.80) across a range of patient demographics, 

clinical conditions, and during prospective validation. 
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Conclusions: We developed eCARTv5, which accurately identifies early clinical 

deterioration in hospitalized ward patients. Our model performed better than the NEWS 

and MEWS retrospectively, prospectively, and across a range of subgroups.  
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Introduction 

Clinical deterioration occurs in up to 5% of hospitalized patients, and early detection and 

treatment has been associated with improved patient outcomes (1-9). These events are 

often heralded by physiologic abnormalities, such as deranged vital signs and 

laboratory values, in the hours to days before the event, which has led to the 

development of early warning scores aimed at identifying high-risk patients before 

deterioration (10, 11). Early warning scores have evolved over time from aggregated 

weighted scores, such as the Modified Early Warning Score (MEWS) (12), which can be 

calculated by hand, to those based on logistic regression and other traditional statistical 

frameworks (1, 2), which can be summed with a calculator or spreadsheet, and more 

recently to advanced machine learning models, such as gradient boosted machines 

(GBM), which have been shown to be more accurate across multiple tasks in large 

datasets (13-16). Computational resources and electronic record use have grown in 

parallel to the complexity of these scores, which provides the capability to implement 

more advanced scores in real-time for patient care. 

While machine learning models come with the promise of decreased false alarms 

and increased detection rates over both traditional statistical models and the original 

aggregated weighted scores, they can suffer from overfitting and poor calibration when 

trained on insufficiently sized and representative datasets (17, 18). Further, the use of 

these models in clinical practice raises concerns about model fairness and bias, and 

little is known regarding how they perform across a range of important patient 

subgroups. For example, a model may perform well overall in a population, but may 

underperform in specific subgroups, which can lead to the diversion of resources away 
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from disadvantaged, vulnerable patients. Evaluating models across these subgroups is 

critical to ensuring the fairness of these tools in practice so that they have the potential 

to benefit all patients, including marginalized groups. Finally, most of the work in this 

area has been done retrospectively (11), and it is not known whether these complex 

models will perform similarly in production environments, with prospective calculations 

executed in real-time.  

Therefore, we aimed to develop and externally validate a GBM model for 

identifying clinical deterioration in a large, geographically diverse set of hospitals. After 

retrospective validation, which included extensive subgroup analyses, we then silently 

tested the model’s performance prospectively. These results serve as the foundation for 

a submission to the Food and Drug Administration for a first-in-class advanced machine 

learning analytic for inpatient clinical deterioration detection. 

 

Methods 

Study Overview and Population 

In this observational cohort study, a machine learning model to predict impending 

clinical deterioration was developed and validated in hospitalized adult (age ≥18 years) 

medical-surgical ward patients. Patients who were only admitted to the intensive care 

unit (ICU), labor and delivery, or emergency department and were never transferred to a 

medical-surgical (non-ICU) unit during their hospital encounter were excluded. The 

model, eCARTv5 (eCART), was developed in a dataset of seven hospitals from three 

health systems in Illinois (D1-D3), spanning the years 2008-2022. The model was then 

externally validated in two phases: (1) a retrospective cohort of admissions to 21 

hospitals from three health systems (R1-R3) in Florida, Wisconsin, Connecticut, and 
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Rhode Island, encompassing years 2009-2023; and (2) a 16-week prospective cohort of 

consecutive admissions to the 10 Florida hospitals where eCART ran in production with 

scores hidden from clinicians from February to May in 2023 (P3). eCART was 

compared to the MEWS (12)and the National Early Warning Score (NEWS) (19), which 

are commonly used and cited tools for clinical deterioration. The study was funded by 

the Biomedical Advanced Research and Development Authority (BARDA) as part of its 

Division of Research Innovation and Ventures (DRIVe) under contract number 

75A50121C00043 and the National Institutes of Health (R01HL157262). The study was 

approved for each health system by the following Institutional Review Boards (IRB): 

University of Chicago Biological Sciences Division IRB (#18-0447), Loyola University 

Chicago Health Sciences Division IRB (#215437), NorthShore University HealthSystem 

Research Institute IRB (#EH16-210T), University of Wisconsin-Madison Minimal Risk 

Research IRB (#2019-1258), BayCare Health System IRB (#2022.014-B.MPH & 

#2022.015-B.MPH) and Yale Human Research Protection Program IRBs 

(#2000035317). Each of the IRBs waived study-specific informed consent. Procedures 

were followed in accordance with the ethical standards of the responsible institutional 

committee on human experimentation and with the Helsinki Declaration of 1975. Please 

see the supplemental digital content for more information. 

 

Outcome  

The study outcome was clinical deterioration, defined as death or ICU transfer from the 

medical-surgical wards within 24 hours of a score (1, 13, 19). Death was determined 

using the discharge disposition from the admission, discharge, transfer (ADT) data feed 
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in the EHR, with the time of death being the last recorded vital sign. ICU transfer was 

defined as a direct ward to ICU transfer and was determined using the transfer 

disposition from the ADT data feed in the EHR, with the time of transfer being the last 

vital sign on the ward.  

 

Predictor Variables 

A total of 97 features were included as predictor variables in the eCART machine 

learning model. These variables included patient characteristics (e.g., age, body mass 

index (BMI), vital signs, laboratory values, time of day, time since admission, and 

nursing/respiratory therapist documentation (e.g., the amount of delivered oxygen, 

Braden scale), as well as vital sign and laboratory value trends (20). A full list of model 

predictor variables is found in Appendix Table E1 in the Online Supplement.  

 Non-physiologic flowsheet data were considered to be input errors and 

treated as missing, as per prior publications (see Appendix Table E2 in the Online 

Supplement). If no physiologic range data for a particular variable were available at a 

specific time, then the most recent prior value, if available, was pulled forward. If no 

prior values were available, the variable was left as missing. Given the dynamic nature 

of blood gas and lactate values and the tendency of providers to only order them on 

actively deteriorating patients, those values were only pulled forward for 24 hours, after 

which they were treated as missing in the model.  
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Model Development  

A gradient boosted machine (GBM) model was developed with the aforementioned 

features to predict clinical deterioration in all adult patients hospitalized on the wards in 

the training data. A standard statistical framework, known as discrete-time survival 

analysis, was used during model development (1, 13, 21). This framework utilizes non-

overlapping time segments and is analogous to life tables, whereby the patient’s risk of 

an event in the future is conditional on the fact that they have survived to that time point. 

Time was discretized into 8-hour blocks, and the data at the beginning of each time 

block were used to predict whether an outcome occurred within eight hours of the 

beginning of that block. This approach allowed the inclusion of time-varying predictor 

variables, removed the bias of sicker patients receiving more frequent measurements, 

and provided results analogous to the Cox survival model (21). Because tree-based 

models can perform poorly in highly imbalanced data (i.e., when the outcome of interest 

is uncommon), down-sampling of the training dataset to obtain a 50% outcome 

prevalence was performed prior to model fitting (13). Model hyperparameters were 

tuned in the training cohort using five-fold cross-validation to maximize the area under 

the receiver operating characteristic curve (AUROC). No variable selection was 

performed, as earlier research has shown that this does not improve the accuracy (and 

may degrade performance) of tree-based machine learning algorithms (22). Variable 

importance was calculated using the relative influence of each variable based on the 

improvement of each split averaged across all trees (17). Additional modeling details 

can be found in the Online Supplement.  
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Retrospective and Prospective Score Calculation  

For model validation, data pre-processing was performed in the same manner as during 

model development with the exception that in the validation cohorts, both retrospective 

and prospective, data were not blocked and no down-sampling was performed. 

Specifically, each time a new observation was recorded in the EHR (i.e., a new data 

point becomes available), predicted probabilities from the eCART model, as well as 

MEWS and NEWS scores were calculated. The transformed eCART model output 

probabilities were then scaled to eCART scores ranging from 0-100 for ease of 

interpretation. For the retrospective validation, these scores were calculated on a static 

multicenter dataset stored on secured, laboratory servers. In the prospective validation, 

the model features, outputted scores, and outcomes were collected in real-time utilizing 

Health Level-Seven Version 2 (HL-7 V2) messaging standard interfaces, a clinical data 

standard to protocolize how data are shared and exchanged in EHR operations, and 

stored on cloud-based computing and storage resources hosted at Amazon Web 

Services. The model scores were not available to clinicians during this silent validation. 

  

Statistical Analysis 

Descriptive statistics were used to characterize patient demographics across the 

separate development, retrospective validation, and prospective validation cohorts. 

Model performance was calculated by assessing the ability of the scores at each 

observation time to predict clinical deterioration in the following 24 hours. Discrimination 

was measured using the AUROC and then compared using the method of DeLong (23). 

Subgroup analyses were performed in the retrospective validation cohort across patient 
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demographics (age, sex, race) and clinical conditions (surgical, obstetric, sepsis, 

COVID-19, congestive heart failure (CHF), and chronic obstructive pulmonary disease 

(COPD)). Definitions of these subgroups can be found in the Supplementary Methods in 

the Online Supplement. Sensitivity, specificity, and positive and negative predictive 

values were calculated for each threshold, with confidence intervals calculated using the 

Clopper-Pearson method. Performance at a moderate-risk and high-risk threshold for 

each score (eCART of ≥93 and ≥97; NEWS ≥5 and ≥7; MEWS ≥3 and ≥4) was also 

compared. Model calibration was assessed in the prospective validation by comparing 

observed to expected deterioration rates across eCART score values. Analyses were 

performed using Stata version 16.1 (StataCorps; College Station, Texas) and R version 

4.2.1 (The R Foundation for Statistical Computing, Vienna, Austria).  

 

Results 

The training dataset included 901,491 adult inpatient admissions with ward stays at 

seven hospitals from three health systems while the retrospective validation cohort (R1-

R3) included 1,769,461 adult admissions to 21 hospitals from three health systems. The 

prospective validation cohort (P3) included 46,330 consecutive adult admissions to 10 

hospitals. There was considerable variation in demographics across the three cohorts 

(Table 1). When compared to the two validation cohorts, the training cohort had a higher 

proportion of black patients (32% in the training cohort vs. 14% and 16% in the 

retrospective and prospective cohorts) and a lower proportion of most of the Elixhauser 

comorbidities, except for malignancies. Meanwhile, the prospective validation cohort 

differed from the retrospective validation cohort in having a higher median age (66 vs 62 
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years), a shorter length of stay (60 vs 72 hours), a lower proportion of encounters with 

surgical procedures, and a higher prevalence of most Elixhauser comorbidities. There 

was also considerable variation in missing variables across the health systems (Table 

E3 in the Online Supplement). Most notably, R3 had higher rates of missing Braden 

scores and respiratory rate trends, suggesting a lower frequency of respiratory rate 

documentation, which was even more pronounced in the prospective cohort (P3). R1 

had higher rates of missing hematology labs, particularly white blood cell differential 

distributions. R2 had higher missing rates for mental status.   

The most important variables in the final eCART model were maximum 

respiratory rate in the prior 24 hours, delivered FiO2, minimum systolic blood pressure 

in the prior 24 hours, and heart rate (Figure 1). Partial plots illustrating the relationship 

between values of these variables and risk of deterioration are shown in Figure E1.  

In the retrospective validation dataset, a total of 132,873,833 eCART, MEWS and 

NEWS scores were calculated. The AUROC for eCART was 0.835 (0.834, 0.835) for 

the full retrospective cohort (Table 2). eCART consistently outperformed NEWS 

(AUROC 0.766 (0.766, 0.767)), which consistently outperformed MEWS (AUROC 0.704 

(0.703, 0.704)). eCART’s sensitivity in the retrospective cohort at the moderate-risk 

threshold (≥93) was 51.8% with a positive predictive value (PPV) of 9.0%. At the high-

risk threshold (≥97), PPV increased to 14.2% with a decrease in sensitivity to 38.6% 

(Appendix Table E4 in the Online Supplement). In contrast, MEWS had sensitivities of 

38.9% and 22.6% at the moderate (≥3) and high-risk (≥4) thresholds, with 

corresponding PPVs of 5.7% and 10.4%, respectively, while NEWS had sensitivities of 

49.7% and 28.0% at the moderate (≥5) and high-risk (≥7) thresholds, with 
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corresponding PPVs of 5.4% and 9.9%, respectively (Appendix Tables E5 and E6 in the 

Online Supplement). The precision-recall curve, Figure 2, plots PPV as a function of 

sensitivity and demonstrates a consistently more favorable tradeoff between sensitivity 

and PPV for eCART compared to both NEWS and MEWS. At the moderate-risk 

threshold, NEWS provided the longest lead time prior to the deterioration event (17 

hours (IQR 1, 73)), followed by eCART (16 hours (IQR 1, 68)), and then MEWS (13 

hours (IQR 1, 66)). At the high-risk threshold, eCART alerted a median of 5 (IQR 0, 43) 

hours in advance of clinical deterioration, significantly earlier than NEWS (3 hours (IQR 

0, 40) and MEWS (2 hours (IQR 0, 30)) (p<0.01 for all comparisons). 

Performance across subgroups in the retrospective validation (Table 3) 

demonstrated that eCART (AUROCs 0.810-0.909) consistently outperformed NEWS 

(AUROCs 0.745-0.793), which outperformed MEWS (AUROCs 0.672-0.726). Among 

the different age groups, the AUROC for eCART was highest in 18-33 year old patients 

(0.861) and lowest in 65-78 year old patients (0.822). In subgroup analysis by race, the 

eCART AUROC was highest in the Native Hawaiian/Other Pacific Islander cohort 

(0.862) and lowest in the American Indian or Alaska Native cohort (0.814). eCART 

performance was slightly higher for female compared to male patients (0.844 vs 0.824) 

and was exceptionally high in obstetric encounters (0.909). Among the clinical 

conditions, performance was highest in patients with COVID-19 across all scores and 

lowest in heart failure. Across all subgroups studied, eCART retained high 

discrimination (AUROC ≥0.81). 

In the prospective analysis, there were 4,778,200 scores calculated, and 1,579 

encounters had clinical deterioration within 24 hours following an observation. 
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Performance in the prospective cohort (P3 in Table 2) was similar to the retrospective 

results in this health system (R3), and eCART (AUROC 0.800 (0.798, 0.801)) 

outperformed NEWS (AUROC 0.736 (0.734, 0.738)) and MEWS (AUROC 0.681 (0.678, 

0.683)). Model calibration is shown in Figure 3, demonstrating close agreement 

between the observed and expected deterioration rates.  

 

Discussion 

In a large retrospective validation of nearly two million inpatient encounters with over 

130 million calculated scores from three geographically distinct health systems in the 

United States, eCART outperformed MEWS and NEWS for predicting impending clinical 

deterioration. Results were robust across age, sex, and race, with eCART performing 

better than NEWS and MEWS in all subgroups. Further, eCART had consistently high 

discrimination in the predetermined clinical conditions of heart failure, COPD, sepsis, 

and COVID-19, as well as in surgical and obstetric patients. This illustrates an important 

strength of developing an all-cause deterioration model because it can enhance early 

identification and potentially improve outcomes across a wide range of patients as 

opposed to more narrowly developed models for specific conditions (e.g., sepsis). 

Clinical performance was confirmed in a prospective study of nearly 50,000 admissions 

with over four million scores in 10 hospitals. These results, which constitute the largest 

validation of an early warning score to date, provide confidence that eCART’s 

performance is strong and generalizable. Prospective implementation of eCART would 

lead to increased detection and decreased false alarm rates compared to MEWS and 

NEWS, which could improve patient outcomes and decrease alarm fatigue. 
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The original version of eCART, which our group developed in 2014, included 

269,999 admissions from three health systems in Illinois and used discrete-time logistic 

regression with splines to predict ICU transfer, cardiac arrest, or death (1). The AAM 

score developed by Kipnis and colleagues used a similar approach to predict unplanned 

ICU transfer in the Kaiser Permanente Northern California health system (2). 

Prospective implementation studies of both of these scores found an association with 

decreased mortality (8, 9). However, our group and others have found that more 

advanced machine learning methods, such as GBM, can outperform logistic regression 

for predicting clinical deterioration (13, 14). Further, the inclusion of trends has also 

been shown to improve model discrimination (20). Therefore, in this new version of 

eCART, we utilized both GBM and trends to optimize performance. GBM can 

automatically learn interactions between variables, fit non-linear relationships, and 

handle missing data, which makes it ideal for developing clinical models in EHR data. 

The comparatively high performance of the GBM version of eCART is consistent with 

prior early warning scores developed using machine learning, including the Hospital-

wide Alerting Via Electronic Noticeboard (HAVEN), which is a GBM model developed 

and then validated in four hospitals in the United Kingdom that outperformed other 

scoring systems based on logistic regression (14). The increased discrimination of 

these more advanced models allows for the same (or higher) detection rates while 

limiting false positive alerts that can lead to alarm fatigue. 

While previously published studies have demonstrated that more advanced 

models can outperform standard tools, such as MEWS and NEWS, across the entire 

medical-surgical cohort (2, 13, 14), little is known regarding comparative performance 
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across important patient subgroups. Therefore, in this study, we performed extensive 

subgroup analysis that included age, sex, race, and medical conditions. We found that 

eCART had high discrimination across all subgroups and consistently outperformed 

both MEWS and NEWS. The highest results were in the post-partum cohort, followed by 

age 18-33, Native Hawaiian and Other Pacific Islanders, and patients with COVID-19. 

Across all 19 tested subgroups, eCART maintained an AUC of ≥0.81. To our 

knowledge, this is the largest and most comprehensive subgroup analysis performed on 

early warning scores to date and demonstrates the excellent performance of eCART 

across these cohorts. This type of analysis is critical to ensure that these scores can be 

safely used across a wide range of hospitalized patients.  

Although numerous predictive models have been developed using retrospective 

data, few have been implemented prospectively. An important step towards 

implementation is building the informatics infrastructure to calculate the model 

prospectively and to assess performance during a silent implementation. Therefore, in 

addition to performing a large, extensive retrospective validation, we also tested eCART 

in a silent prospective study in 10 hospitals. We found that our model had similar 

discrimination to the retrospective evaluation in the same health system and had 

excellent calibration. These results are encouraging, given that data quality and timing 

can differ between prospective and retrospective data (e.g., back-dating of vital sign 

documentation) and increase confidence that eCART will continue to perform well 

during implementation studies. Furthermore, we demonstrate the feasibility of testing 

these models in environments for clinical operations and integrated with HL7 for 

production use. 
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Our study has several limitations. First, although GBM models are flexible and 

can be highly accurate, they are complex and difficult to interpret. Therefore, 

explainable machine learning approaches are needed to provide insights to clinicians 

regarding the variables that are driving an individual patient’s risk of deterioration. In 

addition, there are myriad other machine learning approaches available to develop 

prediction models, and numerous possible comparator scores that have been 

published. We chose GBM due to its excellent discrimination and calibration from prior 

publications, and NEWS and MEWS due to their widespread use across the country 

and around the world. Finally, it is also important to note that high model discrimination 

may not translate to improved patient outcomes, so prospective implementation of 

eCART is required to study its impact on patient care. 

In conclusion, we developed and validated a new GBM model, called eCARTv5, 

which accurately identifies early clinical deterioration. Our model was validated 

retrospectively in a geographically diverse set of health systems and performed better 

than the NEWS and MEWS overall and across a range of subgroups. Prospective 

validation of eCART found similar performance, and these results served as the 

foundation for an FDA submission. Future implementation of our score could identify 

more high-risk patients at a lower false alarm rate than commonly used tools. 
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Table 1. Patient characteristics by cohort. 

Patient Characteristics 

Derivation 

Cohort 

Retrospective 

Validation Cohort 

Hospitals, N 7 21 

Encounters, N 901,491 1,769,461 

Admission age, years, median (IQR) 61 (44, 74) 62 (45, 75) 

Female sex 512,198 (56.8%) 993,297 (56.1%) 

Race: American Indian or Alaska Native 1,445 (0.2%) 6,468 (0.4%) 

Race: Asian/Mideast Indian 23,334 (2.6%) 26,681 (1.5%) 

Race: Black/African American 286,901 (31.8%) 252,982 (14.3%) 

Race: Pacific Islander/ Hawaiian Native 666 (0.1%) 2,496 (0.1%) 

Race: White/Caucasian 496,154 (55.0%) 1,384,075 (78.2%) 

Race: Other 92,991 (10.3%) 96,759 (5.5%) 

Surgical 312,153 (34.6%) 539,875 (30.5%) 

Obstetric 65,594 (7.3%) 154,759 (8.7%) 

Sepsis   240,651 (26.7%) 639,802 (36.2%) 

COVID-19 4,365 (0.5%) 49,834 (2.8%) 

Congestive heart failure 131,644 (14.6%) 306,140 (17.3%) 

Chronic pulmonary disease 150,043 (16.6%) 443,263 (25.1%) 

Length of stay, hours, median (IQR) 70 (37, 124) 72 (43, 130) 

Ward to ICU transfer 32,320 (3.6%) 57,789 (3.3%) 

Mortality 10,568 (1.2%) 26,319 (1.5%) 

 
Abbreviations: ICU = Intensive Care Unit; COVID-19 = Coronavirus Disease 2019; 
AIDS/HIV = Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome 
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Table 2. Area under the receiver operating characteristic curve (AUROC) of the risk 

scores for predicting the outcome of clinical deterioration within 24 hours in the external 

retrospective validation cohort. 

Cohort 
Encounters, 

n 

Observations, 

n 

eCART 

AUROC (95% CI) 

NEWS  

AUROC (95% CI) 

MEWS  

AUROC (95% CI) 

Retrospective (All) 1,769,461 132,873,833 
0.835 (0.834, 

0.835) 

0.766 (0.766, 

0.767) 

0.704 (0.703, 

0.704) 

•Retrospective (R1) 246,949 19,262,093 
0.862 (0.861, 

0.862) 

0.775 (0.774, 

0.777) 

0.730 (0.729, 

0.732) 

•Retrospective (R2) 592,504 37,930,348 
0.872 (0.872, 

0.873) 

0.808 (0.807, 

0.809) 

0.749 (0.748, 

0.749) 

•Retrospective (R3) 930,008 75,681,392 
0.807 (0.807, 

0.808) 

0.744 (0.743, 

0.744) 

0.674 (0.674, 

0.675) 

Prospective (P3) 46,330 4,778,200 
0.800 (0.798, 

0.801) 

0.736 (0.734, 

0.738) 

0.681 (0.678, 

0.683) 

 
Abbreviations: eCART = electronic Cardiac Arrest Risk Triage score; NEWS = National 
Early Warning Score; MEWS = Modified Early Warning Score 
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Table 3. Subgroup analysis results showing the area under the receiver operating 

characteristic curve (AUROC) values for predicting clinical deterioration in the full 

retrospective cohort by risk score and subgroup.  

Category Subgroup Encounters, n 
eCART 

AUROC 

NEWS 

AUROC 

MEWS 

AUROC 

All – 1,769,461 0.835 0.766 0.704 

Age 

18-33 232,353 0.861 0.770 0.726 

34-48 271,904 0.845 0.758 0.709 

49-64 475,033 0.827 0.755 0.702 

65-78 458,470 0.822 0.758 0.700 

≥79 331,701 0.832 0.776 0.716 

Sex 
Male 776,164 0.824 0.761 0.699 

Female 993,297 0.844 0.775 0.710 

Race 

American Indian or Alaska Native 6,468 0.814 0.746 0.672 

Asian/Mideast Indian 26,681 0.847 0.779 0.722 

Black/African-American 252,982 0.831 0.769 0.707 

Native Hawaiian/Other Pacific Islander 2,496 0.862 0.772 0.709 

White 1,384,075 0.834 0.764 0.702 

Other/Unknown 96,759 0.859 0.785 0.724 

Procedure 
Surgical 539,875 0.817 0.745 0.690 

Obstetric 154,759 0.909 0.758 0.691 

Clinical 

condition 

Sepsis 639,802 0.836 0.774 0.714 

COVID-19 49,834 0.858 0.793 0.710 

CHF 306,140 0.810 0.750 0.694 

COPD 443,263 0.824 0.757 0.698 

Abbreviations: eCART = electronic Cardiac Arrest Risk Triage score; NEWS = National 
Early Warning Score; MEWS = Modified Early Warning Score; COVID-19 = Coronavirus 
Disease 2019; CHF = Congestive Heart Failure; COPD = Chronic Obstructive 
Pulmonary Disease 
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Figure Legends: 

Figure 1. Variable importance plot illustrating the top 25 most important variables in the 

eCART model.  

[Figure 1] 
 
Abbreviations: eCART = electronic Cardiac Arrest Risk Triage score; FiO2 = Fraction of 
Inspired Oxygen; BUN = Blood Urea Nitrogen; aPTT = Activated Partial Thromboplastin 
Clotting Time; AVPU = Alert, responds to Voice, responds to Pain, Unresponsive 
 

 
Figure 2. Precision-recall curves of the risk scores in the full retrospective dataset 

(n=132,873,833 observations). Sensitivity is plotted along the X-axis and positive 

predictive value is plotted along the Y-axis for eCART, NEWS and MEWS. The markers 

on the lines correspond to a MEWS of 3 and 4, NEWS of 5 and 7 and eCART of 93 and 

97, representing commonly used moderate (higher sensitivity) and high-risk (higher 

PPV) thresholds for each score.  

[Figure 2] 
 
Abbreviations: eCART = electronic Cardiac Arrest Risk Triage score; NEWS = National 
Early Warning Score; MEWS = Modified Early Warning Score; PPV = Positive 
Predictive Value 
 
 
 
Figure 3. Calibration plot in the prospective validation cohort illustrating the observed 
and expected outcome rates across values of the eCART score.  
 
[Figure 3] 
 
Abbreviations: eCART = electronic Cardiac Arrest Risk Triage score; ICU = Intensive 
Care Unit 
 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304462doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304462


All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304462doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304462


All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304462doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304462


All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304462doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304462

